2 * linux/fs/ext4/fsync.c
4 * Copyright (C) 1993 Stephen Tweedie (sct@redhat.com)
6 * Copyright (C) 1992 Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
10 * linux/fs/minix/truncate.c Copyright (C) 1991, 1992 Linus Torvalds
12 * ext4fs fsync primitive
14 * Big-endian to little-endian byte-swapping/bitmaps by
15 * David S. Miller (davem@caip.rutgers.edu), 1995
17 * Removed unnecessary code duplication for little endian machines
18 * and excessive __inline__s.
21 * Major simplications and cleanup - we only need to do the metadata, because
22 * we can depend on generic_block_fdatasync() to sync the data blocks.
25 #include <linux/time.h>
27 #include <linux/sched.h>
28 #include <linux/writeback.h>
29 #include <linux/blkdev.h>
32 #include "ext4_jbd2.h"
34 #include <trace/events/ext4.h>
37 * If we're not journaling and this is a just-created file, we have to
38 * sync our parent directory (if it was freshly created) since
39 * otherwise it will only be written by writeback, leaving a huge
40 * window during which a crash may lose the file. This may apply for
41 * the parent directory's parent as well, and so on recursively, if
42 * they are also freshly created.
44 static int ext4_sync_parent(struct inode
*inode
)
46 struct dentry
*dentry
= NULL
;
50 if (!ext4_test_inode_state(inode
, EXT4_STATE_NEWENTRY
))
53 while (ext4_test_inode_state(inode
, EXT4_STATE_NEWENTRY
)) {
54 ext4_clear_inode_state(inode
, EXT4_STATE_NEWENTRY
);
55 dentry
= d_find_any_alias(inode
);
58 next
= igrab(d_inode(dentry
->d_parent
));
65 * The directory inode may have gone through rmdir by now. But
66 * the inode itself and its blocks are still allocated (we hold
67 * a reference to the inode so it didn't go through
68 * ext4_evict_inode()) and so we are safe to flush metadata
69 * blocks and the inode.
71 ret
= sync_mapping_buffers(inode
->i_mapping
);
74 ret
= sync_inode_metadata(inode
, 1);
83 * akpm: A new design for ext4_sync_file().
85 * This is only called from sys_fsync(), sys_fdatasync() and sys_msync().
86 * There cannot be a transaction open by this task.
87 * Another task could have dirtied this inode. Its data can be in any
88 * state in the journalling system.
90 * What we do is just kick off a commit and wait on it. This will snapshot the
94 int ext4_sync_file(struct file
*file
, loff_t start
, loff_t end
, int datasync
)
96 struct inode
*inode
= file
->f_mapping
->host
;
97 struct ext4_inode_info
*ei
= EXT4_I(inode
);
98 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
101 bool needs_barrier
= false;
103 J_ASSERT(ext4_journal_current_handle() == NULL
);
105 trace_ext4_sync_file_enter(file
, datasync
);
107 if (inode
->i_sb
->s_flags
& MS_RDONLY
) {
108 /* Make sure that we read updated s_mount_flags value */
110 if (EXT4_SB(inode
->i_sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
)
116 ret
= __generic_file_fsync(file
, start
, end
, datasync
);
118 ret
= ext4_sync_parent(inode
);
119 if (test_opt(inode
->i_sb
, BARRIER
))
124 ret
= filemap_write_and_wait_range(inode
->i_mapping
, start
, end
);
128 * data=writeback,ordered:
129 * The caller's filemap_fdatawrite()/wait will sync the data.
130 * Metadata is in the journal, we wait for proper transaction to
134 * filemap_fdatawrite won't do anything (the buffers are clean).
135 * ext4_force_commit will write the file data into the journal and
137 * filemap_fdatawait() will encounter a ton of newly-dirtied pages
138 * (they were dirtied by commit). But that's OK - the blocks are
139 * safe in-journal, which is all fsync() needs to ensure.
141 if (ext4_should_journal_data(inode
)) {
142 ret
= ext4_force_commit(inode
->i_sb
);
146 commit_tid
= datasync
? ei
->i_datasync_tid
: ei
->i_sync_tid
;
147 if (journal
->j_flags
& JBD2_BARRIER
&&
148 !jbd2_trans_will_send_data_barrier(journal
, commit_tid
))
149 needs_barrier
= true;
150 ret
= jbd2_complete_transaction(journal
, commit_tid
);
153 err
= blkdev_issue_flush(inode
->i_sb
->s_bdev
, GFP_KERNEL
, NULL
);
158 trace_ext4_sync_file_exit(inode
, ret
);