USB: see if URB comes from a completion handler
[linux/fpc-iii.git] / drivers / hv / ring_buffer.c
blob26c93cf9f6be4a083f47615318699e3110d39983
1 /*
3 * Copyright (c) 2009, Microsoft Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
16 * Place - Suite 330, Boston, MA 02111-1307 USA.
18 * Authors:
19 * Haiyang Zhang <haiyangz@microsoft.com>
20 * Hank Janssen <hjanssen@microsoft.com>
21 * K. Y. Srinivasan <kys@microsoft.com>
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/hyperv.h>
30 #include "hyperv_vmbus.h"
32 void hv_begin_read(struct hv_ring_buffer_info *rbi)
34 rbi->ring_buffer->interrupt_mask = 1;
35 mb();
38 u32 hv_end_read(struct hv_ring_buffer_info *rbi)
40 u32 read;
41 u32 write;
43 rbi->ring_buffer->interrupt_mask = 0;
44 mb();
47 * Now check to see if the ring buffer is still empty.
48 * If it is not, we raced and we need to process new
49 * incoming messages.
51 hv_get_ringbuffer_availbytes(rbi, &read, &write);
53 return read;
57 * When we write to the ring buffer, check if the host needs to
58 * be signaled. Here is the details of this protocol:
60 * 1. The host guarantees that while it is draining the
61 * ring buffer, it will set the interrupt_mask to
62 * indicate it does not need to be interrupted when
63 * new data is placed.
65 * 2. The host guarantees that it will completely drain
66 * the ring buffer before exiting the read loop. Further,
67 * once the ring buffer is empty, it will clear the
68 * interrupt_mask and re-check to see if new data has
69 * arrived.
72 static bool hv_need_to_signal(u32 old_write, struct hv_ring_buffer_info *rbi)
74 mb();
75 if (rbi->ring_buffer->interrupt_mask)
76 return false;
78 /* check interrupt_mask before read_index */
79 rmb();
81 * This is the only case we need to signal when the
82 * ring transitions from being empty to non-empty.
84 if (old_write == rbi->ring_buffer->read_index)
85 return true;
87 return false;
91 * To optimize the flow management on the send-side,
92 * when the sender is blocked because of lack of
93 * sufficient space in the ring buffer, potential the
94 * consumer of the ring buffer can signal the producer.
95 * This is controlled by the following parameters:
97 * 1. pending_send_sz: This is the size in bytes that the
98 * producer is trying to send.
99 * 2. The feature bit feat_pending_send_sz set to indicate if
100 * the consumer of the ring will signal when the ring
101 * state transitions from being full to a state where
102 * there is room for the producer to send the pending packet.
105 static bool hv_need_to_signal_on_read(u32 old_rd,
106 struct hv_ring_buffer_info *rbi)
108 u32 prev_write_sz;
109 u32 cur_write_sz;
110 u32 r_size;
111 u32 write_loc = rbi->ring_buffer->write_index;
112 u32 read_loc = rbi->ring_buffer->read_index;
113 u32 pending_sz = rbi->ring_buffer->pending_send_sz;
116 * If the other end is not blocked on write don't bother.
118 if (pending_sz == 0)
119 return false;
121 r_size = rbi->ring_datasize;
122 cur_write_sz = write_loc >= read_loc ? r_size - (write_loc - read_loc) :
123 read_loc - write_loc;
125 prev_write_sz = write_loc >= old_rd ? r_size - (write_loc - old_rd) :
126 old_rd - write_loc;
129 if ((prev_write_sz < pending_sz) && (cur_write_sz >= pending_sz))
130 return true;
132 return false;
136 * hv_get_next_write_location()
138 * Get the next write location for the specified ring buffer
141 static inline u32
142 hv_get_next_write_location(struct hv_ring_buffer_info *ring_info)
144 u32 next = ring_info->ring_buffer->write_index;
146 return next;
150 * hv_set_next_write_location()
152 * Set the next write location for the specified ring buffer
155 static inline void
156 hv_set_next_write_location(struct hv_ring_buffer_info *ring_info,
157 u32 next_write_location)
159 ring_info->ring_buffer->write_index = next_write_location;
163 * hv_get_next_read_location()
165 * Get the next read location for the specified ring buffer
167 static inline u32
168 hv_get_next_read_location(struct hv_ring_buffer_info *ring_info)
170 u32 next = ring_info->ring_buffer->read_index;
172 return next;
176 * hv_get_next_readlocation_withoffset()
178 * Get the next read location + offset for the specified ring buffer.
179 * This allows the caller to skip
181 static inline u32
182 hv_get_next_readlocation_withoffset(struct hv_ring_buffer_info *ring_info,
183 u32 offset)
185 u32 next = ring_info->ring_buffer->read_index;
187 next += offset;
188 next %= ring_info->ring_datasize;
190 return next;
195 * hv_set_next_read_location()
197 * Set the next read location for the specified ring buffer
200 static inline void
201 hv_set_next_read_location(struct hv_ring_buffer_info *ring_info,
202 u32 next_read_location)
204 ring_info->ring_buffer->read_index = next_read_location;
210 * hv_get_ring_buffer()
212 * Get the start of the ring buffer
214 static inline void *
215 hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info)
217 return (void *)ring_info->ring_buffer->buffer;
223 * hv_get_ring_buffersize()
225 * Get the size of the ring buffer
227 static inline u32
228 hv_get_ring_buffersize(struct hv_ring_buffer_info *ring_info)
230 return ring_info->ring_datasize;
235 * hv_get_ring_bufferindices()
237 * Get the read and write indices as u64 of the specified ring buffer
240 static inline u64
241 hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info)
243 return (u64)ring_info->ring_buffer->write_index << 32;
248 * hv_copyfrom_ringbuffer()
250 * Helper routine to copy to source from ring buffer.
251 * Assume there is enough room. Handles wrap-around in src case only!!
254 static u32 hv_copyfrom_ringbuffer(
255 struct hv_ring_buffer_info *ring_info,
256 void *dest,
257 u32 destlen,
258 u32 start_read_offset)
260 void *ring_buffer = hv_get_ring_buffer(ring_info);
261 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
263 u32 frag_len;
265 /* wrap-around detected at the src */
266 if (destlen > ring_buffer_size - start_read_offset) {
267 frag_len = ring_buffer_size - start_read_offset;
269 memcpy(dest, ring_buffer + start_read_offset, frag_len);
270 memcpy(dest + frag_len, ring_buffer, destlen - frag_len);
271 } else
273 memcpy(dest, ring_buffer + start_read_offset, destlen);
276 start_read_offset += destlen;
277 start_read_offset %= ring_buffer_size;
279 return start_read_offset;
285 * hv_copyto_ringbuffer()
287 * Helper routine to copy from source to ring buffer.
288 * Assume there is enough room. Handles wrap-around in dest case only!!
291 static u32 hv_copyto_ringbuffer(
292 struct hv_ring_buffer_info *ring_info,
293 u32 start_write_offset,
294 void *src,
295 u32 srclen)
297 void *ring_buffer = hv_get_ring_buffer(ring_info);
298 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info);
299 u32 frag_len;
301 /* wrap-around detected! */
302 if (srclen > ring_buffer_size - start_write_offset) {
303 frag_len = ring_buffer_size - start_write_offset;
304 memcpy(ring_buffer + start_write_offset, src, frag_len);
305 memcpy(ring_buffer, src + frag_len, srclen - frag_len);
306 } else
307 memcpy(ring_buffer + start_write_offset, src, srclen);
309 start_write_offset += srclen;
310 start_write_offset %= ring_buffer_size;
312 return start_write_offset;
317 * hv_ringbuffer_get_debuginfo()
319 * Get various debug metrics for the specified ring buffer
322 void hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
323 struct hv_ring_buffer_debug_info *debug_info)
325 u32 bytes_avail_towrite;
326 u32 bytes_avail_toread;
328 if (ring_info->ring_buffer) {
329 hv_get_ringbuffer_availbytes(ring_info,
330 &bytes_avail_toread,
331 &bytes_avail_towrite);
333 debug_info->bytes_avail_toread = bytes_avail_toread;
334 debug_info->bytes_avail_towrite = bytes_avail_towrite;
335 debug_info->current_read_index =
336 ring_info->ring_buffer->read_index;
337 debug_info->current_write_index =
338 ring_info->ring_buffer->write_index;
339 debug_info->current_interrupt_mask =
340 ring_info->ring_buffer->interrupt_mask;
346 * hv_ringbuffer_init()
348 *Initialize the ring buffer
351 int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info,
352 void *buffer, u32 buflen)
354 if (sizeof(struct hv_ring_buffer) != PAGE_SIZE)
355 return -EINVAL;
357 memset(ring_info, 0, sizeof(struct hv_ring_buffer_info));
359 ring_info->ring_buffer = (struct hv_ring_buffer *)buffer;
360 ring_info->ring_buffer->read_index =
361 ring_info->ring_buffer->write_index = 0;
363 ring_info->ring_size = buflen;
364 ring_info->ring_datasize = buflen - sizeof(struct hv_ring_buffer);
366 spin_lock_init(&ring_info->ring_lock);
368 return 0;
373 * hv_ringbuffer_cleanup()
375 * Cleanup the ring buffer
378 void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info)
384 * hv_ringbuffer_write()
386 * Write to the ring buffer
389 int hv_ringbuffer_write(struct hv_ring_buffer_info *outring_info,
390 struct scatterlist *sglist, u32 sgcount, bool *signal)
392 int i = 0;
393 u32 bytes_avail_towrite;
394 u32 bytes_avail_toread;
395 u32 totalbytes_towrite = 0;
397 struct scatterlist *sg;
398 u32 next_write_location;
399 u32 old_write;
400 u64 prev_indices = 0;
401 unsigned long flags;
403 for_each_sg(sglist, sg, sgcount, i)
405 totalbytes_towrite += sg->length;
408 totalbytes_towrite += sizeof(u64);
410 spin_lock_irqsave(&outring_info->ring_lock, flags);
412 hv_get_ringbuffer_availbytes(outring_info,
413 &bytes_avail_toread,
414 &bytes_avail_towrite);
417 /* If there is only room for the packet, assume it is full. */
418 /* Otherwise, the next time around, we think the ring buffer */
419 /* is empty since the read index == write index */
420 if (bytes_avail_towrite <= totalbytes_towrite) {
421 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
422 return -EAGAIN;
425 /* Write to the ring buffer */
426 next_write_location = hv_get_next_write_location(outring_info);
428 old_write = next_write_location;
430 for_each_sg(sglist, sg, sgcount, i)
432 next_write_location = hv_copyto_ringbuffer(outring_info,
433 next_write_location,
434 sg_virt(sg),
435 sg->length);
438 /* Set previous packet start */
439 prev_indices = hv_get_ring_bufferindices(outring_info);
441 next_write_location = hv_copyto_ringbuffer(outring_info,
442 next_write_location,
443 &prev_indices,
444 sizeof(u64));
446 /* Issue a full memory barrier before updating the write index */
447 mb();
449 /* Now, update the write location */
450 hv_set_next_write_location(outring_info, next_write_location);
453 spin_unlock_irqrestore(&outring_info->ring_lock, flags);
455 *signal = hv_need_to_signal(old_write, outring_info);
456 return 0;
462 * hv_ringbuffer_peek()
464 * Read without advancing the read index
467 int hv_ringbuffer_peek(struct hv_ring_buffer_info *Inring_info,
468 void *Buffer, u32 buflen)
470 u32 bytes_avail_towrite;
471 u32 bytes_avail_toread;
472 u32 next_read_location = 0;
473 unsigned long flags;
475 spin_lock_irqsave(&Inring_info->ring_lock, flags);
477 hv_get_ringbuffer_availbytes(Inring_info,
478 &bytes_avail_toread,
479 &bytes_avail_towrite);
481 /* Make sure there is something to read */
482 if (bytes_avail_toread < buflen) {
484 spin_unlock_irqrestore(&Inring_info->ring_lock, flags);
486 return -EAGAIN;
489 /* Convert to byte offset */
490 next_read_location = hv_get_next_read_location(Inring_info);
492 next_read_location = hv_copyfrom_ringbuffer(Inring_info,
493 Buffer,
494 buflen,
495 next_read_location);
497 spin_unlock_irqrestore(&Inring_info->ring_lock, flags);
499 return 0;
505 * hv_ringbuffer_read()
507 * Read and advance the read index
510 int hv_ringbuffer_read(struct hv_ring_buffer_info *inring_info, void *buffer,
511 u32 buflen, u32 offset, bool *signal)
513 u32 bytes_avail_towrite;
514 u32 bytes_avail_toread;
515 u32 next_read_location = 0;
516 u64 prev_indices = 0;
517 unsigned long flags;
518 u32 old_read;
520 if (buflen <= 0)
521 return -EINVAL;
523 spin_lock_irqsave(&inring_info->ring_lock, flags);
525 hv_get_ringbuffer_availbytes(inring_info,
526 &bytes_avail_toread,
527 &bytes_avail_towrite);
529 old_read = bytes_avail_toread;
531 /* Make sure there is something to read */
532 if (bytes_avail_toread < buflen) {
533 spin_unlock_irqrestore(&inring_info->ring_lock, flags);
535 return -EAGAIN;
538 next_read_location =
539 hv_get_next_readlocation_withoffset(inring_info, offset);
541 next_read_location = hv_copyfrom_ringbuffer(inring_info,
542 buffer,
543 buflen,
544 next_read_location);
546 next_read_location = hv_copyfrom_ringbuffer(inring_info,
547 &prev_indices,
548 sizeof(u64),
549 next_read_location);
551 /* Make sure all reads are done before we update the read index since */
552 /* the writer may start writing to the read area once the read index */
553 /*is updated */
554 mb();
556 /* Update the read index */
557 hv_set_next_read_location(inring_info, next_read_location);
559 spin_unlock_irqrestore(&inring_info->ring_lock, flags);
561 *signal = hv_need_to_signal_on_read(old_read, inring_info);
563 return 0;