2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
39 #include <linux/smp_lock.h>
43 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
44 * allocating too much.
46 #define UBIFS_KMALLOC_OK (128*1024)
48 /* Slab cache for UBIFS inodes */
49 struct kmem_cache
*ubifs_inode_slab
;
51 /* UBIFS TNC shrinker description */
52 static struct shrinker ubifs_shrinker_info
= {
53 .shrink
= ubifs_shrinker
,
54 .seeks
= DEFAULT_SEEKS
,
58 * validate_inode - validate inode.
59 * @c: UBIFS file-system description object
60 * @inode: the inode to validate
62 * This is a helper function for 'ubifs_iget()' which validates various fields
63 * of a newly built inode to make sure they contain sane values and prevent
64 * possible vulnerabilities. Returns zero if the inode is all right and
65 * a non-zero error code if not.
67 static int validate_inode(struct ubifs_info
*c
, const struct inode
*inode
)
70 const struct ubifs_inode
*ui
= ubifs_inode(inode
);
72 if (inode
->i_size
> c
->max_inode_sz
) {
73 ubifs_err("inode is too large (%lld)",
74 (long long)inode
->i_size
);
78 if (ui
->compr_type
< 0 || ui
->compr_type
>= UBIFS_COMPR_TYPES_CNT
) {
79 ubifs_err("unknown compression type %d", ui
->compr_type
);
83 if (ui
->xattr_names
+ ui
->xattr_cnt
> XATTR_LIST_MAX
)
86 if (ui
->data_len
< 0 || ui
->data_len
> UBIFS_MAX_INO_DATA
)
89 if (ui
->xattr
&& (inode
->i_mode
& S_IFMT
) != S_IFREG
)
92 if (!ubifs_compr_present(ui
->compr_type
)) {
93 ubifs_warn("inode %lu uses '%s' compression, but it was not "
94 "compiled in", inode
->i_ino
,
95 ubifs_compr_name(ui
->compr_type
));
98 err
= dbg_check_dir_size(c
, inode
);
102 struct inode
*ubifs_iget(struct super_block
*sb
, unsigned long inum
)
106 struct ubifs_ino_node
*ino
;
107 struct ubifs_info
*c
= sb
->s_fs_info
;
109 struct ubifs_inode
*ui
;
111 dbg_gen("inode %lu", inum
);
113 inode
= iget_locked(sb
, inum
);
115 return ERR_PTR(-ENOMEM
);
116 if (!(inode
->i_state
& I_NEW
))
118 ui
= ubifs_inode(inode
);
120 ino
= kmalloc(UBIFS_MAX_INO_NODE_SZ
, GFP_NOFS
);
126 ino_key_init(c
, &key
, inode
->i_ino
);
128 err
= ubifs_tnc_lookup(c
, &key
, ino
);
132 inode
->i_flags
|= (S_NOCMTIME
| S_NOATIME
);
133 inode
->i_nlink
= le32_to_cpu(ino
->nlink
);
134 inode
->i_uid
= le32_to_cpu(ino
->uid
);
135 inode
->i_gid
= le32_to_cpu(ino
->gid
);
136 inode
->i_atime
.tv_sec
= (int64_t)le64_to_cpu(ino
->atime_sec
);
137 inode
->i_atime
.tv_nsec
= le32_to_cpu(ino
->atime_nsec
);
138 inode
->i_mtime
.tv_sec
= (int64_t)le64_to_cpu(ino
->mtime_sec
);
139 inode
->i_mtime
.tv_nsec
= le32_to_cpu(ino
->mtime_nsec
);
140 inode
->i_ctime
.tv_sec
= (int64_t)le64_to_cpu(ino
->ctime_sec
);
141 inode
->i_ctime
.tv_nsec
= le32_to_cpu(ino
->ctime_nsec
);
142 inode
->i_mode
= le32_to_cpu(ino
->mode
);
143 inode
->i_size
= le64_to_cpu(ino
->size
);
145 ui
->data_len
= le32_to_cpu(ino
->data_len
);
146 ui
->flags
= le32_to_cpu(ino
->flags
);
147 ui
->compr_type
= le16_to_cpu(ino
->compr_type
);
148 ui
->creat_sqnum
= le64_to_cpu(ino
->creat_sqnum
);
149 ui
->xattr_cnt
= le32_to_cpu(ino
->xattr_cnt
);
150 ui
->xattr_size
= le32_to_cpu(ino
->xattr_size
);
151 ui
->xattr_names
= le32_to_cpu(ino
->xattr_names
);
152 ui
->synced_i_size
= ui
->ui_size
= inode
->i_size
;
154 ui
->xattr
= (ui
->flags
& UBIFS_XATTR_FL
) ? 1 : 0;
156 err
= validate_inode(c
, inode
);
160 /* Disable read-ahead */
161 inode
->i_mapping
->backing_dev_info
= &c
->bdi
;
163 switch (inode
->i_mode
& S_IFMT
) {
165 inode
->i_mapping
->a_ops
= &ubifs_file_address_operations
;
166 inode
->i_op
= &ubifs_file_inode_operations
;
167 inode
->i_fop
= &ubifs_file_operations
;
169 ui
->data
= kmalloc(ui
->data_len
+ 1, GFP_NOFS
);
174 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
175 ((char *)ui
->data
)[ui
->data_len
] = '\0';
176 } else if (ui
->data_len
!= 0) {
182 inode
->i_op
= &ubifs_dir_inode_operations
;
183 inode
->i_fop
= &ubifs_dir_operations
;
184 if (ui
->data_len
!= 0) {
190 inode
->i_op
= &ubifs_symlink_inode_operations
;
191 if (ui
->data_len
<= 0 || ui
->data_len
> UBIFS_MAX_INO_DATA
) {
195 ui
->data
= kmalloc(ui
->data_len
+ 1, GFP_NOFS
);
200 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
201 ((char *)ui
->data
)[ui
->data_len
] = '\0';
207 union ubifs_dev_desc
*dev
;
209 ui
->data
= kmalloc(sizeof(union ubifs_dev_desc
), GFP_NOFS
);
215 dev
= (union ubifs_dev_desc
*)ino
->data
;
216 if (ui
->data_len
== sizeof(dev
->new))
217 rdev
= new_decode_dev(le32_to_cpu(dev
->new));
218 else if (ui
->data_len
== sizeof(dev
->huge
))
219 rdev
= huge_decode_dev(le64_to_cpu(dev
->huge
));
224 memcpy(ui
->data
, ino
->data
, ui
->data_len
);
225 inode
->i_op
= &ubifs_file_inode_operations
;
226 init_special_inode(inode
, inode
->i_mode
, rdev
);
231 inode
->i_op
= &ubifs_file_inode_operations
;
232 init_special_inode(inode
, inode
->i_mode
, 0);
233 if (ui
->data_len
!= 0) {
244 ubifs_set_inode_flags(inode
);
245 unlock_new_inode(inode
);
249 ubifs_err("inode %lu validation failed, error %d", inode
->i_ino
, err
);
250 dbg_dump_node(c
, ino
);
251 dbg_dump_inode(c
, inode
);
256 ubifs_err("failed to read inode %lu, error %d", inode
->i_ino
, err
);
261 static struct inode
*ubifs_alloc_inode(struct super_block
*sb
)
263 struct ubifs_inode
*ui
;
265 ui
= kmem_cache_alloc(ubifs_inode_slab
, GFP_NOFS
);
269 memset((void *)ui
+ sizeof(struct inode
), 0,
270 sizeof(struct ubifs_inode
) - sizeof(struct inode
));
271 mutex_init(&ui
->ui_mutex
);
272 spin_lock_init(&ui
->ui_lock
);
273 return &ui
->vfs_inode
;
276 static void ubifs_destroy_inode(struct inode
*inode
)
278 struct ubifs_inode
*ui
= ubifs_inode(inode
);
281 kmem_cache_free(ubifs_inode_slab
, inode
);
285 * Note, Linux write-back code calls this without 'i_mutex'.
287 static int ubifs_write_inode(struct inode
*inode
, int wait
)
290 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
291 struct ubifs_inode
*ui
= ubifs_inode(inode
);
293 ubifs_assert(!ui
->xattr
);
294 if (is_bad_inode(inode
))
297 mutex_lock(&ui
->ui_mutex
);
299 * Due to races between write-back forced by budgeting
300 * (see 'sync_some_inodes()') and pdflush write-back, the inode may
301 * have already been synchronized, do not do this again. This might
302 * also happen if it was synchronized in an VFS operation, e.g.
306 mutex_unlock(&ui
->ui_mutex
);
311 * As an optimization, do not write orphan inodes to the media just
312 * because this is not needed.
314 dbg_gen("inode %lu, mode %#x, nlink %u",
315 inode
->i_ino
, (int)inode
->i_mode
, inode
->i_nlink
);
316 if (inode
->i_nlink
) {
317 err
= ubifs_jnl_write_inode(c
, inode
);
319 ubifs_err("can't write inode %lu, error %d",
324 mutex_unlock(&ui
->ui_mutex
);
325 ubifs_release_dirty_inode_budget(c
, ui
);
329 static void ubifs_delete_inode(struct inode
*inode
)
332 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
333 struct ubifs_inode
*ui
= ubifs_inode(inode
);
337 * Extended attribute inode deletions are fully handled in
338 * 'ubifs_removexattr()'. These inodes are special and have
339 * limited usage, so there is nothing to do here.
343 dbg_gen("inode %lu, mode %#x", inode
->i_ino
, (int)inode
->i_mode
);
344 ubifs_assert(!atomic_read(&inode
->i_count
));
345 ubifs_assert(inode
->i_nlink
== 0);
347 truncate_inode_pages(&inode
->i_data
, 0);
348 if (is_bad_inode(inode
))
351 ui
->ui_size
= inode
->i_size
= 0;
352 err
= ubifs_jnl_delete_inode(c
, inode
);
355 * Worst case we have a lost orphan inode wasting space, so a
356 * simple error message is OK here.
358 ubifs_err("can't delete inode %lu, error %d",
363 ubifs_release_dirty_inode_budget(c
, ui
);
365 /* We've deleted something - clean the "no space" flags */
366 c
->nospace
= c
->nospace_rp
= 0;
372 static void ubifs_dirty_inode(struct inode
*inode
)
374 struct ubifs_inode
*ui
= ubifs_inode(inode
);
376 ubifs_assert(mutex_is_locked(&ui
->ui_mutex
));
379 dbg_gen("inode %lu", inode
->i_ino
);
383 static int ubifs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
385 struct ubifs_info
*c
= dentry
->d_sb
->s_fs_info
;
386 unsigned long long free
;
387 __le32
*uuid
= (__le32
*)c
->uuid
;
389 free
= ubifs_get_free_space(c
);
390 dbg_gen("free space %lld bytes (%lld blocks)",
391 free
, free
>> UBIFS_BLOCK_SHIFT
);
393 buf
->f_type
= UBIFS_SUPER_MAGIC
;
394 buf
->f_bsize
= UBIFS_BLOCK_SIZE
;
395 buf
->f_blocks
= c
->block_cnt
;
396 buf
->f_bfree
= free
>> UBIFS_BLOCK_SHIFT
;
397 if (free
> c
->report_rp_size
)
398 buf
->f_bavail
= (free
- c
->report_rp_size
) >> UBIFS_BLOCK_SHIFT
;
403 buf
->f_namelen
= UBIFS_MAX_NLEN
;
404 buf
->f_fsid
.val
[0] = le32_to_cpu(uuid
[0]) ^ le32_to_cpu(uuid
[2]);
405 buf
->f_fsid
.val
[1] = le32_to_cpu(uuid
[1]) ^ le32_to_cpu(uuid
[3]);
406 ubifs_assert(buf
->f_bfree
<= c
->block_cnt
);
410 static int ubifs_show_options(struct seq_file
*s
, struct vfsmount
*mnt
)
412 struct ubifs_info
*c
= mnt
->mnt_sb
->s_fs_info
;
414 if (c
->mount_opts
.unmount_mode
== 2)
415 seq_printf(s
, ",fast_unmount");
416 else if (c
->mount_opts
.unmount_mode
== 1)
417 seq_printf(s
, ",norm_unmount");
419 if (c
->mount_opts
.bulk_read
== 2)
420 seq_printf(s
, ",bulk_read");
421 else if (c
->mount_opts
.bulk_read
== 1)
422 seq_printf(s
, ",no_bulk_read");
424 if (c
->mount_opts
.chk_data_crc
== 2)
425 seq_printf(s
, ",chk_data_crc");
426 else if (c
->mount_opts
.chk_data_crc
== 1)
427 seq_printf(s
, ",no_chk_data_crc");
429 if (c
->mount_opts
.override_compr
) {
430 seq_printf(s
, ",compr=%s",
431 ubifs_compr_name(c
->mount_opts
.compr_type
));
437 static int ubifs_sync_fs(struct super_block
*sb
, int wait
)
440 struct ubifs_info
*c
= sb
->s_fs_info
;
441 struct writeback_control wbc
= {
442 .sync_mode
= WB_SYNC_ALL
,
444 .range_end
= LLONG_MAX
,
445 .nr_to_write
= LONG_MAX
,
449 * Zero @wait is just an advisory thing to help the file system shove
450 * lots of data into the queues, and there will be the second
451 * '->sync_fs()' call, with non-zero @wait.
457 * VFS calls '->sync_fs()' before synchronizing all dirty inodes and
458 * pages, so synchronize them first, then commit the journal. Strictly
459 * speaking, it is not necessary to commit the journal here,
460 * synchronizing write-buffers would be enough. But committing makes
461 * UBIFS free space predictions much more accurate, so we want to let
462 * the user be able to get more accurate results of 'statfs()' after
463 * they synchronize the file system.
465 generic_sync_sb_inodes(sb
, &wbc
);
468 * Synchronize write buffers, because 'ubifs_run_commit()' does not
469 * do this if it waits for an already running commit.
471 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
472 err
= ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
477 err
= ubifs_run_commit(c
);
481 return ubi_sync(c
->vi
.ubi_num
);
485 * init_constants_early - initialize UBIFS constants.
486 * @c: UBIFS file-system description object
488 * This function initialize UBIFS constants which do not need the superblock to
489 * be read. It also checks that the UBI volume satisfies basic UBIFS
490 * requirements. Returns zero in case of success and a negative error code in
493 static int init_constants_early(struct ubifs_info
*c
)
495 if (c
->vi
.corrupted
) {
496 ubifs_warn("UBI volume is corrupted - read-only mode");
501 ubifs_msg("read-only UBI device");
505 if (c
->vi
.vol_type
== UBI_STATIC_VOLUME
) {
506 ubifs_msg("static UBI volume - read-only mode");
510 c
->leb_cnt
= c
->vi
.size
;
511 c
->leb_size
= c
->vi
.usable_leb_size
;
512 c
->half_leb_size
= c
->leb_size
/ 2;
513 c
->min_io_size
= c
->di
.min_io_size
;
514 c
->min_io_shift
= fls(c
->min_io_size
) - 1;
516 if (c
->leb_size
< UBIFS_MIN_LEB_SZ
) {
517 ubifs_err("too small LEBs (%d bytes), min. is %d bytes",
518 c
->leb_size
, UBIFS_MIN_LEB_SZ
);
522 if (c
->leb_cnt
< UBIFS_MIN_LEB_CNT
) {
523 ubifs_err("too few LEBs (%d), min. is %d",
524 c
->leb_cnt
, UBIFS_MIN_LEB_CNT
);
528 if (!is_power_of_2(c
->min_io_size
)) {
529 ubifs_err("bad min. I/O size %d", c
->min_io_size
);
534 * UBIFS aligns all node to 8-byte boundary, so to make function in
535 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
538 if (c
->min_io_size
< 8) {
543 c
->ref_node_alsz
= ALIGN(UBIFS_REF_NODE_SZ
, c
->min_io_size
);
544 c
->mst_node_alsz
= ALIGN(UBIFS_MST_NODE_SZ
, c
->min_io_size
);
547 * Initialize node length ranges which are mostly needed for node
550 c
->ranges
[UBIFS_PAD_NODE
].len
= UBIFS_PAD_NODE_SZ
;
551 c
->ranges
[UBIFS_SB_NODE
].len
= UBIFS_SB_NODE_SZ
;
552 c
->ranges
[UBIFS_MST_NODE
].len
= UBIFS_MST_NODE_SZ
;
553 c
->ranges
[UBIFS_REF_NODE
].len
= UBIFS_REF_NODE_SZ
;
554 c
->ranges
[UBIFS_TRUN_NODE
].len
= UBIFS_TRUN_NODE_SZ
;
555 c
->ranges
[UBIFS_CS_NODE
].len
= UBIFS_CS_NODE_SZ
;
557 c
->ranges
[UBIFS_INO_NODE
].min_len
= UBIFS_INO_NODE_SZ
;
558 c
->ranges
[UBIFS_INO_NODE
].max_len
= UBIFS_MAX_INO_NODE_SZ
;
559 c
->ranges
[UBIFS_ORPH_NODE
].min_len
=
560 UBIFS_ORPH_NODE_SZ
+ sizeof(__le64
);
561 c
->ranges
[UBIFS_ORPH_NODE
].max_len
= c
->leb_size
;
562 c
->ranges
[UBIFS_DENT_NODE
].min_len
= UBIFS_DENT_NODE_SZ
;
563 c
->ranges
[UBIFS_DENT_NODE
].max_len
= UBIFS_MAX_DENT_NODE_SZ
;
564 c
->ranges
[UBIFS_XENT_NODE
].min_len
= UBIFS_XENT_NODE_SZ
;
565 c
->ranges
[UBIFS_XENT_NODE
].max_len
= UBIFS_MAX_XENT_NODE_SZ
;
566 c
->ranges
[UBIFS_DATA_NODE
].min_len
= UBIFS_DATA_NODE_SZ
;
567 c
->ranges
[UBIFS_DATA_NODE
].max_len
= UBIFS_MAX_DATA_NODE_SZ
;
569 * Minimum indexing node size is amended later when superblock is
570 * read and the key length is known.
572 c
->ranges
[UBIFS_IDX_NODE
].min_len
= UBIFS_IDX_NODE_SZ
+ UBIFS_BRANCH_SZ
;
574 * Maximum indexing node size is amended later when superblock is
575 * read and the fanout is known.
577 c
->ranges
[UBIFS_IDX_NODE
].max_len
= INT_MAX
;
580 * Initialize dead and dark LEB space watermarks. See gc.c for comments
581 * about these values.
583 c
->dead_wm
= ALIGN(MIN_WRITE_SZ
, c
->min_io_size
);
584 c
->dark_wm
= ALIGN(UBIFS_MAX_NODE_SZ
, c
->min_io_size
);
587 * Calculate how many bytes would be wasted at the end of LEB if it was
588 * fully filled with data nodes of maximum size. This is used in
589 * calculations when reporting free space.
591 c
->leb_overhead
= c
->leb_size
% UBIFS_MAX_DATA_NODE_SZ
;
593 /* Buffer size for bulk-reads */
594 c
->max_bu_buf_len
= UBIFS_MAX_BULK_READ
* UBIFS_MAX_DATA_NODE_SZ
;
595 if (c
->max_bu_buf_len
> c
->leb_size
)
596 c
->max_bu_buf_len
= c
->leb_size
;
601 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
602 * @c: UBIFS file-system description object
603 * @lnum: LEB the write-buffer was synchronized to
604 * @free: how many free bytes left in this LEB
605 * @pad: how many bytes were padded
607 * This is a callback function which is called by the I/O unit when the
608 * write-buffer is synchronized. We need this to correctly maintain space
609 * accounting in bud logical eraseblocks. This function returns zero in case of
610 * success and a negative error code in case of failure.
612 * This function actually belongs to the journal, but we keep it here because
613 * we want to keep it static.
615 static int bud_wbuf_callback(struct ubifs_info
*c
, int lnum
, int free
, int pad
)
617 return ubifs_update_one_lp(c
, lnum
, free
, pad
, 0, 0);
621 * init_constants_sb - initialize UBIFS constants.
622 * @c: UBIFS file-system description object
624 * This is a helper function which initializes various UBIFS constants after
625 * the superblock has been read. It also checks various UBIFS parameters and
626 * makes sure they are all right. Returns zero in case of success and a
627 * negative error code in case of failure.
629 static int init_constants_sb(struct ubifs_info
*c
)
634 c
->main_bytes
= (long long)c
->main_lebs
* c
->leb_size
;
635 c
->max_znode_sz
= sizeof(struct ubifs_znode
) +
636 c
->fanout
* sizeof(struct ubifs_zbranch
);
638 tmp
= ubifs_idx_node_sz(c
, 1);
639 c
->ranges
[UBIFS_IDX_NODE
].min_len
= tmp
;
640 c
->min_idx_node_sz
= ALIGN(tmp
, 8);
642 tmp
= ubifs_idx_node_sz(c
, c
->fanout
);
643 c
->ranges
[UBIFS_IDX_NODE
].max_len
= tmp
;
644 c
->max_idx_node_sz
= ALIGN(tmp
, 8);
646 /* Make sure LEB size is large enough to fit full commit */
647 tmp
= UBIFS_CS_NODE_SZ
+ UBIFS_REF_NODE_SZ
* c
->jhead_cnt
;
648 tmp
= ALIGN(tmp
, c
->min_io_size
);
649 if (tmp
> c
->leb_size
) {
650 dbg_err("too small LEB size %d, at least %d needed",
656 * Make sure that the log is large enough to fit reference nodes for
657 * all buds plus one reserved LEB.
659 tmp64
= c
->max_bud_bytes
+ c
->leb_size
- 1;
660 c
->max_bud_cnt
= div_u64(tmp64
, c
->leb_size
);
661 tmp
= (c
->ref_node_alsz
* c
->max_bud_cnt
+ c
->leb_size
- 1);
664 if (c
->log_lebs
< tmp
) {
665 dbg_err("too small log %d LEBs, required min. %d LEBs",
671 * When budgeting we assume worst-case scenarios when the pages are not
672 * be compressed and direntries are of the maximum size.
674 * Note, data, which may be stored in inodes is budgeted separately, so
675 * it is not included into 'c->inode_budget'.
677 c
->page_budget
= UBIFS_MAX_DATA_NODE_SZ
* UBIFS_BLOCKS_PER_PAGE
;
678 c
->inode_budget
= UBIFS_INO_NODE_SZ
;
679 c
->dent_budget
= UBIFS_MAX_DENT_NODE_SZ
;
682 * When the amount of flash space used by buds becomes
683 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
684 * The writers are unblocked when the commit is finished. To avoid
685 * writers to be blocked UBIFS initiates background commit in advance,
686 * when number of bud bytes becomes above the limit defined below.
688 c
->bg_bud_bytes
= (c
->max_bud_bytes
* 13) >> 4;
691 * Ensure minimum journal size. All the bytes in the journal heads are
692 * considered to be used, when calculating the current journal usage.
693 * Consequently, if the journal is too small, UBIFS will treat it as
696 tmp64
= (long long)(c
->jhead_cnt
+ 1) * c
->leb_size
+ 1;
697 if (c
->bg_bud_bytes
< tmp64
)
698 c
->bg_bud_bytes
= tmp64
;
699 if (c
->max_bud_bytes
< tmp64
+ c
->leb_size
)
700 c
->max_bud_bytes
= tmp64
+ c
->leb_size
;
702 err
= ubifs_calc_lpt_geom(c
);
706 /* Initialize effective LEB size used in budgeting calculations */
707 c
->idx_leb_size
= c
->leb_size
- c
->max_idx_node_sz
;
712 * init_constants_master - initialize UBIFS constants.
713 * @c: UBIFS file-system description object
715 * This is a helper function which initializes various UBIFS constants after
716 * the master node has been read. It also checks various UBIFS parameters and
717 * makes sure they are all right.
719 static void init_constants_master(struct ubifs_info
*c
)
723 c
->min_idx_lebs
= ubifs_calc_min_idx_lebs(c
);
724 c
->report_rp_size
= ubifs_reported_space(c
, c
->rp_size
);
727 * Calculate total amount of FS blocks. This number is not used
728 * internally because it does not make much sense for UBIFS, but it is
729 * necessary to report something for the 'statfs()' call.
731 * Subtract the LEB reserved for GC, the LEB which is reserved for
732 * deletions, minimum LEBs for the index, and assume only one journal
735 tmp64
= c
->main_lebs
- 1 - 1 - MIN_INDEX_LEBS
- c
->jhead_cnt
+ 1;
736 tmp64
*= (long long)c
->leb_size
- c
->leb_overhead
;
737 tmp64
= ubifs_reported_space(c
, tmp64
);
738 c
->block_cnt
= tmp64
>> UBIFS_BLOCK_SHIFT
;
742 * take_gc_lnum - reserve GC LEB.
743 * @c: UBIFS file-system description object
745 * This function ensures that the LEB reserved for garbage collection is marked
746 * as "taken" in lprops. We also have to set free space to LEB size and dirty
747 * space to zero, because lprops may contain out-of-date information if the
748 * file-system was un-mounted before it has been committed. This function
749 * returns zero in case of success and a negative error code in case of
752 static int take_gc_lnum(struct ubifs_info
*c
)
756 if (c
->gc_lnum
== -1) {
757 ubifs_err("no LEB for GC");
761 /* And we have to tell lprops that this LEB is taken */
762 err
= ubifs_change_one_lp(c
, c
->gc_lnum
, c
->leb_size
, 0,
768 * alloc_wbufs - allocate write-buffers.
769 * @c: UBIFS file-system description object
771 * This helper function allocates and initializes UBIFS write-buffers. Returns
772 * zero in case of success and %-ENOMEM in case of failure.
774 static int alloc_wbufs(struct ubifs_info
*c
)
778 c
->jheads
= kzalloc(c
->jhead_cnt
* sizeof(struct ubifs_jhead
),
783 /* Initialize journal heads */
784 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
785 INIT_LIST_HEAD(&c
->jheads
[i
].buds_list
);
786 err
= ubifs_wbuf_init(c
, &c
->jheads
[i
].wbuf
);
790 c
->jheads
[i
].wbuf
.sync_callback
= &bud_wbuf_callback
;
791 c
->jheads
[i
].wbuf
.jhead
= i
;
794 c
->jheads
[BASEHD
].wbuf
.dtype
= UBI_SHORTTERM
;
796 * Garbage Collector head likely contains long-term data and
797 * does not need to be synchronized by timer.
799 c
->jheads
[GCHD
].wbuf
.dtype
= UBI_LONGTERM
;
800 c
->jheads
[GCHD
].wbuf
.no_timer
= 1;
806 * free_wbufs - free write-buffers.
807 * @c: UBIFS file-system description object
809 static void free_wbufs(struct ubifs_info
*c
)
814 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
815 kfree(c
->jheads
[i
].wbuf
.buf
);
816 kfree(c
->jheads
[i
].wbuf
.inodes
);
824 * free_orphans - free orphans.
825 * @c: UBIFS file-system description object
827 static void free_orphans(struct ubifs_info
*c
)
829 struct ubifs_orphan
*orph
;
831 while (c
->orph_dnext
) {
832 orph
= c
->orph_dnext
;
833 c
->orph_dnext
= orph
->dnext
;
834 list_del(&orph
->list
);
838 while (!list_empty(&c
->orph_list
)) {
839 orph
= list_entry(c
->orph_list
.next
, struct ubifs_orphan
, list
);
840 list_del(&orph
->list
);
842 dbg_err("orphan list not empty at unmount");
850 * free_buds - free per-bud objects.
851 * @c: UBIFS file-system description object
853 static void free_buds(struct ubifs_info
*c
)
855 struct rb_node
*this = c
->buds
.rb_node
;
856 struct ubifs_bud
*bud
;
860 this = this->rb_left
;
861 else if (this->rb_right
)
862 this = this->rb_right
;
864 bud
= rb_entry(this, struct ubifs_bud
, rb
);
865 this = rb_parent(this);
867 if (this->rb_left
== &bud
->rb
)
868 this->rb_left
= NULL
;
870 this->rb_right
= NULL
;
878 * check_volume_empty - check if the UBI volume is empty.
879 * @c: UBIFS file-system description object
881 * This function checks if the UBIFS volume is empty by looking if its LEBs are
882 * mapped or not. The result of checking is stored in the @c->empty variable.
883 * Returns zero in case of success and a negative error code in case of
886 static int check_volume_empty(struct ubifs_info
*c
)
891 for (lnum
= 0; lnum
< c
->leb_cnt
; lnum
++) {
892 err
= ubi_is_mapped(c
->ubi
, lnum
);
893 if (unlikely(err
< 0))
907 * UBIFS mount options.
909 * Opt_fast_unmount: do not run a journal commit before un-mounting
910 * Opt_norm_unmount: run a journal commit before un-mounting
911 * Opt_bulk_read: enable bulk-reads
912 * Opt_no_bulk_read: disable bulk-reads
913 * Opt_chk_data_crc: check CRCs when reading data nodes
914 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
915 * Opt_override_compr: override default compressor
916 * Opt_err: just end of array marker
929 static const match_table_t tokens
= {
930 {Opt_fast_unmount
, "fast_unmount"},
931 {Opt_norm_unmount
, "norm_unmount"},
932 {Opt_bulk_read
, "bulk_read"},
933 {Opt_no_bulk_read
, "no_bulk_read"},
934 {Opt_chk_data_crc
, "chk_data_crc"},
935 {Opt_no_chk_data_crc
, "no_chk_data_crc"},
936 {Opt_override_compr
, "compr=%s"},
941 * parse_standard_option - parse a standard mount option.
942 * @option: the option to parse
944 * Normally, standard mount options like "sync" are passed to file-systems as
945 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
946 * be present in the options string. This function tries to deal with this
947 * situation and parse standard options. Returns 0 if the option was not
948 * recognized, and the corresponding integer flag if it was.
950 * UBIFS is only interested in the "sync" option, so do not check for anything
953 static int parse_standard_option(const char *option
)
955 ubifs_msg("parse %s", option
);
956 if (!strcmp(option
, "sync"))
957 return MS_SYNCHRONOUS
;
962 * ubifs_parse_options - parse mount parameters.
963 * @c: UBIFS file-system description object
964 * @options: parameters to parse
965 * @is_remount: non-zero if this is FS re-mount
967 * This function parses UBIFS mount options and returns zero in case success
968 * and a negative error code in case of failure.
970 static int ubifs_parse_options(struct ubifs_info
*c
, char *options
,
974 substring_t args
[MAX_OPT_ARGS
];
979 while ((p
= strsep(&options
, ","))) {
985 token
= match_token(p
, tokens
, args
);
988 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
989 * We accept them in order to be backward-compatible. But this
990 * should be removed at some point.
992 case Opt_fast_unmount
:
993 c
->mount_opts
.unmount_mode
= 2;
995 case Opt_norm_unmount
:
996 c
->mount_opts
.unmount_mode
= 1;
999 c
->mount_opts
.bulk_read
= 2;
1002 case Opt_no_bulk_read
:
1003 c
->mount_opts
.bulk_read
= 1;
1006 case Opt_chk_data_crc
:
1007 c
->mount_opts
.chk_data_crc
= 2;
1008 c
->no_chk_data_crc
= 0;
1010 case Opt_no_chk_data_crc
:
1011 c
->mount_opts
.chk_data_crc
= 1;
1012 c
->no_chk_data_crc
= 1;
1014 case Opt_override_compr
:
1016 char *name
= match_strdup(&args
[0]);
1020 if (!strcmp(name
, "none"))
1021 c
->mount_opts
.compr_type
= UBIFS_COMPR_NONE
;
1022 else if (!strcmp(name
, "lzo"))
1023 c
->mount_opts
.compr_type
= UBIFS_COMPR_LZO
;
1024 else if (!strcmp(name
, "zlib"))
1025 c
->mount_opts
.compr_type
= UBIFS_COMPR_ZLIB
;
1027 ubifs_err("unknown compressor \"%s\"", name
);
1032 c
->mount_opts
.override_compr
= 1;
1033 c
->default_compr
= c
->mount_opts
.compr_type
;
1039 struct super_block
*sb
= c
->vfs_sb
;
1041 flag
= parse_standard_option(p
);
1043 ubifs_err("unrecognized mount option \"%s\" "
1044 "or missing value", p
);
1047 sb
->s_flags
|= flag
;
1057 * destroy_journal - destroy journal data structures.
1058 * @c: UBIFS file-system description object
1060 * This function destroys journal data structures including those that may have
1061 * been created by recovery functions.
1063 static void destroy_journal(struct ubifs_info
*c
)
1065 while (!list_empty(&c
->unclean_leb_list
)) {
1066 struct ubifs_unclean_leb
*ucleb
;
1068 ucleb
= list_entry(c
->unclean_leb_list
.next
,
1069 struct ubifs_unclean_leb
, list
);
1070 list_del(&ucleb
->list
);
1073 while (!list_empty(&c
->old_buds
)) {
1074 struct ubifs_bud
*bud
;
1076 bud
= list_entry(c
->old_buds
.next
, struct ubifs_bud
, list
);
1077 list_del(&bud
->list
);
1080 ubifs_destroy_idx_gc(c
);
1081 ubifs_destroy_size_tree(c
);
1087 * bu_init - initialize bulk-read information.
1088 * @c: UBIFS file-system description object
1090 static void bu_init(struct ubifs_info
*c
)
1092 ubifs_assert(c
->bulk_read
== 1);
1095 return; /* Already initialized */
1098 c
->bu
.buf
= kmalloc(c
->max_bu_buf_len
, GFP_KERNEL
| __GFP_NOWARN
);
1100 if (c
->max_bu_buf_len
> UBIFS_KMALLOC_OK
) {
1101 c
->max_bu_buf_len
= UBIFS_KMALLOC_OK
;
1105 /* Just disable bulk-read */
1106 ubifs_warn("Cannot allocate %d bytes of memory for bulk-read, "
1107 "disabling it", c
->max_bu_buf_len
);
1108 c
->mount_opts
.bulk_read
= 1;
1115 * check_free_space - check if there is enough free space to mount.
1116 * @c: UBIFS file-system description object
1118 * This function makes sure UBIFS has enough free space to be mounted in
1119 * read/write mode. UBIFS must always have some free space to allow deletions.
1121 static int check_free_space(struct ubifs_info
*c
)
1123 ubifs_assert(c
->dark_wm
> 0);
1124 if (c
->lst
.total_free
+ c
->lst
.total_dirty
< c
->dark_wm
) {
1125 ubifs_err("insufficient free space to mount in read/write mode");
1134 * mount_ubifs - mount UBIFS file-system.
1135 * @c: UBIFS file-system description object
1137 * This function mounts UBIFS file system. Returns zero in case of success and
1138 * a negative error code in case of failure.
1140 * Note, the function does not de-allocate resources it it fails half way
1141 * through, and the caller has to do this instead.
1143 static int mount_ubifs(struct ubifs_info
*c
)
1145 struct super_block
*sb
= c
->vfs_sb
;
1146 int err
, mounted_read_only
= (sb
->s_flags
& MS_RDONLY
);
1150 err
= init_constants_early(c
);
1154 err
= ubifs_debugging_init(c
);
1158 err
= check_volume_empty(c
);
1162 if (c
->empty
&& (mounted_read_only
|| c
->ro_media
)) {
1164 * This UBI volume is empty, and read-only, or the file system
1165 * is mounted read-only - we cannot format it.
1167 ubifs_err("can't format empty UBI volume: read-only %s",
1168 c
->ro_media
? "UBI volume" : "mount");
1173 if (c
->ro_media
&& !mounted_read_only
) {
1174 ubifs_err("cannot mount read-write - read-only media");
1180 * The requirement for the buffer is that it should fit indexing B-tree
1181 * height amount of integers. We assume the height if the TNC tree will
1185 c
->bottom_up_buf
= kmalloc(BOTTOM_UP_HEIGHT
* sizeof(int), GFP_KERNEL
);
1186 if (!c
->bottom_up_buf
)
1189 c
->sbuf
= vmalloc(c
->leb_size
);
1193 if (!mounted_read_only
) {
1194 c
->ileb_buf
= vmalloc(c
->leb_size
);
1199 if (c
->bulk_read
== 1)
1203 * We have to check all CRCs, even for data nodes, when we mount the FS
1204 * (specifically, when we are replaying).
1206 c
->always_chk_crc
= 1;
1208 err
= ubifs_read_superblock(c
);
1213 * Make sure the compressor which is set as default in the superblock
1214 * or overridden by mount options is actually compiled in.
1216 if (!ubifs_compr_present(c
->default_compr
)) {
1217 ubifs_err("'compressor \"%s\" is not compiled in",
1218 ubifs_compr_name(c
->default_compr
));
1223 err
= init_constants_sb(c
);
1227 sz
= ALIGN(c
->max_idx_node_sz
, c
->min_io_size
);
1228 sz
= ALIGN(sz
+ c
->max_idx_node_sz
, c
->min_io_size
);
1229 c
->cbuf
= kmalloc(sz
, GFP_NOFS
);
1235 sprintf(c
->bgt_name
, BGT_NAME_PATTERN
, c
->vi
.ubi_num
, c
->vi
.vol_id
);
1236 if (!mounted_read_only
) {
1237 err
= alloc_wbufs(c
);
1241 /* Create background thread */
1242 c
->bgt
= kthread_create(ubifs_bg_thread
, c
, "%s", c
->bgt_name
);
1243 if (IS_ERR(c
->bgt
)) {
1244 err
= PTR_ERR(c
->bgt
);
1246 ubifs_err("cannot spawn \"%s\", error %d",
1250 wake_up_process(c
->bgt
);
1253 err
= ubifs_read_master(c
);
1257 init_constants_master(c
);
1259 if ((c
->mst_node
->flags
& cpu_to_le32(UBIFS_MST_DIRTY
)) != 0) {
1260 ubifs_msg("recovery needed");
1261 c
->need_recovery
= 1;
1262 if (!mounted_read_only
) {
1263 err
= ubifs_recover_inl_heads(c
, c
->sbuf
);
1267 } else if (!mounted_read_only
) {
1269 * Set the "dirty" flag so that if we reboot uncleanly we
1270 * will notice this immediately on the next mount.
1272 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
1273 err
= ubifs_write_master(c
);
1278 err
= ubifs_lpt_init(c
, 1, !mounted_read_only
);
1282 err
= dbg_check_idx_size(c
, c
->old_idx_sz
);
1286 err
= ubifs_replay_journal(c
);
1290 /* Calculate 'min_idx_lebs' after journal replay */
1291 c
->min_idx_lebs
= ubifs_calc_min_idx_lebs(c
);
1293 err
= ubifs_mount_orphans(c
, c
->need_recovery
, mounted_read_only
);
1297 if (!mounted_read_only
) {
1300 err
= check_free_space(c
);
1304 /* Check for enough log space */
1305 lnum
= c
->lhead_lnum
+ 1;
1306 if (lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
1307 lnum
= UBIFS_LOG_LNUM
;
1308 if (lnum
== c
->ltail_lnum
) {
1309 err
= ubifs_consolidate_log(c
);
1314 if (c
->need_recovery
) {
1315 err
= ubifs_recover_size(c
);
1318 err
= ubifs_rcvry_gc_commit(c
);
1320 err
= take_gc_lnum(c
);
1325 * GC LEB may contain garbage if there was an unclean
1326 * reboot, and it should be un-mapped.
1328 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
1333 err
= dbg_check_lprops(c
);
1336 } else if (c
->need_recovery
) {
1337 err
= ubifs_recover_size(c
);
1342 * Even if we mount read-only, we have to set space in GC LEB
1343 * to proper value because this affects UBIFS free space
1344 * reporting. We do not want to have a situation when
1345 * re-mounting from R/O to R/W changes amount of free space.
1347 err
= take_gc_lnum(c
);
1352 spin_lock(&ubifs_infos_lock
);
1353 list_add_tail(&c
->infos_list
, &ubifs_infos
);
1354 spin_unlock(&ubifs_infos_lock
);
1356 if (c
->need_recovery
) {
1357 if (mounted_read_only
)
1358 ubifs_msg("recovery deferred");
1360 c
->need_recovery
= 0;
1361 ubifs_msg("recovery completed");
1363 * GC LEB has to be empty and taken at this point. But
1364 * the journal head LEBs may also be accounted as
1365 * "empty taken" if they are empty.
1367 ubifs_assert(c
->lst
.taken_empty_lebs
> 0);
1370 ubifs_assert(c
->lst
.taken_empty_lebs
> 0);
1372 err
= dbg_check_filesystem(c
);
1376 err
= dbg_debugfs_init_fs(c
);
1380 c
->always_chk_crc
= 0;
1382 ubifs_msg("mounted UBI device %d, volume %d, name \"%s\"",
1383 c
->vi
.ubi_num
, c
->vi
.vol_id
, c
->vi
.name
);
1384 if (mounted_read_only
)
1385 ubifs_msg("mounted read-only");
1386 x
= (long long)c
->main_lebs
* c
->leb_size
;
1387 ubifs_msg("file system size: %lld bytes (%lld KiB, %lld MiB, %d "
1388 "LEBs)", x
, x
>> 10, x
>> 20, c
->main_lebs
);
1389 x
= (long long)c
->log_lebs
* c
->leb_size
+ c
->max_bud_bytes
;
1390 ubifs_msg("journal size: %lld bytes (%lld KiB, %lld MiB, %d "
1391 "LEBs)", x
, x
>> 10, x
>> 20, c
->log_lebs
+ c
->max_bud_cnt
);
1392 ubifs_msg("media format: w%d/r%d (latest is w%d/r%d)",
1393 c
->fmt_version
, c
->ro_compat_version
,
1394 UBIFS_FORMAT_VERSION
, UBIFS_RO_COMPAT_VERSION
);
1395 ubifs_msg("default compressor: %s", ubifs_compr_name(c
->default_compr
));
1396 ubifs_msg("reserved for root: %llu bytes (%llu KiB)",
1397 c
->report_rp_size
, c
->report_rp_size
>> 10);
1399 dbg_msg("compiled on: " __DATE__
" at " __TIME__
);
1400 dbg_msg("min. I/O unit size: %d bytes", c
->min_io_size
);
1401 dbg_msg("LEB size: %d bytes (%d KiB)",
1402 c
->leb_size
, c
->leb_size
>> 10);
1403 dbg_msg("data journal heads: %d",
1404 c
->jhead_cnt
- NONDATA_JHEADS_CNT
);
1405 dbg_msg("UUID: %02X%02X%02X%02X-%02X%02X"
1406 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X",
1407 c
->uuid
[0], c
->uuid
[1], c
->uuid
[2], c
->uuid
[3],
1408 c
->uuid
[4], c
->uuid
[5], c
->uuid
[6], c
->uuid
[7],
1409 c
->uuid
[8], c
->uuid
[9], c
->uuid
[10], c
->uuid
[11],
1410 c
->uuid
[12], c
->uuid
[13], c
->uuid
[14], c
->uuid
[15]);
1411 dbg_msg("big_lpt %d", c
->big_lpt
);
1412 dbg_msg("log LEBs: %d (%d - %d)",
1413 c
->log_lebs
, UBIFS_LOG_LNUM
, c
->log_last
);
1414 dbg_msg("LPT area LEBs: %d (%d - %d)",
1415 c
->lpt_lebs
, c
->lpt_first
, c
->lpt_last
);
1416 dbg_msg("orphan area LEBs: %d (%d - %d)",
1417 c
->orph_lebs
, c
->orph_first
, c
->orph_last
);
1418 dbg_msg("main area LEBs: %d (%d - %d)",
1419 c
->main_lebs
, c
->main_first
, c
->leb_cnt
- 1);
1420 dbg_msg("index LEBs: %d", c
->lst
.idx_lebs
);
1421 dbg_msg("total index bytes: %lld (%lld KiB, %lld MiB)",
1422 c
->old_idx_sz
, c
->old_idx_sz
>> 10, c
->old_idx_sz
>> 20);
1423 dbg_msg("key hash type: %d", c
->key_hash_type
);
1424 dbg_msg("tree fanout: %d", c
->fanout
);
1425 dbg_msg("reserved GC LEB: %d", c
->gc_lnum
);
1426 dbg_msg("first main LEB: %d", c
->main_first
);
1427 dbg_msg("max. znode size %d", c
->max_znode_sz
);
1428 dbg_msg("max. index node size %d", c
->max_idx_node_sz
);
1429 dbg_msg("node sizes: data %zu, inode %zu, dentry %zu",
1430 UBIFS_DATA_NODE_SZ
, UBIFS_INO_NODE_SZ
, UBIFS_DENT_NODE_SZ
);
1431 dbg_msg("node sizes: trun %zu, sb %zu, master %zu",
1432 UBIFS_TRUN_NODE_SZ
, UBIFS_SB_NODE_SZ
, UBIFS_MST_NODE_SZ
);
1433 dbg_msg("node sizes: ref %zu, cmt. start %zu, orph %zu",
1434 UBIFS_REF_NODE_SZ
, UBIFS_CS_NODE_SZ
, UBIFS_ORPH_NODE_SZ
);
1435 dbg_msg("max. node sizes: data %zu, inode %zu dentry %zu",
1436 UBIFS_MAX_DATA_NODE_SZ
, UBIFS_MAX_INO_NODE_SZ
,
1437 UBIFS_MAX_DENT_NODE_SZ
);
1438 dbg_msg("dead watermark: %d", c
->dead_wm
);
1439 dbg_msg("dark watermark: %d", c
->dark_wm
);
1440 dbg_msg("LEB overhead: %d", c
->leb_overhead
);
1441 x
= (long long)c
->main_lebs
* c
->dark_wm
;
1442 dbg_msg("max. dark space: %lld (%lld KiB, %lld MiB)",
1443 x
, x
>> 10, x
>> 20);
1444 dbg_msg("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1445 c
->max_bud_bytes
, c
->max_bud_bytes
>> 10,
1446 c
->max_bud_bytes
>> 20);
1447 dbg_msg("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1448 c
->bg_bud_bytes
, c
->bg_bud_bytes
>> 10,
1449 c
->bg_bud_bytes
>> 20);
1450 dbg_msg("current bud bytes %lld (%lld KiB, %lld MiB)",
1451 c
->bud_bytes
, c
->bud_bytes
>> 10, c
->bud_bytes
>> 20);
1452 dbg_msg("max. seq. number: %llu", c
->max_sqnum
);
1453 dbg_msg("commit number: %llu", c
->cmt_no
);
1458 spin_lock(&ubifs_infos_lock
);
1459 list_del(&c
->infos_list
);
1460 spin_unlock(&ubifs_infos_lock
);
1466 ubifs_lpt_free(c
, 0);
1469 kfree(c
->rcvrd_mst_node
);
1471 kthread_stop(c
->bgt
);
1480 kfree(c
->bottom_up_buf
);
1481 ubifs_debugging_exit(c
);
1486 * ubifs_umount - un-mount UBIFS file-system.
1487 * @c: UBIFS file-system description object
1489 * Note, this function is called to free allocated resourced when un-mounting,
1490 * as well as free resources when an error occurred while we were half way
1491 * through mounting (error path cleanup function). So it has to make sure the
1492 * resource was actually allocated before freeing it.
1494 static void ubifs_umount(struct ubifs_info
*c
)
1496 dbg_gen("un-mounting UBI device %d, volume %d", c
->vi
.ubi_num
,
1499 dbg_debugfs_exit_fs(c
);
1500 spin_lock(&ubifs_infos_lock
);
1501 list_del(&c
->infos_list
);
1502 spin_unlock(&ubifs_infos_lock
);
1505 kthread_stop(c
->bgt
);
1510 ubifs_lpt_free(c
, 0);
1513 kfree(c
->rcvrd_mst_node
);
1518 kfree(c
->bottom_up_buf
);
1519 ubifs_debugging_exit(c
);
1523 * ubifs_remount_rw - re-mount in read-write mode.
1524 * @c: UBIFS file-system description object
1526 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1527 * mode. This function allocates the needed resources and re-mounts UBIFS in
1530 static int ubifs_remount_rw(struct ubifs_info
*c
)
1534 if (c
->rw_incompat
) {
1535 ubifs_err("the file-system is not R/W-compatible");
1536 ubifs_msg("on-flash format version is w%d/r%d, but software "
1537 "only supports up to version w%d/r%d", c
->fmt_version
,
1538 c
->ro_compat_version
, UBIFS_FORMAT_VERSION
,
1539 UBIFS_RO_COMPAT_VERSION
);
1543 mutex_lock(&c
->umount_mutex
);
1544 dbg_save_space_info(c
);
1545 c
->remounting_rw
= 1;
1546 c
->always_chk_crc
= 1;
1548 err
= check_free_space(c
);
1552 if (c
->old_leb_cnt
!= c
->leb_cnt
) {
1553 struct ubifs_sb_node
*sup
;
1555 sup
= ubifs_read_sb_node(c
);
1560 sup
->leb_cnt
= cpu_to_le32(c
->leb_cnt
);
1561 err
= ubifs_write_sb_node(c
, sup
);
1566 if (c
->need_recovery
) {
1567 ubifs_msg("completing deferred recovery");
1568 err
= ubifs_write_rcvrd_mst_node(c
);
1571 err
= ubifs_recover_size(c
);
1574 err
= ubifs_clean_lebs(c
, c
->sbuf
);
1577 err
= ubifs_recover_inl_heads(c
, c
->sbuf
);
1581 /* A readonly mount is not allowed to have orphans */
1582 ubifs_assert(c
->tot_orphans
== 0);
1583 err
= ubifs_clear_orphans(c
);
1588 if (!(c
->mst_node
->flags
& cpu_to_le32(UBIFS_MST_DIRTY
))) {
1589 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
1590 err
= ubifs_write_master(c
);
1595 c
->ileb_buf
= vmalloc(c
->leb_size
);
1601 err
= ubifs_lpt_init(c
, 0, 1);
1605 err
= alloc_wbufs(c
);
1609 ubifs_create_buds_lists(c
);
1611 /* Create background thread */
1612 c
->bgt
= kthread_create(ubifs_bg_thread
, c
, "%s", c
->bgt_name
);
1613 if (IS_ERR(c
->bgt
)) {
1614 err
= PTR_ERR(c
->bgt
);
1616 ubifs_err("cannot spawn \"%s\", error %d",
1620 wake_up_process(c
->bgt
);
1622 c
->orph_buf
= vmalloc(c
->leb_size
);
1628 /* Check for enough log space */
1629 lnum
= c
->lhead_lnum
+ 1;
1630 if (lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
1631 lnum
= UBIFS_LOG_LNUM
;
1632 if (lnum
== c
->ltail_lnum
) {
1633 err
= ubifs_consolidate_log(c
);
1638 if (c
->need_recovery
)
1639 err
= ubifs_rcvry_gc_commit(c
);
1641 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
1645 if (c
->need_recovery
) {
1646 c
->need_recovery
= 0;
1647 ubifs_msg("deferred recovery completed");
1650 dbg_gen("re-mounted read-write");
1651 c
->vfs_sb
->s_flags
&= ~MS_RDONLY
;
1652 c
->remounting_rw
= 0;
1653 c
->always_chk_crc
= 0;
1654 err
= dbg_check_space_info(c
);
1655 mutex_unlock(&c
->umount_mutex
);
1662 kthread_stop(c
->bgt
);
1668 ubifs_lpt_free(c
, 1);
1669 c
->remounting_rw
= 0;
1670 c
->always_chk_crc
= 0;
1671 mutex_unlock(&c
->umount_mutex
);
1676 * ubifs_remount_ro - re-mount in read-only mode.
1677 * @c: UBIFS file-system description object
1679 * We assume VFS has stopped writing. Possibly the background thread could be
1680 * running a commit, however kthread_stop will wait in that case.
1682 static void ubifs_remount_ro(struct ubifs_info
*c
)
1686 ubifs_assert(!c
->need_recovery
);
1687 ubifs_assert(!(c
->vfs_sb
->s_flags
& MS_RDONLY
));
1689 mutex_lock(&c
->umount_mutex
);
1691 kthread_stop(c
->bgt
);
1695 dbg_save_space_info(c
);
1697 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
1698 ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
1699 hrtimer_cancel(&c
->jheads
[i
].wbuf
.timer
);
1702 c
->mst_node
->flags
&= ~cpu_to_le32(UBIFS_MST_DIRTY
);
1703 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_NO_ORPHS
);
1704 c
->mst_node
->gc_lnum
= cpu_to_le32(c
->gc_lnum
);
1705 err
= ubifs_write_master(c
);
1707 ubifs_ro_mode(c
, err
);
1714 ubifs_lpt_free(c
, 1);
1715 err
= dbg_check_space_info(c
);
1717 ubifs_ro_mode(c
, err
);
1718 mutex_unlock(&c
->umount_mutex
);
1721 static void ubifs_put_super(struct super_block
*sb
)
1724 struct ubifs_info
*c
= sb
->s_fs_info
;
1726 ubifs_msg("un-mount UBI device %d, volume %d", c
->vi
.ubi_num
,
1732 * The following asserts are only valid if there has not been a failure
1733 * of the media. For example, there will be dirty inodes if we failed
1734 * to write them back because of I/O errors.
1736 ubifs_assert(atomic_long_read(&c
->dirty_pg_cnt
) == 0);
1737 ubifs_assert(c
->budg_idx_growth
== 0);
1738 ubifs_assert(c
->budg_dd_growth
== 0);
1739 ubifs_assert(c
->budg_data_growth
== 0);
1742 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1743 * and file system un-mount. Namely, it prevents the shrinker from
1744 * picking this superblock for shrinking - it will be just skipped if
1745 * the mutex is locked.
1747 mutex_lock(&c
->umount_mutex
);
1748 if (!(c
->vfs_sb
->s_flags
& MS_RDONLY
)) {
1750 * First of all kill the background thread to make sure it does
1751 * not interfere with un-mounting and freeing resources.
1754 kthread_stop(c
->bgt
);
1758 /* Synchronize write-buffers */
1760 for (i
= 0; i
< c
->jhead_cnt
; i
++)
1761 ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
1764 * On fatal errors c->ro_media is set to 1, in which case we do
1765 * not write the master node.
1769 * We are being cleanly unmounted which means the
1770 * orphans were killed - indicate this in the master
1771 * node. Also save the reserved GC LEB number.
1775 c
->mst_node
->flags
&= ~cpu_to_le32(UBIFS_MST_DIRTY
);
1776 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_NO_ORPHS
);
1777 c
->mst_node
->gc_lnum
= cpu_to_le32(c
->gc_lnum
);
1778 err
= ubifs_write_master(c
);
1781 * Recovery will attempt to fix the master area
1782 * next mount, so we just print a message and
1783 * continue to unmount normally.
1785 ubifs_err("failed to write master node, "
1791 bdi_destroy(&c
->bdi
);
1792 ubi_close_volume(c
->ubi
);
1793 mutex_unlock(&c
->umount_mutex
);
1799 static int ubifs_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
1802 struct ubifs_info
*c
= sb
->s_fs_info
;
1804 dbg_gen("old flags %#lx, new flags %#x", sb
->s_flags
, *flags
);
1806 err
= ubifs_parse_options(c
, data
, 1);
1808 ubifs_err("invalid or unknown remount parameter");
1813 if ((sb
->s_flags
& MS_RDONLY
) && !(*flags
& MS_RDONLY
)) {
1815 ubifs_msg("cannot re-mount due to prior errors");
1819 err
= ubifs_remount_rw(c
);
1824 } else if (!(sb
->s_flags
& MS_RDONLY
) && (*flags
& MS_RDONLY
)) {
1826 ubifs_msg("cannot re-mount due to prior errors");
1830 ubifs_remount_ro(c
);
1833 if (c
->bulk_read
== 1)
1836 dbg_gen("disable bulk-read");
1841 ubifs_assert(c
->lst
.taken_empty_lebs
> 0);
1846 const struct super_operations ubifs_super_operations
= {
1847 .alloc_inode
= ubifs_alloc_inode
,
1848 .destroy_inode
= ubifs_destroy_inode
,
1849 .put_super
= ubifs_put_super
,
1850 .write_inode
= ubifs_write_inode
,
1851 .delete_inode
= ubifs_delete_inode
,
1852 .statfs
= ubifs_statfs
,
1853 .dirty_inode
= ubifs_dirty_inode
,
1854 .remount_fs
= ubifs_remount_fs
,
1855 .show_options
= ubifs_show_options
,
1856 .sync_fs
= ubifs_sync_fs
,
1860 * open_ubi - parse UBI device name string and open the UBI device.
1861 * @name: UBI volume name
1862 * @mode: UBI volume open mode
1864 * There are several ways to specify UBI volumes when mounting UBIFS:
1865 * o ubiX_Y - UBI device number X, volume Y;
1866 * o ubiY - UBI device number 0, volume Y;
1867 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1868 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1870 * Alternative '!' separator may be used instead of ':' (because some shells
1871 * like busybox may interpret ':' as an NFS host name separator). This function
1872 * returns ubi volume object in case of success and a negative error code in
1875 static struct ubi_volume_desc
*open_ubi(const char *name
, int mode
)
1880 if (name
[0] != 'u' || name
[1] != 'b' || name
[2] != 'i')
1881 return ERR_PTR(-EINVAL
);
1883 /* ubi:NAME method */
1884 if ((name
[3] == ':' || name
[3] == '!') && name
[4] != '\0')
1885 return ubi_open_volume_nm(0, name
+ 4, mode
);
1887 if (!isdigit(name
[3]))
1888 return ERR_PTR(-EINVAL
);
1890 dev
= simple_strtoul(name
+ 3, &endptr
, 0);
1893 if (*endptr
== '\0')
1894 return ubi_open_volume(0, dev
, mode
);
1897 if (*endptr
== '_' && isdigit(endptr
[1])) {
1898 vol
= simple_strtoul(endptr
+ 1, &endptr
, 0);
1899 if (*endptr
!= '\0')
1900 return ERR_PTR(-EINVAL
);
1901 return ubi_open_volume(dev
, vol
, mode
);
1904 /* ubiX:NAME method */
1905 if ((*endptr
== ':' || *endptr
== '!') && endptr
[1] != '\0')
1906 return ubi_open_volume_nm(dev
, ++endptr
, mode
);
1908 return ERR_PTR(-EINVAL
);
1911 static int ubifs_fill_super(struct super_block
*sb
, void *data
, int silent
)
1913 struct ubi_volume_desc
*ubi
= sb
->s_fs_info
;
1914 struct ubifs_info
*c
;
1918 c
= kzalloc(sizeof(struct ubifs_info
), GFP_KERNEL
);
1922 spin_lock_init(&c
->cnt_lock
);
1923 spin_lock_init(&c
->cs_lock
);
1924 spin_lock_init(&c
->buds_lock
);
1925 spin_lock_init(&c
->space_lock
);
1926 spin_lock_init(&c
->orphan_lock
);
1927 init_rwsem(&c
->commit_sem
);
1928 mutex_init(&c
->lp_mutex
);
1929 mutex_init(&c
->tnc_mutex
);
1930 mutex_init(&c
->log_mutex
);
1931 mutex_init(&c
->mst_mutex
);
1932 mutex_init(&c
->umount_mutex
);
1933 mutex_init(&c
->bu_mutex
);
1934 init_waitqueue_head(&c
->cmt_wq
);
1936 c
->old_idx
= RB_ROOT
;
1937 c
->size_tree
= RB_ROOT
;
1938 c
->orph_tree
= RB_ROOT
;
1939 INIT_LIST_HEAD(&c
->infos_list
);
1940 INIT_LIST_HEAD(&c
->idx_gc
);
1941 INIT_LIST_HEAD(&c
->replay_list
);
1942 INIT_LIST_HEAD(&c
->replay_buds
);
1943 INIT_LIST_HEAD(&c
->uncat_list
);
1944 INIT_LIST_HEAD(&c
->empty_list
);
1945 INIT_LIST_HEAD(&c
->freeable_list
);
1946 INIT_LIST_HEAD(&c
->frdi_idx_list
);
1947 INIT_LIST_HEAD(&c
->unclean_leb_list
);
1948 INIT_LIST_HEAD(&c
->old_buds
);
1949 INIT_LIST_HEAD(&c
->orph_list
);
1950 INIT_LIST_HEAD(&c
->orph_new
);
1953 c
->highest_inum
= UBIFS_FIRST_INO
;
1954 c
->lhead_lnum
= c
->ltail_lnum
= UBIFS_LOG_LNUM
;
1956 ubi_get_volume_info(ubi
, &c
->vi
);
1957 ubi_get_device_info(c
->vi
.ubi_num
, &c
->di
);
1959 /* Re-open the UBI device in read-write mode */
1960 c
->ubi
= ubi_open_volume(c
->vi
.ubi_num
, c
->vi
.vol_id
, UBI_READWRITE
);
1961 if (IS_ERR(c
->ubi
)) {
1962 err
= PTR_ERR(c
->ubi
);
1967 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
1968 * UBIFS, I/O is not deferred, it is done immediately in readpage,
1969 * which means the user would have to wait not just for their own I/O
1970 * but the read-ahead I/O as well i.e. completely pointless.
1972 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
1974 c
->bdi
.capabilities
= BDI_CAP_MAP_COPY
;
1975 c
->bdi
.unplug_io_fn
= default_unplug_io_fn
;
1976 err
= bdi_init(&c
->bdi
);
1979 err
= bdi_register(&c
->bdi
, NULL
, "ubifs_%d_%d",
1980 c
->vi
.ubi_num
, c
->vi
.vol_id
);
1984 err
= ubifs_parse_options(c
, data
, 0);
1989 sb
->s_magic
= UBIFS_SUPER_MAGIC
;
1990 sb
->s_blocksize
= UBIFS_BLOCK_SIZE
;
1991 sb
->s_blocksize_bits
= UBIFS_BLOCK_SHIFT
;
1992 sb
->s_maxbytes
= c
->max_inode_sz
= key_max_inode_size(c
);
1993 if (c
->max_inode_sz
> MAX_LFS_FILESIZE
)
1994 sb
->s_maxbytes
= c
->max_inode_sz
= MAX_LFS_FILESIZE
;
1995 sb
->s_op
= &ubifs_super_operations
;
1997 mutex_lock(&c
->umount_mutex
);
1998 err
= mount_ubifs(c
);
2000 ubifs_assert(err
< 0);
2004 /* Read the root inode */
2005 root
= ubifs_iget(sb
, UBIFS_ROOT_INO
);
2007 err
= PTR_ERR(root
);
2011 sb
->s_root
= d_alloc_root(root
);
2015 mutex_unlock(&c
->umount_mutex
);
2023 mutex_unlock(&c
->umount_mutex
);
2025 bdi_destroy(&c
->bdi
);
2027 ubi_close_volume(c
->ubi
);
2033 static int sb_test(struct super_block
*sb
, void *data
)
2036 struct ubifs_info
*c
= sb
->s_fs_info
;
2038 return c
->vi
.cdev
== *dev
;
2041 static int ubifs_get_sb(struct file_system_type
*fs_type
, int flags
,
2042 const char *name
, void *data
, struct vfsmount
*mnt
)
2044 struct ubi_volume_desc
*ubi
;
2045 struct ubi_volume_info vi
;
2046 struct super_block
*sb
;
2049 dbg_gen("name %s, flags %#x", name
, flags
);
2052 * Get UBI device number and volume ID. Mount it read-only so far
2053 * because this might be a new mount point, and UBI allows only one
2054 * read-write user at a time.
2056 ubi
= open_ubi(name
, UBI_READONLY
);
2058 ubifs_err("cannot open \"%s\", error %d",
2059 name
, (int)PTR_ERR(ubi
));
2060 return PTR_ERR(ubi
);
2062 ubi_get_volume_info(ubi
, &vi
);
2064 dbg_gen("opened ubi%d_%d", vi
.ubi_num
, vi
.vol_id
);
2066 sb
= sget(fs_type
, &sb_test
, &set_anon_super
, &vi
.cdev
);
2073 /* A new mount point for already mounted UBIFS */
2074 dbg_gen("this ubi volume is already mounted");
2075 if ((flags
^ sb
->s_flags
) & MS_RDONLY
) {
2080 sb
->s_flags
= flags
;
2082 * Pass 'ubi' to 'fill_super()' in sb->s_fs_info where it is
2085 sb
->s_fs_info
= ubi
;
2086 err
= ubifs_fill_super(sb
, data
, flags
& MS_SILENT
? 1 : 0);
2089 /* We do not support atime */
2090 sb
->s_flags
|= MS_ACTIVE
| MS_NOATIME
;
2093 /* 'fill_super()' opens ubi again so we must close it here */
2094 ubi_close_volume(ubi
);
2096 simple_set_mnt(mnt
, sb
);
2100 deactivate_locked_super(sb
);
2102 ubi_close_volume(ubi
);
2106 static struct file_system_type ubifs_fs_type
= {
2108 .owner
= THIS_MODULE
,
2109 .get_sb
= ubifs_get_sb
,
2110 .kill_sb
= kill_anon_super
,
2114 * Inode slab cache constructor.
2116 static void inode_slab_ctor(void *obj
)
2118 struct ubifs_inode
*ui
= obj
;
2119 inode_init_once(&ui
->vfs_inode
);
2122 static int __init
ubifs_init(void)
2126 BUILD_BUG_ON(sizeof(struct ubifs_ch
) != 24);
2128 /* Make sure node sizes are 8-byte aligned */
2129 BUILD_BUG_ON(UBIFS_CH_SZ
& 7);
2130 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
& 7);
2131 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ
& 7);
2132 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ
& 7);
2133 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ
& 7);
2134 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ
& 7);
2135 BUILD_BUG_ON(UBIFS_SB_NODE_SZ
& 7);
2136 BUILD_BUG_ON(UBIFS_MST_NODE_SZ
& 7);
2137 BUILD_BUG_ON(UBIFS_REF_NODE_SZ
& 7);
2138 BUILD_BUG_ON(UBIFS_CS_NODE_SZ
& 7);
2139 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ
& 7);
2141 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ
& 7);
2142 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ
& 7);
2143 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ
& 7);
2144 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ
& 7);
2145 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ
& 7);
2146 BUILD_BUG_ON(MIN_WRITE_SZ
& 7);
2148 /* Check min. node size */
2149 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
< MIN_WRITE_SZ
);
2150 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ
< MIN_WRITE_SZ
);
2151 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ
< MIN_WRITE_SZ
);
2152 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ
< MIN_WRITE_SZ
);
2154 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2155 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2156 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2157 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ
> UBIFS_MAX_NODE_SZ
);
2159 /* Defined node sizes */
2160 BUILD_BUG_ON(UBIFS_SB_NODE_SZ
!= 4096);
2161 BUILD_BUG_ON(UBIFS_MST_NODE_SZ
!= 512);
2162 BUILD_BUG_ON(UBIFS_INO_NODE_SZ
!= 160);
2163 BUILD_BUG_ON(UBIFS_REF_NODE_SZ
!= 64);
2166 * We use 2 bit wide bit-fields to store compression type, which should
2167 * be amended if more compressors are added. The bit-fields are:
2168 * @compr_type in 'struct ubifs_inode', @default_compr in
2169 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2171 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT
> 4);
2174 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2175 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2177 if (PAGE_CACHE_SIZE
< UBIFS_BLOCK_SIZE
) {
2178 ubifs_err("VFS page cache size is %u bytes, but UBIFS requires"
2179 " at least 4096 bytes",
2180 (unsigned int)PAGE_CACHE_SIZE
);
2184 err
= register_filesystem(&ubifs_fs_type
);
2186 ubifs_err("cannot register file system, error %d", err
);
2191 ubifs_inode_slab
= kmem_cache_create("ubifs_inode_slab",
2192 sizeof(struct ubifs_inode
), 0,
2193 SLAB_MEM_SPREAD
| SLAB_RECLAIM_ACCOUNT
,
2195 if (!ubifs_inode_slab
)
2198 register_shrinker(&ubifs_shrinker_info
);
2200 err
= ubifs_compressors_init();
2204 err
= dbg_debugfs_init();
2211 ubifs_compressors_exit();
2213 unregister_shrinker(&ubifs_shrinker_info
);
2214 kmem_cache_destroy(ubifs_inode_slab
);
2216 unregister_filesystem(&ubifs_fs_type
);
2219 /* late_initcall to let compressors initialize first */
2220 late_initcall(ubifs_init
);
2222 static void __exit
ubifs_exit(void)
2224 ubifs_assert(list_empty(&ubifs_infos
));
2225 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt
) == 0);
2228 ubifs_compressors_exit();
2229 unregister_shrinker(&ubifs_shrinker_info
);
2230 kmem_cache_destroy(ubifs_inode_slab
);
2231 unregister_filesystem(&ubifs_fs_type
);
2233 module_exit(ubifs_exit
);
2235 MODULE_LICENSE("GPL");
2236 MODULE_VERSION(__stringify(UBIFS_VERSION
));
2237 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2238 MODULE_DESCRIPTION("UBIFS - UBI File System");