4 * Copyright (C) 2010 Renesas Solutions Corp.
5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License.
13 * The MMCIF driver is now processing MMC requests asynchronously, according
14 * to the Linux MMC API requirement.
16 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
17 * data, and optional stop. To achieve asynchronous processing each of these
18 * stages is split into two halves: a top and a bottom half. The top half
19 * initialises the hardware, installs a timeout handler to handle completion
20 * timeouts, and returns. In case of the command stage this immediately returns
21 * control to the caller, leaving all further processing to run asynchronously.
22 * All further request processing is performed by the bottom halves.
24 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
25 * thread, a DMA completion callback, if DMA is used, a timeout work, and
26 * request- and stage-specific handler methods.
28 * Each bottom half run begins with either a hardware interrupt, a DMA callback
29 * invocation, or a timeout work run. In case of an error or a successful
30 * processing completion, the MMC core is informed and the request processing is
31 * finished. In case processing has to continue, i.e., if data has to be read
32 * from or written to the card, or if a stop command has to be sent, the next
33 * top half is called, which performs the necessary hardware handling and
34 * reschedules the timeout work. This returns the driver state machine into the
35 * bottom half waiting state.
38 #include <linux/bitops.h>
39 #include <linux/clk.h>
40 #include <linux/completion.h>
41 #include <linux/delay.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/dmaengine.h>
44 #include <linux/mmc/card.h>
45 #include <linux/mmc/core.h>
46 #include <linux/mmc/host.h>
47 #include <linux/mmc/mmc.h>
48 #include <linux/mmc/sdio.h>
49 #include <linux/mmc/sh_mmcif.h>
50 #include <linux/mmc/slot-gpio.h>
51 #include <linux/mod_devicetable.h>
52 #include <linux/mutex.h>
53 #include <linux/of_device.h>
54 #include <linux/pagemap.h>
55 #include <linux/platform_device.h>
56 #include <linux/pm_qos.h>
57 #include <linux/pm_runtime.h>
58 #include <linux/sh_dma.h>
59 #include <linux/spinlock.h>
60 #include <linux/module.h>
62 #define DRIVER_NAME "sh_mmcif"
65 #define CMD_MASK 0x3f000000
66 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
67 #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
68 #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
69 #define CMD_SET_RBSY (1 << 21) /* R1b */
70 #define CMD_SET_CCSEN (1 << 20)
71 #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
72 #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
73 #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
74 #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
75 #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
76 #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
77 #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
78 #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
79 #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
80 #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
81 #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
82 #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
83 #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
84 #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
85 #define CMD_SET_CCSH (1 << 5)
86 #define CMD_SET_DARS (1 << 2) /* Dual Data Rate */
87 #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
88 #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
89 #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
92 #define CMD_CTRL_BREAK (1 << 0)
95 #define BLOCK_SIZE_MASK 0x0000ffff
98 #define INT_CCSDE (1 << 29)
99 #define INT_CMD12DRE (1 << 26)
100 #define INT_CMD12RBE (1 << 25)
101 #define INT_CMD12CRE (1 << 24)
102 #define INT_DTRANE (1 << 23)
103 #define INT_BUFRE (1 << 22)
104 #define INT_BUFWEN (1 << 21)
105 #define INT_BUFREN (1 << 20)
106 #define INT_CCSRCV (1 << 19)
107 #define INT_RBSYE (1 << 17)
108 #define INT_CRSPE (1 << 16)
109 #define INT_CMDVIO (1 << 15)
110 #define INT_BUFVIO (1 << 14)
111 #define INT_WDATERR (1 << 11)
112 #define INT_RDATERR (1 << 10)
113 #define INT_RIDXERR (1 << 9)
114 #define INT_RSPERR (1 << 8)
115 #define INT_CCSTO (1 << 5)
116 #define INT_CRCSTO (1 << 4)
117 #define INT_WDATTO (1 << 3)
118 #define INT_RDATTO (1 << 2)
119 #define INT_RBSYTO (1 << 1)
120 #define INT_RSPTO (1 << 0)
121 #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
122 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
123 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
124 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
126 #define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \
127 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
128 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
130 #define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
133 #define MASK_ALL 0x00000000
134 #define MASK_MCCSDE (1 << 29)
135 #define MASK_MCMD12DRE (1 << 26)
136 #define MASK_MCMD12RBE (1 << 25)
137 #define MASK_MCMD12CRE (1 << 24)
138 #define MASK_MDTRANE (1 << 23)
139 #define MASK_MBUFRE (1 << 22)
140 #define MASK_MBUFWEN (1 << 21)
141 #define MASK_MBUFREN (1 << 20)
142 #define MASK_MCCSRCV (1 << 19)
143 #define MASK_MRBSYE (1 << 17)
144 #define MASK_MCRSPE (1 << 16)
145 #define MASK_MCMDVIO (1 << 15)
146 #define MASK_MBUFVIO (1 << 14)
147 #define MASK_MWDATERR (1 << 11)
148 #define MASK_MRDATERR (1 << 10)
149 #define MASK_MRIDXERR (1 << 9)
150 #define MASK_MRSPERR (1 << 8)
151 #define MASK_MCCSTO (1 << 5)
152 #define MASK_MCRCSTO (1 << 4)
153 #define MASK_MWDATTO (1 << 3)
154 #define MASK_MRDATTO (1 << 2)
155 #define MASK_MRBSYTO (1 << 1)
156 #define MASK_MRSPTO (1 << 0)
158 #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
159 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
160 MASK_MCRCSTO | MASK_MWDATTO | \
161 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
163 #define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \
164 MASK_MBUFREN | MASK_MBUFWEN | \
165 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \
166 MASK_MCMD12RBE | MASK_MCMD12CRE)
169 #define STS1_CMDSEQ (1 << 31)
172 #define STS2_CRCSTE (1 << 31)
173 #define STS2_CRC16E (1 << 30)
174 #define STS2_AC12CRCE (1 << 29)
175 #define STS2_RSPCRC7E (1 << 28)
176 #define STS2_CRCSTEBE (1 << 27)
177 #define STS2_RDATEBE (1 << 26)
178 #define STS2_AC12REBE (1 << 25)
179 #define STS2_RSPEBE (1 << 24)
180 #define STS2_AC12IDXE (1 << 23)
181 #define STS2_RSPIDXE (1 << 22)
182 #define STS2_CCSTO (1 << 15)
183 #define STS2_RDATTO (1 << 14)
184 #define STS2_DATBSYTO (1 << 13)
185 #define STS2_CRCSTTO (1 << 12)
186 #define STS2_AC12BSYTO (1 << 11)
187 #define STS2_RSPBSYTO (1 << 10)
188 #define STS2_AC12RSPTO (1 << 9)
189 #define STS2_RSPTO (1 << 8)
190 #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
191 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
192 #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
193 STS2_DATBSYTO | STS2_CRCSTTO | \
194 STS2_AC12BSYTO | STS2_RSPBSYTO | \
195 STS2_AC12RSPTO | STS2_RSPTO)
197 #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
198 #define CLKDEV_MMC_DATA 20000000 /* 20MHz */
199 #define CLKDEV_INIT 400000 /* 400 KHz */
201 enum sh_mmcif_state
{
208 enum sh_mmcif_wait_for
{
209 MMCIF_WAIT_FOR_REQUEST
,
211 MMCIF_WAIT_FOR_MREAD
,
212 MMCIF_WAIT_FOR_MWRITE
,
214 MMCIF_WAIT_FOR_WRITE
,
215 MMCIF_WAIT_FOR_READ_END
,
216 MMCIF_WAIT_FOR_WRITE_END
,
221 * difference for each SoC
223 struct sh_mmcif_host
{
224 struct mmc_host
*mmc
;
225 struct mmc_request
*mrq
;
226 struct platform_device
*pd
;
229 unsigned char timing
;
235 spinlock_t lock
; /* protect sh_mmcif_host::state */
236 enum sh_mmcif_state state
;
237 enum sh_mmcif_wait_for wait_for
;
238 struct delayed_work timeout_work
;
243 bool ccs_enable
; /* Command Completion Signal support */
244 bool clk_ctrl2_enable
;
245 struct mutex thread_lock
;
246 u32 clkdiv_map
; /* see CE_CLK_CTRL::CLKDIV */
249 struct dma_chan
*chan_rx
;
250 struct dma_chan
*chan_tx
;
251 struct completion dma_complete
;
255 static const struct of_device_id sh_mmcif_of_match
[] = {
256 { .compatible
= "renesas,sh-mmcif" },
259 MODULE_DEVICE_TABLE(of
, sh_mmcif_of_match
);
261 #define sh_mmcif_host_to_dev(host) (&host->pd->dev)
263 static inline void sh_mmcif_bitset(struct sh_mmcif_host
*host
,
264 unsigned int reg
, u32 val
)
266 writel(val
| readl(host
->addr
+ reg
), host
->addr
+ reg
);
269 static inline void sh_mmcif_bitclr(struct sh_mmcif_host
*host
,
270 unsigned int reg
, u32 val
)
272 writel(~val
& readl(host
->addr
+ reg
), host
->addr
+ reg
);
275 static void sh_mmcif_dma_complete(void *arg
)
277 struct sh_mmcif_host
*host
= arg
;
278 struct mmc_request
*mrq
= host
->mrq
;
279 struct device
*dev
= sh_mmcif_host_to_dev(host
);
281 dev_dbg(dev
, "Command completed\n");
283 if (WARN(!mrq
|| !mrq
->data
, "%s: NULL data in DMA completion!\n",
287 complete(&host
->dma_complete
);
290 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host
*host
)
292 struct mmc_data
*data
= host
->mrq
->data
;
293 struct scatterlist
*sg
= data
->sg
;
294 struct dma_async_tx_descriptor
*desc
= NULL
;
295 struct dma_chan
*chan
= host
->chan_rx
;
296 struct device
*dev
= sh_mmcif_host_to_dev(host
);
297 dma_cookie_t cookie
= -EINVAL
;
300 ret
= dma_map_sg(chan
->device
->dev
, sg
, data
->sg_len
,
303 host
->dma_active
= true;
304 desc
= dmaengine_prep_slave_sg(chan
, sg
, ret
,
305 DMA_DEV_TO_MEM
, DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
309 desc
->callback
= sh_mmcif_dma_complete
;
310 desc
->callback_param
= host
;
311 cookie
= dmaengine_submit(desc
);
312 sh_mmcif_bitset(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAREN
);
313 dma_async_issue_pending(chan
);
315 dev_dbg(dev
, "%s(): mapped %d -> %d, cookie %d\n",
316 __func__
, data
->sg_len
, ret
, cookie
);
319 /* DMA failed, fall back to PIO */
322 host
->chan_rx
= NULL
;
323 host
->dma_active
= false;
324 dma_release_channel(chan
);
325 /* Free the Tx channel too */
326 chan
= host
->chan_tx
;
328 host
->chan_tx
= NULL
;
329 dma_release_channel(chan
);
332 "DMA failed: %d, falling back to PIO\n", ret
);
333 sh_mmcif_bitclr(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAREN
| BUF_ACC_DMAWEN
);
336 dev_dbg(dev
, "%s(): desc %p, cookie %d, sg[%d]\n", __func__
,
337 desc
, cookie
, data
->sg_len
);
340 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host
*host
)
342 struct mmc_data
*data
= host
->mrq
->data
;
343 struct scatterlist
*sg
= data
->sg
;
344 struct dma_async_tx_descriptor
*desc
= NULL
;
345 struct dma_chan
*chan
= host
->chan_tx
;
346 struct device
*dev
= sh_mmcif_host_to_dev(host
);
347 dma_cookie_t cookie
= -EINVAL
;
350 ret
= dma_map_sg(chan
->device
->dev
, sg
, data
->sg_len
,
353 host
->dma_active
= true;
354 desc
= dmaengine_prep_slave_sg(chan
, sg
, ret
,
355 DMA_MEM_TO_DEV
, DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
359 desc
->callback
= sh_mmcif_dma_complete
;
360 desc
->callback_param
= host
;
361 cookie
= dmaengine_submit(desc
);
362 sh_mmcif_bitset(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAWEN
);
363 dma_async_issue_pending(chan
);
365 dev_dbg(dev
, "%s(): mapped %d -> %d, cookie %d\n",
366 __func__
, data
->sg_len
, ret
, cookie
);
369 /* DMA failed, fall back to PIO */
372 host
->chan_tx
= NULL
;
373 host
->dma_active
= false;
374 dma_release_channel(chan
);
375 /* Free the Rx channel too */
376 chan
= host
->chan_rx
;
378 host
->chan_rx
= NULL
;
379 dma_release_channel(chan
);
382 "DMA failed: %d, falling back to PIO\n", ret
);
383 sh_mmcif_bitclr(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAREN
| BUF_ACC_DMAWEN
);
386 dev_dbg(dev
, "%s(): desc %p, cookie %d\n", __func__
,
390 static struct dma_chan
*
391 sh_mmcif_request_dma_pdata(struct sh_mmcif_host
*host
, uintptr_t slave_id
)
396 dma_cap_set(DMA_SLAVE
, mask
);
400 return dma_request_channel(mask
, shdma_chan_filter
, (void *)slave_id
);
403 static int sh_mmcif_dma_slave_config(struct sh_mmcif_host
*host
,
404 struct dma_chan
*chan
,
405 enum dma_transfer_direction direction
)
407 struct resource
*res
;
408 struct dma_slave_config cfg
= { 0, };
410 res
= platform_get_resource(host
->pd
, IORESOURCE_MEM
, 0);
411 cfg
.direction
= direction
;
413 if (direction
== DMA_DEV_TO_MEM
) {
414 cfg
.src_addr
= res
->start
+ MMCIF_CE_DATA
;
415 cfg
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
417 cfg
.dst_addr
= res
->start
+ MMCIF_CE_DATA
;
418 cfg
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
421 return dmaengine_slave_config(chan
, &cfg
);
424 static void sh_mmcif_request_dma(struct sh_mmcif_host
*host
)
426 struct device
*dev
= sh_mmcif_host_to_dev(host
);
427 host
->dma_active
= false;
429 /* We can only either use DMA for both Tx and Rx or not use it at all */
430 if (IS_ENABLED(CONFIG_SUPERH
) && dev
->platform_data
) {
431 struct sh_mmcif_plat_data
*pdata
= dev
->platform_data
;
433 host
->chan_tx
= sh_mmcif_request_dma_pdata(host
,
435 host
->chan_rx
= sh_mmcif_request_dma_pdata(host
,
438 host
->chan_tx
= dma_request_slave_channel(dev
, "tx");
439 host
->chan_rx
= dma_request_slave_channel(dev
, "rx");
441 dev_dbg(dev
, "%s: got channel TX %p RX %p\n", __func__
, host
->chan_tx
,
444 if (!host
->chan_tx
|| !host
->chan_rx
||
445 sh_mmcif_dma_slave_config(host
, host
->chan_tx
, DMA_MEM_TO_DEV
) ||
446 sh_mmcif_dma_slave_config(host
, host
->chan_rx
, DMA_DEV_TO_MEM
))
453 dma_release_channel(host
->chan_tx
);
455 dma_release_channel(host
->chan_rx
);
456 host
->chan_tx
= host
->chan_rx
= NULL
;
459 static void sh_mmcif_release_dma(struct sh_mmcif_host
*host
)
461 sh_mmcif_bitclr(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_DMAREN
| BUF_ACC_DMAWEN
);
462 /* Descriptors are freed automatically */
464 struct dma_chan
*chan
= host
->chan_tx
;
465 host
->chan_tx
= NULL
;
466 dma_release_channel(chan
);
469 struct dma_chan
*chan
= host
->chan_rx
;
470 host
->chan_rx
= NULL
;
471 dma_release_channel(chan
);
474 host
->dma_active
= false;
477 static void sh_mmcif_clock_control(struct sh_mmcif_host
*host
, unsigned int clk
)
479 struct device
*dev
= sh_mmcif_host_to_dev(host
);
480 struct sh_mmcif_plat_data
*p
= dev
->platform_data
;
481 bool sup_pclk
= p
? p
->sup_pclk
: false;
482 unsigned int current_clk
= clk_get_rate(host
->clk
);
485 sh_mmcif_bitclr(host
, MMCIF_CE_CLK_CTRL
, CLK_ENABLE
);
486 sh_mmcif_bitclr(host
, MMCIF_CE_CLK_CTRL
, CLK_CLEAR
);
491 if (host
->clkdiv_map
) {
492 unsigned int freq
, best_freq
, myclk
, div
, diff_min
, diff
;
498 for (i
= 31; i
>= 0; i
--) {
499 if (!((1 << i
) & host
->clkdiv_map
))
503 * clk = parent_freq / div
504 * -> parent_freq = clk x div
508 freq
= clk_round_rate(host
->clk
, clk
* div
);
510 diff
= (myclk
> clk
) ? myclk
- clk
: clk
- myclk
;
512 if (diff
<= diff_min
) {
519 dev_dbg(dev
, "clk %u/%u (%u, 0x%x)\n",
520 (best_freq
/ (1 << (clkdiv
+ 1))), clk
,
523 clk_set_rate(host
->clk
, best_freq
);
524 clkdiv
= clkdiv
<< 16;
525 } else if (sup_pclk
&& clk
== current_clk
) {
526 clkdiv
= CLK_SUP_PCLK
;
528 clkdiv
= (fls(DIV_ROUND_UP(current_clk
, clk
) - 1) - 1) << 16;
531 sh_mmcif_bitset(host
, MMCIF_CE_CLK_CTRL
, CLK_CLEAR
& clkdiv
);
532 sh_mmcif_bitset(host
, MMCIF_CE_CLK_CTRL
, CLK_ENABLE
);
535 static void sh_mmcif_sync_reset(struct sh_mmcif_host
*host
)
539 tmp
= 0x010f0000 & sh_mmcif_readl(host
->addr
, MMCIF_CE_CLK_CTRL
);
541 sh_mmcif_writel(host
->addr
, MMCIF_CE_VERSION
, SOFT_RST_ON
);
542 sh_mmcif_writel(host
->addr
, MMCIF_CE_VERSION
, SOFT_RST_OFF
);
543 if (host
->ccs_enable
)
545 if (host
->clk_ctrl2_enable
)
546 sh_mmcif_writel(host
->addr
, MMCIF_CE_CLK_CTRL2
, 0x0F0F0000);
547 sh_mmcif_bitset(host
, MMCIF_CE_CLK_CTRL
, tmp
|
548 SRSPTO_256
| SRBSYTO_29
| SRWDTO_29
);
550 sh_mmcif_bitset(host
, MMCIF_CE_BUF_ACC
, BUF_ACC_ATYP
);
553 static int sh_mmcif_error_manage(struct sh_mmcif_host
*host
)
555 struct device
*dev
= sh_mmcif_host_to_dev(host
);
559 host
->sd_error
= false;
561 state1
= sh_mmcif_readl(host
->addr
, MMCIF_CE_HOST_STS1
);
562 state2
= sh_mmcif_readl(host
->addr
, MMCIF_CE_HOST_STS2
);
563 dev_dbg(dev
, "ERR HOST_STS1 = %08x\n", state1
);
564 dev_dbg(dev
, "ERR HOST_STS2 = %08x\n", state2
);
566 if (state1
& STS1_CMDSEQ
) {
567 sh_mmcif_bitset(host
, MMCIF_CE_CMD_CTRL
, CMD_CTRL_BREAK
);
568 sh_mmcif_bitset(host
, MMCIF_CE_CMD_CTRL
, ~CMD_CTRL_BREAK
);
569 for (timeout
= 10000; timeout
; timeout
--) {
570 if (!(sh_mmcif_readl(host
->addr
, MMCIF_CE_HOST_STS1
)
577 "Forced end of command sequence timeout err\n");
580 sh_mmcif_sync_reset(host
);
581 dev_dbg(dev
, "Forced end of command sequence\n");
585 if (state2
& STS2_CRC_ERR
) {
586 dev_err(dev
, " CRC error: state %u, wait %u\n",
587 host
->state
, host
->wait_for
);
589 } else if (state2
& STS2_TIMEOUT_ERR
) {
590 dev_err(dev
, " Timeout: state %u, wait %u\n",
591 host
->state
, host
->wait_for
);
594 dev_dbg(dev
, " End/Index error: state %u, wait %u\n",
595 host
->state
, host
->wait_for
);
601 static bool sh_mmcif_next_block(struct sh_mmcif_host
*host
, u32
*p
)
603 struct mmc_data
*data
= host
->mrq
->data
;
605 host
->sg_blkidx
+= host
->blocksize
;
607 /* data->sg->length must be a multiple of host->blocksize? */
608 BUG_ON(host
->sg_blkidx
> data
->sg
->length
);
610 if (host
->sg_blkidx
== data
->sg
->length
) {
612 if (++host
->sg_idx
< data
->sg_len
)
613 host
->pio_ptr
= sg_virt(++data
->sg
);
618 return host
->sg_idx
!= data
->sg_len
;
621 static void sh_mmcif_single_read(struct sh_mmcif_host
*host
,
622 struct mmc_request
*mrq
)
624 host
->blocksize
= (sh_mmcif_readl(host
->addr
, MMCIF_CE_BLOCK_SET
) &
625 BLOCK_SIZE_MASK
) + 3;
627 host
->wait_for
= MMCIF_WAIT_FOR_READ
;
629 /* buf read enable */
630 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFREN
);
633 static bool sh_mmcif_read_block(struct sh_mmcif_host
*host
)
635 struct device
*dev
= sh_mmcif_host_to_dev(host
);
636 struct mmc_data
*data
= host
->mrq
->data
;
637 u32
*p
= sg_virt(data
->sg
);
640 if (host
->sd_error
) {
641 data
->error
= sh_mmcif_error_manage(host
);
642 dev_dbg(dev
, "%s(): %d\n", __func__
, data
->error
);
646 for (i
= 0; i
< host
->blocksize
/ 4; i
++)
647 *p
++ = sh_mmcif_readl(host
->addr
, MMCIF_CE_DATA
);
649 /* buffer read end */
650 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFRE
);
651 host
->wait_for
= MMCIF_WAIT_FOR_READ_END
;
656 static void sh_mmcif_multi_read(struct sh_mmcif_host
*host
,
657 struct mmc_request
*mrq
)
659 struct mmc_data
*data
= mrq
->data
;
661 if (!data
->sg_len
|| !data
->sg
->length
)
664 host
->blocksize
= sh_mmcif_readl(host
->addr
, MMCIF_CE_BLOCK_SET
) &
667 host
->wait_for
= MMCIF_WAIT_FOR_MREAD
;
670 host
->pio_ptr
= sg_virt(data
->sg
);
672 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFREN
);
675 static bool sh_mmcif_mread_block(struct sh_mmcif_host
*host
)
677 struct device
*dev
= sh_mmcif_host_to_dev(host
);
678 struct mmc_data
*data
= host
->mrq
->data
;
679 u32
*p
= host
->pio_ptr
;
682 if (host
->sd_error
) {
683 data
->error
= sh_mmcif_error_manage(host
);
684 dev_dbg(dev
, "%s(): %d\n", __func__
, data
->error
);
688 BUG_ON(!data
->sg
->length
);
690 for (i
= 0; i
< host
->blocksize
/ 4; i
++)
691 *p
++ = sh_mmcif_readl(host
->addr
, MMCIF_CE_DATA
);
693 if (!sh_mmcif_next_block(host
, p
))
696 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFREN
);
701 static void sh_mmcif_single_write(struct sh_mmcif_host
*host
,
702 struct mmc_request
*mrq
)
704 host
->blocksize
= (sh_mmcif_readl(host
->addr
, MMCIF_CE_BLOCK_SET
) &
705 BLOCK_SIZE_MASK
) + 3;
707 host
->wait_for
= MMCIF_WAIT_FOR_WRITE
;
709 /* buf write enable */
710 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFWEN
);
713 static bool sh_mmcif_write_block(struct sh_mmcif_host
*host
)
715 struct device
*dev
= sh_mmcif_host_to_dev(host
);
716 struct mmc_data
*data
= host
->mrq
->data
;
717 u32
*p
= sg_virt(data
->sg
);
720 if (host
->sd_error
) {
721 data
->error
= sh_mmcif_error_manage(host
);
722 dev_dbg(dev
, "%s(): %d\n", __func__
, data
->error
);
726 for (i
= 0; i
< host
->blocksize
/ 4; i
++)
727 sh_mmcif_writel(host
->addr
, MMCIF_CE_DATA
, *p
++);
729 /* buffer write end */
730 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MDTRANE
);
731 host
->wait_for
= MMCIF_WAIT_FOR_WRITE_END
;
736 static void sh_mmcif_multi_write(struct sh_mmcif_host
*host
,
737 struct mmc_request
*mrq
)
739 struct mmc_data
*data
= mrq
->data
;
741 if (!data
->sg_len
|| !data
->sg
->length
)
744 host
->blocksize
= sh_mmcif_readl(host
->addr
, MMCIF_CE_BLOCK_SET
) &
747 host
->wait_for
= MMCIF_WAIT_FOR_MWRITE
;
750 host
->pio_ptr
= sg_virt(data
->sg
);
752 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFWEN
);
755 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host
*host
)
757 struct device
*dev
= sh_mmcif_host_to_dev(host
);
758 struct mmc_data
*data
= host
->mrq
->data
;
759 u32
*p
= host
->pio_ptr
;
762 if (host
->sd_error
) {
763 data
->error
= sh_mmcif_error_manage(host
);
764 dev_dbg(dev
, "%s(): %d\n", __func__
, data
->error
);
768 BUG_ON(!data
->sg
->length
);
770 for (i
= 0; i
< host
->blocksize
/ 4; i
++)
771 sh_mmcif_writel(host
->addr
, MMCIF_CE_DATA
, *p
++);
773 if (!sh_mmcif_next_block(host
, p
))
776 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MBUFWEN
);
781 static void sh_mmcif_get_response(struct sh_mmcif_host
*host
,
782 struct mmc_command
*cmd
)
784 if (cmd
->flags
& MMC_RSP_136
) {
785 cmd
->resp
[0] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP3
);
786 cmd
->resp
[1] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP2
);
787 cmd
->resp
[2] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP1
);
788 cmd
->resp
[3] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP0
);
790 cmd
->resp
[0] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP0
);
793 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host
*host
,
794 struct mmc_command
*cmd
)
796 cmd
->resp
[0] = sh_mmcif_readl(host
->addr
, MMCIF_CE_RESP_CMD12
);
799 static u32
sh_mmcif_set_cmd(struct sh_mmcif_host
*host
,
800 struct mmc_request
*mrq
)
802 struct device
*dev
= sh_mmcif_host_to_dev(host
);
803 struct mmc_data
*data
= mrq
->data
;
804 struct mmc_command
*cmd
= mrq
->cmd
;
805 u32 opc
= cmd
->opcode
;
808 /* Response Type check */
809 switch (mmc_resp_type(cmd
)) {
811 tmp
|= CMD_SET_RTYP_NO
;
815 tmp
|= CMD_SET_RTYP_6B
;
818 tmp
|= CMD_SET_RBSY
| CMD_SET_RTYP_6B
;
821 tmp
|= CMD_SET_RTYP_17B
;
824 dev_err(dev
, "Unsupported response type.\n");
831 switch (host
->bus_width
) {
832 case MMC_BUS_WIDTH_1
:
833 tmp
|= CMD_SET_DATW_1
;
835 case MMC_BUS_WIDTH_4
:
836 tmp
|= CMD_SET_DATW_4
;
838 case MMC_BUS_WIDTH_8
:
839 tmp
|= CMD_SET_DATW_8
;
842 dev_err(dev
, "Unsupported bus width.\n");
845 switch (host
->timing
) {
846 case MMC_TIMING_MMC_DDR52
:
848 * MMC core will only set this timing, if the host
849 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
850 * capability. MMCIF implementations with this
851 * capability, e.g. sh73a0, will have to set it
852 * in their platform data.
859 if (opc
== MMC_WRITE_BLOCK
|| opc
== MMC_WRITE_MULTIPLE_BLOCK
)
862 if (opc
== MMC_READ_MULTIPLE_BLOCK
|| opc
== MMC_WRITE_MULTIPLE_BLOCK
) {
863 tmp
|= CMD_SET_CMLTE
| CMD_SET_CMD12EN
;
864 sh_mmcif_bitset(host
, MMCIF_CE_BLOCK_SET
,
867 /* RIDXC[1:0] check bits */
868 if (opc
== MMC_SEND_OP_COND
|| opc
== MMC_ALL_SEND_CID
||
869 opc
== MMC_SEND_CSD
|| opc
== MMC_SEND_CID
)
870 tmp
|= CMD_SET_RIDXC_BITS
;
871 /* RCRC7C[1:0] check bits */
872 if (opc
== MMC_SEND_OP_COND
)
873 tmp
|= CMD_SET_CRC7C_BITS
;
874 /* RCRC7C[1:0] internal CRC7 */
875 if (opc
== MMC_ALL_SEND_CID
||
876 opc
== MMC_SEND_CSD
|| opc
== MMC_SEND_CID
)
877 tmp
|= CMD_SET_CRC7C_INTERNAL
;
879 return (opc
<< 24) | tmp
;
882 static int sh_mmcif_data_trans(struct sh_mmcif_host
*host
,
883 struct mmc_request
*mrq
, u32 opc
)
885 struct device
*dev
= sh_mmcif_host_to_dev(host
);
888 case MMC_READ_MULTIPLE_BLOCK
:
889 sh_mmcif_multi_read(host
, mrq
);
891 case MMC_WRITE_MULTIPLE_BLOCK
:
892 sh_mmcif_multi_write(host
, mrq
);
894 case MMC_WRITE_BLOCK
:
895 sh_mmcif_single_write(host
, mrq
);
897 case MMC_READ_SINGLE_BLOCK
:
898 case MMC_SEND_EXT_CSD
:
899 sh_mmcif_single_read(host
, mrq
);
902 dev_err(dev
, "Unsupported CMD%d\n", opc
);
907 static void sh_mmcif_start_cmd(struct sh_mmcif_host
*host
,
908 struct mmc_request
*mrq
)
910 struct mmc_command
*cmd
= mrq
->cmd
;
915 if (cmd
->flags
& MMC_RSP_BUSY
)
916 mask
= MASK_START_CMD
| MASK_MRBSYE
;
918 mask
= MASK_START_CMD
| MASK_MCRSPE
;
920 if (host
->ccs_enable
)
924 sh_mmcif_writel(host
->addr
, MMCIF_CE_BLOCK_SET
, 0);
925 sh_mmcif_writel(host
->addr
, MMCIF_CE_BLOCK_SET
,
928 opc
= sh_mmcif_set_cmd(host
, mrq
);
930 if (host
->ccs_enable
)
931 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT
, 0xD80430C0);
933 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT
, 0xD80430C0 | INT_CCS
);
934 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT_MASK
, mask
);
936 sh_mmcif_writel(host
->addr
, MMCIF_CE_ARG
, cmd
->arg
);
938 spin_lock_irqsave(&host
->lock
, flags
);
939 sh_mmcif_writel(host
->addr
, MMCIF_CE_CMD_SET
, opc
);
941 host
->wait_for
= MMCIF_WAIT_FOR_CMD
;
942 schedule_delayed_work(&host
->timeout_work
, host
->timeout
);
943 spin_unlock_irqrestore(&host
->lock
, flags
);
946 static void sh_mmcif_stop_cmd(struct sh_mmcif_host
*host
,
947 struct mmc_request
*mrq
)
949 struct device
*dev
= sh_mmcif_host_to_dev(host
);
951 switch (mrq
->cmd
->opcode
) {
952 case MMC_READ_MULTIPLE_BLOCK
:
953 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MCMD12DRE
);
955 case MMC_WRITE_MULTIPLE_BLOCK
:
956 sh_mmcif_bitset(host
, MMCIF_CE_INT_MASK
, MASK_MCMD12RBE
);
959 dev_err(dev
, "unsupported stop cmd\n");
960 mrq
->stop
->error
= sh_mmcif_error_manage(host
);
964 host
->wait_for
= MMCIF_WAIT_FOR_STOP
;
967 static void sh_mmcif_request(struct mmc_host
*mmc
, struct mmc_request
*mrq
)
969 struct sh_mmcif_host
*host
= mmc_priv(mmc
);
970 struct device
*dev
= sh_mmcif_host_to_dev(host
);
973 spin_lock_irqsave(&host
->lock
, flags
);
974 if (host
->state
!= STATE_IDLE
) {
975 dev_dbg(dev
, "%s() rejected, state %u\n",
976 __func__
, host
->state
);
977 spin_unlock_irqrestore(&host
->lock
, flags
);
978 mrq
->cmd
->error
= -EAGAIN
;
979 mmc_request_done(mmc
, mrq
);
983 host
->state
= STATE_REQUEST
;
984 spin_unlock_irqrestore(&host
->lock
, flags
);
988 sh_mmcif_start_cmd(host
, mrq
);
991 static void sh_mmcif_clk_setup(struct sh_mmcif_host
*host
)
993 struct device
*dev
= sh_mmcif_host_to_dev(host
);
995 if (host
->mmc
->f_max
) {
996 unsigned int f_max
, f_min
= 0, f_min_old
;
998 f_max
= host
->mmc
->f_max
;
999 for (f_min_old
= f_max
; f_min_old
> 2;) {
1000 f_min
= clk_round_rate(host
->clk
, f_min_old
/ 2);
1001 if (f_min
== f_min_old
)
1007 * This driver assumes this SoC is R-Car Gen2 or later
1009 host
->clkdiv_map
= 0x3ff;
1011 host
->mmc
->f_max
= f_max
/ (1 << ffs(host
->clkdiv_map
));
1012 host
->mmc
->f_min
= f_min
/ (1 << fls(host
->clkdiv_map
));
1014 unsigned int clk
= clk_get_rate(host
->clk
);
1016 host
->mmc
->f_max
= clk
/ 2;
1017 host
->mmc
->f_min
= clk
/ 512;
1020 dev_dbg(dev
, "clk max/min = %d/%d\n",
1021 host
->mmc
->f_max
, host
->mmc
->f_min
);
1024 static void sh_mmcif_set_ios(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1026 struct sh_mmcif_host
*host
= mmc_priv(mmc
);
1027 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1028 unsigned long flags
;
1030 spin_lock_irqsave(&host
->lock
, flags
);
1031 if (host
->state
!= STATE_IDLE
) {
1032 dev_dbg(dev
, "%s() rejected, state %u\n",
1033 __func__
, host
->state
);
1034 spin_unlock_irqrestore(&host
->lock
, flags
);
1038 host
->state
= STATE_IOS
;
1039 spin_unlock_irqrestore(&host
->lock
, flags
);
1041 switch (ios
->power_mode
) {
1043 if (!IS_ERR(mmc
->supply
.vmmc
))
1044 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, ios
->vdd
);
1046 clk_prepare_enable(host
->clk
);
1047 pm_runtime_get_sync(dev
);
1048 sh_mmcif_sync_reset(host
);
1049 sh_mmcif_request_dma(host
);
1054 if (!IS_ERR(mmc
->supply
.vmmc
))
1055 mmc_regulator_set_ocr(mmc
, mmc
->supply
.vmmc
, 0);
1057 sh_mmcif_clock_control(host
, 0);
1058 sh_mmcif_release_dma(host
);
1059 pm_runtime_put(dev
);
1060 clk_disable_unprepare(host
->clk
);
1061 host
->power
= false;
1065 sh_mmcif_clock_control(host
, ios
->clock
);
1069 host
->timing
= ios
->timing
;
1070 host
->bus_width
= ios
->bus_width
;
1071 host
->state
= STATE_IDLE
;
1074 static const struct mmc_host_ops sh_mmcif_ops
= {
1075 .request
= sh_mmcif_request
,
1076 .set_ios
= sh_mmcif_set_ios
,
1077 .get_cd
= mmc_gpio_get_cd
,
1080 static bool sh_mmcif_end_cmd(struct sh_mmcif_host
*host
)
1082 struct mmc_command
*cmd
= host
->mrq
->cmd
;
1083 struct mmc_data
*data
= host
->mrq
->data
;
1084 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1087 if (host
->sd_error
) {
1088 switch (cmd
->opcode
) {
1089 case MMC_ALL_SEND_CID
:
1090 case MMC_SELECT_CARD
:
1092 cmd
->error
= -ETIMEDOUT
;
1095 cmd
->error
= sh_mmcif_error_manage(host
);
1098 dev_dbg(dev
, "CMD%d error %d\n",
1099 cmd
->opcode
, cmd
->error
);
1100 host
->sd_error
= false;
1103 if (!(cmd
->flags
& MMC_RSP_PRESENT
)) {
1108 sh_mmcif_get_response(host
, cmd
);
1114 * Completion can be signalled from DMA callback and error, so, have to
1115 * reset here, before setting .dma_active
1117 init_completion(&host
->dma_complete
);
1119 if (data
->flags
& MMC_DATA_READ
) {
1121 sh_mmcif_start_dma_rx(host
);
1124 sh_mmcif_start_dma_tx(host
);
1127 if (!host
->dma_active
) {
1128 data
->error
= sh_mmcif_data_trans(host
, host
->mrq
, cmd
->opcode
);
1129 return !data
->error
;
1132 /* Running in the IRQ thread, can sleep */
1133 time
= wait_for_completion_interruptible_timeout(&host
->dma_complete
,
1136 if (data
->flags
& MMC_DATA_READ
)
1137 dma_unmap_sg(host
->chan_rx
->device
->dev
,
1138 data
->sg
, data
->sg_len
,
1141 dma_unmap_sg(host
->chan_tx
->device
->dev
,
1142 data
->sg
, data
->sg_len
,
1145 if (host
->sd_error
) {
1146 dev_err(host
->mmc
->parent
,
1147 "Error IRQ while waiting for DMA completion!\n");
1148 /* Woken up by an error IRQ: abort DMA */
1149 data
->error
= sh_mmcif_error_manage(host
);
1151 dev_err(host
->mmc
->parent
, "DMA timeout!\n");
1152 data
->error
= -ETIMEDOUT
;
1153 } else if (time
< 0) {
1154 dev_err(host
->mmc
->parent
,
1155 "wait_for_completion_...() error %ld!\n", time
);
1158 sh_mmcif_bitclr(host
, MMCIF_CE_BUF_ACC
,
1159 BUF_ACC_DMAREN
| BUF_ACC_DMAWEN
);
1160 host
->dma_active
= false;
1163 data
->bytes_xfered
= 0;
1165 if (data
->flags
& MMC_DATA_READ
)
1166 dmaengine_terminate_all(host
->chan_rx
);
1168 dmaengine_terminate_all(host
->chan_tx
);
1174 static irqreturn_t
sh_mmcif_irqt(int irq
, void *dev_id
)
1176 struct sh_mmcif_host
*host
= dev_id
;
1177 struct mmc_request
*mrq
;
1178 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1180 unsigned long flags
;
1183 spin_lock_irqsave(&host
->lock
, flags
);
1184 wait_work
= host
->wait_for
;
1185 spin_unlock_irqrestore(&host
->lock
, flags
);
1187 cancel_delayed_work_sync(&host
->timeout_work
);
1189 mutex_lock(&host
->thread_lock
);
1193 dev_dbg(dev
, "IRQ thread state %u, wait %u: NULL mrq!\n",
1194 host
->state
, host
->wait_for
);
1195 mutex_unlock(&host
->thread_lock
);
1200 * All handlers return true, if processing continues, and false, if the
1201 * request has to be completed - successfully or not
1203 switch (wait_work
) {
1204 case MMCIF_WAIT_FOR_REQUEST
:
1205 /* We're too late, the timeout has already kicked in */
1206 mutex_unlock(&host
->thread_lock
);
1208 case MMCIF_WAIT_FOR_CMD
:
1209 /* Wait for data? */
1210 wait
= sh_mmcif_end_cmd(host
);
1212 case MMCIF_WAIT_FOR_MREAD
:
1213 /* Wait for more data? */
1214 wait
= sh_mmcif_mread_block(host
);
1216 case MMCIF_WAIT_FOR_READ
:
1217 /* Wait for data end? */
1218 wait
= sh_mmcif_read_block(host
);
1220 case MMCIF_WAIT_FOR_MWRITE
:
1221 /* Wait data to write? */
1222 wait
= sh_mmcif_mwrite_block(host
);
1224 case MMCIF_WAIT_FOR_WRITE
:
1225 /* Wait for data end? */
1226 wait
= sh_mmcif_write_block(host
);
1228 case MMCIF_WAIT_FOR_STOP
:
1229 if (host
->sd_error
) {
1230 mrq
->stop
->error
= sh_mmcif_error_manage(host
);
1231 dev_dbg(dev
, "%s(): %d\n", __func__
, mrq
->stop
->error
);
1234 sh_mmcif_get_cmd12response(host
, mrq
->stop
);
1235 mrq
->stop
->error
= 0;
1237 case MMCIF_WAIT_FOR_READ_END
:
1238 case MMCIF_WAIT_FOR_WRITE_END
:
1239 if (host
->sd_error
) {
1240 mrq
->data
->error
= sh_mmcif_error_manage(host
);
1241 dev_dbg(dev
, "%s(): %d\n", __func__
, mrq
->data
->error
);
1249 schedule_delayed_work(&host
->timeout_work
, host
->timeout
);
1250 /* Wait for more data */
1251 mutex_unlock(&host
->thread_lock
);
1255 if (host
->wait_for
!= MMCIF_WAIT_FOR_STOP
) {
1256 struct mmc_data
*data
= mrq
->data
;
1257 if (!mrq
->cmd
->error
&& data
&& !data
->error
)
1258 data
->bytes_xfered
=
1259 data
->blocks
* data
->blksz
;
1261 if (mrq
->stop
&& !mrq
->cmd
->error
&& (!data
|| !data
->error
)) {
1262 sh_mmcif_stop_cmd(host
, mrq
);
1263 if (!mrq
->stop
->error
) {
1264 schedule_delayed_work(&host
->timeout_work
, host
->timeout
);
1265 mutex_unlock(&host
->thread_lock
);
1271 host
->wait_for
= MMCIF_WAIT_FOR_REQUEST
;
1272 host
->state
= STATE_IDLE
;
1274 mmc_request_done(host
->mmc
, mrq
);
1276 mutex_unlock(&host
->thread_lock
);
1281 static irqreturn_t
sh_mmcif_intr(int irq
, void *dev_id
)
1283 struct sh_mmcif_host
*host
= dev_id
;
1284 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1287 state
= sh_mmcif_readl(host
->addr
, MMCIF_CE_INT
);
1288 mask
= sh_mmcif_readl(host
->addr
, MMCIF_CE_INT_MASK
);
1289 if (host
->ccs_enable
)
1290 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT
, ~(state
& mask
));
1292 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT
, INT_CCS
| ~(state
& mask
));
1293 sh_mmcif_bitclr(host
, MMCIF_CE_INT_MASK
, state
& MASK_CLEAN
);
1295 if (state
& ~MASK_CLEAN
)
1296 dev_dbg(dev
, "IRQ state = 0x%08x incompletely cleared\n",
1299 if (state
& INT_ERR_STS
|| state
& ~INT_ALL
) {
1300 host
->sd_error
= true;
1301 dev_dbg(dev
, "int err state = 0x%08x\n", state
);
1303 if (state
& ~(INT_CMD12RBE
| INT_CMD12CRE
)) {
1305 dev_dbg(dev
, "NULL IRQ state = 0x%08x\n", state
);
1306 if (!host
->dma_active
)
1307 return IRQ_WAKE_THREAD
;
1308 else if (host
->sd_error
)
1309 sh_mmcif_dma_complete(host
);
1311 dev_dbg(dev
, "Unexpected IRQ 0x%x\n", state
);
1317 static void sh_mmcif_timeout_work(struct work_struct
*work
)
1319 struct delayed_work
*d
= to_delayed_work(work
);
1320 struct sh_mmcif_host
*host
= container_of(d
, struct sh_mmcif_host
, timeout_work
);
1321 struct mmc_request
*mrq
= host
->mrq
;
1322 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1323 unsigned long flags
;
1326 /* Don't run after mmc_remove_host() */
1329 spin_lock_irqsave(&host
->lock
, flags
);
1330 if (host
->state
== STATE_IDLE
) {
1331 spin_unlock_irqrestore(&host
->lock
, flags
);
1335 dev_err(dev
, "Timeout waiting for %u on CMD%u\n",
1336 host
->wait_for
, mrq
->cmd
->opcode
);
1338 host
->state
= STATE_TIMEOUT
;
1339 spin_unlock_irqrestore(&host
->lock
, flags
);
1342 * Handle races with cancel_delayed_work(), unless
1343 * cancel_delayed_work_sync() is used
1345 switch (host
->wait_for
) {
1346 case MMCIF_WAIT_FOR_CMD
:
1347 mrq
->cmd
->error
= sh_mmcif_error_manage(host
);
1349 case MMCIF_WAIT_FOR_STOP
:
1350 mrq
->stop
->error
= sh_mmcif_error_manage(host
);
1352 case MMCIF_WAIT_FOR_MREAD
:
1353 case MMCIF_WAIT_FOR_MWRITE
:
1354 case MMCIF_WAIT_FOR_READ
:
1355 case MMCIF_WAIT_FOR_WRITE
:
1356 case MMCIF_WAIT_FOR_READ_END
:
1357 case MMCIF_WAIT_FOR_WRITE_END
:
1358 mrq
->data
->error
= sh_mmcif_error_manage(host
);
1364 host
->state
= STATE_IDLE
;
1365 host
->wait_for
= MMCIF_WAIT_FOR_REQUEST
;
1367 mmc_request_done(host
->mmc
, mrq
);
1370 static void sh_mmcif_init_ocr(struct sh_mmcif_host
*host
)
1372 struct device
*dev
= sh_mmcif_host_to_dev(host
);
1373 struct sh_mmcif_plat_data
*pd
= dev
->platform_data
;
1374 struct mmc_host
*mmc
= host
->mmc
;
1376 mmc_regulator_get_supply(mmc
);
1381 if (!mmc
->ocr_avail
)
1382 mmc
->ocr_avail
= pd
->ocr
;
1384 dev_warn(mmc_dev(mmc
), "Platform OCR mask is ignored\n");
1387 static int sh_mmcif_probe(struct platform_device
*pdev
)
1389 int ret
= 0, irq
[2];
1390 struct mmc_host
*mmc
;
1391 struct sh_mmcif_host
*host
;
1392 struct device
*dev
= &pdev
->dev
;
1393 struct sh_mmcif_plat_data
*pd
= dev
->platform_data
;
1394 struct resource
*res
;
1398 irq
[0] = platform_get_irq(pdev
, 0);
1399 irq
[1] = platform_get_irq(pdev
, 1);
1401 dev_err(dev
, "Get irq error\n");
1405 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1406 reg
= devm_ioremap_resource(dev
, res
);
1408 return PTR_ERR(reg
);
1410 mmc
= mmc_alloc_host(sizeof(struct sh_mmcif_host
), dev
);
1414 ret
= mmc_of_parse(mmc
);
1418 host
= mmc_priv(mmc
);
1421 host
->timeout
= msecs_to_jiffies(10000);
1422 host
->ccs_enable
= true;
1423 host
->clk_ctrl2_enable
= false;
1427 spin_lock_init(&host
->lock
);
1429 mmc
->ops
= &sh_mmcif_ops
;
1430 sh_mmcif_init_ocr(host
);
1432 mmc
->caps
|= MMC_CAP_MMC_HIGHSPEED
| MMC_CAP_WAIT_WHILE_BUSY
;
1433 mmc
->caps2
|= MMC_CAP2_NO_SD
| MMC_CAP2_NO_SDIO
;
1434 mmc
->max_busy_timeout
= 10000;
1437 mmc
->caps
|= pd
->caps
;
1439 mmc
->max_blk_size
= 512;
1440 mmc
->max_req_size
= PAGE_SIZE
* mmc
->max_segs
;
1441 mmc
->max_blk_count
= mmc
->max_req_size
/ mmc
->max_blk_size
;
1442 mmc
->max_seg_size
= mmc
->max_req_size
;
1444 platform_set_drvdata(pdev
, host
);
1446 host
->clk
= devm_clk_get(dev
, NULL
);
1447 if (IS_ERR(host
->clk
)) {
1448 ret
= PTR_ERR(host
->clk
);
1449 dev_err(dev
, "cannot get clock: %d\n", ret
);
1453 ret
= clk_prepare_enable(host
->clk
);
1457 sh_mmcif_clk_setup(host
);
1459 pm_runtime_enable(dev
);
1460 host
->power
= false;
1462 ret
= pm_runtime_get_sync(dev
);
1466 INIT_DELAYED_WORK(&host
->timeout_work
, sh_mmcif_timeout_work
);
1468 sh_mmcif_sync_reset(host
);
1469 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT_MASK
, MASK_ALL
);
1471 name
= irq
[1] < 0 ? dev_name(dev
) : "sh_mmc:error";
1472 ret
= devm_request_threaded_irq(dev
, irq
[0], sh_mmcif_intr
,
1473 sh_mmcif_irqt
, 0, name
, host
);
1475 dev_err(dev
, "request_irq error (%s)\n", name
);
1479 ret
= devm_request_threaded_irq(dev
, irq
[1],
1480 sh_mmcif_intr
, sh_mmcif_irqt
,
1481 0, "sh_mmc:int", host
);
1483 dev_err(dev
, "request_irq error (sh_mmc:int)\n");
1488 mutex_init(&host
->thread_lock
);
1490 ret
= mmc_add_host(mmc
);
1494 dev_pm_qos_expose_latency_limit(dev
, 100);
1496 dev_info(dev
, "Chip version 0x%04x, clock rate %luMHz\n",
1497 sh_mmcif_readl(host
->addr
, MMCIF_CE_VERSION
) & 0xffff,
1498 clk_get_rate(host
->clk
) / 1000000UL);
1500 pm_runtime_put(dev
);
1501 clk_disable_unprepare(host
->clk
);
1505 clk_disable_unprepare(host
->clk
);
1506 pm_runtime_put_sync(dev
);
1507 pm_runtime_disable(dev
);
1513 static int sh_mmcif_remove(struct platform_device
*pdev
)
1515 struct sh_mmcif_host
*host
= platform_get_drvdata(pdev
);
1518 clk_prepare_enable(host
->clk
);
1519 pm_runtime_get_sync(&pdev
->dev
);
1521 dev_pm_qos_hide_latency_limit(&pdev
->dev
);
1523 mmc_remove_host(host
->mmc
);
1524 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT_MASK
, MASK_ALL
);
1527 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1528 * mmc_remove_host() call above. But swapping order doesn't help either
1529 * (a query on the linux-mmc mailing list didn't bring any replies).
1531 cancel_delayed_work_sync(&host
->timeout_work
);
1533 clk_disable_unprepare(host
->clk
);
1534 mmc_free_host(host
->mmc
);
1535 pm_runtime_put_sync(&pdev
->dev
);
1536 pm_runtime_disable(&pdev
->dev
);
1541 #ifdef CONFIG_PM_SLEEP
1542 static int sh_mmcif_suspend(struct device
*dev
)
1544 struct sh_mmcif_host
*host
= dev_get_drvdata(dev
);
1546 pm_runtime_get_sync(dev
);
1547 sh_mmcif_writel(host
->addr
, MMCIF_CE_INT_MASK
, MASK_ALL
);
1548 pm_runtime_put(dev
);
1553 static int sh_mmcif_resume(struct device
*dev
)
1559 static const struct dev_pm_ops sh_mmcif_dev_pm_ops
= {
1560 SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend
, sh_mmcif_resume
)
1563 static struct platform_driver sh_mmcif_driver
= {
1564 .probe
= sh_mmcif_probe
,
1565 .remove
= sh_mmcif_remove
,
1567 .name
= DRIVER_NAME
,
1568 .pm
= &sh_mmcif_dev_pm_ops
,
1569 .of_match_table
= sh_mmcif_of_match
,
1573 module_platform_driver(sh_mmcif_driver
);
1575 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1576 MODULE_LICENSE("GPL");
1577 MODULE_ALIAS("platform:" DRIVER_NAME
);
1578 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");