x86, relocs: Refactor the relocs tool to merge 32- and 64-bit ELF
[linux/fpc-iii.git] / mm / memory.c
blob494526ae024a3173fc200d47e36087f6252852c2
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
63 #include <asm/io.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
70 #include "internal.h"
72 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
74 #endif
76 #ifndef CONFIG_NEED_MULTIPLE_NODES
77 /* use the per-pgdat data instead for discontigmem - mbligh */
78 unsigned long max_mapnr;
79 struct page *mem_map;
81 EXPORT_SYMBOL(max_mapnr);
82 EXPORT_SYMBOL(mem_map);
83 #endif
85 unsigned long num_physpages;
87 * A number of key systems in x86 including ioremap() rely on the assumption
88 * that high_memory defines the upper bound on direct map memory, then end
89 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
90 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
91 * and ZONE_HIGHMEM.
93 void * high_memory;
95 EXPORT_SYMBOL(num_physpages);
96 EXPORT_SYMBOL(high_memory);
99 * Randomize the address space (stacks, mmaps, brk, etc.).
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
107 #else
109 #endif
111 static int __init disable_randmaps(char *s)
113 randomize_va_space = 0;
114 return 1;
116 __setup("norandmaps", disable_randmaps);
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
122 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
124 static int __init init_zero_pfn(void)
126 zero_pfn = page_to_pfn(ZERO_PAGE(0));
127 return 0;
129 core_initcall(init_zero_pfn);
132 #if defined(SPLIT_RSS_COUNTING)
134 void sync_mm_rss(struct mm_struct *mm)
136 int i;
138 for (i = 0; i < NR_MM_COUNTERS; i++) {
139 if (current->rss_stat.count[i]) {
140 add_mm_counter(mm, i, current->rss_stat.count[i]);
141 current->rss_stat.count[i] = 0;
144 current->rss_stat.events = 0;
147 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
149 struct task_struct *task = current;
151 if (likely(task->mm == mm))
152 task->rss_stat.count[member] += val;
153 else
154 add_mm_counter(mm, member, val);
156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
159 /* sync counter once per 64 page faults */
160 #define TASK_RSS_EVENTS_THRESH (64)
161 static void check_sync_rss_stat(struct task_struct *task)
163 if (unlikely(task != current))
164 return;
165 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
166 sync_mm_rss(task->mm);
168 #else /* SPLIT_RSS_COUNTING */
170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
173 static void check_sync_rss_stat(struct task_struct *task)
177 #endif /* SPLIT_RSS_COUNTING */
179 #ifdef HAVE_GENERIC_MMU_GATHER
181 static int tlb_next_batch(struct mmu_gather *tlb)
183 struct mmu_gather_batch *batch;
185 batch = tlb->active;
186 if (batch->next) {
187 tlb->active = batch->next;
188 return 1;
191 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
192 return 0;
194 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
195 if (!batch)
196 return 0;
198 tlb->batch_count++;
199 batch->next = NULL;
200 batch->nr = 0;
201 batch->max = MAX_GATHER_BATCH;
203 tlb->active->next = batch;
204 tlb->active = batch;
206 return 1;
209 /* tlb_gather_mmu
210 * Called to initialize an (on-stack) mmu_gather structure for page-table
211 * tear-down from @mm. The @fullmm argument is used when @mm is without
212 * users and we're going to destroy the full address space (exit/execve).
214 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
216 tlb->mm = mm;
218 tlb->fullmm = fullmm;
219 tlb->start = -1UL;
220 tlb->end = 0;
221 tlb->need_flush = 0;
222 tlb->fast_mode = (num_possible_cpus() == 1);
223 tlb->local.next = NULL;
224 tlb->local.nr = 0;
225 tlb->local.max = ARRAY_SIZE(tlb->__pages);
226 tlb->active = &tlb->local;
227 tlb->batch_count = 0;
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230 tlb->batch = NULL;
231 #endif
234 void tlb_flush_mmu(struct mmu_gather *tlb)
236 struct mmu_gather_batch *batch;
238 if (!tlb->need_flush)
239 return;
240 tlb->need_flush = 0;
241 tlb_flush(tlb);
242 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
243 tlb_table_flush(tlb);
244 #endif
246 if (tlb_fast_mode(tlb))
247 return;
249 for (batch = &tlb->local; batch; batch = batch->next) {
250 free_pages_and_swap_cache(batch->pages, batch->nr);
251 batch->nr = 0;
253 tlb->active = &tlb->local;
256 /* tlb_finish_mmu
257 * Called at the end of the shootdown operation to free up any resources
258 * that were required.
260 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
262 struct mmu_gather_batch *batch, *next;
264 tlb->start = start;
265 tlb->end = end;
266 tlb_flush_mmu(tlb);
268 /* keep the page table cache within bounds */
269 check_pgt_cache();
271 for (batch = tlb->local.next; batch; batch = next) {
272 next = batch->next;
273 free_pages((unsigned long)batch, 0);
275 tlb->local.next = NULL;
278 /* __tlb_remove_page
279 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
280 * handling the additional races in SMP caused by other CPUs caching valid
281 * mappings in their TLBs. Returns the number of free page slots left.
282 * When out of page slots we must call tlb_flush_mmu().
284 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
286 struct mmu_gather_batch *batch;
288 VM_BUG_ON(!tlb->need_flush);
290 if (tlb_fast_mode(tlb)) {
291 free_page_and_swap_cache(page);
292 return 1; /* avoid calling tlb_flush_mmu() */
295 batch = tlb->active;
296 batch->pages[batch->nr++] = page;
297 if (batch->nr == batch->max) {
298 if (!tlb_next_batch(tlb))
299 return 0;
300 batch = tlb->active;
302 VM_BUG_ON(batch->nr > batch->max);
304 return batch->max - batch->nr;
307 #endif /* HAVE_GENERIC_MMU_GATHER */
309 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
312 * See the comment near struct mmu_table_batch.
315 static void tlb_remove_table_smp_sync(void *arg)
317 /* Simply deliver the interrupt */
320 static void tlb_remove_table_one(void *table)
323 * This isn't an RCU grace period and hence the page-tables cannot be
324 * assumed to be actually RCU-freed.
326 * It is however sufficient for software page-table walkers that rely on
327 * IRQ disabling. See the comment near struct mmu_table_batch.
329 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
330 __tlb_remove_table(table);
333 static void tlb_remove_table_rcu(struct rcu_head *head)
335 struct mmu_table_batch *batch;
336 int i;
338 batch = container_of(head, struct mmu_table_batch, rcu);
340 for (i = 0; i < batch->nr; i++)
341 __tlb_remove_table(batch->tables[i]);
343 free_page((unsigned long)batch);
346 void tlb_table_flush(struct mmu_gather *tlb)
348 struct mmu_table_batch **batch = &tlb->batch;
350 if (*batch) {
351 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
352 *batch = NULL;
356 void tlb_remove_table(struct mmu_gather *tlb, void *table)
358 struct mmu_table_batch **batch = &tlb->batch;
360 tlb->need_flush = 1;
363 * When there's less then two users of this mm there cannot be a
364 * concurrent page-table walk.
366 if (atomic_read(&tlb->mm->mm_users) < 2) {
367 __tlb_remove_table(table);
368 return;
371 if (*batch == NULL) {
372 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
373 if (*batch == NULL) {
374 tlb_remove_table_one(table);
375 return;
377 (*batch)->nr = 0;
379 (*batch)->tables[(*batch)->nr++] = table;
380 if ((*batch)->nr == MAX_TABLE_BATCH)
381 tlb_table_flush(tlb);
384 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
387 * If a p?d_bad entry is found while walking page tables, report
388 * the error, before resetting entry to p?d_none. Usually (but
389 * very seldom) called out from the p?d_none_or_clear_bad macros.
392 void pgd_clear_bad(pgd_t *pgd)
394 pgd_ERROR(*pgd);
395 pgd_clear(pgd);
398 void pud_clear_bad(pud_t *pud)
400 pud_ERROR(*pud);
401 pud_clear(pud);
404 void pmd_clear_bad(pmd_t *pmd)
406 pmd_ERROR(*pmd);
407 pmd_clear(pmd);
411 * Note: this doesn't free the actual pages themselves. That
412 * has been handled earlier when unmapping all the memory regions.
414 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
415 unsigned long addr)
417 pgtable_t token = pmd_pgtable(*pmd);
418 pmd_clear(pmd);
419 pte_free_tlb(tlb, token, addr);
420 tlb->mm->nr_ptes--;
423 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
424 unsigned long addr, unsigned long end,
425 unsigned long floor, unsigned long ceiling)
427 pmd_t *pmd;
428 unsigned long next;
429 unsigned long start;
431 start = addr;
432 pmd = pmd_offset(pud, addr);
433 do {
434 next = pmd_addr_end(addr, end);
435 if (pmd_none_or_clear_bad(pmd))
436 continue;
437 free_pte_range(tlb, pmd, addr);
438 } while (pmd++, addr = next, addr != end);
440 start &= PUD_MASK;
441 if (start < floor)
442 return;
443 if (ceiling) {
444 ceiling &= PUD_MASK;
445 if (!ceiling)
446 return;
448 if (end - 1 > ceiling - 1)
449 return;
451 pmd = pmd_offset(pud, start);
452 pud_clear(pud);
453 pmd_free_tlb(tlb, pmd, start);
456 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
457 unsigned long addr, unsigned long end,
458 unsigned long floor, unsigned long ceiling)
460 pud_t *pud;
461 unsigned long next;
462 unsigned long start;
464 start = addr;
465 pud = pud_offset(pgd, addr);
466 do {
467 next = pud_addr_end(addr, end);
468 if (pud_none_or_clear_bad(pud))
469 continue;
470 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
471 } while (pud++, addr = next, addr != end);
473 start &= PGDIR_MASK;
474 if (start < floor)
475 return;
476 if (ceiling) {
477 ceiling &= PGDIR_MASK;
478 if (!ceiling)
479 return;
481 if (end - 1 > ceiling - 1)
482 return;
484 pud = pud_offset(pgd, start);
485 pgd_clear(pgd);
486 pud_free_tlb(tlb, pud, start);
490 * This function frees user-level page tables of a process.
492 * Must be called with pagetable lock held.
494 void free_pgd_range(struct mmu_gather *tlb,
495 unsigned long addr, unsigned long end,
496 unsigned long floor, unsigned long ceiling)
498 pgd_t *pgd;
499 unsigned long next;
502 * The next few lines have given us lots of grief...
504 * Why are we testing PMD* at this top level? Because often
505 * there will be no work to do at all, and we'd prefer not to
506 * go all the way down to the bottom just to discover that.
508 * Why all these "- 1"s? Because 0 represents both the bottom
509 * of the address space and the top of it (using -1 for the
510 * top wouldn't help much: the masks would do the wrong thing).
511 * The rule is that addr 0 and floor 0 refer to the bottom of
512 * the address space, but end 0 and ceiling 0 refer to the top
513 * Comparisons need to use "end - 1" and "ceiling - 1" (though
514 * that end 0 case should be mythical).
516 * Wherever addr is brought up or ceiling brought down, we must
517 * be careful to reject "the opposite 0" before it confuses the
518 * subsequent tests. But what about where end is brought down
519 * by PMD_SIZE below? no, end can't go down to 0 there.
521 * Whereas we round start (addr) and ceiling down, by different
522 * masks at different levels, in order to test whether a table
523 * now has no other vmas using it, so can be freed, we don't
524 * bother to round floor or end up - the tests don't need that.
527 addr &= PMD_MASK;
528 if (addr < floor) {
529 addr += PMD_SIZE;
530 if (!addr)
531 return;
533 if (ceiling) {
534 ceiling &= PMD_MASK;
535 if (!ceiling)
536 return;
538 if (end - 1 > ceiling - 1)
539 end -= PMD_SIZE;
540 if (addr > end - 1)
541 return;
543 pgd = pgd_offset(tlb->mm, addr);
544 do {
545 next = pgd_addr_end(addr, end);
546 if (pgd_none_or_clear_bad(pgd))
547 continue;
548 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
549 } while (pgd++, addr = next, addr != end);
552 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
553 unsigned long floor, unsigned long ceiling)
555 while (vma) {
556 struct vm_area_struct *next = vma->vm_next;
557 unsigned long addr = vma->vm_start;
560 * Hide vma from rmap and truncate_pagecache before freeing
561 * pgtables
563 unlink_anon_vmas(vma);
564 unlink_file_vma(vma);
566 if (is_vm_hugetlb_page(vma)) {
567 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
568 floor, next? next->vm_start: ceiling);
569 } else {
571 * Optimization: gather nearby vmas into one call down
573 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
574 && !is_vm_hugetlb_page(next)) {
575 vma = next;
576 next = vma->vm_next;
577 unlink_anon_vmas(vma);
578 unlink_file_vma(vma);
580 free_pgd_range(tlb, addr, vma->vm_end,
581 floor, next? next->vm_start: ceiling);
583 vma = next;
587 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
588 pmd_t *pmd, unsigned long address)
590 pgtable_t new = pte_alloc_one(mm, address);
591 int wait_split_huge_page;
592 if (!new)
593 return -ENOMEM;
596 * Ensure all pte setup (eg. pte page lock and page clearing) are
597 * visible before the pte is made visible to other CPUs by being
598 * put into page tables.
600 * The other side of the story is the pointer chasing in the page
601 * table walking code (when walking the page table without locking;
602 * ie. most of the time). Fortunately, these data accesses consist
603 * of a chain of data-dependent loads, meaning most CPUs (alpha
604 * being the notable exception) will already guarantee loads are
605 * seen in-order. See the alpha page table accessors for the
606 * smp_read_barrier_depends() barriers in page table walking code.
608 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
610 spin_lock(&mm->page_table_lock);
611 wait_split_huge_page = 0;
612 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
613 mm->nr_ptes++;
614 pmd_populate(mm, pmd, new);
615 new = NULL;
616 } else if (unlikely(pmd_trans_splitting(*pmd)))
617 wait_split_huge_page = 1;
618 spin_unlock(&mm->page_table_lock);
619 if (new)
620 pte_free(mm, new);
621 if (wait_split_huge_page)
622 wait_split_huge_page(vma->anon_vma, pmd);
623 return 0;
626 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
628 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
629 if (!new)
630 return -ENOMEM;
632 smp_wmb(); /* See comment in __pte_alloc */
634 spin_lock(&init_mm.page_table_lock);
635 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
636 pmd_populate_kernel(&init_mm, pmd, new);
637 new = NULL;
638 } else
639 VM_BUG_ON(pmd_trans_splitting(*pmd));
640 spin_unlock(&init_mm.page_table_lock);
641 if (new)
642 pte_free_kernel(&init_mm, new);
643 return 0;
646 static inline void init_rss_vec(int *rss)
648 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
651 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
653 int i;
655 if (current->mm == mm)
656 sync_mm_rss(mm);
657 for (i = 0; i < NR_MM_COUNTERS; i++)
658 if (rss[i])
659 add_mm_counter(mm, i, rss[i]);
663 * This function is called to print an error when a bad pte
664 * is found. For example, we might have a PFN-mapped pte in
665 * a region that doesn't allow it.
667 * The calling function must still handle the error.
669 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
670 pte_t pte, struct page *page)
672 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
673 pud_t *pud = pud_offset(pgd, addr);
674 pmd_t *pmd = pmd_offset(pud, addr);
675 struct address_space *mapping;
676 pgoff_t index;
677 static unsigned long resume;
678 static unsigned long nr_shown;
679 static unsigned long nr_unshown;
682 * Allow a burst of 60 reports, then keep quiet for that minute;
683 * or allow a steady drip of one report per second.
685 if (nr_shown == 60) {
686 if (time_before(jiffies, resume)) {
687 nr_unshown++;
688 return;
690 if (nr_unshown) {
691 printk(KERN_ALERT
692 "BUG: Bad page map: %lu messages suppressed\n",
693 nr_unshown);
694 nr_unshown = 0;
696 nr_shown = 0;
698 if (nr_shown++ == 0)
699 resume = jiffies + 60 * HZ;
701 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
702 index = linear_page_index(vma, addr);
704 printk(KERN_ALERT
705 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
706 current->comm,
707 (long long)pte_val(pte), (long long)pmd_val(*pmd));
708 if (page)
709 dump_page(page);
710 printk(KERN_ALERT
711 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
712 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
714 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
716 if (vma->vm_ops)
717 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
718 (unsigned long)vma->vm_ops->fault);
719 if (vma->vm_file && vma->vm_file->f_op)
720 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
721 (unsigned long)vma->vm_file->f_op->mmap);
722 dump_stack();
723 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
726 static inline bool is_cow_mapping(vm_flags_t flags)
728 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
732 * vm_normal_page -- This function gets the "struct page" associated with a pte.
734 * "Special" mappings do not wish to be associated with a "struct page" (either
735 * it doesn't exist, or it exists but they don't want to touch it). In this
736 * case, NULL is returned here. "Normal" mappings do have a struct page.
738 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
739 * pte bit, in which case this function is trivial. Secondly, an architecture
740 * may not have a spare pte bit, which requires a more complicated scheme,
741 * described below.
743 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
744 * special mapping (even if there are underlying and valid "struct pages").
745 * COWed pages of a VM_PFNMAP are always normal.
747 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
748 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
749 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
750 * mapping will always honor the rule
752 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
754 * And for normal mappings this is false.
756 * This restricts such mappings to be a linear translation from virtual address
757 * to pfn. To get around this restriction, we allow arbitrary mappings so long
758 * as the vma is not a COW mapping; in that case, we know that all ptes are
759 * special (because none can have been COWed).
762 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
764 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
765 * page" backing, however the difference is that _all_ pages with a struct
766 * page (that is, those where pfn_valid is true) are refcounted and considered
767 * normal pages by the VM. The disadvantage is that pages are refcounted
768 * (which can be slower and simply not an option for some PFNMAP users). The
769 * advantage is that we don't have to follow the strict linearity rule of
770 * PFNMAP mappings in order to support COWable mappings.
773 #ifdef __HAVE_ARCH_PTE_SPECIAL
774 # define HAVE_PTE_SPECIAL 1
775 #else
776 # define HAVE_PTE_SPECIAL 0
777 #endif
778 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
779 pte_t pte)
781 unsigned long pfn = pte_pfn(pte);
783 if (HAVE_PTE_SPECIAL) {
784 if (likely(!pte_special(pte)))
785 goto check_pfn;
786 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
787 return NULL;
788 if (!is_zero_pfn(pfn))
789 print_bad_pte(vma, addr, pte, NULL);
790 return NULL;
793 /* !HAVE_PTE_SPECIAL case follows: */
795 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
796 if (vma->vm_flags & VM_MIXEDMAP) {
797 if (!pfn_valid(pfn))
798 return NULL;
799 goto out;
800 } else {
801 unsigned long off;
802 off = (addr - vma->vm_start) >> PAGE_SHIFT;
803 if (pfn == vma->vm_pgoff + off)
804 return NULL;
805 if (!is_cow_mapping(vma->vm_flags))
806 return NULL;
810 if (is_zero_pfn(pfn))
811 return NULL;
812 check_pfn:
813 if (unlikely(pfn > highest_memmap_pfn)) {
814 print_bad_pte(vma, addr, pte, NULL);
815 return NULL;
819 * NOTE! We still have PageReserved() pages in the page tables.
820 * eg. VDSO mappings can cause them to exist.
822 out:
823 return pfn_to_page(pfn);
827 * copy one vm_area from one task to the other. Assumes the page tables
828 * already present in the new task to be cleared in the whole range
829 * covered by this vma.
832 static inline unsigned long
833 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
834 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
835 unsigned long addr, int *rss)
837 unsigned long vm_flags = vma->vm_flags;
838 pte_t pte = *src_pte;
839 struct page *page;
841 /* pte contains position in swap or file, so copy. */
842 if (unlikely(!pte_present(pte))) {
843 if (!pte_file(pte)) {
844 swp_entry_t entry = pte_to_swp_entry(pte);
846 if (swap_duplicate(entry) < 0)
847 return entry.val;
849 /* make sure dst_mm is on swapoff's mmlist. */
850 if (unlikely(list_empty(&dst_mm->mmlist))) {
851 spin_lock(&mmlist_lock);
852 if (list_empty(&dst_mm->mmlist))
853 list_add(&dst_mm->mmlist,
854 &src_mm->mmlist);
855 spin_unlock(&mmlist_lock);
857 if (likely(!non_swap_entry(entry)))
858 rss[MM_SWAPENTS]++;
859 else if (is_migration_entry(entry)) {
860 page = migration_entry_to_page(entry);
862 if (PageAnon(page))
863 rss[MM_ANONPAGES]++;
864 else
865 rss[MM_FILEPAGES]++;
867 if (is_write_migration_entry(entry) &&
868 is_cow_mapping(vm_flags)) {
870 * COW mappings require pages in both
871 * parent and child to be set to read.
873 make_migration_entry_read(&entry);
874 pte = swp_entry_to_pte(entry);
875 set_pte_at(src_mm, addr, src_pte, pte);
879 goto out_set_pte;
883 * If it's a COW mapping, write protect it both
884 * in the parent and the child
886 if (is_cow_mapping(vm_flags)) {
887 ptep_set_wrprotect(src_mm, addr, src_pte);
888 pte = pte_wrprotect(pte);
892 * If it's a shared mapping, mark it clean in
893 * the child
895 if (vm_flags & VM_SHARED)
896 pte = pte_mkclean(pte);
897 pte = pte_mkold(pte);
899 page = vm_normal_page(vma, addr, pte);
900 if (page) {
901 get_page(page);
902 page_dup_rmap(page);
903 if (PageAnon(page))
904 rss[MM_ANONPAGES]++;
905 else
906 rss[MM_FILEPAGES]++;
909 out_set_pte:
910 set_pte_at(dst_mm, addr, dst_pte, pte);
911 return 0;
914 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
915 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
916 unsigned long addr, unsigned long end)
918 pte_t *orig_src_pte, *orig_dst_pte;
919 pte_t *src_pte, *dst_pte;
920 spinlock_t *src_ptl, *dst_ptl;
921 int progress = 0;
922 int rss[NR_MM_COUNTERS];
923 swp_entry_t entry = (swp_entry_t){0};
925 again:
926 init_rss_vec(rss);
928 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
929 if (!dst_pte)
930 return -ENOMEM;
931 src_pte = pte_offset_map(src_pmd, addr);
932 src_ptl = pte_lockptr(src_mm, src_pmd);
933 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
934 orig_src_pte = src_pte;
935 orig_dst_pte = dst_pte;
936 arch_enter_lazy_mmu_mode();
938 do {
940 * We are holding two locks at this point - either of them
941 * could generate latencies in another task on another CPU.
943 if (progress >= 32) {
944 progress = 0;
945 if (need_resched() ||
946 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
947 break;
949 if (pte_none(*src_pte)) {
950 progress++;
951 continue;
953 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
954 vma, addr, rss);
955 if (entry.val)
956 break;
957 progress += 8;
958 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
960 arch_leave_lazy_mmu_mode();
961 spin_unlock(src_ptl);
962 pte_unmap(orig_src_pte);
963 add_mm_rss_vec(dst_mm, rss);
964 pte_unmap_unlock(orig_dst_pte, dst_ptl);
965 cond_resched();
967 if (entry.val) {
968 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
969 return -ENOMEM;
970 progress = 0;
972 if (addr != end)
973 goto again;
974 return 0;
977 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
978 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
979 unsigned long addr, unsigned long end)
981 pmd_t *src_pmd, *dst_pmd;
982 unsigned long next;
984 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
985 if (!dst_pmd)
986 return -ENOMEM;
987 src_pmd = pmd_offset(src_pud, addr);
988 do {
989 next = pmd_addr_end(addr, end);
990 if (pmd_trans_huge(*src_pmd)) {
991 int err;
992 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
993 err = copy_huge_pmd(dst_mm, src_mm,
994 dst_pmd, src_pmd, addr, vma);
995 if (err == -ENOMEM)
996 return -ENOMEM;
997 if (!err)
998 continue;
999 /* fall through */
1001 if (pmd_none_or_clear_bad(src_pmd))
1002 continue;
1003 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1004 vma, addr, next))
1005 return -ENOMEM;
1006 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1007 return 0;
1010 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1011 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1012 unsigned long addr, unsigned long end)
1014 pud_t *src_pud, *dst_pud;
1015 unsigned long next;
1017 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1018 if (!dst_pud)
1019 return -ENOMEM;
1020 src_pud = pud_offset(src_pgd, addr);
1021 do {
1022 next = pud_addr_end(addr, end);
1023 if (pud_none_or_clear_bad(src_pud))
1024 continue;
1025 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1026 vma, addr, next))
1027 return -ENOMEM;
1028 } while (dst_pud++, src_pud++, addr = next, addr != end);
1029 return 0;
1032 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1033 struct vm_area_struct *vma)
1035 pgd_t *src_pgd, *dst_pgd;
1036 unsigned long next;
1037 unsigned long addr = vma->vm_start;
1038 unsigned long end = vma->vm_end;
1039 unsigned long mmun_start; /* For mmu_notifiers */
1040 unsigned long mmun_end; /* For mmu_notifiers */
1041 bool is_cow;
1042 int ret;
1045 * Don't copy ptes where a page fault will fill them correctly.
1046 * Fork becomes much lighter when there are big shared or private
1047 * readonly mappings. The tradeoff is that copy_page_range is more
1048 * efficient than faulting.
1050 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1051 VM_PFNMAP | VM_MIXEDMAP))) {
1052 if (!vma->anon_vma)
1053 return 0;
1056 if (is_vm_hugetlb_page(vma))
1057 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1059 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1061 * We do not free on error cases below as remove_vma
1062 * gets called on error from higher level routine
1064 ret = track_pfn_copy(vma);
1065 if (ret)
1066 return ret;
1070 * We need to invalidate the secondary MMU mappings only when
1071 * there could be a permission downgrade on the ptes of the
1072 * parent mm. And a permission downgrade will only happen if
1073 * is_cow_mapping() returns true.
1075 is_cow = is_cow_mapping(vma->vm_flags);
1076 mmun_start = addr;
1077 mmun_end = end;
1078 if (is_cow)
1079 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1080 mmun_end);
1082 ret = 0;
1083 dst_pgd = pgd_offset(dst_mm, addr);
1084 src_pgd = pgd_offset(src_mm, addr);
1085 do {
1086 next = pgd_addr_end(addr, end);
1087 if (pgd_none_or_clear_bad(src_pgd))
1088 continue;
1089 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1090 vma, addr, next))) {
1091 ret = -ENOMEM;
1092 break;
1094 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1096 if (is_cow)
1097 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1098 return ret;
1101 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1102 struct vm_area_struct *vma, pmd_t *pmd,
1103 unsigned long addr, unsigned long end,
1104 struct zap_details *details)
1106 struct mm_struct *mm = tlb->mm;
1107 int force_flush = 0;
1108 int rss[NR_MM_COUNTERS];
1109 spinlock_t *ptl;
1110 pte_t *start_pte;
1111 pte_t *pte;
1113 again:
1114 init_rss_vec(rss);
1115 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1116 pte = start_pte;
1117 arch_enter_lazy_mmu_mode();
1118 do {
1119 pte_t ptent = *pte;
1120 if (pte_none(ptent)) {
1121 continue;
1124 if (pte_present(ptent)) {
1125 struct page *page;
1127 page = vm_normal_page(vma, addr, ptent);
1128 if (unlikely(details) && page) {
1130 * unmap_shared_mapping_pages() wants to
1131 * invalidate cache without truncating:
1132 * unmap shared but keep private pages.
1134 if (details->check_mapping &&
1135 details->check_mapping != page->mapping)
1136 continue;
1138 * Each page->index must be checked when
1139 * invalidating or truncating nonlinear.
1141 if (details->nonlinear_vma &&
1142 (page->index < details->first_index ||
1143 page->index > details->last_index))
1144 continue;
1146 ptent = ptep_get_and_clear_full(mm, addr, pte,
1147 tlb->fullmm);
1148 tlb_remove_tlb_entry(tlb, pte, addr);
1149 if (unlikely(!page))
1150 continue;
1151 if (unlikely(details) && details->nonlinear_vma
1152 && linear_page_index(details->nonlinear_vma,
1153 addr) != page->index)
1154 set_pte_at(mm, addr, pte,
1155 pgoff_to_pte(page->index));
1156 if (PageAnon(page))
1157 rss[MM_ANONPAGES]--;
1158 else {
1159 if (pte_dirty(ptent))
1160 set_page_dirty(page);
1161 if (pte_young(ptent) &&
1162 likely(!VM_SequentialReadHint(vma)))
1163 mark_page_accessed(page);
1164 rss[MM_FILEPAGES]--;
1166 page_remove_rmap(page);
1167 if (unlikely(page_mapcount(page) < 0))
1168 print_bad_pte(vma, addr, ptent, page);
1169 force_flush = !__tlb_remove_page(tlb, page);
1170 if (force_flush)
1171 break;
1172 continue;
1175 * If details->check_mapping, we leave swap entries;
1176 * if details->nonlinear_vma, we leave file entries.
1178 if (unlikely(details))
1179 continue;
1180 if (pte_file(ptent)) {
1181 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1182 print_bad_pte(vma, addr, ptent, NULL);
1183 } else {
1184 swp_entry_t entry = pte_to_swp_entry(ptent);
1186 if (!non_swap_entry(entry))
1187 rss[MM_SWAPENTS]--;
1188 else if (is_migration_entry(entry)) {
1189 struct page *page;
1191 page = migration_entry_to_page(entry);
1193 if (PageAnon(page))
1194 rss[MM_ANONPAGES]--;
1195 else
1196 rss[MM_FILEPAGES]--;
1198 if (unlikely(!free_swap_and_cache(entry)))
1199 print_bad_pte(vma, addr, ptent, NULL);
1201 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1202 } while (pte++, addr += PAGE_SIZE, addr != end);
1204 add_mm_rss_vec(mm, rss);
1205 arch_leave_lazy_mmu_mode();
1206 pte_unmap_unlock(start_pte, ptl);
1209 * mmu_gather ran out of room to batch pages, we break out of
1210 * the PTE lock to avoid doing the potential expensive TLB invalidate
1211 * and page-free while holding it.
1213 if (force_flush) {
1214 force_flush = 0;
1216 #ifdef HAVE_GENERIC_MMU_GATHER
1217 tlb->start = addr;
1218 tlb->end = end;
1219 #endif
1220 tlb_flush_mmu(tlb);
1221 if (addr != end)
1222 goto again;
1225 return addr;
1228 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1229 struct vm_area_struct *vma, pud_t *pud,
1230 unsigned long addr, unsigned long end,
1231 struct zap_details *details)
1233 pmd_t *pmd;
1234 unsigned long next;
1236 pmd = pmd_offset(pud, addr);
1237 do {
1238 next = pmd_addr_end(addr, end);
1239 if (pmd_trans_huge(*pmd)) {
1240 if (next - addr != HPAGE_PMD_SIZE) {
1241 #ifdef CONFIG_DEBUG_VM
1242 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1243 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1244 __func__, addr, end,
1245 vma->vm_start,
1246 vma->vm_end);
1247 BUG();
1249 #endif
1250 split_huge_page_pmd(vma, addr, pmd);
1251 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1252 goto next;
1253 /* fall through */
1256 * Here there can be other concurrent MADV_DONTNEED or
1257 * trans huge page faults running, and if the pmd is
1258 * none or trans huge it can change under us. This is
1259 * because MADV_DONTNEED holds the mmap_sem in read
1260 * mode.
1262 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1263 goto next;
1264 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1265 next:
1266 cond_resched();
1267 } while (pmd++, addr = next, addr != end);
1269 return addr;
1272 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1273 struct vm_area_struct *vma, pgd_t *pgd,
1274 unsigned long addr, unsigned long end,
1275 struct zap_details *details)
1277 pud_t *pud;
1278 unsigned long next;
1280 pud = pud_offset(pgd, addr);
1281 do {
1282 next = pud_addr_end(addr, end);
1283 if (pud_none_or_clear_bad(pud))
1284 continue;
1285 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1286 } while (pud++, addr = next, addr != end);
1288 return addr;
1291 static void unmap_page_range(struct mmu_gather *tlb,
1292 struct vm_area_struct *vma,
1293 unsigned long addr, unsigned long end,
1294 struct zap_details *details)
1296 pgd_t *pgd;
1297 unsigned long next;
1299 if (details && !details->check_mapping && !details->nonlinear_vma)
1300 details = NULL;
1302 BUG_ON(addr >= end);
1303 mem_cgroup_uncharge_start();
1304 tlb_start_vma(tlb, vma);
1305 pgd = pgd_offset(vma->vm_mm, addr);
1306 do {
1307 next = pgd_addr_end(addr, end);
1308 if (pgd_none_or_clear_bad(pgd))
1309 continue;
1310 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1311 } while (pgd++, addr = next, addr != end);
1312 tlb_end_vma(tlb, vma);
1313 mem_cgroup_uncharge_end();
1317 static void unmap_single_vma(struct mmu_gather *tlb,
1318 struct vm_area_struct *vma, unsigned long start_addr,
1319 unsigned long end_addr,
1320 struct zap_details *details)
1322 unsigned long start = max(vma->vm_start, start_addr);
1323 unsigned long end;
1325 if (start >= vma->vm_end)
1326 return;
1327 end = min(vma->vm_end, end_addr);
1328 if (end <= vma->vm_start)
1329 return;
1331 if (vma->vm_file)
1332 uprobe_munmap(vma, start, end);
1334 if (unlikely(vma->vm_flags & VM_PFNMAP))
1335 untrack_pfn(vma, 0, 0);
1337 if (start != end) {
1338 if (unlikely(is_vm_hugetlb_page(vma))) {
1340 * It is undesirable to test vma->vm_file as it
1341 * should be non-null for valid hugetlb area.
1342 * However, vm_file will be NULL in the error
1343 * cleanup path of do_mmap_pgoff. When
1344 * hugetlbfs ->mmap method fails,
1345 * do_mmap_pgoff() nullifies vma->vm_file
1346 * before calling this function to clean up.
1347 * Since no pte has actually been setup, it is
1348 * safe to do nothing in this case.
1350 if (vma->vm_file) {
1351 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1352 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1353 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1355 } else
1356 unmap_page_range(tlb, vma, start, end, details);
1361 * unmap_vmas - unmap a range of memory covered by a list of vma's
1362 * @tlb: address of the caller's struct mmu_gather
1363 * @vma: the starting vma
1364 * @start_addr: virtual address at which to start unmapping
1365 * @end_addr: virtual address at which to end unmapping
1367 * Unmap all pages in the vma list.
1369 * Only addresses between `start' and `end' will be unmapped.
1371 * The VMA list must be sorted in ascending virtual address order.
1373 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1374 * range after unmap_vmas() returns. So the only responsibility here is to
1375 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1376 * drops the lock and schedules.
1378 void unmap_vmas(struct mmu_gather *tlb,
1379 struct vm_area_struct *vma, unsigned long start_addr,
1380 unsigned long end_addr)
1382 struct mm_struct *mm = vma->vm_mm;
1384 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1385 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1386 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1387 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1391 * zap_page_range - remove user pages in a given range
1392 * @vma: vm_area_struct holding the applicable pages
1393 * @start: starting address of pages to zap
1394 * @size: number of bytes to zap
1395 * @details: details of nonlinear truncation or shared cache invalidation
1397 * Caller must protect the VMA list
1399 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1400 unsigned long size, struct zap_details *details)
1402 struct mm_struct *mm = vma->vm_mm;
1403 struct mmu_gather tlb;
1404 unsigned long end = start + size;
1406 lru_add_drain();
1407 tlb_gather_mmu(&tlb, mm, 0);
1408 update_hiwater_rss(mm);
1409 mmu_notifier_invalidate_range_start(mm, start, end);
1410 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1411 unmap_single_vma(&tlb, vma, start, end, details);
1412 mmu_notifier_invalidate_range_end(mm, start, end);
1413 tlb_finish_mmu(&tlb, start, end);
1417 * zap_page_range_single - remove user pages in a given range
1418 * @vma: vm_area_struct holding the applicable pages
1419 * @address: starting address of pages to zap
1420 * @size: number of bytes to zap
1421 * @details: details of nonlinear truncation or shared cache invalidation
1423 * The range must fit into one VMA.
1425 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1426 unsigned long size, struct zap_details *details)
1428 struct mm_struct *mm = vma->vm_mm;
1429 struct mmu_gather tlb;
1430 unsigned long end = address + size;
1432 lru_add_drain();
1433 tlb_gather_mmu(&tlb, mm, 0);
1434 update_hiwater_rss(mm);
1435 mmu_notifier_invalidate_range_start(mm, address, end);
1436 unmap_single_vma(&tlb, vma, address, end, details);
1437 mmu_notifier_invalidate_range_end(mm, address, end);
1438 tlb_finish_mmu(&tlb, address, end);
1442 * zap_vma_ptes - remove ptes mapping the vma
1443 * @vma: vm_area_struct holding ptes to be zapped
1444 * @address: starting address of pages to zap
1445 * @size: number of bytes to zap
1447 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1449 * The entire address range must be fully contained within the vma.
1451 * Returns 0 if successful.
1453 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1454 unsigned long size)
1456 if (address < vma->vm_start || address + size > vma->vm_end ||
1457 !(vma->vm_flags & VM_PFNMAP))
1458 return -1;
1459 zap_page_range_single(vma, address, size, NULL);
1460 return 0;
1462 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1465 * follow_page_mask - look up a page descriptor from a user-virtual address
1466 * @vma: vm_area_struct mapping @address
1467 * @address: virtual address to look up
1468 * @flags: flags modifying lookup behaviour
1469 * @page_mask: on output, *page_mask is set according to the size of the page
1471 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1473 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1474 * an error pointer if there is a mapping to something not represented
1475 * by a page descriptor (see also vm_normal_page()).
1477 struct page *follow_page_mask(struct vm_area_struct *vma,
1478 unsigned long address, unsigned int flags,
1479 unsigned int *page_mask)
1481 pgd_t *pgd;
1482 pud_t *pud;
1483 pmd_t *pmd;
1484 pte_t *ptep, pte;
1485 spinlock_t *ptl;
1486 struct page *page;
1487 struct mm_struct *mm = vma->vm_mm;
1489 *page_mask = 0;
1491 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1492 if (!IS_ERR(page)) {
1493 BUG_ON(flags & FOLL_GET);
1494 goto out;
1497 page = NULL;
1498 pgd = pgd_offset(mm, address);
1499 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1500 goto no_page_table;
1502 pud = pud_offset(pgd, address);
1503 if (pud_none(*pud))
1504 goto no_page_table;
1505 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1506 BUG_ON(flags & FOLL_GET);
1507 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1508 goto out;
1510 if (unlikely(pud_bad(*pud)))
1511 goto no_page_table;
1513 pmd = pmd_offset(pud, address);
1514 if (pmd_none(*pmd))
1515 goto no_page_table;
1516 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1517 BUG_ON(flags & FOLL_GET);
1518 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1519 goto out;
1521 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1522 goto no_page_table;
1523 if (pmd_trans_huge(*pmd)) {
1524 if (flags & FOLL_SPLIT) {
1525 split_huge_page_pmd(vma, address, pmd);
1526 goto split_fallthrough;
1528 spin_lock(&mm->page_table_lock);
1529 if (likely(pmd_trans_huge(*pmd))) {
1530 if (unlikely(pmd_trans_splitting(*pmd))) {
1531 spin_unlock(&mm->page_table_lock);
1532 wait_split_huge_page(vma->anon_vma, pmd);
1533 } else {
1534 page = follow_trans_huge_pmd(vma, address,
1535 pmd, flags);
1536 spin_unlock(&mm->page_table_lock);
1537 *page_mask = HPAGE_PMD_NR - 1;
1538 goto out;
1540 } else
1541 spin_unlock(&mm->page_table_lock);
1542 /* fall through */
1544 split_fallthrough:
1545 if (unlikely(pmd_bad(*pmd)))
1546 goto no_page_table;
1548 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1550 pte = *ptep;
1551 if (!pte_present(pte)) {
1552 swp_entry_t entry;
1554 * KSM's break_ksm() relies upon recognizing a ksm page
1555 * even while it is being migrated, so for that case we
1556 * need migration_entry_wait().
1558 if (likely(!(flags & FOLL_MIGRATION)))
1559 goto no_page;
1560 if (pte_none(pte) || pte_file(pte))
1561 goto no_page;
1562 entry = pte_to_swp_entry(pte);
1563 if (!is_migration_entry(entry))
1564 goto no_page;
1565 pte_unmap_unlock(ptep, ptl);
1566 migration_entry_wait(mm, pmd, address);
1567 goto split_fallthrough;
1569 if ((flags & FOLL_NUMA) && pte_numa(pte))
1570 goto no_page;
1571 if ((flags & FOLL_WRITE) && !pte_write(pte))
1572 goto unlock;
1574 page = vm_normal_page(vma, address, pte);
1575 if (unlikely(!page)) {
1576 if ((flags & FOLL_DUMP) ||
1577 !is_zero_pfn(pte_pfn(pte)))
1578 goto bad_page;
1579 page = pte_page(pte);
1582 if (flags & FOLL_GET)
1583 get_page_foll(page);
1584 if (flags & FOLL_TOUCH) {
1585 if ((flags & FOLL_WRITE) &&
1586 !pte_dirty(pte) && !PageDirty(page))
1587 set_page_dirty(page);
1589 * pte_mkyoung() would be more correct here, but atomic care
1590 * is needed to avoid losing the dirty bit: it is easier to use
1591 * mark_page_accessed().
1593 mark_page_accessed(page);
1595 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1597 * The preliminary mapping check is mainly to avoid the
1598 * pointless overhead of lock_page on the ZERO_PAGE
1599 * which might bounce very badly if there is contention.
1601 * If the page is already locked, we don't need to
1602 * handle it now - vmscan will handle it later if and
1603 * when it attempts to reclaim the page.
1605 if (page->mapping && trylock_page(page)) {
1606 lru_add_drain(); /* push cached pages to LRU */
1608 * Because we lock page here, and migration is
1609 * blocked by the pte's page reference, and we
1610 * know the page is still mapped, we don't even
1611 * need to check for file-cache page truncation.
1613 mlock_vma_page(page);
1614 unlock_page(page);
1617 unlock:
1618 pte_unmap_unlock(ptep, ptl);
1619 out:
1620 return page;
1622 bad_page:
1623 pte_unmap_unlock(ptep, ptl);
1624 return ERR_PTR(-EFAULT);
1626 no_page:
1627 pte_unmap_unlock(ptep, ptl);
1628 if (!pte_none(pte))
1629 return page;
1631 no_page_table:
1633 * When core dumping an enormous anonymous area that nobody
1634 * has touched so far, we don't want to allocate unnecessary pages or
1635 * page tables. Return error instead of NULL to skip handle_mm_fault,
1636 * then get_dump_page() will return NULL to leave a hole in the dump.
1637 * But we can only make this optimization where a hole would surely
1638 * be zero-filled if handle_mm_fault() actually did handle it.
1640 if ((flags & FOLL_DUMP) &&
1641 (!vma->vm_ops || !vma->vm_ops->fault))
1642 return ERR_PTR(-EFAULT);
1643 return page;
1646 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1648 return stack_guard_page_start(vma, addr) ||
1649 stack_guard_page_end(vma, addr+PAGE_SIZE);
1653 * __get_user_pages() - pin user pages in memory
1654 * @tsk: task_struct of target task
1655 * @mm: mm_struct of target mm
1656 * @start: starting user address
1657 * @nr_pages: number of pages from start to pin
1658 * @gup_flags: flags modifying pin behaviour
1659 * @pages: array that receives pointers to the pages pinned.
1660 * Should be at least nr_pages long. Or NULL, if caller
1661 * only intends to ensure the pages are faulted in.
1662 * @vmas: array of pointers to vmas corresponding to each page.
1663 * Or NULL if the caller does not require them.
1664 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1666 * Returns number of pages pinned. This may be fewer than the number
1667 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1668 * were pinned, returns -errno. Each page returned must be released
1669 * with a put_page() call when it is finished with. vmas will only
1670 * remain valid while mmap_sem is held.
1672 * Must be called with mmap_sem held for read or write.
1674 * __get_user_pages walks a process's page tables and takes a reference to
1675 * each struct page that each user address corresponds to at a given
1676 * instant. That is, it takes the page that would be accessed if a user
1677 * thread accesses the given user virtual address at that instant.
1679 * This does not guarantee that the page exists in the user mappings when
1680 * __get_user_pages returns, and there may even be a completely different
1681 * page there in some cases (eg. if mmapped pagecache has been invalidated
1682 * and subsequently re faulted). However it does guarantee that the page
1683 * won't be freed completely. And mostly callers simply care that the page
1684 * contains data that was valid *at some point in time*. Typically, an IO
1685 * or similar operation cannot guarantee anything stronger anyway because
1686 * locks can't be held over the syscall boundary.
1688 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1689 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1690 * appropriate) must be called after the page is finished with, and
1691 * before put_page is called.
1693 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1694 * or mmap_sem contention, and if waiting is needed to pin all pages,
1695 * *@nonblocking will be set to 0.
1697 * In most cases, get_user_pages or get_user_pages_fast should be used
1698 * instead of __get_user_pages. __get_user_pages should be used only if
1699 * you need some special @gup_flags.
1701 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1702 unsigned long start, unsigned long nr_pages,
1703 unsigned int gup_flags, struct page **pages,
1704 struct vm_area_struct **vmas, int *nonblocking)
1706 long i;
1707 unsigned long vm_flags;
1708 unsigned int page_mask;
1710 if (!nr_pages)
1711 return 0;
1713 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1716 * Require read or write permissions.
1717 * If FOLL_FORCE is set, we only require the "MAY" flags.
1719 vm_flags = (gup_flags & FOLL_WRITE) ?
1720 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1721 vm_flags &= (gup_flags & FOLL_FORCE) ?
1722 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1725 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1726 * would be called on PROT_NONE ranges. We must never invoke
1727 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1728 * page faults would unprotect the PROT_NONE ranges if
1729 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1730 * bitflag. So to avoid that, don't set FOLL_NUMA if
1731 * FOLL_FORCE is set.
1733 if (!(gup_flags & FOLL_FORCE))
1734 gup_flags |= FOLL_NUMA;
1736 i = 0;
1738 do {
1739 struct vm_area_struct *vma;
1741 vma = find_extend_vma(mm, start);
1742 if (!vma && in_gate_area(mm, start)) {
1743 unsigned long pg = start & PAGE_MASK;
1744 pgd_t *pgd;
1745 pud_t *pud;
1746 pmd_t *pmd;
1747 pte_t *pte;
1749 /* user gate pages are read-only */
1750 if (gup_flags & FOLL_WRITE)
1751 return i ? : -EFAULT;
1752 if (pg > TASK_SIZE)
1753 pgd = pgd_offset_k(pg);
1754 else
1755 pgd = pgd_offset_gate(mm, pg);
1756 BUG_ON(pgd_none(*pgd));
1757 pud = pud_offset(pgd, pg);
1758 BUG_ON(pud_none(*pud));
1759 pmd = pmd_offset(pud, pg);
1760 if (pmd_none(*pmd))
1761 return i ? : -EFAULT;
1762 VM_BUG_ON(pmd_trans_huge(*pmd));
1763 pte = pte_offset_map(pmd, pg);
1764 if (pte_none(*pte)) {
1765 pte_unmap(pte);
1766 return i ? : -EFAULT;
1768 vma = get_gate_vma(mm);
1769 if (pages) {
1770 struct page *page;
1772 page = vm_normal_page(vma, start, *pte);
1773 if (!page) {
1774 if (!(gup_flags & FOLL_DUMP) &&
1775 is_zero_pfn(pte_pfn(*pte)))
1776 page = pte_page(*pte);
1777 else {
1778 pte_unmap(pte);
1779 return i ? : -EFAULT;
1782 pages[i] = page;
1783 get_page(page);
1785 pte_unmap(pte);
1786 page_mask = 0;
1787 goto next_page;
1790 if (!vma ||
1791 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1792 !(vm_flags & vma->vm_flags))
1793 return i ? : -EFAULT;
1795 if (is_vm_hugetlb_page(vma)) {
1796 i = follow_hugetlb_page(mm, vma, pages, vmas,
1797 &start, &nr_pages, i, gup_flags);
1798 continue;
1801 do {
1802 struct page *page;
1803 unsigned int foll_flags = gup_flags;
1804 unsigned int page_increm;
1807 * If we have a pending SIGKILL, don't keep faulting
1808 * pages and potentially allocating memory.
1810 if (unlikely(fatal_signal_pending(current)))
1811 return i ? i : -ERESTARTSYS;
1813 cond_resched();
1814 while (!(page = follow_page_mask(vma, start,
1815 foll_flags, &page_mask))) {
1816 int ret;
1817 unsigned int fault_flags = 0;
1819 /* For mlock, just skip the stack guard page. */
1820 if (foll_flags & FOLL_MLOCK) {
1821 if (stack_guard_page(vma, start))
1822 goto next_page;
1824 if (foll_flags & FOLL_WRITE)
1825 fault_flags |= FAULT_FLAG_WRITE;
1826 if (nonblocking)
1827 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1828 if (foll_flags & FOLL_NOWAIT)
1829 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1831 ret = handle_mm_fault(mm, vma, start,
1832 fault_flags);
1834 if (ret & VM_FAULT_ERROR) {
1835 if (ret & VM_FAULT_OOM)
1836 return i ? i : -ENOMEM;
1837 if (ret & (VM_FAULT_HWPOISON |
1838 VM_FAULT_HWPOISON_LARGE)) {
1839 if (i)
1840 return i;
1841 else if (gup_flags & FOLL_HWPOISON)
1842 return -EHWPOISON;
1843 else
1844 return -EFAULT;
1846 if (ret & VM_FAULT_SIGBUS)
1847 return i ? i : -EFAULT;
1848 BUG();
1851 if (tsk) {
1852 if (ret & VM_FAULT_MAJOR)
1853 tsk->maj_flt++;
1854 else
1855 tsk->min_flt++;
1858 if (ret & VM_FAULT_RETRY) {
1859 if (nonblocking)
1860 *nonblocking = 0;
1861 return i;
1865 * The VM_FAULT_WRITE bit tells us that
1866 * do_wp_page has broken COW when necessary,
1867 * even if maybe_mkwrite decided not to set
1868 * pte_write. We can thus safely do subsequent
1869 * page lookups as if they were reads. But only
1870 * do so when looping for pte_write is futile:
1871 * in some cases userspace may also be wanting
1872 * to write to the gotten user page, which a
1873 * read fault here might prevent (a readonly
1874 * page might get reCOWed by userspace write).
1876 if ((ret & VM_FAULT_WRITE) &&
1877 !(vma->vm_flags & VM_WRITE))
1878 foll_flags &= ~FOLL_WRITE;
1880 cond_resched();
1882 if (IS_ERR(page))
1883 return i ? i : PTR_ERR(page);
1884 if (pages) {
1885 pages[i] = page;
1887 flush_anon_page(vma, page, start);
1888 flush_dcache_page(page);
1889 page_mask = 0;
1891 next_page:
1892 if (vmas) {
1893 vmas[i] = vma;
1894 page_mask = 0;
1896 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1897 if (page_increm > nr_pages)
1898 page_increm = nr_pages;
1899 i += page_increm;
1900 start += page_increm * PAGE_SIZE;
1901 nr_pages -= page_increm;
1902 } while (nr_pages && start < vma->vm_end);
1903 } while (nr_pages);
1904 return i;
1906 EXPORT_SYMBOL(__get_user_pages);
1909 * fixup_user_fault() - manually resolve a user page fault
1910 * @tsk: the task_struct to use for page fault accounting, or
1911 * NULL if faults are not to be recorded.
1912 * @mm: mm_struct of target mm
1913 * @address: user address
1914 * @fault_flags:flags to pass down to handle_mm_fault()
1916 * This is meant to be called in the specific scenario where for locking reasons
1917 * we try to access user memory in atomic context (within a pagefault_disable()
1918 * section), this returns -EFAULT, and we want to resolve the user fault before
1919 * trying again.
1921 * Typically this is meant to be used by the futex code.
1923 * The main difference with get_user_pages() is that this function will
1924 * unconditionally call handle_mm_fault() which will in turn perform all the
1925 * necessary SW fixup of the dirty and young bits in the PTE, while
1926 * handle_mm_fault() only guarantees to update these in the struct page.
1928 * This is important for some architectures where those bits also gate the
1929 * access permission to the page because they are maintained in software. On
1930 * such architectures, gup() will not be enough to make a subsequent access
1931 * succeed.
1933 * This should be called with the mm_sem held for read.
1935 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1936 unsigned long address, unsigned int fault_flags)
1938 struct vm_area_struct *vma;
1939 int ret;
1941 vma = find_extend_vma(mm, address);
1942 if (!vma || address < vma->vm_start)
1943 return -EFAULT;
1945 ret = handle_mm_fault(mm, vma, address, fault_flags);
1946 if (ret & VM_FAULT_ERROR) {
1947 if (ret & VM_FAULT_OOM)
1948 return -ENOMEM;
1949 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1950 return -EHWPOISON;
1951 if (ret & VM_FAULT_SIGBUS)
1952 return -EFAULT;
1953 BUG();
1955 if (tsk) {
1956 if (ret & VM_FAULT_MAJOR)
1957 tsk->maj_flt++;
1958 else
1959 tsk->min_flt++;
1961 return 0;
1965 * get_user_pages() - pin user pages in memory
1966 * @tsk: the task_struct to use for page fault accounting, or
1967 * NULL if faults are not to be recorded.
1968 * @mm: mm_struct of target mm
1969 * @start: starting user address
1970 * @nr_pages: number of pages from start to pin
1971 * @write: whether pages will be written to by the caller
1972 * @force: whether to force write access even if user mapping is
1973 * readonly. This will result in the page being COWed even
1974 * in MAP_SHARED mappings. You do not want this.
1975 * @pages: array that receives pointers to the pages pinned.
1976 * Should be at least nr_pages long. Or NULL, if caller
1977 * only intends to ensure the pages are faulted in.
1978 * @vmas: array of pointers to vmas corresponding to each page.
1979 * Or NULL if the caller does not require them.
1981 * Returns number of pages pinned. This may be fewer than the number
1982 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1983 * were pinned, returns -errno. Each page returned must be released
1984 * with a put_page() call when it is finished with. vmas will only
1985 * remain valid while mmap_sem is held.
1987 * Must be called with mmap_sem held for read or write.
1989 * get_user_pages walks a process's page tables and takes a reference to
1990 * each struct page that each user address corresponds to at a given
1991 * instant. That is, it takes the page that would be accessed if a user
1992 * thread accesses the given user virtual address at that instant.
1994 * This does not guarantee that the page exists in the user mappings when
1995 * get_user_pages returns, and there may even be a completely different
1996 * page there in some cases (eg. if mmapped pagecache has been invalidated
1997 * and subsequently re faulted). However it does guarantee that the page
1998 * won't be freed completely. And mostly callers simply care that the page
1999 * contains data that was valid *at some point in time*. Typically, an IO
2000 * or similar operation cannot guarantee anything stronger anyway because
2001 * locks can't be held over the syscall boundary.
2003 * If write=0, the page must not be written to. If the page is written to,
2004 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2005 * after the page is finished with, and before put_page is called.
2007 * get_user_pages is typically used for fewer-copy IO operations, to get a
2008 * handle on the memory by some means other than accesses via the user virtual
2009 * addresses. The pages may be submitted for DMA to devices or accessed via
2010 * their kernel linear mapping (via the kmap APIs). Care should be taken to
2011 * use the correct cache flushing APIs.
2013 * See also get_user_pages_fast, for performance critical applications.
2015 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2016 unsigned long start, unsigned long nr_pages, int write,
2017 int force, struct page **pages, struct vm_area_struct **vmas)
2019 int flags = FOLL_TOUCH;
2021 if (pages)
2022 flags |= FOLL_GET;
2023 if (write)
2024 flags |= FOLL_WRITE;
2025 if (force)
2026 flags |= FOLL_FORCE;
2028 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2029 NULL);
2031 EXPORT_SYMBOL(get_user_pages);
2034 * get_dump_page() - pin user page in memory while writing it to core dump
2035 * @addr: user address
2037 * Returns struct page pointer of user page pinned for dump,
2038 * to be freed afterwards by page_cache_release() or put_page().
2040 * Returns NULL on any kind of failure - a hole must then be inserted into
2041 * the corefile, to preserve alignment with its headers; and also returns
2042 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2043 * allowing a hole to be left in the corefile to save diskspace.
2045 * Called without mmap_sem, but after all other threads have been killed.
2047 #ifdef CONFIG_ELF_CORE
2048 struct page *get_dump_page(unsigned long addr)
2050 struct vm_area_struct *vma;
2051 struct page *page;
2053 if (__get_user_pages(current, current->mm, addr, 1,
2054 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2055 NULL) < 1)
2056 return NULL;
2057 flush_cache_page(vma, addr, page_to_pfn(page));
2058 return page;
2060 #endif /* CONFIG_ELF_CORE */
2062 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2063 spinlock_t **ptl)
2065 pgd_t * pgd = pgd_offset(mm, addr);
2066 pud_t * pud = pud_alloc(mm, pgd, addr);
2067 if (pud) {
2068 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2069 if (pmd) {
2070 VM_BUG_ON(pmd_trans_huge(*pmd));
2071 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2074 return NULL;
2078 * This is the old fallback for page remapping.
2080 * For historical reasons, it only allows reserved pages. Only
2081 * old drivers should use this, and they needed to mark their
2082 * pages reserved for the old functions anyway.
2084 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2085 struct page *page, pgprot_t prot)
2087 struct mm_struct *mm = vma->vm_mm;
2088 int retval;
2089 pte_t *pte;
2090 spinlock_t *ptl;
2092 retval = -EINVAL;
2093 if (PageAnon(page))
2094 goto out;
2095 retval = -ENOMEM;
2096 flush_dcache_page(page);
2097 pte = get_locked_pte(mm, addr, &ptl);
2098 if (!pte)
2099 goto out;
2100 retval = -EBUSY;
2101 if (!pte_none(*pte))
2102 goto out_unlock;
2104 /* Ok, finally just insert the thing.. */
2105 get_page(page);
2106 inc_mm_counter_fast(mm, MM_FILEPAGES);
2107 page_add_file_rmap(page);
2108 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2110 retval = 0;
2111 pte_unmap_unlock(pte, ptl);
2112 return retval;
2113 out_unlock:
2114 pte_unmap_unlock(pte, ptl);
2115 out:
2116 return retval;
2120 * vm_insert_page - insert single page into user vma
2121 * @vma: user vma to map to
2122 * @addr: target user address of this page
2123 * @page: source kernel page
2125 * This allows drivers to insert individual pages they've allocated
2126 * into a user vma.
2128 * The page has to be a nice clean _individual_ kernel allocation.
2129 * If you allocate a compound page, you need to have marked it as
2130 * such (__GFP_COMP), or manually just split the page up yourself
2131 * (see split_page()).
2133 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2134 * took an arbitrary page protection parameter. This doesn't allow
2135 * that. Your vma protection will have to be set up correctly, which
2136 * means that if you want a shared writable mapping, you'd better
2137 * ask for a shared writable mapping!
2139 * The page does not need to be reserved.
2141 * Usually this function is called from f_op->mmap() handler
2142 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2143 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2144 * function from other places, for example from page-fault handler.
2146 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2147 struct page *page)
2149 if (addr < vma->vm_start || addr >= vma->vm_end)
2150 return -EFAULT;
2151 if (!page_count(page))
2152 return -EINVAL;
2153 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2154 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2155 BUG_ON(vma->vm_flags & VM_PFNMAP);
2156 vma->vm_flags |= VM_MIXEDMAP;
2158 return insert_page(vma, addr, page, vma->vm_page_prot);
2160 EXPORT_SYMBOL(vm_insert_page);
2162 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2163 unsigned long pfn, pgprot_t prot)
2165 struct mm_struct *mm = vma->vm_mm;
2166 int retval;
2167 pte_t *pte, entry;
2168 spinlock_t *ptl;
2170 retval = -ENOMEM;
2171 pte = get_locked_pte(mm, addr, &ptl);
2172 if (!pte)
2173 goto out;
2174 retval = -EBUSY;
2175 if (!pte_none(*pte))
2176 goto out_unlock;
2178 /* Ok, finally just insert the thing.. */
2179 entry = pte_mkspecial(pfn_pte(pfn, prot));
2180 set_pte_at(mm, addr, pte, entry);
2181 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2183 retval = 0;
2184 out_unlock:
2185 pte_unmap_unlock(pte, ptl);
2186 out:
2187 return retval;
2191 * vm_insert_pfn - insert single pfn into user vma
2192 * @vma: user vma to map to
2193 * @addr: target user address of this page
2194 * @pfn: source kernel pfn
2196 * Similar to vm_insert_page, this allows drivers to insert individual pages
2197 * they've allocated into a user vma. Same comments apply.
2199 * This function should only be called from a vm_ops->fault handler, and
2200 * in that case the handler should return NULL.
2202 * vma cannot be a COW mapping.
2204 * As this is called only for pages that do not currently exist, we
2205 * do not need to flush old virtual caches or the TLB.
2207 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2208 unsigned long pfn)
2210 int ret;
2211 pgprot_t pgprot = vma->vm_page_prot;
2213 * Technically, architectures with pte_special can avoid all these
2214 * restrictions (same for remap_pfn_range). However we would like
2215 * consistency in testing and feature parity among all, so we should
2216 * try to keep these invariants in place for everybody.
2218 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2219 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2220 (VM_PFNMAP|VM_MIXEDMAP));
2221 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2222 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2224 if (addr < vma->vm_start || addr >= vma->vm_end)
2225 return -EFAULT;
2226 if (track_pfn_insert(vma, &pgprot, pfn))
2227 return -EINVAL;
2229 ret = insert_pfn(vma, addr, pfn, pgprot);
2231 return ret;
2233 EXPORT_SYMBOL(vm_insert_pfn);
2235 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2236 unsigned long pfn)
2238 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2240 if (addr < vma->vm_start || addr >= vma->vm_end)
2241 return -EFAULT;
2244 * If we don't have pte special, then we have to use the pfn_valid()
2245 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2246 * refcount the page if pfn_valid is true (hence insert_page rather
2247 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2248 * without pte special, it would there be refcounted as a normal page.
2250 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2251 struct page *page;
2253 page = pfn_to_page(pfn);
2254 return insert_page(vma, addr, page, vma->vm_page_prot);
2256 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2258 EXPORT_SYMBOL(vm_insert_mixed);
2261 * maps a range of physical memory into the requested pages. the old
2262 * mappings are removed. any references to nonexistent pages results
2263 * in null mappings (currently treated as "copy-on-access")
2265 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2266 unsigned long addr, unsigned long end,
2267 unsigned long pfn, pgprot_t prot)
2269 pte_t *pte;
2270 spinlock_t *ptl;
2272 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2273 if (!pte)
2274 return -ENOMEM;
2275 arch_enter_lazy_mmu_mode();
2276 do {
2277 BUG_ON(!pte_none(*pte));
2278 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2279 pfn++;
2280 } while (pte++, addr += PAGE_SIZE, addr != end);
2281 arch_leave_lazy_mmu_mode();
2282 pte_unmap_unlock(pte - 1, ptl);
2283 return 0;
2286 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2287 unsigned long addr, unsigned long end,
2288 unsigned long pfn, pgprot_t prot)
2290 pmd_t *pmd;
2291 unsigned long next;
2293 pfn -= addr >> PAGE_SHIFT;
2294 pmd = pmd_alloc(mm, pud, addr);
2295 if (!pmd)
2296 return -ENOMEM;
2297 VM_BUG_ON(pmd_trans_huge(*pmd));
2298 do {
2299 next = pmd_addr_end(addr, end);
2300 if (remap_pte_range(mm, pmd, addr, next,
2301 pfn + (addr >> PAGE_SHIFT), prot))
2302 return -ENOMEM;
2303 } while (pmd++, addr = next, addr != end);
2304 return 0;
2307 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2308 unsigned long addr, unsigned long end,
2309 unsigned long pfn, pgprot_t prot)
2311 pud_t *pud;
2312 unsigned long next;
2314 pfn -= addr >> PAGE_SHIFT;
2315 pud = pud_alloc(mm, pgd, addr);
2316 if (!pud)
2317 return -ENOMEM;
2318 do {
2319 next = pud_addr_end(addr, end);
2320 if (remap_pmd_range(mm, pud, addr, next,
2321 pfn + (addr >> PAGE_SHIFT), prot))
2322 return -ENOMEM;
2323 } while (pud++, addr = next, addr != end);
2324 return 0;
2328 * remap_pfn_range - remap kernel memory to userspace
2329 * @vma: user vma to map to
2330 * @addr: target user address to start at
2331 * @pfn: physical address of kernel memory
2332 * @size: size of map area
2333 * @prot: page protection flags for this mapping
2335 * Note: this is only safe if the mm semaphore is held when called.
2337 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2338 unsigned long pfn, unsigned long size, pgprot_t prot)
2340 pgd_t *pgd;
2341 unsigned long next;
2342 unsigned long end = addr + PAGE_ALIGN(size);
2343 struct mm_struct *mm = vma->vm_mm;
2344 int err;
2347 * Physically remapped pages are special. Tell the
2348 * rest of the world about it:
2349 * VM_IO tells people not to look at these pages
2350 * (accesses can have side effects).
2351 * VM_PFNMAP tells the core MM that the base pages are just
2352 * raw PFN mappings, and do not have a "struct page" associated
2353 * with them.
2354 * VM_DONTEXPAND
2355 * Disable vma merging and expanding with mremap().
2356 * VM_DONTDUMP
2357 * Omit vma from core dump, even when VM_IO turned off.
2359 * There's a horrible special case to handle copy-on-write
2360 * behaviour that some programs depend on. We mark the "original"
2361 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2362 * See vm_normal_page() for details.
2364 if (is_cow_mapping(vma->vm_flags)) {
2365 if (addr != vma->vm_start || end != vma->vm_end)
2366 return -EINVAL;
2367 vma->vm_pgoff = pfn;
2370 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2371 if (err)
2372 return -EINVAL;
2374 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2376 BUG_ON(addr >= end);
2377 pfn -= addr >> PAGE_SHIFT;
2378 pgd = pgd_offset(mm, addr);
2379 flush_cache_range(vma, addr, end);
2380 do {
2381 next = pgd_addr_end(addr, end);
2382 err = remap_pud_range(mm, pgd, addr, next,
2383 pfn + (addr >> PAGE_SHIFT), prot);
2384 if (err)
2385 break;
2386 } while (pgd++, addr = next, addr != end);
2388 if (err)
2389 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2391 return err;
2393 EXPORT_SYMBOL(remap_pfn_range);
2395 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2396 unsigned long addr, unsigned long end,
2397 pte_fn_t fn, void *data)
2399 pte_t *pte;
2400 int err;
2401 pgtable_t token;
2402 spinlock_t *uninitialized_var(ptl);
2404 pte = (mm == &init_mm) ?
2405 pte_alloc_kernel(pmd, addr) :
2406 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2407 if (!pte)
2408 return -ENOMEM;
2410 BUG_ON(pmd_huge(*pmd));
2412 arch_enter_lazy_mmu_mode();
2414 token = pmd_pgtable(*pmd);
2416 do {
2417 err = fn(pte++, token, addr, data);
2418 if (err)
2419 break;
2420 } while (addr += PAGE_SIZE, addr != end);
2422 arch_leave_lazy_mmu_mode();
2424 if (mm != &init_mm)
2425 pte_unmap_unlock(pte-1, ptl);
2426 return err;
2429 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2430 unsigned long addr, unsigned long end,
2431 pte_fn_t fn, void *data)
2433 pmd_t *pmd;
2434 unsigned long next;
2435 int err;
2437 BUG_ON(pud_huge(*pud));
2439 pmd = pmd_alloc(mm, pud, addr);
2440 if (!pmd)
2441 return -ENOMEM;
2442 do {
2443 next = pmd_addr_end(addr, end);
2444 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2445 if (err)
2446 break;
2447 } while (pmd++, addr = next, addr != end);
2448 return err;
2451 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2452 unsigned long addr, unsigned long end,
2453 pte_fn_t fn, void *data)
2455 pud_t *pud;
2456 unsigned long next;
2457 int err;
2459 pud = pud_alloc(mm, pgd, addr);
2460 if (!pud)
2461 return -ENOMEM;
2462 do {
2463 next = pud_addr_end(addr, end);
2464 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2465 if (err)
2466 break;
2467 } while (pud++, addr = next, addr != end);
2468 return err;
2472 * Scan a region of virtual memory, filling in page tables as necessary
2473 * and calling a provided function on each leaf page table.
2475 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2476 unsigned long size, pte_fn_t fn, void *data)
2478 pgd_t *pgd;
2479 unsigned long next;
2480 unsigned long end = addr + size;
2481 int err;
2483 BUG_ON(addr >= end);
2484 pgd = pgd_offset(mm, addr);
2485 do {
2486 next = pgd_addr_end(addr, end);
2487 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2488 if (err)
2489 break;
2490 } while (pgd++, addr = next, addr != end);
2492 return err;
2494 EXPORT_SYMBOL_GPL(apply_to_page_range);
2497 * handle_pte_fault chooses page fault handler according to an entry
2498 * which was read non-atomically. Before making any commitment, on
2499 * those architectures or configurations (e.g. i386 with PAE) which
2500 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2501 * must check under lock before unmapping the pte and proceeding
2502 * (but do_wp_page is only called after already making such a check;
2503 * and do_anonymous_page can safely check later on).
2505 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2506 pte_t *page_table, pte_t orig_pte)
2508 int same = 1;
2509 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2510 if (sizeof(pte_t) > sizeof(unsigned long)) {
2511 spinlock_t *ptl = pte_lockptr(mm, pmd);
2512 spin_lock(ptl);
2513 same = pte_same(*page_table, orig_pte);
2514 spin_unlock(ptl);
2516 #endif
2517 pte_unmap(page_table);
2518 return same;
2521 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2524 * If the source page was a PFN mapping, we don't have
2525 * a "struct page" for it. We do a best-effort copy by
2526 * just copying from the original user address. If that
2527 * fails, we just zero-fill it. Live with it.
2529 if (unlikely(!src)) {
2530 void *kaddr = kmap_atomic(dst);
2531 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2534 * This really shouldn't fail, because the page is there
2535 * in the page tables. But it might just be unreadable,
2536 * in which case we just give up and fill the result with
2537 * zeroes.
2539 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2540 clear_page(kaddr);
2541 kunmap_atomic(kaddr);
2542 flush_dcache_page(dst);
2543 } else
2544 copy_user_highpage(dst, src, va, vma);
2548 * This routine handles present pages, when users try to write
2549 * to a shared page. It is done by copying the page to a new address
2550 * and decrementing the shared-page counter for the old page.
2552 * Note that this routine assumes that the protection checks have been
2553 * done by the caller (the low-level page fault routine in most cases).
2554 * Thus we can safely just mark it writable once we've done any necessary
2555 * COW.
2557 * We also mark the page dirty at this point even though the page will
2558 * change only once the write actually happens. This avoids a few races,
2559 * and potentially makes it more efficient.
2561 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2562 * but allow concurrent faults), with pte both mapped and locked.
2563 * We return with mmap_sem still held, but pte unmapped and unlocked.
2565 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2566 unsigned long address, pte_t *page_table, pmd_t *pmd,
2567 spinlock_t *ptl, pte_t orig_pte)
2568 __releases(ptl)
2570 struct page *old_page, *new_page = NULL;
2571 pte_t entry;
2572 int ret = 0;
2573 int page_mkwrite = 0;
2574 struct page *dirty_page = NULL;
2575 unsigned long mmun_start = 0; /* For mmu_notifiers */
2576 unsigned long mmun_end = 0; /* For mmu_notifiers */
2578 old_page = vm_normal_page(vma, address, orig_pte);
2579 if (!old_page) {
2581 * VM_MIXEDMAP !pfn_valid() case
2583 * We should not cow pages in a shared writeable mapping.
2584 * Just mark the pages writable as we can't do any dirty
2585 * accounting on raw pfn maps.
2587 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2588 (VM_WRITE|VM_SHARED))
2589 goto reuse;
2590 goto gotten;
2594 * Take out anonymous pages first, anonymous shared vmas are
2595 * not dirty accountable.
2597 if (PageAnon(old_page) && !PageKsm(old_page)) {
2598 if (!trylock_page(old_page)) {
2599 page_cache_get(old_page);
2600 pte_unmap_unlock(page_table, ptl);
2601 lock_page(old_page);
2602 page_table = pte_offset_map_lock(mm, pmd, address,
2603 &ptl);
2604 if (!pte_same(*page_table, orig_pte)) {
2605 unlock_page(old_page);
2606 goto unlock;
2608 page_cache_release(old_page);
2610 if (reuse_swap_page(old_page)) {
2612 * The page is all ours. Move it to our anon_vma so
2613 * the rmap code will not search our parent or siblings.
2614 * Protected against the rmap code by the page lock.
2616 page_move_anon_rmap(old_page, vma, address);
2617 unlock_page(old_page);
2618 goto reuse;
2620 unlock_page(old_page);
2621 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2622 (VM_WRITE|VM_SHARED))) {
2624 * Only catch write-faults on shared writable pages,
2625 * read-only shared pages can get COWed by
2626 * get_user_pages(.write=1, .force=1).
2628 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2629 struct vm_fault vmf;
2630 int tmp;
2632 vmf.virtual_address = (void __user *)(address &
2633 PAGE_MASK);
2634 vmf.pgoff = old_page->index;
2635 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2636 vmf.page = old_page;
2639 * Notify the address space that the page is about to
2640 * become writable so that it can prohibit this or wait
2641 * for the page to get into an appropriate state.
2643 * We do this without the lock held, so that it can
2644 * sleep if it needs to.
2646 page_cache_get(old_page);
2647 pte_unmap_unlock(page_table, ptl);
2649 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2650 if (unlikely(tmp &
2651 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2652 ret = tmp;
2653 goto unwritable_page;
2655 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2656 lock_page(old_page);
2657 if (!old_page->mapping) {
2658 ret = 0; /* retry the fault */
2659 unlock_page(old_page);
2660 goto unwritable_page;
2662 } else
2663 VM_BUG_ON(!PageLocked(old_page));
2666 * Since we dropped the lock we need to revalidate
2667 * the PTE as someone else may have changed it. If
2668 * they did, we just return, as we can count on the
2669 * MMU to tell us if they didn't also make it writable.
2671 page_table = pte_offset_map_lock(mm, pmd, address,
2672 &ptl);
2673 if (!pte_same(*page_table, orig_pte)) {
2674 unlock_page(old_page);
2675 goto unlock;
2678 page_mkwrite = 1;
2680 dirty_page = old_page;
2681 get_page(dirty_page);
2683 reuse:
2684 flush_cache_page(vma, address, pte_pfn(orig_pte));
2685 entry = pte_mkyoung(orig_pte);
2686 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2687 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2688 update_mmu_cache(vma, address, page_table);
2689 pte_unmap_unlock(page_table, ptl);
2690 ret |= VM_FAULT_WRITE;
2692 if (!dirty_page)
2693 return ret;
2696 * Yes, Virginia, this is actually required to prevent a race
2697 * with clear_page_dirty_for_io() from clearing the page dirty
2698 * bit after it clear all dirty ptes, but before a racing
2699 * do_wp_page installs a dirty pte.
2701 * __do_fault is protected similarly.
2703 if (!page_mkwrite) {
2704 wait_on_page_locked(dirty_page);
2705 set_page_dirty_balance(dirty_page, page_mkwrite);
2706 /* file_update_time outside page_lock */
2707 if (vma->vm_file)
2708 file_update_time(vma->vm_file);
2710 put_page(dirty_page);
2711 if (page_mkwrite) {
2712 struct address_space *mapping = dirty_page->mapping;
2714 set_page_dirty(dirty_page);
2715 unlock_page(dirty_page);
2716 page_cache_release(dirty_page);
2717 if (mapping) {
2719 * Some device drivers do not set page.mapping
2720 * but still dirty their pages
2722 balance_dirty_pages_ratelimited(mapping);
2726 return ret;
2730 * Ok, we need to copy. Oh, well..
2732 page_cache_get(old_page);
2733 gotten:
2734 pte_unmap_unlock(page_table, ptl);
2736 if (unlikely(anon_vma_prepare(vma)))
2737 goto oom;
2739 if (is_zero_pfn(pte_pfn(orig_pte))) {
2740 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2741 if (!new_page)
2742 goto oom;
2743 } else {
2744 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2745 if (!new_page)
2746 goto oom;
2747 cow_user_page(new_page, old_page, address, vma);
2749 __SetPageUptodate(new_page);
2751 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2752 goto oom_free_new;
2754 mmun_start = address & PAGE_MASK;
2755 mmun_end = mmun_start + PAGE_SIZE;
2756 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2759 * Re-check the pte - we dropped the lock
2761 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2762 if (likely(pte_same(*page_table, orig_pte))) {
2763 if (old_page) {
2764 if (!PageAnon(old_page)) {
2765 dec_mm_counter_fast(mm, MM_FILEPAGES);
2766 inc_mm_counter_fast(mm, MM_ANONPAGES);
2768 } else
2769 inc_mm_counter_fast(mm, MM_ANONPAGES);
2770 flush_cache_page(vma, address, pte_pfn(orig_pte));
2771 entry = mk_pte(new_page, vma->vm_page_prot);
2772 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2774 * Clear the pte entry and flush it first, before updating the
2775 * pte with the new entry. This will avoid a race condition
2776 * seen in the presence of one thread doing SMC and another
2777 * thread doing COW.
2779 ptep_clear_flush(vma, address, page_table);
2780 page_add_new_anon_rmap(new_page, vma, address);
2782 * We call the notify macro here because, when using secondary
2783 * mmu page tables (such as kvm shadow page tables), we want the
2784 * new page to be mapped directly into the secondary page table.
2786 set_pte_at_notify(mm, address, page_table, entry);
2787 update_mmu_cache(vma, address, page_table);
2788 if (old_page) {
2790 * Only after switching the pte to the new page may
2791 * we remove the mapcount here. Otherwise another
2792 * process may come and find the rmap count decremented
2793 * before the pte is switched to the new page, and
2794 * "reuse" the old page writing into it while our pte
2795 * here still points into it and can be read by other
2796 * threads.
2798 * The critical issue is to order this
2799 * page_remove_rmap with the ptp_clear_flush above.
2800 * Those stores are ordered by (if nothing else,)
2801 * the barrier present in the atomic_add_negative
2802 * in page_remove_rmap.
2804 * Then the TLB flush in ptep_clear_flush ensures that
2805 * no process can access the old page before the
2806 * decremented mapcount is visible. And the old page
2807 * cannot be reused until after the decremented
2808 * mapcount is visible. So transitively, TLBs to
2809 * old page will be flushed before it can be reused.
2811 page_remove_rmap(old_page);
2814 /* Free the old page.. */
2815 new_page = old_page;
2816 ret |= VM_FAULT_WRITE;
2817 } else
2818 mem_cgroup_uncharge_page(new_page);
2820 if (new_page)
2821 page_cache_release(new_page);
2822 unlock:
2823 pte_unmap_unlock(page_table, ptl);
2824 if (mmun_end > mmun_start)
2825 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2826 if (old_page) {
2828 * Don't let another task, with possibly unlocked vma,
2829 * keep the mlocked page.
2831 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2832 lock_page(old_page); /* LRU manipulation */
2833 munlock_vma_page(old_page);
2834 unlock_page(old_page);
2836 page_cache_release(old_page);
2838 return ret;
2839 oom_free_new:
2840 page_cache_release(new_page);
2841 oom:
2842 if (old_page)
2843 page_cache_release(old_page);
2844 return VM_FAULT_OOM;
2846 unwritable_page:
2847 page_cache_release(old_page);
2848 return ret;
2851 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2852 unsigned long start_addr, unsigned long end_addr,
2853 struct zap_details *details)
2855 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2858 static inline void unmap_mapping_range_tree(struct rb_root *root,
2859 struct zap_details *details)
2861 struct vm_area_struct *vma;
2862 pgoff_t vba, vea, zba, zea;
2864 vma_interval_tree_foreach(vma, root,
2865 details->first_index, details->last_index) {
2867 vba = vma->vm_pgoff;
2868 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2869 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2870 zba = details->first_index;
2871 if (zba < vba)
2872 zba = vba;
2873 zea = details->last_index;
2874 if (zea > vea)
2875 zea = vea;
2877 unmap_mapping_range_vma(vma,
2878 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2879 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2880 details);
2884 static inline void unmap_mapping_range_list(struct list_head *head,
2885 struct zap_details *details)
2887 struct vm_area_struct *vma;
2890 * In nonlinear VMAs there is no correspondence between virtual address
2891 * offset and file offset. So we must perform an exhaustive search
2892 * across *all* the pages in each nonlinear VMA, not just the pages
2893 * whose virtual address lies outside the file truncation point.
2895 list_for_each_entry(vma, head, shared.nonlinear) {
2896 details->nonlinear_vma = vma;
2897 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2902 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2903 * @mapping: the address space containing mmaps to be unmapped.
2904 * @holebegin: byte in first page to unmap, relative to the start of
2905 * the underlying file. This will be rounded down to a PAGE_SIZE
2906 * boundary. Note that this is different from truncate_pagecache(), which
2907 * must keep the partial page. In contrast, we must get rid of
2908 * partial pages.
2909 * @holelen: size of prospective hole in bytes. This will be rounded
2910 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2911 * end of the file.
2912 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2913 * but 0 when invalidating pagecache, don't throw away private data.
2915 void unmap_mapping_range(struct address_space *mapping,
2916 loff_t const holebegin, loff_t const holelen, int even_cows)
2918 struct zap_details details;
2919 pgoff_t hba = holebegin >> PAGE_SHIFT;
2920 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2922 /* Check for overflow. */
2923 if (sizeof(holelen) > sizeof(hlen)) {
2924 long long holeend =
2925 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2926 if (holeend & ~(long long)ULONG_MAX)
2927 hlen = ULONG_MAX - hba + 1;
2930 details.check_mapping = even_cows? NULL: mapping;
2931 details.nonlinear_vma = NULL;
2932 details.first_index = hba;
2933 details.last_index = hba + hlen - 1;
2934 if (details.last_index < details.first_index)
2935 details.last_index = ULONG_MAX;
2938 mutex_lock(&mapping->i_mmap_mutex);
2939 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2940 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2941 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2942 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2943 mutex_unlock(&mapping->i_mmap_mutex);
2945 EXPORT_SYMBOL(unmap_mapping_range);
2948 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2949 * but allow concurrent faults), and pte mapped but not yet locked.
2950 * We return with mmap_sem still held, but pte unmapped and unlocked.
2952 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2953 unsigned long address, pte_t *page_table, pmd_t *pmd,
2954 unsigned int flags, pte_t orig_pte)
2956 spinlock_t *ptl;
2957 struct page *page, *swapcache;
2958 swp_entry_t entry;
2959 pte_t pte;
2960 int locked;
2961 struct mem_cgroup *ptr;
2962 int exclusive = 0;
2963 int ret = 0;
2965 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2966 goto out;
2968 entry = pte_to_swp_entry(orig_pte);
2969 if (unlikely(non_swap_entry(entry))) {
2970 if (is_migration_entry(entry)) {
2971 migration_entry_wait(mm, pmd, address);
2972 } else if (is_hwpoison_entry(entry)) {
2973 ret = VM_FAULT_HWPOISON;
2974 } else {
2975 print_bad_pte(vma, address, orig_pte, NULL);
2976 ret = VM_FAULT_SIGBUS;
2978 goto out;
2980 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2981 page = lookup_swap_cache(entry);
2982 if (!page) {
2983 page = swapin_readahead(entry,
2984 GFP_HIGHUSER_MOVABLE, vma, address);
2985 if (!page) {
2987 * Back out if somebody else faulted in this pte
2988 * while we released the pte lock.
2990 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2991 if (likely(pte_same(*page_table, orig_pte)))
2992 ret = VM_FAULT_OOM;
2993 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2994 goto unlock;
2997 /* Had to read the page from swap area: Major fault */
2998 ret = VM_FAULT_MAJOR;
2999 count_vm_event(PGMAJFAULT);
3000 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3001 } else if (PageHWPoison(page)) {
3003 * hwpoisoned dirty swapcache pages are kept for killing
3004 * owner processes (which may be unknown at hwpoison time)
3006 ret = VM_FAULT_HWPOISON;
3007 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3008 swapcache = page;
3009 goto out_release;
3012 swapcache = page;
3013 locked = lock_page_or_retry(page, mm, flags);
3015 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3016 if (!locked) {
3017 ret |= VM_FAULT_RETRY;
3018 goto out_release;
3022 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3023 * release the swapcache from under us. The page pin, and pte_same
3024 * test below, are not enough to exclude that. Even if it is still
3025 * swapcache, we need to check that the page's swap has not changed.
3027 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3028 goto out_page;
3030 page = ksm_might_need_to_copy(page, vma, address);
3031 if (unlikely(!page)) {
3032 ret = VM_FAULT_OOM;
3033 page = swapcache;
3034 goto out_page;
3037 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3038 ret = VM_FAULT_OOM;
3039 goto out_page;
3043 * Back out if somebody else already faulted in this pte.
3045 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3046 if (unlikely(!pte_same(*page_table, orig_pte)))
3047 goto out_nomap;
3049 if (unlikely(!PageUptodate(page))) {
3050 ret = VM_FAULT_SIGBUS;
3051 goto out_nomap;
3055 * The page isn't present yet, go ahead with the fault.
3057 * Be careful about the sequence of operations here.
3058 * To get its accounting right, reuse_swap_page() must be called
3059 * while the page is counted on swap but not yet in mapcount i.e.
3060 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3061 * must be called after the swap_free(), or it will never succeed.
3062 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3063 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3064 * in page->private. In this case, a record in swap_cgroup is silently
3065 * discarded at swap_free().
3068 inc_mm_counter_fast(mm, MM_ANONPAGES);
3069 dec_mm_counter_fast(mm, MM_SWAPENTS);
3070 pte = mk_pte(page, vma->vm_page_prot);
3071 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3072 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3073 flags &= ~FAULT_FLAG_WRITE;
3074 ret |= VM_FAULT_WRITE;
3075 exclusive = 1;
3077 flush_icache_page(vma, page);
3078 set_pte_at(mm, address, page_table, pte);
3079 if (page == swapcache)
3080 do_page_add_anon_rmap(page, vma, address, exclusive);
3081 else /* ksm created a completely new copy */
3082 page_add_new_anon_rmap(page, vma, address);
3083 /* It's better to call commit-charge after rmap is established */
3084 mem_cgroup_commit_charge_swapin(page, ptr);
3086 swap_free(entry);
3087 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3088 try_to_free_swap(page);
3089 unlock_page(page);
3090 if (page != swapcache) {
3092 * Hold the lock to avoid the swap entry to be reused
3093 * until we take the PT lock for the pte_same() check
3094 * (to avoid false positives from pte_same). For
3095 * further safety release the lock after the swap_free
3096 * so that the swap count won't change under a
3097 * parallel locked swapcache.
3099 unlock_page(swapcache);
3100 page_cache_release(swapcache);
3103 if (flags & FAULT_FLAG_WRITE) {
3104 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3105 if (ret & VM_FAULT_ERROR)
3106 ret &= VM_FAULT_ERROR;
3107 goto out;
3110 /* No need to invalidate - it was non-present before */
3111 update_mmu_cache(vma, address, page_table);
3112 unlock:
3113 pte_unmap_unlock(page_table, ptl);
3114 out:
3115 return ret;
3116 out_nomap:
3117 mem_cgroup_cancel_charge_swapin(ptr);
3118 pte_unmap_unlock(page_table, ptl);
3119 out_page:
3120 unlock_page(page);
3121 out_release:
3122 page_cache_release(page);
3123 if (page != swapcache) {
3124 unlock_page(swapcache);
3125 page_cache_release(swapcache);
3127 return ret;
3131 * This is like a special single-page "expand_{down|up}wards()",
3132 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3133 * doesn't hit another vma.
3135 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3137 address &= PAGE_MASK;
3138 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3139 struct vm_area_struct *prev = vma->vm_prev;
3142 * Is there a mapping abutting this one below?
3144 * That's only ok if it's the same stack mapping
3145 * that has gotten split..
3147 if (prev && prev->vm_end == address)
3148 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3150 expand_downwards(vma, address - PAGE_SIZE);
3152 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3153 struct vm_area_struct *next = vma->vm_next;
3155 /* As VM_GROWSDOWN but s/below/above/ */
3156 if (next && next->vm_start == address + PAGE_SIZE)
3157 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3159 expand_upwards(vma, address + PAGE_SIZE);
3161 return 0;
3165 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3166 * but allow concurrent faults), and pte mapped but not yet locked.
3167 * We return with mmap_sem still held, but pte unmapped and unlocked.
3169 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3170 unsigned long address, pte_t *page_table, pmd_t *pmd,
3171 unsigned int flags)
3173 struct page *page;
3174 spinlock_t *ptl;
3175 pte_t entry;
3177 pte_unmap(page_table);
3179 /* Check if we need to add a guard page to the stack */
3180 if (check_stack_guard_page(vma, address) < 0)
3181 return VM_FAULT_SIGBUS;
3183 /* Use the zero-page for reads */
3184 if (!(flags & FAULT_FLAG_WRITE)) {
3185 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3186 vma->vm_page_prot));
3187 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3188 if (!pte_none(*page_table))
3189 goto unlock;
3190 goto setpte;
3193 /* Allocate our own private page. */
3194 if (unlikely(anon_vma_prepare(vma)))
3195 goto oom;
3196 page = alloc_zeroed_user_highpage_movable(vma, address);
3197 if (!page)
3198 goto oom;
3199 __SetPageUptodate(page);
3201 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3202 goto oom_free_page;
3204 entry = mk_pte(page, vma->vm_page_prot);
3205 if (vma->vm_flags & VM_WRITE)
3206 entry = pte_mkwrite(pte_mkdirty(entry));
3208 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3209 if (!pte_none(*page_table))
3210 goto release;
3212 inc_mm_counter_fast(mm, MM_ANONPAGES);
3213 page_add_new_anon_rmap(page, vma, address);
3214 setpte:
3215 set_pte_at(mm, address, page_table, entry);
3217 /* No need to invalidate - it was non-present before */
3218 update_mmu_cache(vma, address, page_table);
3219 unlock:
3220 pte_unmap_unlock(page_table, ptl);
3221 return 0;
3222 release:
3223 mem_cgroup_uncharge_page(page);
3224 page_cache_release(page);
3225 goto unlock;
3226 oom_free_page:
3227 page_cache_release(page);
3228 oom:
3229 return VM_FAULT_OOM;
3233 * __do_fault() tries to create a new page mapping. It aggressively
3234 * tries to share with existing pages, but makes a separate copy if
3235 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3236 * the next page fault.
3238 * As this is called only for pages that do not currently exist, we
3239 * do not need to flush old virtual caches or the TLB.
3241 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3242 * but allow concurrent faults), and pte neither mapped nor locked.
3243 * We return with mmap_sem still held, but pte unmapped and unlocked.
3245 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3246 unsigned long address, pmd_t *pmd,
3247 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3249 pte_t *page_table;
3250 spinlock_t *ptl;
3251 struct page *page;
3252 struct page *cow_page;
3253 pte_t entry;
3254 int anon = 0;
3255 struct page *dirty_page = NULL;
3256 struct vm_fault vmf;
3257 int ret;
3258 int page_mkwrite = 0;
3261 * If we do COW later, allocate page befor taking lock_page()
3262 * on the file cache page. This will reduce lock holding time.
3264 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3266 if (unlikely(anon_vma_prepare(vma)))
3267 return VM_FAULT_OOM;
3269 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3270 if (!cow_page)
3271 return VM_FAULT_OOM;
3273 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3274 page_cache_release(cow_page);
3275 return VM_FAULT_OOM;
3277 } else
3278 cow_page = NULL;
3280 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3281 vmf.pgoff = pgoff;
3282 vmf.flags = flags;
3283 vmf.page = NULL;
3285 ret = vma->vm_ops->fault(vma, &vmf);
3286 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3287 VM_FAULT_RETRY)))
3288 goto uncharge_out;
3290 if (unlikely(PageHWPoison(vmf.page))) {
3291 if (ret & VM_FAULT_LOCKED)
3292 unlock_page(vmf.page);
3293 ret = VM_FAULT_HWPOISON;
3294 goto uncharge_out;
3298 * For consistency in subsequent calls, make the faulted page always
3299 * locked.
3301 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3302 lock_page(vmf.page);
3303 else
3304 VM_BUG_ON(!PageLocked(vmf.page));
3307 * Should we do an early C-O-W break?
3309 page = vmf.page;
3310 if (flags & FAULT_FLAG_WRITE) {
3311 if (!(vma->vm_flags & VM_SHARED)) {
3312 page = cow_page;
3313 anon = 1;
3314 copy_user_highpage(page, vmf.page, address, vma);
3315 __SetPageUptodate(page);
3316 } else {
3318 * If the page will be shareable, see if the backing
3319 * address space wants to know that the page is about
3320 * to become writable
3322 if (vma->vm_ops->page_mkwrite) {
3323 int tmp;
3325 unlock_page(page);
3326 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3327 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3328 if (unlikely(tmp &
3329 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3330 ret = tmp;
3331 goto unwritable_page;
3333 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3334 lock_page(page);
3335 if (!page->mapping) {
3336 ret = 0; /* retry the fault */
3337 unlock_page(page);
3338 goto unwritable_page;
3340 } else
3341 VM_BUG_ON(!PageLocked(page));
3342 page_mkwrite = 1;
3348 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3351 * This silly early PAGE_DIRTY setting removes a race
3352 * due to the bad i386 page protection. But it's valid
3353 * for other architectures too.
3355 * Note that if FAULT_FLAG_WRITE is set, we either now have
3356 * an exclusive copy of the page, or this is a shared mapping,
3357 * so we can make it writable and dirty to avoid having to
3358 * handle that later.
3360 /* Only go through if we didn't race with anybody else... */
3361 if (likely(pte_same(*page_table, orig_pte))) {
3362 flush_icache_page(vma, page);
3363 entry = mk_pte(page, vma->vm_page_prot);
3364 if (flags & FAULT_FLAG_WRITE)
3365 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3366 if (anon) {
3367 inc_mm_counter_fast(mm, MM_ANONPAGES);
3368 page_add_new_anon_rmap(page, vma, address);
3369 } else {
3370 inc_mm_counter_fast(mm, MM_FILEPAGES);
3371 page_add_file_rmap(page);
3372 if (flags & FAULT_FLAG_WRITE) {
3373 dirty_page = page;
3374 get_page(dirty_page);
3377 set_pte_at(mm, address, page_table, entry);
3379 /* no need to invalidate: a not-present page won't be cached */
3380 update_mmu_cache(vma, address, page_table);
3381 } else {
3382 if (cow_page)
3383 mem_cgroup_uncharge_page(cow_page);
3384 if (anon)
3385 page_cache_release(page);
3386 else
3387 anon = 1; /* no anon but release faulted_page */
3390 pte_unmap_unlock(page_table, ptl);
3392 if (dirty_page) {
3393 struct address_space *mapping = page->mapping;
3394 int dirtied = 0;
3396 if (set_page_dirty(dirty_page))
3397 dirtied = 1;
3398 unlock_page(dirty_page);
3399 put_page(dirty_page);
3400 if ((dirtied || page_mkwrite) && mapping) {
3402 * Some device drivers do not set page.mapping but still
3403 * dirty their pages
3405 balance_dirty_pages_ratelimited(mapping);
3408 /* file_update_time outside page_lock */
3409 if (vma->vm_file && !page_mkwrite)
3410 file_update_time(vma->vm_file);
3411 } else {
3412 unlock_page(vmf.page);
3413 if (anon)
3414 page_cache_release(vmf.page);
3417 return ret;
3419 unwritable_page:
3420 page_cache_release(page);
3421 return ret;
3422 uncharge_out:
3423 /* fs's fault handler get error */
3424 if (cow_page) {
3425 mem_cgroup_uncharge_page(cow_page);
3426 page_cache_release(cow_page);
3428 return ret;
3431 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3432 unsigned long address, pte_t *page_table, pmd_t *pmd,
3433 unsigned int flags, pte_t orig_pte)
3435 pgoff_t pgoff = (((address & PAGE_MASK)
3436 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3438 pte_unmap(page_table);
3439 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3443 * Fault of a previously existing named mapping. Repopulate the pte
3444 * from the encoded file_pte if possible. This enables swappable
3445 * nonlinear vmas.
3447 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3448 * but allow concurrent faults), and pte mapped but not yet locked.
3449 * We return with mmap_sem still held, but pte unmapped and unlocked.
3451 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3452 unsigned long address, pte_t *page_table, pmd_t *pmd,
3453 unsigned int flags, pte_t orig_pte)
3455 pgoff_t pgoff;
3457 flags |= FAULT_FLAG_NONLINEAR;
3459 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3460 return 0;
3462 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3464 * Page table corrupted: show pte and kill process.
3466 print_bad_pte(vma, address, orig_pte, NULL);
3467 return VM_FAULT_SIGBUS;
3470 pgoff = pte_to_pgoff(orig_pte);
3471 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3474 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3475 unsigned long addr, int current_nid)
3477 get_page(page);
3479 count_vm_numa_event(NUMA_HINT_FAULTS);
3480 if (current_nid == numa_node_id())
3481 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3483 return mpol_misplaced(page, vma, addr);
3486 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3487 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3489 struct page *page = NULL;
3490 spinlock_t *ptl;
3491 int current_nid = -1;
3492 int target_nid;
3493 bool migrated = false;
3496 * The "pte" at this point cannot be used safely without
3497 * validation through pte_unmap_same(). It's of NUMA type but
3498 * the pfn may be screwed if the read is non atomic.
3500 * ptep_modify_prot_start is not called as this is clearing
3501 * the _PAGE_NUMA bit and it is not really expected that there
3502 * would be concurrent hardware modifications to the PTE.
3504 ptl = pte_lockptr(mm, pmd);
3505 spin_lock(ptl);
3506 if (unlikely(!pte_same(*ptep, pte))) {
3507 pte_unmap_unlock(ptep, ptl);
3508 goto out;
3511 pte = pte_mknonnuma(pte);
3512 set_pte_at(mm, addr, ptep, pte);
3513 update_mmu_cache(vma, addr, ptep);
3515 page = vm_normal_page(vma, addr, pte);
3516 if (!page) {
3517 pte_unmap_unlock(ptep, ptl);
3518 return 0;
3521 current_nid = page_to_nid(page);
3522 target_nid = numa_migrate_prep(page, vma, addr, current_nid);
3523 pte_unmap_unlock(ptep, ptl);
3524 if (target_nid == -1) {
3526 * Account for the fault against the current node if it not
3527 * being replaced regardless of where the page is located.
3529 current_nid = numa_node_id();
3530 put_page(page);
3531 goto out;
3534 /* Migrate to the requested node */
3535 migrated = migrate_misplaced_page(page, target_nid);
3536 if (migrated)
3537 current_nid = target_nid;
3539 out:
3540 if (current_nid != -1)
3541 task_numa_fault(current_nid, 1, migrated);
3542 return 0;
3545 /* NUMA hinting page fault entry point for regular pmds */
3546 #ifdef CONFIG_NUMA_BALANCING
3547 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3548 unsigned long addr, pmd_t *pmdp)
3550 pmd_t pmd;
3551 pte_t *pte, *orig_pte;
3552 unsigned long _addr = addr & PMD_MASK;
3553 unsigned long offset;
3554 spinlock_t *ptl;
3555 bool numa = false;
3556 int local_nid = numa_node_id();
3558 spin_lock(&mm->page_table_lock);
3559 pmd = *pmdp;
3560 if (pmd_numa(pmd)) {
3561 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3562 numa = true;
3564 spin_unlock(&mm->page_table_lock);
3566 if (!numa)
3567 return 0;
3569 /* we're in a page fault so some vma must be in the range */
3570 BUG_ON(!vma);
3571 BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3572 offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3573 VM_BUG_ON(offset >= PMD_SIZE);
3574 orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3575 pte += offset >> PAGE_SHIFT;
3576 for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3577 pte_t pteval = *pte;
3578 struct page *page;
3579 int curr_nid = local_nid;
3580 int target_nid;
3581 bool migrated;
3582 if (!pte_present(pteval))
3583 continue;
3584 if (!pte_numa(pteval))
3585 continue;
3586 if (addr >= vma->vm_end) {
3587 vma = find_vma(mm, addr);
3588 /* there's a pte present so there must be a vma */
3589 BUG_ON(!vma);
3590 BUG_ON(addr < vma->vm_start);
3592 if (pte_numa(pteval)) {
3593 pteval = pte_mknonnuma(pteval);
3594 set_pte_at(mm, addr, pte, pteval);
3596 page = vm_normal_page(vma, addr, pteval);
3597 if (unlikely(!page))
3598 continue;
3599 /* only check non-shared pages */
3600 if (unlikely(page_mapcount(page) != 1))
3601 continue;
3604 * Note that the NUMA fault is later accounted to either
3605 * the node that is currently running or where the page is
3606 * migrated to.
3608 curr_nid = local_nid;
3609 target_nid = numa_migrate_prep(page, vma, addr,
3610 page_to_nid(page));
3611 if (target_nid == -1) {
3612 put_page(page);
3613 continue;
3616 /* Migrate to the requested node */
3617 pte_unmap_unlock(pte, ptl);
3618 migrated = migrate_misplaced_page(page, target_nid);
3619 if (migrated)
3620 curr_nid = target_nid;
3621 task_numa_fault(curr_nid, 1, migrated);
3623 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3625 pte_unmap_unlock(orig_pte, ptl);
3627 return 0;
3629 #else
3630 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3631 unsigned long addr, pmd_t *pmdp)
3633 BUG();
3634 return 0;
3636 #endif /* CONFIG_NUMA_BALANCING */
3639 * These routines also need to handle stuff like marking pages dirty
3640 * and/or accessed for architectures that don't do it in hardware (most
3641 * RISC architectures). The early dirtying is also good on the i386.
3643 * There is also a hook called "update_mmu_cache()" that architectures
3644 * with external mmu caches can use to update those (ie the Sparc or
3645 * PowerPC hashed page tables that act as extended TLBs).
3647 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3648 * but allow concurrent faults), and pte mapped but not yet locked.
3649 * We return with mmap_sem still held, but pte unmapped and unlocked.
3651 int handle_pte_fault(struct mm_struct *mm,
3652 struct vm_area_struct *vma, unsigned long address,
3653 pte_t *pte, pmd_t *pmd, unsigned int flags)
3655 pte_t entry;
3656 spinlock_t *ptl;
3658 entry = *pte;
3659 if (!pte_present(entry)) {
3660 if (pte_none(entry)) {
3661 if (vma->vm_ops) {
3662 if (likely(vma->vm_ops->fault))
3663 return do_linear_fault(mm, vma, address,
3664 pte, pmd, flags, entry);
3666 return do_anonymous_page(mm, vma, address,
3667 pte, pmd, flags);
3669 if (pte_file(entry))
3670 return do_nonlinear_fault(mm, vma, address,
3671 pte, pmd, flags, entry);
3672 return do_swap_page(mm, vma, address,
3673 pte, pmd, flags, entry);
3676 if (pte_numa(entry))
3677 return do_numa_page(mm, vma, address, entry, pte, pmd);
3679 ptl = pte_lockptr(mm, pmd);
3680 spin_lock(ptl);
3681 if (unlikely(!pte_same(*pte, entry)))
3682 goto unlock;
3683 if (flags & FAULT_FLAG_WRITE) {
3684 if (!pte_write(entry))
3685 return do_wp_page(mm, vma, address,
3686 pte, pmd, ptl, entry);
3687 entry = pte_mkdirty(entry);
3689 entry = pte_mkyoung(entry);
3690 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3691 update_mmu_cache(vma, address, pte);
3692 } else {
3694 * This is needed only for protection faults but the arch code
3695 * is not yet telling us if this is a protection fault or not.
3696 * This still avoids useless tlb flushes for .text page faults
3697 * with threads.
3699 if (flags & FAULT_FLAG_WRITE)
3700 flush_tlb_fix_spurious_fault(vma, address);
3702 unlock:
3703 pte_unmap_unlock(pte, ptl);
3704 return 0;
3708 * By the time we get here, we already hold the mm semaphore
3710 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3711 unsigned long address, unsigned int flags)
3713 pgd_t *pgd;
3714 pud_t *pud;
3715 pmd_t *pmd;
3716 pte_t *pte;
3718 __set_current_state(TASK_RUNNING);
3720 count_vm_event(PGFAULT);
3721 mem_cgroup_count_vm_event(mm, PGFAULT);
3723 /* do counter updates before entering really critical section. */
3724 check_sync_rss_stat(current);
3726 if (unlikely(is_vm_hugetlb_page(vma)))
3727 return hugetlb_fault(mm, vma, address, flags);
3729 retry:
3730 pgd = pgd_offset(mm, address);
3731 pud = pud_alloc(mm, pgd, address);
3732 if (!pud)
3733 return VM_FAULT_OOM;
3734 pmd = pmd_alloc(mm, pud, address);
3735 if (!pmd)
3736 return VM_FAULT_OOM;
3737 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3738 if (!vma->vm_ops)
3739 return do_huge_pmd_anonymous_page(mm, vma, address,
3740 pmd, flags);
3741 } else {
3742 pmd_t orig_pmd = *pmd;
3743 int ret;
3745 barrier();
3746 if (pmd_trans_huge(orig_pmd)) {
3747 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3750 * If the pmd is splitting, return and retry the
3751 * the fault. Alternative: wait until the split
3752 * is done, and goto retry.
3754 if (pmd_trans_splitting(orig_pmd))
3755 return 0;
3757 if (pmd_numa(orig_pmd))
3758 return do_huge_pmd_numa_page(mm, vma, address,
3759 orig_pmd, pmd);
3761 if (dirty && !pmd_write(orig_pmd)) {
3762 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3763 orig_pmd);
3765 * If COW results in an oom, the huge pmd will
3766 * have been split, so retry the fault on the
3767 * pte for a smaller charge.
3769 if (unlikely(ret & VM_FAULT_OOM))
3770 goto retry;
3771 return ret;
3772 } else {
3773 huge_pmd_set_accessed(mm, vma, address, pmd,
3774 orig_pmd, dirty);
3777 return 0;
3781 if (pmd_numa(*pmd))
3782 return do_pmd_numa_page(mm, vma, address, pmd);
3785 * Use __pte_alloc instead of pte_alloc_map, because we can't
3786 * run pte_offset_map on the pmd, if an huge pmd could
3787 * materialize from under us from a different thread.
3789 if (unlikely(pmd_none(*pmd)) &&
3790 unlikely(__pte_alloc(mm, vma, pmd, address)))
3791 return VM_FAULT_OOM;
3792 /* if an huge pmd materialized from under us just retry later */
3793 if (unlikely(pmd_trans_huge(*pmd)))
3794 return 0;
3796 * A regular pmd is established and it can't morph into a huge pmd
3797 * from under us anymore at this point because we hold the mmap_sem
3798 * read mode and khugepaged takes it in write mode. So now it's
3799 * safe to run pte_offset_map().
3801 pte = pte_offset_map(pmd, address);
3803 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3806 #ifndef __PAGETABLE_PUD_FOLDED
3808 * Allocate page upper directory.
3809 * We've already handled the fast-path in-line.
3811 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3813 pud_t *new = pud_alloc_one(mm, address);
3814 if (!new)
3815 return -ENOMEM;
3817 smp_wmb(); /* See comment in __pte_alloc */
3819 spin_lock(&mm->page_table_lock);
3820 if (pgd_present(*pgd)) /* Another has populated it */
3821 pud_free(mm, new);
3822 else
3823 pgd_populate(mm, pgd, new);
3824 spin_unlock(&mm->page_table_lock);
3825 return 0;
3827 #endif /* __PAGETABLE_PUD_FOLDED */
3829 #ifndef __PAGETABLE_PMD_FOLDED
3831 * Allocate page middle directory.
3832 * We've already handled the fast-path in-line.
3834 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3836 pmd_t *new = pmd_alloc_one(mm, address);
3837 if (!new)
3838 return -ENOMEM;
3840 smp_wmb(); /* See comment in __pte_alloc */
3842 spin_lock(&mm->page_table_lock);
3843 #ifndef __ARCH_HAS_4LEVEL_HACK
3844 if (pud_present(*pud)) /* Another has populated it */
3845 pmd_free(mm, new);
3846 else
3847 pud_populate(mm, pud, new);
3848 #else
3849 if (pgd_present(*pud)) /* Another has populated it */
3850 pmd_free(mm, new);
3851 else
3852 pgd_populate(mm, pud, new);
3853 #endif /* __ARCH_HAS_4LEVEL_HACK */
3854 spin_unlock(&mm->page_table_lock);
3855 return 0;
3857 #endif /* __PAGETABLE_PMD_FOLDED */
3859 #if !defined(__HAVE_ARCH_GATE_AREA)
3861 #if defined(AT_SYSINFO_EHDR)
3862 static struct vm_area_struct gate_vma;
3864 static int __init gate_vma_init(void)
3866 gate_vma.vm_mm = NULL;
3867 gate_vma.vm_start = FIXADDR_USER_START;
3868 gate_vma.vm_end = FIXADDR_USER_END;
3869 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3870 gate_vma.vm_page_prot = __P101;
3872 return 0;
3874 __initcall(gate_vma_init);
3875 #endif
3877 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3879 #ifdef AT_SYSINFO_EHDR
3880 return &gate_vma;
3881 #else
3882 return NULL;
3883 #endif
3886 int in_gate_area_no_mm(unsigned long addr)
3888 #ifdef AT_SYSINFO_EHDR
3889 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3890 return 1;
3891 #endif
3892 return 0;
3895 #endif /* __HAVE_ARCH_GATE_AREA */
3897 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3898 pte_t **ptepp, spinlock_t **ptlp)
3900 pgd_t *pgd;
3901 pud_t *pud;
3902 pmd_t *pmd;
3903 pte_t *ptep;
3905 pgd = pgd_offset(mm, address);
3906 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3907 goto out;
3909 pud = pud_offset(pgd, address);
3910 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3911 goto out;
3913 pmd = pmd_offset(pud, address);
3914 VM_BUG_ON(pmd_trans_huge(*pmd));
3915 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3916 goto out;
3918 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3919 if (pmd_huge(*pmd))
3920 goto out;
3922 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3923 if (!ptep)
3924 goto out;
3925 if (!pte_present(*ptep))
3926 goto unlock;
3927 *ptepp = ptep;
3928 return 0;
3929 unlock:
3930 pte_unmap_unlock(ptep, *ptlp);
3931 out:
3932 return -EINVAL;
3935 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3936 pte_t **ptepp, spinlock_t **ptlp)
3938 int res;
3940 /* (void) is needed to make gcc happy */
3941 (void) __cond_lock(*ptlp,
3942 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3943 return res;
3947 * follow_pfn - look up PFN at a user virtual address
3948 * @vma: memory mapping
3949 * @address: user virtual address
3950 * @pfn: location to store found PFN
3952 * Only IO mappings and raw PFN mappings are allowed.
3954 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3956 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3957 unsigned long *pfn)
3959 int ret = -EINVAL;
3960 spinlock_t *ptl;
3961 pte_t *ptep;
3963 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3964 return ret;
3966 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3967 if (ret)
3968 return ret;
3969 *pfn = pte_pfn(*ptep);
3970 pte_unmap_unlock(ptep, ptl);
3971 return 0;
3973 EXPORT_SYMBOL(follow_pfn);
3975 #ifdef CONFIG_HAVE_IOREMAP_PROT
3976 int follow_phys(struct vm_area_struct *vma,
3977 unsigned long address, unsigned int flags,
3978 unsigned long *prot, resource_size_t *phys)
3980 int ret = -EINVAL;
3981 pte_t *ptep, pte;
3982 spinlock_t *ptl;
3984 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3985 goto out;
3987 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3988 goto out;
3989 pte = *ptep;
3991 if ((flags & FOLL_WRITE) && !pte_write(pte))
3992 goto unlock;
3994 *prot = pgprot_val(pte_pgprot(pte));
3995 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3997 ret = 0;
3998 unlock:
3999 pte_unmap_unlock(ptep, ptl);
4000 out:
4001 return ret;
4004 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4005 void *buf, int len, int write)
4007 resource_size_t phys_addr;
4008 unsigned long prot = 0;
4009 void __iomem *maddr;
4010 int offset = addr & (PAGE_SIZE-1);
4012 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4013 return -EINVAL;
4015 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4016 if (write)
4017 memcpy_toio(maddr + offset, buf, len);
4018 else
4019 memcpy_fromio(buf, maddr + offset, len);
4020 iounmap(maddr);
4022 return len;
4024 #endif
4027 * Access another process' address space as given in mm. If non-NULL, use the
4028 * given task for page fault accounting.
4030 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4031 unsigned long addr, void *buf, int len, int write)
4033 struct vm_area_struct *vma;
4034 void *old_buf = buf;
4036 down_read(&mm->mmap_sem);
4037 /* ignore errors, just check how much was successfully transferred */
4038 while (len) {
4039 int bytes, ret, offset;
4040 void *maddr;
4041 struct page *page = NULL;
4043 ret = get_user_pages(tsk, mm, addr, 1,
4044 write, 1, &page, &vma);
4045 if (ret <= 0) {
4047 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4048 * we can access using slightly different code.
4050 #ifdef CONFIG_HAVE_IOREMAP_PROT
4051 vma = find_vma(mm, addr);
4052 if (!vma || vma->vm_start > addr)
4053 break;
4054 if (vma->vm_ops && vma->vm_ops->access)
4055 ret = vma->vm_ops->access(vma, addr, buf,
4056 len, write);
4057 if (ret <= 0)
4058 #endif
4059 break;
4060 bytes = ret;
4061 } else {
4062 bytes = len;
4063 offset = addr & (PAGE_SIZE-1);
4064 if (bytes > PAGE_SIZE-offset)
4065 bytes = PAGE_SIZE-offset;
4067 maddr = kmap(page);
4068 if (write) {
4069 copy_to_user_page(vma, page, addr,
4070 maddr + offset, buf, bytes);
4071 set_page_dirty_lock(page);
4072 } else {
4073 copy_from_user_page(vma, page, addr,
4074 buf, maddr + offset, bytes);
4076 kunmap(page);
4077 page_cache_release(page);
4079 len -= bytes;
4080 buf += bytes;
4081 addr += bytes;
4083 up_read(&mm->mmap_sem);
4085 return buf - old_buf;
4089 * access_remote_vm - access another process' address space
4090 * @mm: the mm_struct of the target address space
4091 * @addr: start address to access
4092 * @buf: source or destination buffer
4093 * @len: number of bytes to transfer
4094 * @write: whether the access is a write
4096 * The caller must hold a reference on @mm.
4098 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4099 void *buf, int len, int write)
4101 return __access_remote_vm(NULL, mm, addr, buf, len, write);
4105 * Access another process' address space.
4106 * Source/target buffer must be kernel space,
4107 * Do not walk the page table directly, use get_user_pages
4109 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4110 void *buf, int len, int write)
4112 struct mm_struct *mm;
4113 int ret;
4115 mm = get_task_mm(tsk);
4116 if (!mm)
4117 return 0;
4119 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4120 mmput(mm);
4122 return ret;
4126 * Print the name of a VMA.
4128 void print_vma_addr(char *prefix, unsigned long ip)
4130 struct mm_struct *mm = current->mm;
4131 struct vm_area_struct *vma;
4134 * Do not print if we are in atomic
4135 * contexts (in exception stacks, etc.):
4137 if (preempt_count())
4138 return;
4140 down_read(&mm->mmap_sem);
4141 vma = find_vma(mm, ip);
4142 if (vma && vma->vm_file) {
4143 struct file *f = vma->vm_file;
4144 char *buf = (char *)__get_free_page(GFP_KERNEL);
4145 if (buf) {
4146 char *p;
4148 p = d_path(&f->f_path, buf, PAGE_SIZE);
4149 if (IS_ERR(p))
4150 p = "?";
4151 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4152 vma->vm_start,
4153 vma->vm_end - vma->vm_start);
4154 free_page((unsigned long)buf);
4157 up_read(&mm->mmap_sem);
4160 #ifdef CONFIG_PROVE_LOCKING
4161 void might_fault(void)
4164 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4165 * holding the mmap_sem, this is safe because kernel memory doesn't
4166 * get paged out, therefore we'll never actually fault, and the
4167 * below annotations will generate false positives.
4169 if (segment_eq(get_fs(), KERNEL_DS))
4170 return;
4172 might_sleep();
4174 * it would be nicer only to annotate paths which are not under
4175 * pagefault_disable, however that requires a larger audit and
4176 * providing helpers like get_user_atomic.
4178 if (!in_atomic() && current->mm)
4179 might_lock_read(&current->mm->mmap_sem);
4181 EXPORT_SYMBOL(might_fault);
4182 #endif
4184 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4185 static void clear_gigantic_page(struct page *page,
4186 unsigned long addr,
4187 unsigned int pages_per_huge_page)
4189 int i;
4190 struct page *p = page;
4192 might_sleep();
4193 for (i = 0; i < pages_per_huge_page;
4194 i++, p = mem_map_next(p, page, i)) {
4195 cond_resched();
4196 clear_user_highpage(p, addr + i * PAGE_SIZE);
4199 void clear_huge_page(struct page *page,
4200 unsigned long addr, unsigned int pages_per_huge_page)
4202 int i;
4204 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4205 clear_gigantic_page(page, addr, pages_per_huge_page);
4206 return;
4209 might_sleep();
4210 for (i = 0; i < pages_per_huge_page; i++) {
4211 cond_resched();
4212 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4216 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4217 unsigned long addr,
4218 struct vm_area_struct *vma,
4219 unsigned int pages_per_huge_page)
4221 int i;
4222 struct page *dst_base = dst;
4223 struct page *src_base = src;
4225 for (i = 0; i < pages_per_huge_page; ) {
4226 cond_resched();
4227 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4229 i++;
4230 dst = mem_map_next(dst, dst_base, i);
4231 src = mem_map_next(src, src_base, i);
4235 void copy_user_huge_page(struct page *dst, struct page *src,
4236 unsigned long addr, struct vm_area_struct *vma,
4237 unsigned int pages_per_huge_page)
4239 int i;
4241 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4242 copy_user_gigantic_page(dst, src, addr, vma,
4243 pages_per_huge_page);
4244 return;
4247 might_sleep();
4248 for (i = 0; i < pages_per_huge_page; i++) {
4249 cond_resched();
4250 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4253 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */