can: sja1000: Replace mdelay with usleep_range in pcan_add_channels
[linux/fpc-iii.git] / arch / s390 / kernel / smp.c
blob2f8f7d7dd9a8387b2152999e5331f478bebabbbb
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SMP related functions
5 * Copyright IBM Corp. 1999, 2012
6 * Author(s): Denis Joseph Barrow,
7 * Martin Schwidefsky <schwidefsky@de.ibm.com>,
8 * Heiko Carstens <heiko.carstens@de.ibm.com>,
10 * based on other smp stuff by
11 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
12 * (c) 1998 Ingo Molnar
14 * The code outside of smp.c uses logical cpu numbers, only smp.c does
15 * the translation of logical to physical cpu ids. All new code that
16 * operates on physical cpu numbers needs to go into smp.c.
19 #define KMSG_COMPONENT "cpu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
22 #include <linux/workqueue.h>
23 #include <linux/bootmem.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/irqflags.h>
33 #include <linux/cpu.h>
34 #include <linux/slab.h>
35 #include <linux/sched/hotplug.h>
36 #include <linux/sched/task_stack.h>
37 #include <linux/crash_dump.h>
38 #include <linux/memblock.h>
39 #include <linux/kprobes.h>
40 #include <asm/asm-offsets.h>
41 #include <asm/diag.h>
42 #include <asm/switch_to.h>
43 #include <asm/facility.h>
44 #include <asm/ipl.h>
45 #include <asm/setup.h>
46 #include <asm/irq.h>
47 #include <asm/tlbflush.h>
48 #include <asm/vtimer.h>
49 #include <asm/lowcore.h>
50 #include <asm/sclp.h>
51 #include <asm/vdso.h>
52 #include <asm/debug.h>
53 #include <asm/os_info.h>
54 #include <asm/sigp.h>
55 #include <asm/idle.h>
56 #include <asm/nmi.h>
57 #include <asm/topology.h>
58 #include "entry.h"
60 enum {
61 ec_schedule = 0,
62 ec_call_function_single,
63 ec_stop_cpu,
66 enum {
67 CPU_STATE_STANDBY,
68 CPU_STATE_CONFIGURED,
71 static DEFINE_PER_CPU(struct cpu *, cpu_device);
73 struct pcpu {
74 struct lowcore *lowcore; /* lowcore page(s) for the cpu */
75 unsigned long ec_mask; /* bit mask for ec_xxx functions */
76 unsigned long ec_clk; /* sigp timestamp for ec_xxx */
77 signed char state; /* physical cpu state */
78 signed char polarization; /* physical polarization */
79 u16 address; /* physical cpu address */
82 static u8 boot_core_type;
83 static struct pcpu pcpu_devices[NR_CPUS];
85 unsigned int smp_cpu_mt_shift;
86 EXPORT_SYMBOL(smp_cpu_mt_shift);
88 unsigned int smp_cpu_mtid;
89 EXPORT_SYMBOL(smp_cpu_mtid);
91 #ifdef CONFIG_CRASH_DUMP
92 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
93 #endif
95 static unsigned int smp_max_threads __initdata = -1U;
97 static int __init early_nosmt(char *s)
99 smp_max_threads = 1;
100 return 0;
102 early_param("nosmt", early_nosmt);
104 static int __init early_smt(char *s)
106 get_option(&s, &smp_max_threads);
107 return 0;
109 early_param("smt", early_smt);
112 * The smp_cpu_state_mutex must be held when changing the state or polarization
113 * member of a pcpu data structure within the pcpu_devices arreay.
115 DEFINE_MUTEX(smp_cpu_state_mutex);
118 * Signal processor helper functions.
120 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
122 int cc;
124 while (1) {
125 cc = __pcpu_sigp(addr, order, parm, NULL);
126 if (cc != SIGP_CC_BUSY)
127 return cc;
128 cpu_relax();
132 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
134 int cc, retry;
136 for (retry = 0; ; retry++) {
137 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
138 if (cc != SIGP_CC_BUSY)
139 break;
140 if (retry >= 3)
141 udelay(10);
143 return cc;
146 static inline int pcpu_stopped(struct pcpu *pcpu)
148 u32 uninitialized_var(status);
150 if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
151 0, &status) != SIGP_CC_STATUS_STORED)
152 return 0;
153 return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
156 static inline int pcpu_running(struct pcpu *pcpu)
158 if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
159 0, NULL) != SIGP_CC_STATUS_STORED)
160 return 1;
161 /* Status stored condition code is equivalent to cpu not running. */
162 return 0;
166 * Find struct pcpu by cpu address.
168 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
170 int cpu;
172 for_each_cpu(cpu, mask)
173 if (pcpu_devices[cpu].address == address)
174 return pcpu_devices + cpu;
175 return NULL;
178 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
180 int order;
182 if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
183 return;
184 order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
185 pcpu->ec_clk = get_tod_clock_fast();
186 pcpu_sigp_retry(pcpu, order, 0);
189 #define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
190 #define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
192 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
194 unsigned long async_stack, panic_stack;
195 struct lowcore *lc;
197 if (pcpu != &pcpu_devices[0]) {
198 pcpu->lowcore = (struct lowcore *)
199 __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
200 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
201 panic_stack = __get_free_page(GFP_KERNEL);
202 if (!pcpu->lowcore || !panic_stack || !async_stack)
203 goto out;
204 } else {
205 async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
206 panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
208 lc = pcpu->lowcore;
209 memcpy(lc, &S390_lowcore, 512);
210 memset((char *) lc + 512, 0, sizeof(*lc) - 512);
211 lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
212 lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
213 lc->cpu_nr = cpu;
214 lc->spinlock_lockval = arch_spin_lockval(cpu);
215 lc->spinlock_index = 0;
216 lc->br_r1_trampoline = 0x07f1; /* br %r1 */
217 if (nmi_alloc_per_cpu(lc))
218 goto out;
219 if (vdso_alloc_per_cpu(lc))
220 goto out_mcesa;
221 lowcore_ptr[cpu] = lc;
222 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
223 return 0;
225 out_mcesa:
226 nmi_free_per_cpu(lc);
227 out:
228 if (pcpu != &pcpu_devices[0]) {
229 free_page(panic_stack);
230 free_pages(async_stack, ASYNC_ORDER);
231 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
233 return -ENOMEM;
236 #ifdef CONFIG_HOTPLUG_CPU
238 static void pcpu_free_lowcore(struct pcpu *pcpu)
240 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
241 lowcore_ptr[pcpu - pcpu_devices] = NULL;
242 vdso_free_per_cpu(pcpu->lowcore);
243 nmi_free_per_cpu(pcpu->lowcore);
244 if (pcpu == &pcpu_devices[0])
245 return;
246 free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
247 free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
248 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
251 #endif /* CONFIG_HOTPLUG_CPU */
253 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
255 struct lowcore *lc = pcpu->lowcore;
257 cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
258 cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
259 lc->cpu_nr = cpu;
260 lc->spinlock_lockval = arch_spin_lockval(cpu);
261 lc->spinlock_index = 0;
262 lc->percpu_offset = __per_cpu_offset[cpu];
263 lc->kernel_asce = S390_lowcore.kernel_asce;
264 lc->machine_flags = S390_lowcore.machine_flags;
265 lc->user_timer = lc->system_timer = lc->steal_timer = 0;
266 __ctl_store(lc->cregs_save_area, 0, 15);
267 save_access_regs((unsigned int *) lc->access_regs_save_area);
268 memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
269 sizeof(lc->stfle_fac_list));
270 memcpy(lc->alt_stfle_fac_list, S390_lowcore.alt_stfle_fac_list,
271 sizeof(lc->alt_stfle_fac_list));
272 arch_spin_lock_setup(cpu);
275 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
277 struct lowcore *lc = pcpu->lowcore;
279 lc->kernel_stack = (unsigned long) task_stack_page(tsk)
280 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
281 lc->current_task = (unsigned long) tsk;
282 lc->lpp = LPP_MAGIC;
283 lc->current_pid = tsk->pid;
284 lc->user_timer = tsk->thread.user_timer;
285 lc->guest_timer = tsk->thread.guest_timer;
286 lc->system_timer = tsk->thread.system_timer;
287 lc->hardirq_timer = tsk->thread.hardirq_timer;
288 lc->softirq_timer = tsk->thread.softirq_timer;
289 lc->steal_timer = 0;
292 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
294 struct lowcore *lc = pcpu->lowcore;
296 lc->restart_stack = lc->kernel_stack;
297 lc->restart_fn = (unsigned long) func;
298 lc->restart_data = (unsigned long) data;
299 lc->restart_source = -1UL;
300 pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
304 * Call function via PSW restart on pcpu and stop the current cpu.
306 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
307 void *data, unsigned long stack)
309 struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
310 unsigned long source_cpu = stap();
312 __load_psw_mask(PSW_KERNEL_BITS);
313 if (pcpu->address == source_cpu)
314 func(data); /* should not return */
315 /* Stop target cpu (if func returns this stops the current cpu). */
316 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
317 /* Restart func on the target cpu and stop the current cpu. */
318 mem_assign_absolute(lc->restart_stack, stack);
319 mem_assign_absolute(lc->restart_fn, (unsigned long) func);
320 mem_assign_absolute(lc->restart_data, (unsigned long) data);
321 mem_assign_absolute(lc->restart_source, source_cpu);
322 __bpon();
323 asm volatile(
324 "0: sigp 0,%0,%2 # sigp restart to target cpu\n"
325 " brc 2,0b # busy, try again\n"
326 "1: sigp 0,%1,%3 # sigp stop to current cpu\n"
327 " brc 2,1b # busy, try again\n"
328 : : "d" (pcpu->address), "d" (source_cpu),
329 "K" (SIGP_RESTART), "K" (SIGP_STOP)
330 : "0", "1", "cc");
331 for (;;) ;
335 * Enable additional logical cpus for multi-threading.
337 static int pcpu_set_smt(unsigned int mtid)
339 int cc;
341 if (smp_cpu_mtid == mtid)
342 return 0;
343 cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
344 if (cc == 0) {
345 smp_cpu_mtid = mtid;
346 smp_cpu_mt_shift = 0;
347 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
348 smp_cpu_mt_shift++;
349 pcpu_devices[0].address = stap();
351 return cc;
355 * Call function on an online CPU.
357 void smp_call_online_cpu(void (*func)(void *), void *data)
359 struct pcpu *pcpu;
361 /* Use the current cpu if it is online. */
362 pcpu = pcpu_find_address(cpu_online_mask, stap());
363 if (!pcpu)
364 /* Use the first online cpu. */
365 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
366 pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
370 * Call function on the ipl CPU.
372 void smp_call_ipl_cpu(void (*func)(void *), void *data)
374 pcpu_delegate(&pcpu_devices[0], func, data,
375 pcpu_devices->lowcore->panic_stack -
376 PANIC_FRAME_OFFSET + PAGE_SIZE);
379 int smp_find_processor_id(u16 address)
381 int cpu;
383 for_each_present_cpu(cpu)
384 if (pcpu_devices[cpu].address == address)
385 return cpu;
386 return -1;
389 bool arch_vcpu_is_preempted(int cpu)
391 if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
392 return false;
393 if (pcpu_running(pcpu_devices + cpu))
394 return false;
395 return true;
397 EXPORT_SYMBOL(arch_vcpu_is_preempted);
399 void smp_yield_cpu(int cpu)
401 if (MACHINE_HAS_DIAG9C) {
402 diag_stat_inc_norecursion(DIAG_STAT_X09C);
403 asm volatile("diag %0,0,0x9c"
404 : : "d" (pcpu_devices[cpu].address));
405 } else if (MACHINE_HAS_DIAG44) {
406 diag_stat_inc_norecursion(DIAG_STAT_X044);
407 asm volatile("diag 0,0,0x44");
412 * Send cpus emergency shutdown signal. This gives the cpus the
413 * opportunity to complete outstanding interrupts.
415 void notrace smp_emergency_stop(void)
417 cpumask_t cpumask;
418 u64 end;
419 int cpu;
421 cpumask_copy(&cpumask, cpu_online_mask);
422 cpumask_clear_cpu(smp_processor_id(), &cpumask);
424 end = get_tod_clock() + (1000000UL << 12);
425 for_each_cpu(cpu, &cpumask) {
426 struct pcpu *pcpu = pcpu_devices + cpu;
427 set_bit(ec_stop_cpu, &pcpu->ec_mask);
428 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
429 0, NULL) == SIGP_CC_BUSY &&
430 get_tod_clock() < end)
431 cpu_relax();
433 while (get_tod_clock() < end) {
434 for_each_cpu(cpu, &cpumask)
435 if (pcpu_stopped(pcpu_devices + cpu))
436 cpumask_clear_cpu(cpu, &cpumask);
437 if (cpumask_empty(&cpumask))
438 break;
439 cpu_relax();
442 NOKPROBE_SYMBOL(smp_emergency_stop);
445 * Stop all cpus but the current one.
447 void smp_send_stop(void)
449 int cpu;
451 /* Disable all interrupts/machine checks */
452 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
453 trace_hardirqs_off();
455 debug_set_critical();
457 if (oops_in_progress)
458 smp_emergency_stop();
460 /* stop all processors */
461 for_each_online_cpu(cpu) {
462 if (cpu == smp_processor_id())
463 continue;
464 pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
465 while (!pcpu_stopped(pcpu_devices + cpu))
466 cpu_relax();
471 * This is the main routine where commands issued by other
472 * cpus are handled.
474 static void smp_handle_ext_call(void)
476 unsigned long bits;
478 /* handle bit signal external calls */
479 bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
480 if (test_bit(ec_stop_cpu, &bits))
481 smp_stop_cpu();
482 if (test_bit(ec_schedule, &bits))
483 scheduler_ipi();
484 if (test_bit(ec_call_function_single, &bits))
485 generic_smp_call_function_single_interrupt();
488 static void do_ext_call_interrupt(struct ext_code ext_code,
489 unsigned int param32, unsigned long param64)
491 inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
492 smp_handle_ext_call();
495 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
497 int cpu;
499 for_each_cpu(cpu, mask)
500 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
503 void arch_send_call_function_single_ipi(int cpu)
505 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
509 * this function sends a 'reschedule' IPI to another CPU.
510 * it goes straight through and wastes no time serializing
511 * anything. Worst case is that we lose a reschedule ...
513 void smp_send_reschedule(int cpu)
515 pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
519 * parameter area for the set/clear control bit callbacks
521 struct ec_creg_mask_parms {
522 unsigned long orval;
523 unsigned long andval;
524 int cr;
528 * callback for setting/clearing control bits
530 static void smp_ctl_bit_callback(void *info)
532 struct ec_creg_mask_parms *pp = info;
533 unsigned long cregs[16];
535 __ctl_store(cregs, 0, 15);
536 cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
537 __ctl_load(cregs, 0, 15);
541 * Set a bit in a control register of all cpus
543 void smp_ctl_set_bit(int cr, int bit)
545 struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
547 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
549 EXPORT_SYMBOL(smp_ctl_set_bit);
552 * Clear a bit in a control register of all cpus
554 void smp_ctl_clear_bit(int cr, int bit)
556 struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
558 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
560 EXPORT_SYMBOL(smp_ctl_clear_bit);
562 #ifdef CONFIG_CRASH_DUMP
564 int smp_store_status(int cpu)
566 struct pcpu *pcpu = pcpu_devices + cpu;
567 unsigned long pa;
569 pa = __pa(&pcpu->lowcore->floating_pt_save_area);
570 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
571 pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
572 return -EIO;
573 if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
574 return 0;
575 pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK);
576 if (MACHINE_HAS_GS)
577 pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK;
578 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
579 pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
580 return -EIO;
581 return 0;
585 * Collect CPU state of the previous, crashed system.
586 * There are four cases:
587 * 1) standard zfcp dump
588 * condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
589 * The state for all CPUs except the boot CPU needs to be collected
590 * with sigp stop-and-store-status. The boot CPU state is located in
591 * the absolute lowcore of the memory stored in the HSA. The zcore code
592 * will copy the boot CPU state from the HSA.
593 * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
594 * condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
595 * The state for all CPUs except the boot CPU needs to be collected
596 * with sigp stop-and-store-status. The firmware or the boot-loader
597 * stored the registers of the boot CPU in the absolute lowcore in the
598 * memory of the old system.
599 * 3) kdump and the old kernel did not store the CPU state,
600 * or stand-alone kdump for DASD
601 * condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
602 * The state for all CPUs except the boot CPU needs to be collected
603 * with sigp stop-and-store-status. The kexec code or the boot-loader
604 * stored the registers of the boot CPU in the memory of the old system.
605 * 4) kdump and the old kernel stored the CPU state
606 * condition: OLDMEM_BASE != NULL && is_kdump_kernel()
607 * This case does not exist for s390 anymore, setup_arch explicitly
608 * deactivates the elfcorehdr= kernel parameter
610 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
611 bool is_boot_cpu, unsigned long page)
613 __vector128 *vxrs = (__vector128 *) page;
615 if (is_boot_cpu)
616 vxrs = boot_cpu_vector_save_area;
617 else
618 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
619 save_area_add_vxrs(sa, vxrs);
622 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
623 bool is_boot_cpu, unsigned long page)
625 void *regs = (void *) page;
627 if (is_boot_cpu)
628 copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
629 else
630 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
631 save_area_add_regs(sa, regs);
634 void __init smp_save_dump_cpus(void)
636 int addr, boot_cpu_addr, max_cpu_addr;
637 struct save_area *sa;
638 unsigned long page;
639 bool is_boot_cpu;
641 if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
642 /* No previous system present, normal boot. */
643 return;
644 /* Allocate a page as dumping area for the store status sigps */
645 page = memblock_alloc_base(PAGE_SIZE, PAGE_SIZE, 1UL << 31);
646 /* Set multi-threading state to the previous system. */
647 pcpu_set_smt(sclp.mtid_prev);
648 boot_cpu_addr = stap();
649 max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
650 for (addr = 0; addr <= max_cpu_addr; addr++) {
651 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
652 SIGP_CC_NOT_OPERATIONAL)
653 continue;
654 is_boot_cpu = (addr == boot_cpu_addr);
655 /* Allocate save area */
656 sa = save_area_alloc(is_boot_cpu);
657 if (!sa)
658 panic("could not allocate memory for save area\n");
659 if (MACHINE_HAS_VX)
660 /* Get the vector registers */
661 smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
663 * For a zfcp dump OLDMEM_BASE == NULL and the registers
664 * of the boot CPU are stored in the HSA. To retrieve
665 * these registers an SCLP request is required which is
666 * done by drivers/s390/char/zcore.c:init_cpu_info()
668 if (!is_boot_cpu || OLDMEM_BASE)
669 /* Get the CPU registers */
670 smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
672 memblock_free(page, PAGE_SIZE);
673 diag308_reset();
674 pcpu_set_smt(0);
676 #endif /* CONFIG_CRASH_DUMP */
678 void smp_cpu_set_polarization(int cpu, int val)
680 pcpu_devices[cpu].polarization = val;
683 int smp_cpu_get_polarization(int cpu)
685 return pcpu_devices[cpu].polarization;
688 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
690 static int use_sigp_detection;
691 int address;
693 if (use_sigp_detection || sclp_get_core_info(info, early)) {
694 use_sigp_detection = 1;
695 for (address = 0;
696 address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
697 address += (1U << smp_cpu_mt_shift)) {
698 if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
699 SIGP_CC_NOT_OPERATIONAL)
700 continue;
701 info->core[info->configured].core_id =
702 address >> smp_cpu_mt_shift;
703 info->configured++;
705 info->combined = info->configured;
709 static int smp_add_present_cpu(int cpu);
711 static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
713 struct pcpu *pcpu;
714 cpumask_t avail;
715 int cpu, nr, i, j;
716 u16 address;
718 nr = 0;
719 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
720 cpu = cpumask_first(&avail);
721 for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
722 if (sclp.has_core_type && info->core[i].type != boot_core_type)
723 continue;
724 address = info->core[i].core_id << smp_cpu_mt_shift;
725 for (j = 0; j <= smp_cpu_mtid; j++) {
726 if (pcpu_find_address(cpu_present_mask, address + j))
727 continue;
728 pcpu = pcpu_devices + cpu;
729 pcpu->address = address + j;
730 pcpu->state =
731 (cpu >= info->configured*(smp_cpu_mtid + 1)) ?
732 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
733 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
734 set_cpu_present(cpu, true);
735 if (sysfs_add && smp_add_present_cpu(cpu) != 0)
736 set_cpu_present(cpu, false);
737 else
738 nr++;
739 cpu = cpumask_next(cpu, &avail);
740 if (cpu >= nr_cpu_ids)
741 break;
744 return nr;
747 void __init smp_detect_cpus(void)
749 unsigned int cpu, mtid, c_cpus, s_cpus;
750 struct sclp_core_info *info;
751 u16 address;
753 /* Get CPU information */
754 info = memblock_virt_alloc(sizeof(*info), 8);
755 smp_get_core_info(info, 1);
756 /* Find boot CPU type */
757 if (sclp.has_core_type) {
758 address = stap();
759 for (cpu = 0; cpu < info->combined; cpu++)
760 if (info->core[cpu].core_id == address) {
761 /* The boot cpu dictates the cpu type. */
762 boot_core_type = info->core[cpu].type;
763 break;
765 if (cpu >= info->combined)
766 panic("Could not find boot CPU type");
769 /* Set multi-threading state for the current system */
770 mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
771 mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
772 pcpu_set_smt(mtid);
774 /* Print number of CPUs */
775 c_cpus = s_cpus = 0;
776 for (cpu = 0; cpu < info->combined; cpu++) {
777 if (sclp.has_core_type &&
778 info->core[cpu].type != boot_core_type)
779 continue;
780 if (cpu < info->configured)
781 c_cpus += smp_cpu_mtid + 1;
782 else
783 s_cpus += smp_cpu_mtid + 1;
785 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
787 /* Add CPUs present at boot */
788 get_online_cpus();
789 __smp_rescan_cpus(info, 0);
790 put_online_cpus();
791 memblock_free_early((unsigned long)info, sizeof(*info));
795 * Activate a secondary processor.
797 static void smp_start_secondary(void *cpuvoid)
799 int cpu = smp_processor_id();
801 S390_lowcore.last_update_clock = get_tod_clock();
802 S390_lowcore.restart_stack = (unsigned long) restart_stack;
803 S390_lowcore.restart_fn = (unsigned long) do_restart;
804 S390_lowcore.restart_data = 0;
805 S390_lowcore.restart_source = -1UL;
806 restore_access_regs(S390_lowcore.access_regs_save_area);
807 __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
808 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
809 cpu_init();
810 preempt_disable();
811 init_cpu_timer();
812 vtime_init();
813 pfault_init();
814 notify_cpu_starting(cpu);
815 if (topology_cpu_dedicated(cpu))
816 set_cpu_flag(CIF_DEDICATED_CPU);
817 else
818 clear_cpu_flag(CIF_DEDICATED_CPU);
819 set_cpu_online(cpu, true);
820 inc_irq_stat(CPU_RST);
821 local_irq_enable();
822 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
825 /* Upping and downing of CPUs */
826 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
828 struct pcpu *pcpu;
829 int base, i, rc;
831 pcpu = pcpu_devices + cpu;
832 if (pcpu->state != CPU_STATE_CONFIGURED)
833 return -EIO;
834 base = smp_get_base_cpu(cpu);
835 for (i = 0; i <= smp_cpu_mtid; i++) {
836 if (base + i < nr_cpu_ids)
837 if (cpu_online(base + i))
838 break;
841 * If this is the first CPU of the core to get online
842 * do an initial CPU reset.
844 if (i > smp_cpu_mtid &&
845 pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
846 SIGP_CC_ORDER_CODE_ACCEPTED)
847 return -EIO;
849 rc = pcpu_alloc_lowcore(pcpu, cpu);
850 if (rc)
851 return rc;
852 pcpu_prepare_secondary(pcpu, cpu);
853 pcpu_attach_task(pcpu, tidle);
854 pcpu_start_fn(pcpu, smp_start_secondary, NULL);
855 /* Wait until cpu puts itself in the online & active maps */
856 while (!cpu_online(cpu))
857 cpu_relax();
858 return 0;
861 static unsigned int setup_possible_cpus __initdata;
863 static int __init _setup_possible_cpus(char *s)
865 get_option(&s, &setup_possible_cpus);
866 return 0;
868 early_param("possible_cpus", _setup_possible_cpus);
870 #ifdef CONFIG_HOTPLUG_CPU
872 int __cpu_disable(void)
874 unsigned long cregs[16];
876 /* Handle possible pending IPIs */
877 smp_handle_ext_call();
878 set_cpu_online(smp_processor_id(), false);
879 /* Disable pseudo page faults on this cpu. */
880 pfault_fini();
881 /* Disable interrupt sources via control register. */
882 __ctl_store(cregs, 0, 15);
883 cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */
884 cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */
885 cregs[14] &= ~0x1f000000UL; /* disable most machine checks */
886 __ctl_load(cregs, 0, 15);
887 clear_cpu_flag(CIF_NOHZ_DELAY);
888 return 0;
891 void __cpu_die(unsigned int cpu)
893 struct pcpu *pcpu;
895 /* Wait until target cpu is down */
896 pcpu = pcpu_devices + cpu;
897 while (!pcpu_stopped(pcpu))
898 cpu_relax();
899 pcpu_free_lowcore(pcpu);
900 cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
901 cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
904 void __noreturn cpu_die(void)
906 idle_task_exit();
907 __bpon();
908 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
909 for (;;) ;
912 #endif /* CONFIG_HOTPLUG_CPU */
914 void __init smp_fill_possible_mask(void)
916 unsigned int possible, sclp_max, cpu;
918 sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
919 sclp_max = min(smp_max_threads, sclp_max);
920 sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
921 possible = setup_possible_cpus ?: nr_cpu_ids;
922 possible = min(possible, sclp_max);
923 for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
924 set_cpu_possible(cpu, true);
927 void __init smp_prepare_cpus(unsigned int max_cpus)
929 /* request the 0x1201 emergency signal external interrupt */
930 if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
931 panic("Couldn't request external interrupt 0x1201");
932 /* request the 0x1202 external call external interrupt */
933 if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
934 panic("Couldn't request external interrupt 0x1202");
937 void __init smp_prepare_boot_cpu(void)
939 struct pcpu *pcpu = pcpu_devices;
941 WARN_ON(!cpu_present(0) || !cpu_online(0));
942 pcpu->state = CPU_STATE_CONFIGURED;
943 pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
944 S390_lowcore.percpu_offset = __per_cpu_offset[0];
945 smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
948 void __init smp_cpus_done(unsigned int max_cpus)
952 void __init smp_setup_processor_id(void)
954 pcpu_devices[0].address = stap();
955 S390_lowcore.cpu_nr = 0;
956 S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
957 S390_lowcore.spinlock_index = 0;
961 * the frequency of the profiling timer can be changed
962 * by writing a multiplier value into /proc/profile.
964 * usually you want to run this on all CPUs ;)
966 int setup_profiling_timer(unsigned int multiplier)
968 return 0;
971 #ifdef CONFIG_HOTPLUG_CPU
972 static ssize_t cpu_configure_show(struct device *dev,
973 struct device_attribute *attr, char *buf)
975 ssize_t count;
977 mutex_lock(&smp_cpu_state_mutex);
978 count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
979 mutex_unlock(&smp_cpu_state_mutex);
980 return count;
983 static ssize_t cpu_configure_store(struct device *dev,
984 struct device_attribute *attr,
985 const char *buf, size_t count)
987 struct pcpu *pcpu;
988 int cpu, val, rc, i;
989 char delim;
991 if (sscanf(buf, "%d %c", &val, &delim) != 1)
992 return -EINVAL;
993 if (val != 0 && val != 1)
994 return -EINVAL;
995 get_online_cpus();
996 mutex_lock(&smp_cpu_state_mutex);
997 rc = -EBUSY;
998 /* disallow configuration changes of online cpus and cpu 0 */
999 cpu = dev->id;
1000 cpu = smp_get_base_cpu(cpu);
1001 if (cpu == 0)
1002 goto out;
1003 for (i = 0; i <= smp_cpu_mtid; i++)
1004 if (cpu_online(cpu + i))
1005 goto out;
1006 pcpu = pcpu_devices + cpu;
1007 rc = 0;
1008 switch (val) {
1009 case 0:
1010 if (pcpu->state != CPU_STATE_CONFIGURED)
1011 break;
1012 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1013 if (rc)
1014 break;
1015 for (i = 0; i <= smp_cpu_mtid; i++) {
1016 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1017 continue;
1018 pcpu[i].state = CPU_STATE_STANDBY;
1019 smp_cpu_set_polarization(cpu + i,
1020 POLARIZATION_UNKNOWN);
1022 topology_expect_change();
1023 break;
1024 case 1:
1025 if (pcpu->state != CPU_STATE_STANDBY)
1026 break;
1027 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1028 if (rc)
1029 break;
1030 for (i = 0; i <= smp_cpu_mtid; i++) {
1031 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1032 continue;
1033 pcpu[i].state = CPU_STATE_CONFIGURED;
1034 smp_cpu_set_polarization(cpu + i,
1035 POLARIZATION_UNKNOWN);
1037 topology_expect_change();
1038 break;
1039 default:
1040 break;
1042 out:
1043 mutex_unlock(&smp_cpu_state_mutex);
1044 put_online_cpus();
1045 return rc ? rc : count;
1047 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1048 #endif /* CONFIG_HOTPLUG_CPU */
1050 static ssize_t show_cpu_address(struct device *dev,
1051 struct device_attribute *attr, char *buf)
1053 return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1055 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1057 static struct attribute *cpu_common_attrs[] = {
1058 #ifdef CONFIG_HOTPLUG_CPU
1059 &dev_attr_configure.attr,
1060 #endif
1061 &dev_attr_address.attr,
1062 NULL,
1065 static struct attribute_group cpu_common_attr_group = {
1066 .attrs = cpu_common_attrs,
1069 static struct attribute *cpu_online_attrs[] = {
1070 &dev_attr_idle_count.attr,
1071 &dev_attr_idle_time_us.attr,
1072 NULL,
1075 static struct attribute_group cpu_online_attr_group = {
1076 .attrs = cpu_online_attrs,
1079 static int smp_cpu_online(unsigned int cpu)
1081 struct device *s = &per_cpu(cpu_device, cpu)->dev;
1083 return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1085 static int smp_cpu_pre_down(unsigned int cpu)
1087 struct device *s = &per_cpu(cpu_device, cpu)->dev;
1089 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1090 return 0;
1093 static int smp_add_present_cpu(int cpu)
1095 struct device *s;
1096 struct cpu *c;
1097 int rc;
1099 c = kzalloc(sizeof(*c), GFP_KERNEL);
1100 if (!c)
1101 return -ENOMEM;
1102 per_cpu(cpu_device, cpu) = c;
1103 s = &c->dev;
1104 c->hotpluggable = 1;
1105 rc = register_cpu(c, cpu);
1106 if (rc)
1107 goto out;
1108 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1109 if (rc)
1110 goto out_cpu;
1111 rc = topology_cpu_init(c);
1112 if (rc)
1113 goto out_topology;
1114 return 0;
1116 out_topology:
1117 sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1118 out_cpu:
1119 #ifdef CONFIG_HOTPLUG_CPU
1120 unregister_cpu(c);
1121 #endif
1122 out:
1123 return rc;
1126 #ifdef CONFIG_HOTPLUG_CPU
1128 int __ref smp_rescan_cpus(void)
1130 struct sclp_core_info *info;
1131 int nr;
1133 info = kzalloc(sizeof(*info), GFP_KERNEL);
1134 if (!info)
1135 return -ENOMEM;
1136 smp_get_core_info(info, 0);
1137 get_online_cpus();
1138 mutex_lock(&smp_cpu_state_mutex);
1139 nr = __smp_rescan_cpus(info, 1);
1140 mutex_unlock(&smp_cpu_state_mutex);
1141 put_online_cpus();
1142 kfree(info);
1143 if (nr)
1144 topology_schedule_update();
1145 return 0;
1148 static ssize_t __ref rescan_store(struct device *dev,
1149 struct device_attribute *attr,
1150 const char *buf,
1151 size_t count)
1153 int rc;
1155 rc = smp_rescan_cpus();
1156 return rc ? rc : count;
1158 static DEVICE_ATTR_WO(rescan);
1159 #endif /* CONFIG_HOTPLUG_CPU */
1161 static int __init s390_smp_init(void)
1163 int cpu, rc = 0;
1165 #ifdef CONFIG_HOTPLUG_CPU
1166 rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1167 if (rc)
1168 return rc;
1169 #endif
1170 for_each_present_cpu(cpu) {
1171 rc = smp_add_present_cpu(cpu);
1172 if (rc)
1173 goto out;
1176 rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1177 smp_cpu_online, smp_cpu_pre_down);
1178 rc = rc <= 0 ? rc : 0;
1179 out:
1180 return rc;
1182 subsys_initcall(s390_smp_init);