Merge branch 'for-2.6.26' of git://git.kernel.org/pub/scm/linux/kernel/git/jwboyer...
[linux/fpc-iii.git] / kernel / exit.c
blob1510f78a0ffa5a9496604b3acee679ca63d93c99
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/pipe_fs_i.h>
44 #include <linux/audit.h> /* for audit_free() */
45 #include <linux/resource.h>
46 #include <linux/blkdev.h>
47 #include <linux/task_io_accounting_ops.h>
49 #include <asm/uaccess.h>
50 #include <asm/unistd.h>
51 #include <asm/pgtable.h>
52 #include <asm/mmu_context.h>
54 static void exit_mm(struct task_struct * tsk);
56 static inline int task_detached(struct task_struct *p)
58 return p->exit_signal == -1;
61 static void __unhash_process(struct task_struct *p)
63 nr_threads--;
64 detach_pid(p, PIDTYPE_PID);
65 if (thread_group_leader(p)) {
66 detach_pid(p, PIDTYPE_PGID);
67 detach_pid(p, PIDTYPE_SID);
69 list_del_rcu(&p->tasks);
70 __get_cpu_var(process_counts)--;
72 list_del_rcu(&p->thread_group);
73 remove_parent(p);
77 * This function expects the tasklist_lock write-locked.
79 static void __exit_signal(struct task_struct *tsk)
81 struct signal_struct *sig = tsk->signal;
82 struct sighand_struct *sighand;
84 BUG_ON(!sig);
85 BUG_ON(!atomic_read(&sig->count));
87 rcu_read_lock();
88 sighand = rcu_dereference(tsk->sighand);
89 spin_lock(&sighand->siglock);
91 posix_cpu_timers_exit(tsk);
92 if (atomic_dec_and_test(&sig->count))
93 posix_cpu_timers_exit_group(tsk);
94 else {
96 * If there is any task waiting for the group exit
97 * then notify it:
99 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
100 wake_up_process(sig->group_exit_task);
102 if (tsk == sig->curr_target)
103 sig->curr_target = next_thread(tsk);
105 * Accumulate here the counters for all threads but the
106 * group leader as they die, so they can be added into
107 * the process-wide totals when those are taken.
108 * The group leader stays around as a zombie as long
109 * as there are other threads. When it gets reaped,
110 * the exit.c code will add its counts into these totals.
111 * We won't ever get here for the group leader, since it
112 * will have been the last reference on the signal_struct.
114 sig->utime = cputime_add(sig->utime, tsk->utime);
115 sig->stime = cputime_add(sig->stime, tsk->stime);
116 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
117 sig->min_flt += tsk->min_flt;
118 sig->maj_flt += tsk->maj_flt;
119 sig->nvcsw += tsk->nvcsw;
120 sig->nivcsw += tsk->nivcsw;
121 sig->inblock += task_io_get_inblock(tsk);
122 sig->oublock += task_io_get_oublock(tsk);
123 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
124 sig = NULL; /* Marker for below. */
127 __unhash_process(tsk);
129 tsk->signal = NULL;
130 tsk->sighand = NULL;
131 spin_unlock(&sighand->siglock);
132 rcu_read_unlock();
134 __cleanup_sighand(sighand);
135 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
136 flush_sigqueue(&tsk->pending);
137 if (sig) {
138 flush_sigqueue(&sig->shared_pending);
139 taskstats_tgid_free(sig);
140 __cleanup_signal(sig);
144 static void delayed_put_task_struct(struct rcu_head *rhp)
146 put_task_struct(container_of(rhp, struct task_struct, rcu));
149 void release_task(struct task_struct * p)
151 struct task_struct *leader;
152 int zap_leader;
153 repeat:
154 atomic_dec(&p->user->processes);
155 proc_flush_task(p);
156 write_lock_irq(&tasklist_lock);
157 ptrace_unlink(p);
158 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
159 __exit_signal(p);
162 * If we are the last non-leader member of the thread
163 * group, and the leader is zombie, then notify the
164 * group leader's parent process. (if it wants notification.)
166 zap_leader = 0;
167 leader = p->group_leader;
168 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
169 BUG_ON(task_detached(leader));
170 do_notify_parent(leader, leader->exit_signal);
172 * If we were the last child thread and the leader has
173 * exited already, and the leader's parent ignores SIGCHLD,
174 * then we are the one who should release the leader.
176 * do_notify_parent() will have marked it self-reaping in
177 * that case.
179 zap_leader = task_detached(leader);
182 write_unlock_irq(&tasklist_lock);
183 release_thread(p);
184 call_rcu(&p->rcu, delayed_put_task_struct);
186 p = leader;
187 if (unlikely(zap_leader))
188 goto repeat;
192 * This checks not only the pgrp, but falls back on the pid if no
193 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
194 * without this...
196 * The caller must hold rcu lock or the tasklist lock.
198 struct pid *session_of_pgrp(struct pid *pgrp)
200 struct task_struct *p;
201 struct pid *sid = NULL;
203 p = pid_task(pgrp, PIDTYPE_PGID);
204 if (p == NULL)
205 p = pid_task(pgrp, PIDTYPE_PID);
206 if (p != NULL)
207 sid = task_session(p);
209 return sid;
213 * Determine if a process group is "orphaned", according to the POSIX
214 * definition in 2.2.2.52. Orphaned process groups are not to be affected
215 * by terminal-generated stop signals. Newly orphaned process groups are
216 * to receive a SIGHUP and a SIGCONT.
218 * "I ask you, have you ever known what it is to be an orphan?"
220 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
222 struct task_struct *p;
224 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
225 if ((p == ignored_task) ||
226 (p->exit_state && thread_group_empty(p)) ||
227 is_global_init(p->real_parent))
228 continue;
230 if (task_pgrp(p->real_parent) != pgrp &&
231 task_session(p->real_parent) == task_session(p))
232 return 0;
233 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
235 return 1;
238 int is_current_pgrp_orphaned(void)
240 int retval;
242 read_lock(&tasklist_lock);
243 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
244 read_unlock(&tasklist_lock);
246 return retval;
249 static int has_stopped_jobs(struct pid *pgrp)
251 int retval = 0;
252 struct task_struct *p;
254 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
255 if (!task_is_stopped(p))
256 continue;
257 retval = 1;
258 break;
259 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
260 return retval;
264 * Check to see if any process groups have become orphaned as
265 * a result of our exiting, and if they have any stopped jobs,
266 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
268 static void
269 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
271 struct pid *pgrp = task_pgrp(tsk);
272 struct task_struct *ignored_task = tsk;
274 if (!parent)
275 /* exit: our father is in a different pgrp than
276 * we are and we were the only connection outside.
278 parent = tsk->real_parent;
279 else
280 /* reparent: our child is in a different pgrp than
281 * we are, and it was the only connection outside.
283 ignored_task = NULL;
285 if (task_pgrp(parent) != pgrp &&
286 task_session(parent) == task_session(tsk) &&
287 will_become_orphaned_pgrp(pgrp, ignored_task) &&
288 has_stopped_jobs(pgrp)) {
289 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
290 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
295 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
297 * If a kernel thread is launched as a result of a system call, or if
298 * it ever exits, it should generally reparent itself to kthreadd so it
299 * isn't in the way of other processes and is correctly cleaned up on exit.
301 * The various task state such as scheduling policy and priority may have
302 * been inherited from a user process, so we reset them to sane values here.
304 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
306 static void reparent_to_kthreadd(void)
308 write_lock_irq(&tasklist_lock);
310 ptrace_unlink(current);
311 /* Reparent to init */
312 remove_parent(current);
313 current->real_parent = current->parent = kthreadd_task;
314 add_parent(current);
316 /* Set the exit signal to SIGCHLD so we signal init on exit */
317 current->exit_signal = SIGCHLD;
319 if (task_nice(current) < 0)
320 set_user_nice(current, 0);
321 /* cpus_allowed? */
322 /* rt_priority? */
323 /* signals? */
324 security_task_reparent_to_init(current);
325 memcpy(current->signal->rlim, init_task.signal->rlim,
326 sizeof(current->signal->rlim));
327 atomic_inc(&(INIT_USER->__count));
328 write_unlock_irq(&tasklist_lock);
329 switch_uid(INIT_USER);
332 void __set_special_pids(struct pid *pid)
334 struct task_struct *curr = current->group_leader;
335 pid_t nr = pid_nr(pid);
337 if (task_session(curr) != pid) {
338 change_pid(curr, PIDTYPE_SID, pid);
339 set_task_session(curr, nr);
341 if (task_pgrp(curr) != pid) {
342 change_pid(curr, PIDTYPE_PGID, pid);
343 set_task_pgrp(curr, nr);
347 static void set_special_pids(struct pid *pid)
349 write_lock_irq(&tasklist_lock);
350 __set_special_pids(pid);
351 write_unlock_irq(&tasklist_lock);
355 * Let kernel threads use this to say that they
356 * allow a certain signal (since daemonize() will
357 * have disabled all of them by default).
359 int allow_signal(int sig)
361 if (!valid_signal(sig) || sig < 1)
362 return -EINVAL;
364 spin_lock_irq(&current->sighand->siglock);
365 sigdelset(&current->blocked, sig);
366 if (!current->mm) {
367 /* Kernel threads handle their own signals.
368 Let the signal code know it'll be handled, so
369 that they don't get converted to SIGKILL or
370 just silently dropped */
371 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
373 recalc_sigpending();
374 spin_unlock_irq(&current->sighand->siglock);
375 return 0;
378 EXPORT_SYMBOL(allow_signal);
380 int disallow_signal(int sig)
382 if (!valid_signal(sig) || sig < 1)
383 return -EINVAL;
385 spin_lock_irq(&current->sighand->siglock);
386 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
387 recalc_sigpending();
388 spin_unlock_irq(&current->sighand->siglock);
389 return 0;
392 EXPORT_SYMBOL(disallow_signal);
395 * Put all the gunge required to become a kernel thread without
396 * attached user resources in one place where it belongs.
399 void daemonize(const char *name, ...)
401 va_list args;
402 struct fs_struct *fs;
403 sigset_t blocked;
405 va_start(args, name);
406 vsnprintf(current->comm, sizeof(current->comm), name, args);
407 va_end(args);
410 * If we were started as result of loading a module, close all of the
411 * user space pages. We don't need them, and if we didn't close them
412 * they would be locked into memory.
414 exit_mm(current);
416 * We don't want to have TIF_FREEZE set if the system-wide hibernation
417 * or suspend transition begins right now.
419 current->flags |= PF_NOFREEZE;
421 if (current->nsproxy != &init_nsproxy) {
422 get_nsproxy(&init_nsproxy);
423 switch_task_namespaces(current, &init_nsproxy);
425 set_special_pids(&init_struct_pid);
426 proc_clear_tty(current);
428 /* Block and flush all signals */
429 sigfillset(&blocked);
430 sigprocmask(SIG_BLOCK, &blocked, NULL);
431 flush_signals(current);
433 /* Become as one with the init task */
435 exit_fs(current); /* current->fs->count--; */
436 fs = init_task.fs;
437 current->fs = fs;
438 atomic_inc(&fs->count);
440 exit_files(current);
441 current->files = init_task.files;
442 atomic_inc(&current->files->count);
444 reparent_to_kthreadd();
447 EXPORT_SYMBOL(daemonize);
449 static void close_files(struct files_struct * files)
451 int i, j;
452 struct fdtable *fdt;
454 j = 0;
457 * It is safe to dereference the fd table without RCU or
458 * ->file_lock because this is the last reference to the
459 * files structure.
461 fdt = files_fdtable(files);
462 for (;;) {
463 unsigned long set;
464 i = j * __NFDBITS;
465 if (i >= fdt->max_fds)
466 break;
467 set = fdt->open_fds->fds_bits[j++];
468 while (set) {
469 if (set & 1) {
470 struct file * file = xchg(&fdt->fd[i], NULL);
471 if (file) {
472 filp_close(file, files);
473 cond_resched();
476 i++;
477 set >>= 1;
482 struct files_struct *get_files_struct(struct task_struct *task)
484 struct files_struct *files;
486 task_lock(task);
487 files = task->files;
488 if (files)
489 atomic_inc(&files->count);
490 task_unlock(task);
492 return files;
495 void put_files_struct(struct files_struct *files)
497 struct fdtable *fdt;
499 if (atomic_dec_and_test(&files->count)) {
500 close_files(files);
502 * Free the fd and fdset arrays if we expanded them.
503 * If the fdtable was embedded, pass files for freeing
504 * at the end of the RCU grace period. Otherwise,
505 * you can free files immediately.
507 fdt = files_fdtable(files);
508 if (fdt != &files->fdtab)
509 kmem_cache_free(files_cachep, files);
510 free_fdtable(fdt);
514 void reset_files_struct(struct files_struct *files)
516 struct task_struct *tsk = current;
517 struct files_struct *old;
519 old = tsk->files;
520 task_lock(tsk);
521 tsk->files = files;
522 task_unlock(tsk);
523 put_files_struct(old);
526 void exit_files(struct task_struct *tsk)
528 struct files_struct * files = tsk->files;
530 if (files) {
531 task_lock(tsk);
532 tsk->files = NULL;
533 task_unlock(tsk);
534 put_files_struct(files);
538 void put_fs_struct(struct fs_struct *fs)
540 /* No need to hold fs->lock if we are killing it */
541 if (atomic_dec_and_test(&fs->count)) {
542 path_put(&fs->root);
543 path_put(&fs->pwd);
544 if (fs->altroot.dentry)
545 path_put(&fs->altroot);
546 kmem_cache_free(fs_cachep, fs);
550 void exit_fs(struct task_struct *tsk)
552 struct fs_struct * fs = tsk->fs;
554 if (fs) {
555 task_lock(tsk);
556 tsk->fs = NULL;
557 task_unlock(tsk);
558 put_fs_struct(fs);
562 EXPORT_SYMBOL_GPL(exit_fs);
564 #ifdef CONFIG_MM_OWNER
566 * Task p is exiting and it owned mm, lets find a new owner for it
568 static inline int
569 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
572 * If there are other users of the mm and the owner (us) is exiting
573 * we need to find a new owner to take on the responsibility.
575 if (!mm)
576 return 0;
577 if (atomic_read(&mm->mm_users) <= 1)
578 return 0;
579 if (mm->owner != p)
580 return 0;
581 return 1;
584 void mm_update_next_owner(struct mm_struct *mm)
586 struct task_struct *c, *g, *p = current;
588 retry:
589 if (!mm_need_new_owner(mm, p))
590 return;
592 read_lock(&tasklist_lock);
594 * Search in the children
596 list_for_each_entry(c, &p->children, sibling) {
597 if (c->mm == mm)
598 goto assign_new_owner;
602 * Search in the siblings
604 list_for_each_entry(c, &p->parent->children, sibling) {
605 if (c->mm == mm)
606 goto assign_new_owner;
610 * Search through everything else. We should not get
611 * here often
613 do_each_thread(g, c) {
614 if (c->mm == mm)
615 goto assign_new_owner;
616 } while_each_thread(g, c);
618 read_unlock(&tasklist_lock);
619 return;
621 assign_new_owner:
622 BUG_ON(c == p);
623 get_task_struct(c);
625 * The task_lock protects c->mm from changing.
626 * We always want mm->owner->mm == mm
628 task_lock(c);
630 * Delay read_unlock() till we have the task_lock()
631 * to ensure that c does not slip away underneath us
633 read_unlock(&tasklist_lock);
634 if (c->mm != mm) {
635 task_unlock(c);
636 put_task_struct(c);
637 goto retry;
639 cgroup_mm_owner_callbacks(mm->owner, c);
640 mm->owner = c;
641 task_unlock(c);
642 put_task_struct(c);
644 #endif /* CONFIG_MM_OWNER */
647 * Turn us into a lazy TLB process if we
648 * aren't already..
650 static void exit_mm(struct task_struct * tsk)
652 struct mm_struct *mm = tsk->mm;
654 mm_release(tsk, mm);
655 if (!mm)
656 return;
658 * Serialize with any possible pending coredump.
659 * We must hold mmap_sem around checking core_waiters
660 * and clearing tsk->mm. The core-inducing thread
661 * will increment core_waiters for each thread in the
662 * group with ->mm != NULL.
664 down_read(&mm->mmap_sem);
665 if (mm->core_waiters) {
666 up_read(&mm->mmap_sem);
667 down_write(&mm->mmap_sem);
668 if (!--mm->core_waiters)
669 complete(mm->core_startup_done);
670 up_write(&mm->mmap_sem);
672 wait_for_completion(&mm->core_done);
673 down_read(&mm->mmap_sem);
675 atomic_inc(&mm->mm_count);
676 BUG_ON(mm != tsk->active_mm);
677 /* more a memory barrier than a real lock */
678 task_lock(tsk);
679 tsk->mm = NULL;
680 up_read(&mm->mmap_sem);
681 enter_lazy_tlb(mm, current);
682 /* We don't want this task to be frozen prematurely */
683 clear_freeze_flag(tsk);
684 task_unlock(tsk);
685 mm_update_next_owner(mm);
686 mmput(mm);
689 static void
690 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
692 if (p->pdeath_signal)
693 /* We already hold the tasklist_lock here. */
694 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
696 /* Move the child from its dying parent to the new one. */
697 if (unlikely(traced)) {
698 /* Preserve ptrace links if someone else is tracing this child. */
699 list_del_init(&p->ptrace_list);
700 if (ptrace_reparented(p))
701 list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
702 } else {
703 /* If this child is being traced, then we're the one tracing it
704 * anyway, so let go of it.
706 p->ptrace = 0;
707 remove_parent(p);
708 p->parent = p->real_parent;
709 add_parent(p);
711 if (task_is_traced(p)) {
713 * If it was at a trace stop, turn it into
714 * a normal stop since it's no longer being
715 * traced.
717 ptrace_untrace(p);
721 /* If this is a threaded reparent there is no need to
722 * notify anyone anything has happened.
724 if (same_thread_group(p->real_parent, father))
725 return;
727 /* We don't want people slaying init. */
728 if (!task_detached(p))
729 p->exit_signal = SIGCHLD;
731 /* If we'd notified the old parent about this child's death,
732 * also notify the new parent.
734 if (!traced && p->exit_state == EXIT_ZOMBIE &&
735 !task_detached(p) && thread_group_empty(p))
736 do_notify_parent(p, p->exit_signal);
738 kill_orphaned_pgrp(p, father);
742 * When we die, we re-parent all our children.
743 * Try to give them to another thread in our thread
744 * group, and if no such member exists, give it to
745 * the child reaper process (ie "init") in our pid
746 * space.
748 static void forget_original_parent(struct task_struct *father)
750 struct task_struct *p, *n, *reaper = father;
751 struct list_head ptrace_dead;
753 INIT_LIST_HEAD(&ptrace_dead);
755 write_lock_irq(&tasklist_lock);
757 do {
758 reaper = next_thread(reaper);
759 if (reaper == father) {
760 reaper = task_child_reaper(father);
761 break;
763 } while (reaper->flags & PF_EXITING);
766 * There are only two places where our children can be:
768 * - in our child list
769 * - in our ptraced child list
771 * Search them and reparent children.
773 list_for_each_entry_safe(p, n, &father->children, sibling) {
774 int ptrace;
776 ptrace = p->ptrace;
778 /* if father isn't the real parent, then ptrace must be enabled */
779 BUG_ON(father != p->real_parent && !ptrace);
781 if (father == p->real_parent) {
782 /* reparent with a reaper, real father it's us */
783 p->real_parent = reaper;
784 reparent_thread(p, father, 0);
785 } else {
786 /* reparent ptraced task to its real parent */
787 __ptrace_unlink (p);
788 if (p->exit_state == EXIT_ZOMBIE && !task_detached(p) &&
789 thread_group_empty(p))
790 do_notify_parent(p, p->exit_signal);
794 * if the ptraced child is a detached zombie we must collect
795 * it before we exit, or it will remain zombie forever since
796 * we prevented it from self-reap itself while it was being
797 * traced by us, to be able to see it in wait4.
799 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && task_detached(p)))
800 list_add(&p->ptrace_list, &ptrace_dead);
803 list_for_each_entry_safe(p, n, &father->ptrace_children, ptrace_list) {
804 p->real_parent = reaper;
805 reparent_thread(p, father, 1);
808 write_unlock_irq(&tasklist_lock);
809 BUG_ON(!list_empty(&father->children));
810 BUG_ON(!list_empty(&father->ptrace_children));
812 list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_list) {
813 list_del_init(&p->ptrace_list);
814 release_task(p);
820 * Send signals to all our closest relatives so that they know
821 * to properly mourn us..
823 static void exit_notify(struct task_struct *tsk, int group_dead)
825 int state;
828 * This does two things:
830 * A. Make init inherit all the child processes
831 * B. Check to see if any process groups have become orphaned
832 * as a result of our exiting, and if they have any stopped
833 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
835 forget_original_parent(tsk);
836 exit_task_namespaces(tsk);
838 write_lock_irq(&tasklist_lock);
839 if (group_dead)
840 kill_orphaned_pgrp(tsk->group_leader, NULL);
842 /* Let father know we died
844 * Thread signals are configurable, but you aren't going to use
845 * that to send signals to arbitary processes.
846 * That stops right now.
848 * If the parent exec id doesn't match the exec id we saved
849 * when we started then we know the parent has changed security
850 * domain.
852 * If our self_exec id doesn't match our parent_exec_id then
853 * we have changed execution domain as these two values started
854 * the same after a fork.
856 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
857 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
858 tsk->self_exec_id != tsk->parent_exec_id) &&
859 !capable(CAP_KILL))
860 tsk->exit_signal = SIGCHLD;
862 /* If something other than our normal parent is ptracing us, then
863 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
864 * only has special meaning to our real parent.
866 if (!task_detached(tsk) && thread_group_empty(tsk)) {
867 int signal = ptrace_reparented(tsk) ?
868 SIGCHLD : tsk->exit_signal;
869 do_notify_parent(tsk, signal);
870 } else if (tsk->ptrace) {
871 do_notify_parent(tsk, SIGCHLD);
874 state = EXIT_ZOMBIE;
875 if (task_detached(tsk) && likely(!tsk->ptrace))
876 state = EXIT_DEAD;
877 tsk->exit_state = state;
879 /* mt-exec, de_thread() is waiting for us */
880 if (thread_group_leader(tsk) &&
881 tsk->signal->notify_count < 0 &&
882 tsk->signal->group_exit_task)
883 wake_up_process(tsk->signal->group_exit_task);
885 write_unlock_irq(&tasklist_lock);
887 /* If the process is dead, release it - nobody will wait for it */
888 if (state == EXIT_DEAD)
889 release_task(tsk);
892 #ifdef CONFIG_DEBUG_STACK_USAGE
893 static void check_stack_usage(void)
895 static DEFINE_SPINLOCK(low_water_lock);
896 static int lowest_to_date = THREAD_SIZE;
897 unsigned long *n = end_of_stack(current);
898 unsigned long free;
900 while (*n == 0)
901 n++;
902 free = (unsigned long)n - (unsigned long)end_of_stack(current);
904 if (free >= lowest_to_date)
905 return;
907 spin_lock(&low_water_lock);
908 if (free < lowest_to_date) {
909 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
910 "left\n",
911 current->comm, free);
912 lowest_to_date = free;
914 spin_unlock(&low_water_lock);
916 #else
917 static inline void check_stack_usage(void) {}
918 #endif
920 static inline void exit_child_reaper(struct task_struct *tsk)
922 if (likely(tsk->group_leader != task_child_reaper(tsk)))
923 return;
925 if (tsk->nsproxy->pid_ns == &init_pid_ns)
926 panic("Attempted to kill init!");
929 * @tsk is the last thread in the 'cgroup-init' and is exiting.
930 * Terminate all remaining processes in the namespace and reap them
931 * before exiting @tsk.
933 * Note that @tsk (last thread of cgroup-init) may not necessarily
934 * be the child-reaper (i.e main thread of cgroup-init) of the
935 * namespace i.e the child_reaper may have already exited.
937 * Even after a child_reaper exits, we let it inherit orphaned children,
938 * because, pid_ns->child_reaper remains valid as long as there is
939 * at least one living sub-thread in the cgroup init.
941 * This living sub-thread of the cgroup-init will be notified when
942 * a child inherited by the 'child-reaper' exits (do_notify_parent()
943 * uses __group_send_sig_info()). Further, when reaping child processes,
944 * do_wait() iterates over children of all living sub threads.
946 * i.e even though 'child_reaper' thread is listed as the parent of the
947 * orphaned children, any living sub-thread in the cgroup-init can
948 * perform the role of the child_reaper.
950 zap_pid_ns_processes(tsk->nsproxy->pid_ns);
953 NORET_TYPE void do_exit(long code)
955 struct task_struct *tsk = current;
956 int group_dead;
958 profile_task_exit(tsk);
960 WARN_ON(atomic_read(&tsk->fs_excl));
962 if (unlikely(in_interrupt()))
963 panic("Aiee, killing interrupt handler!");
964 if (unlikely(!tsk->pid))
965 panic("Attempted to kill the idle task!");
967 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
968 current->ptrace_message = code;
969 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
973 * We're taking recursive faults here in do_exit. Safest is to just
974 * leave this task alone and wait for reboot.
976 if (unlikely(tsk->flags & PF_EXITING)) {
977 printk(KERN_ALERT
978 "Fixing recursive fault but reboot is needed!\n");
980 * We can do this unlocked here. The futex code uses
981 * this flag just to verify whether the pi state
982 * cleanup has been done or not. In the worst case it
983 * loops once more. We pretend that the cleanup was
984 * done as there is no way to return. Either the
985 * OWNER_DIED bit is set by now or we push the blocked
986 * task into the wait for ever nirwana as well.
988 tsk->flags |= PF_EXITPIDONE;
989 if (tsk->io_context)
990 exit_io_context();
991 set_current_state(TASK_UNINTERRUPTIBLE);
992 schedule();
995 exit_signals(tsk); /* sets PF_EXITING */
997 * tsk->flags are checked in the futex code to protect against
998 * an exiting task cleaning up the robust pi futexes.
1000 smp_mb();
1001 spin_unlock_wait(&tsk->pi_lock);
1003 if (unlikely(in_atomic()))
1004 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
1005 current->comm, task_pid_nr(current),
1006 preempt_count());
1008 acct_update_integrals(tsk);
1009 if (tsk->mm) {
1010 update_hiwater_rss(tsk->mm);
1011 update_hiwater_vm(tsk->mm);
1013 group_dead = atomic_dec_and_test(&tsk->signal->live);
1014 if (group_dead) {
1015 exit_child_reaper(tsk);
1016 hrtimer_cancel(&tsk->signal->real_timer);
1017 exit_itimers(tsk->signal);
1019 acct_collect(code, group_dead);
1020 #ifdef CONFIG_FUTEX
1021 if (unlikely(tsk->robust_list))
1022 exit_robust_list(tsk);
1023 #ifdef CONFIG_COMPAT
1024 if (unlikely(tsk->compat_robust_list))
1025 compat_exit_robust_list(tsk);
1026 #endif
1027 #endif
1028 if (group_dead)
1029 tty_audit_exit();
1030 if (unlikely(tsk->audit_context))
1031 audit_free(tsk);
1033 tsk->exit_code = code;
1034 taskstats_exit(tsk, group_dead);
1036 exit_mm(tsk);
1038 if (group_dead)
1039 acct_process();
1040 exit_sem(tsk);
1041 exit_files(tsk);
1042 exit_fs(tsk);
1043 check_stack_usage();
1044 exit_thread();
1045 cgroup_exit(tsk, 1);
1046 exit_keys(tsk);
1048 if (group_dead && tsk->signal->leader)
1049 disassociate_ctty(1);
1051 module_put(task_thread_info(tsk)->exec_domain->module);
1052 if (tsk->binfmt)
1053 module_put(tsk->binfmt->module);
1055 proc_exit_connector(tsk);
1056 exit_notify(tsk, group_dead);
1057 #ifdef CONFIG_NUMA
1058 mpol_put(tsk->mempolicy);
1059 tsk->mempolicy = NULL;
1060 #endif
1061 #ifdef CONFIG_FUTEX
1063 * This must happen late, after the PID is not
1064 * hashed anymore:
1066 if (unlikely(!list_empty(&tsk->pi_state_list)))
1067 exit_pi_state_list(tsk);
1068 if (unlikely(current->pi_state_cache))
1069 kfree(current->pi_state_cache);
1070 #endif
1072 * Make sure we are holding no locks:
1074 debug_check_no_locks_held(tsk);
1076 * We can do this unlocked here. The futex code uses this flag
1077 * just to verify whether the pi state cleanup has been done
1078 * or not. In the worst case it loops once more.
1080 tsk->flags |= PF_EXITPIDONE;
1082 if (tsk->io_context)
1083 exit_io_context();
1085 if (tsk->splice_pipe)
1086 __free_pipe_info(tsk->splice_pipe);
1088 preempt_disable();
1089 /* causes final put_task_struct in finish_task_switch(). */
1090 tsk->state = TASK_DEAD;
1092 schedule();
1093 BUG();
1094 /* Avoid "noreturn function does return". */
1095 for (;;)
1096 cpu_relax(); /* For when BUG is null */
1099 EXPORT_SYMBOL_GPL(do_exit);
1101 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1103 if (comp)
1104 complete(comp);
1106 do_exit(code);
1109 EXPORT_SYMBOL(complete_and_exit);
1111 asmlinkage long sys_exit(int error_code)
1113 do_exit((error_code&0xff)<<8);
1117 * Take down every thread in the group. This is called by fatal signals
1118 * as well as by sys_exit_group (below).
1120 NORET_TYPE void
1121 do_group_exit(int exit_code)
1123 struct signal_struct *sig = current->signal;
1125 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1127 if (signal_group_exit(sig))
1128 exit_code = sig->group_exit_code;
1129 else if (!thread_group_empty(current)) {
1130 struct sighand_struct *const sighand = current->sighand;
1131 spin_lock_irq(&sighand->siglock);
1132 if (signal_group_exit(sig))
1133 /* Another thread got here before we took the lock. */
1134 exit_code = sig->group_exit_code;
1135 else {
1136 sig->group_exit_code = exit_code;
1137 sig->flags = SIGNAL_GROUP_EXIT;
1138 zap_other_threads(current);
1140 spin_unlock_irq(&sighand->siglock);
1143 do_exit(exit_code);
1144 /* NOTREACHED */
1148 * this kills every thread in the thread group. Note that any externally
1149 * wait4()-ing process will get the correct exit code - even if this
1150 * thread is not the thread group leader.
1152 asmlinkage void sys_exit_group(int error_code)
1154 do_group_exit((error_code & 0xff) << 8);
1157 static struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1159 struct pid *pid = NULL;
1160 if (type == PIDTYPE_PID)
1161 pid = task->pids[type].pid;
1162 else if (type < PIDTYPE_MAX)
1163 pid = task->group_leader->pids[type].pid;
1164 return pid;
1167 static int eligible_child(enum pid_type type, struct pid *pid, int options,
1168 struct task_struct *p)
1170 int err;
1172 if (type < PIDTYPE_MAX) {
1173 if (task_pid_type(p, type) != pid)
1174 return 0;
1178 * Do not consider detached threads that are
1179 * not ptraced:
1181 if (task_detached(p) && !p->ptrace)
1182 return 0;
1184 /* Wait for all children (clone and not) if __WALL is set;
1185 * otherwise, wait for clone children *only* if __WCLONE is
1186 * set; otherwise, wait for non-clone children *only*. (Note:
1187 * A "clone" child here is one that reports to its parent
1188 * using a signal other than SIGCHLD.) */
1189 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1190 && !(options & __WALL))
1191 return 0;
1193 err = security_task_wait(p);
1194 if (likely(!err))
1195 return 1;
1197 if (type != PIDTYPE_PID)
1198 return 0;
1199 /* This child was explicitly requested, abort */
1200 read_unlock(&tasklist_lock);
1201 return err;
1204 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1205 int why, int status,
1206 struct siginfo __user *infop,
1207 struct rusage __user *rusagep)
1209 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1211 put_task_struct(p);
1212 if (!retval)
1213 retval = put_user(SIGCHLD, &infop->si_signo);
1214 if (!retval)
1215 retval = put_user(0, &infop->si_errno);
1216 if (!retval)
1217 retval = put_user((short)why, &infop->si_code);
1218 if (!retval)
1219 retval = put_user(pid, &infop->si_pid);
1220 if (!retval)
1221 retval = put_user(uid, &infop->si_uid);
1222 if (!retval)
1223 retval = put_user(status, &infop->si_status);
1224 if (!retval)
1225 retval = pid;
1226 return retval;
1230 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1231 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1232 * the lock and this task is uninteresting. If we return nonzero, we have
1233 * released the lock and the system call should return.
1235 static int wait_task_zombie(struct task_struct *p, int noreap,
1236 struct siginfo __user *infop,
1237 int __user *stat_addr, struct rusage __user *ru)
1239 unsigned long state;
1240 int retval, status, traced;
1241 pid_t pid = task_pid_vnr(p);
1243 if (unlikely(noreap)) {
1244 uid_t uid = p->uid;
1245 int exit_code = p->exit_code;
1246 int why, status;
1248 get_task_struct(p);
1249 read_unlock(&tasklist_lock);
1250 if ((exit_code & 0x7f) == 0) {
1251 why = CLD_EXITED;
1252 status = exit_code >> 8;
1253 } else {
1254 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1255 status = exit_code & 0x7f;
1257 return wait_noreap_copyout(p, pid, uid, why,
1258 status, infop, ru);
1262 * Try to move the task's state to DEAD
1263 * only one thread is allowed to do this:
1265 state = xchg(&p->exit_state, EXIT_DEAD);
1266 if (state != EXIT_ZOMBIE) {
1267 BUG_ON(state != EXIT_DEAD);
1268 return 0;
1271 traced = ptrace_reparented(p);
1273 if (likely(!traced)) {
1274 struct signal_struct *psig;
1275 struct signal_struct *sig;
1278 * The resource counters for the group leader are in its
1279 * own task_struct. Those for dead threads in the group
1280 * are in its signal_struct, as are those for the child
1281 * processes it has previously reaped. All these
1282 * accumulate in the parent's signal_struct c* fields.
1284 * We don't bother to take a lock here to protect these
1285 * p->signal fields, because they are only touched by
1286 * __exit_signal, which runs with tasklist_lock
1287 * write-locked anyway, and so is excluded here. We do
1288 * need to protect the access to p->parent->signal fields,
1289 * as other threads in the parent group can be right
1290 * here reaping other children at the same time.
1292 spin_lock_irq(&p->parent->sighand->siglock);
1293 psig = p->parent->signal;
1294 sig = p->signal;
1295 psig->cutime =
1296 cputime_add(psig->cutime,
1297 cputime_add(p->utime,
1298 cputime_add(sig->utime,
1299 sig->cutime)));
1300 psig->cstime =
1301 cputime_add(psig->cstime,
1302 cputime_add(p->stime,
1303 cputime_add(sig->stime,
1304 sig->cstime)));
1305 psig->cgtime =
1306 cputime_add(psig->cgtime,
1307 cputime_add(p->gtime,
1308 cputime_add(sig->gtime,
1309 sig->cgtime)));
1310 psig->cmin_flt +=
1311 p->min_flt + sig->min_flt + sig->cmin_flt;
1312 psig->cmaj_flt +=
1313 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1314 psig->cnvcsw +=
1315 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1316 psig->cnivcsw +=
1317 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1318 psig->cinblock +=
1319 task_io_get_inblock(p) +
1320 sig->inblock + sig->cinblock;
1321 psig->coublock +=
1322 task_io_get_oublock(p) +
1323 sig->oublock + sig->coublock;
1324 spin_unlock_irq(&p->parent->sighand->siglock);
1328 * Now we are sure this task is interesting, and no other
1329 * thread can reap it because we set its state to EXIT_DEAD.
1331 read_unlock(&tasklist_lock);
1333 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1334 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1335 ? p->signal->group_exit_code : p->exit_code;
1336 if (!retval && stat_addr)
1337 retval = put_user(status, stat_addr);
1338 if (!retval && infop)
1339 retval = put_user(SIGCHLD, &infop->si_signo);
1340 if (!retval && infop)
1341 retval = put_user(0, &infop->si_errno);
1342 if (!retval && infop) {
1343 int why;
1345 if ((status & 0x7f) == 0) {
1346 why = CLD_EXITED;
1347 status >>= 8;
1348 } else {
1349 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1350 status &= 0x7f;
1352 retval = put_user((short)why, &infop->si_code);
1353 if (!retval)
1354 retval = put_user(status, &infop->si_status);
1356 if (!retval && infop)
1357 retval = put_user(pid, &infop->si_pid);
1358 if (!retval && infop)
1359 retval = put_user(p->uid, &infop->si_uid);
1360 if (!retval)
1361 retval = pid;
1363 if (traced) {
1364 write_lock_irq(&tasklist_lock);
1365 /* We dropped tasklist, ptracer could die and untrace */
1366 ptrace_unlink(p);
1368 * If this is not a detached task, notify the parent.
1369 * If it's still not detached after that, don't release
1370 * it now.
1372 if (!task_detached(p)) {
1373 do_notify_parent(p, p->exit_signal);
1374 if (!task_detached(p)) {
1375 p->exit_state = EXIT_ZOMBIE;
1376 p = NULL;
1379 write_unlock_irq(&tasklist_lock);
1381 if (p != NULL)
1382 release_task(p);
1384 return retval;
1388 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1389 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1390 * the lock and this task is uninteresting. If we return nonzero, we have
1391 * released the lock and the system call should return.
1393 static int wait_task_stopped(struct task_struct *p,
1394 int noreap, struct siginfo __user *infop,
1395 int __user *stat_addr, struct rusage __user *ru)
1397 int retval, exit_code, why;
1398 uid_t uid = 0; /* unneeded, required by compiler */
1399 pid_t pid;
1401 exit_code = 0;
1402 spin_lock_irq(&p->sighand->siglock);
1404 if (unlikely(!task_is_stopped_or_traced(p)))
1405 goto unlock_sig;
1407 if (!(p->ptrace & PT_PTRACED) && p->signal->group_stop_count > 0)
1409 * A group stop is in progress and this is the group leader.
1410 * We won't report until all threads have stopped.
1412 goto unlock_sig;
1414 exit_code = p->exit_code;
1415 if (!exit_code)
1416 goto unlock_sig;
1418 if (!noreap)
1419 p->exit_code = 0;
1421 uid = p->uid;
1422 unlock_sig:
1423 spin_unlock_irq(&p->sighand->siglock);
1424 if (!exit_code)
1425 return 0;
1428 * Now we are pretty sure this task is interesting.
1429 * Make sure it doesn't get reaped out from under us while we
1430 * give up the lock and then examine it below. We don't want to
1431 * keep holding onto the tasklist_lock while we call getrusage and
1432 * possibly take page faults for user memory.
1434 get_task_struct(p);
1435 pid = task_pid_vnr(p);
1436 why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1437 read_unlock(&tasklist_lock);
1439 if (unlikely(noreap))
1440 return wait_noreap_copyout(p, pid, uid,
1441 why, exit_code,
1442 infop, ru);
1444 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1445 if (!retval && stat_addr)
1446 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1447 if (!retval && infop)
1448 retval = put_user(SIGCHLD, &infop->si_signo);
1449 if (!retval && infop)
1450 retval = put_user(0, &infop->si_errno);
1451 if (!retval && infop)
1452 retval = put_user((short)why, &infop->si_code);
1453 if (!retval && infop)
1454 retval = put_user(exit_code, &infop->si_status);
1455 if (!retval && infop)
1456 retval = put_user(pid, &infop->si_pid);
1457 if (!retval && infop)
1458 retval = put_user(uid, &infop->si_uid);
1459 if (!retval)
1460 retval = pid;
1461 put_task_struct(p);
1463 BUG_ON(!retval);
1464 return retval;
1468 * Handle do_wait work for one task in a live, non-stopped state.
1469 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1470 * the lock and this task is uninteresting. If we return nonzero, we have
1471 * released the lock and the system call should return.
1473 static int wait_task_continued(struct task_struct *p, int noreap,
1474 struct siginfo __user *infop,
1475 int __user *stat_addr, struct rusage __user *ru)
1477 int retval;
1478 pid_t pid;
1479 uid_t uid;
1481 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1482 return 0;
1484 spin_lock_irq(&p->sighand->siglock);
1485 /* Re-check with the lock held. */
1486 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1487 spin_unlock_irq(&p->sighand->siglock);
1488 return 0;
1490 if (!noreap)
1491 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1492 spin_unlock_irq(&p->sighand->siglock);
1494 pid = task_pid_vnr(p);
1495 uid = p->uid;
1496 get_task_struct(p);
1497 read_unlock(&tasklist_lock);
1499 if (!infop) {
1500 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1501 put_task_struct(p);
1502 if (!retval && stat_addr)
1503 retval = put_user(0xffff, stat_addr);
1504 if (!retval)
1505 retval = pid;
1506 } else {
1507 retval = wait_noreap_copyout(p, pid, uid,
1508 CLD_CONTINUED, SIGCONT,
1509 infop, ru);
1510 BUG_ON(retval == 0);
1513 return retval;
1516 static long do_wait(enum pid_type type, struct pid *pid, int options,
1517 struct siginfo __user *infop, int __user *stat_addr,
1518 struct rusage __user *ru)
1520 DECLARE_WAITQUEUE(wait, current);
1521 struct task_struct *tsk;
1522 int flag, retval;
1524 add_wait_queue(&current->signal->wait_chldexit,&wait);
1525 repeat:
1526 /* If there is nothing that can match our critier just get out */
1527 retval = -ECHILD;
1528 if ((type < PIDTYPE_MAX) && (!pid || hlist_empty(&pid->tasks[type])))
1529 goto end;
1532 * We will set this flag if we see any child that might later
1533 * match our criteria, even if we are not able to reap it yet.
1535 flag = retval = 0;
1536 current->state = TASK_INTERRUPTIBLE;
1537 read_lock(&tasklist_lock);
1538 tsk = current;
1539 do {
1540 struct task_struct *p;
1542 list_for_each_entry(p, &tsk->children, sibling) {
1543 int ret = eligible_child(type, pid, options, p);
1544 if (!ret)
1545 continue;
1547 if (unlikely(ret < 0)) {
1548 retval = ret;
1549 } else if (task_is_stopped_or_traced(p)) {
1551 * It's stopped now, so it might later
1552 * continue, exit, or stop again.
1554 flag = 1;
1555 if (!(p->ptrace & PT_PTRACED) &&
1556 !(options & WUNTRACED))
1557 continue;
1559 retval = wait_task_stopped(p,
1560 (options & WNOWAIT), infop,
1561 stat_addr, ru);
1562 } else if (p->exit_state == EXIT_ZOMBIE &&
1563 !delay_group_leader(p)) {
1565 * We don't reap group leaders with subthreads.
1567 if (!likely(options & WEXITED))
1568 continue;
1569 retval = wait_task_zombie(p,
1570 (options & WNOWAIT), infop,
1571 stat_addr, ru);
1572 } else if (p->exit_state != EXIT_DEAD) {
1574 * It's running now, so it might later
1575 * exit, stop, or stop and then continue.
1577 flag = 1;
1578 if (!unlikely(options & WCONTINUED))
1579 continue;
1580 retval = wait_task_continued(p,
1581 (options & WNOWAIT), infop,
1582 stat_addr, ru);
1584 if (retval != 0) /* tasklist_lock released */
1585 goto end;
1587 if (!flag) {
1588 list_for_each_entry(p, &tsk->ptrace_children,
1589 ptrace_list) {
1590 flag = eligible_child(type, pid, options, p);
1591 if (!flag)
1592 continue;
1593 if (likely(flag > 0))
1594 break;
1595 retval = flag;
1596 goto end;
1599 if (options & __WNOTHREAD)
1600 break;
1601 tsk = next_thread(tsk);
1602 BUG_ON(tsk->signal != current->signal);
1603 } while (tsk != current);
1604 read_unlock(&tasklist_lock);
1606 if (flag) {
1607 if (options & WNOHANG)
1608 goto end;
1609 retval = -ERESTARTSYS;
1610 if (signal_pending(current))
1611 goto end;
1612 schedule();
1613 goto repeat;
1615 retval = -ECHILD;
1616 end:
1617 current->state = TASK_RUNNING;
1618 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1619 if (infop) {
1620 if (retval > 0)
1621 retval = 0;
1622 else {
1624 * For a WNOHANG return, clear out all the fields
1625 * we would set so the user can easily tell the
1626 * difference.
1628 if (!retval)
1629 retval = put_user(0, &infop->si_signo);
1630 if (!retval)
1631 retval = put_user(0, &infop->si_errno);
1632 if (!retval)
1633 retval = put_user(0, &infop->si_code);
1634 if (!retval)
1635 retval = put_user(0, &infop->si_pid);
1636 if (!retval)
1637 retval = put_user(0, &infop->si_uid);
1638 if (!retval)
1639 retval = put_user(0, &infop->si_status);
1642 return retval;
1645 asmlinkage long sys_waitid(int which, pid_t upid,
1646 struct siginfo __user *infop, int options,
1647 struct rusage __user *ru)
1649 struct pid *pid = NULL;
1650 enum pid_type type;
1651 long ret;
1653 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1654 return -EINVAL;
1655 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1656 return -EINVAL;
1658 switch (which) {
1659 case P_ALL:
1660 type = PIDTYPE_MAX;
1661 break;
1662 case P_PID:
1663 type = PIDTYPE_PID;
1664 if (upid <= 0)
1665 return -EINVAL;
1666 break;
1667 case P_PGID:
1668 type = PIDTYPE_PGID;
1669 if (upid <= 0)
1670 return -EINVAL;
1671 break;
1672 default:
1673 return -EINVAL;
1676 if (type < PIDTYPE_MAX)
1677 pid = find_get_pid(upid);
1678 ret = do_wait(type, pid, options, infop, NULL, ru);
1679 put_pid(pid);
1681 /* avoid REGPARM breakage on x86: */
1682 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1683 return ret;
1686 asmlinkage long sys_wait4(pid_t upid, int __user *stat_addr,
1687 int options, struct rusage __user *ru)
1689 struct pid *pid = NULL;
1690 enum pid_type type;
1691 long ret;
1693 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1694 __WNOTHREAD|__WCLONE|__WALL))
1695 return -EINVAL;
1697 if (upid == -1)
1698 type = PIDTYPE_MAX;
1699 else if (upid < 0) {
1700 type = PIDTYPE_PGID;
1701 pid = find_get_pid(-upid);
1702 } else if (upid == 0) {
1703 type = PIDTYPE_PGID;
1704 pid = get_pid(task_pgrp(current));
1705 } else /* upid > 0 */ {
1706 type = PIDTYPE_PID;
1707 pid = find_get_pid(upid);
1710 ret = do_wait(type, pid, options | WEXITED, NULL, stat_addr, ru);
1711 put_pid(pid);
1713 /* avoid REGPARM breakage on x86: */
1714 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1715 return ret;
1718 #ifdef __ARCH_WANT_SYS_WAITPID
1721 * sys_waitpid() remains for compatibility. waitpid() should be
1722 * implemented by calling sys_wait4() from libc.a.
1724 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1726 return sys_wait4(pid, stat_addr, options, NULL);
1729 #endif