1 // SPDX-License-Identifier: GPL-2.0
5 #include "block-group.h"
6 #include "space-info.h"
8 #include "free-space-cache.h"
9 #include "free-space-tree.h"
12 #include "transaction.h"
13 #include "ref-verify.h"
16 #include "delalloc-space.h"
19 * Return target flags in extended format or 0 if restripe for this chunk_type
22 * Should be called with balance_lock held
24 static u64
get_restripe_target(struct btrfs_fs_info
*fs_info
, u64 flags
)
26 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
32 if (flags
& BTRFS_BLOCK_GROUP_DATA
&&
33 bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
34 target
= BTRFS_BLOCK_GROUP_DATA
| bctl
->data
.target
;
35 } else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
&&
36 bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
37 target
= BTRFS_BLOCK_GROUP_SYSTEM
| bctl
->sys
.target
;
38 } else if (flags
& BTRFS_BLOCK_GROUP_METADATA
&&
39 bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
40 target
= BTRFS_BLOCK_GROUP_METADATA
| bctl
->meta
.target
;
47 * @flags: available profiles in extended format (see ctree.h)
49 * Return reduced profile in chunk format. If profile changing is in progress
50 * (either running or paused) picks the target profile (if it's already
51 * available), otherwise falls back to plain reducing.
53 static u64
btrfs_reduce_alloc_profile(struct btrfs_fs_info
*fs_info
, u64 flags
)
55 u64 num_devices
= fs_info
->fs_devices
->rw_devices
;
61 * See if restripe for this chunk_type is in progress, if so try to
62 * reduce to the target profile
64 spin_lock(&fs_info
->balance_lock
);
65 target
= get_restripe_target(fs_info
, flags
);
67 /* Pick target profile only if it's already available */
68 if ((flags
& target
) & BTRFS_EXTENDED_PROFILE_MASK
) {
69 spin_unlock(&fs_info
->balance_lock
);
70 return extended_to_chunk(target
);
73 spin_unlock(&fs_info
->balance_lock
);
75 /* First, mask out the RAID levels which aren't possible */
76 for (raid_type
= 0; raid_type
< BTRFS_NR_RAID_TYPES
; raid_type
++) {
77 if (num_devices
>= btrfs_raid_array
[raid_type
].devs_min
)
78 allowed
|= btrfs_raid_array
[raid_type
].bg_flag
;
82 if (allowed
& BTRFS_BLOCK_GROUP_RAID6
)
83 allowed
= BTRFS_BLOCK_GROUP_RAID6
;
84 else if (allowed
& BTRFS_BLOCK_GROUP_RAID5
)
85 allowed
= BTRFS_BLOCK_GROUP_RAID5
;
86 else if (allowed
& BTRFS_BLOCK_GROUP_RAID10
)
87 allowed
= BTRFS_BLOCK_GROUP_RAID10
;
88 else if (allowed
& BTRFS_BLOCK_GROUP_RAID1
)
89 allowed
= BTRFS_BLOCK_GROUP_RAID1
;
90 else if (allowed
& BTRFS_BLOCK_GROUP_RAID0
)
91 allowed
= BTRFS_BLOCK_GROUP_RAID0
;
93 flags
&= ~BTRFS_BLOCK_GROUP_PROFILE_MASK
;
95 return extended_to_chunk(flags
| allowed
);
98 static u64
get_alloc_profile(struct btrfs_fs_info
*fs_info
, u64 orig_flags
)
105 seq
= read_seqbegin(&fs_info
->profiles_lock
);
107 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
108 flags
|= fs_info
->avail_data_alloc_bits
;
109 else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
110 flags
|= fs_info
->avail_system_alloc_bits
;
111 else if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
112 flags
|= fs_info
->avail_metadata_alloc_bits
;
113 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
115 return btrfs_reduce_alloc_profile(fs_info
, flags
);
118 u64
btrfs_get_alloc_profile(struct btrfs_fs_info
*fs_info
, u64 orig_flags
)
120 return get_alloc_profile(fs_info
, orig_flags
);
123 void btrfs_get_block_group(struct btrfs_block_group_cache
*cache
)
125 atomic_inc(&cache
->count
);
128 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
130 if (atomic_dec_and_test(&cache
->count
)) {
131 WARN_ON(cache
->pinned
> 0);
132 WARN_ON(cache
->reserved
> 0);
135 * If not empty, someone is still holding mutex of
136 * full_stripe_lock, which can only be released by caller.
137 * And it will definitely cause use-after-free when caller
138 * tries to release full stripe lock.
140 * No better way to resolve, but only to warn.
142 WARN_ON(!RB_EMPTY_ROOT(&cache
->full_stripe_locks_root
.root
));
143 kfree(cache
->free_space_ctl
);
149 * This adds the block group to the fs_info rb tree for the block group cache
151 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
152 struct btrfs_block_group_cache
*block_group
)
155 struct rb_node
*parent
= NULL
;
156 struct btrfs_block_group_cache
*cache
;
158 spin_lock(&info
->block_group_cache_lock
);
159 p
= &info
->block_group_cache_tree
.rb_node
;
163 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
165 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
167 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
170 spin_unlock(&info
->block_group_cache_lock
);
175 rb_link_node(&block_group
->cache_node
, parent
, p
);
176 rb_insert_color(&block_group
->cache_node
,
177 &info
->block_group_cache_tree
);
179 if (info
->first_logical_byte
> block_group
->key
.objectid
)
180 info
->first_logical_byte
= block_group
->key
.objectid
;
182 spin_unlock(&info
->block_group_cache_lock
);
188 * This will return the block group at or after bytenr if contains is 0, else
189 * it will return the block group that contains the bytenr
191 static struct btrfs_block_group_cache
*block_group_cache_tree_search(
192 struct btrfs_fs_info
*info
, u64 bytenr
, int contains
)
194 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
198 spin_lock(&info
->block_group_cache_lock
);
199 n
= info
->block_group_cache_tree
.rb_node
;
202 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
204 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
205 start
= cache
->key
.objectid
;
207 if (bytenr
< start
) {
208 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
211 } else if (bytenr
> start
) {
212 if (contains
&& bytenr
<= end
) {
223 btrfs_get_block_group(ret
);
224 if (bytenr
== 0 && info
->first_logical_byte
> ret
->key
.objectid
)
225 info
->first_logical_byte
= ret
->key
.objectid
;
227 spin_unlock(&info
->block_group_cache_lock
);
233 * Return the block group that starts at or after bytenr
235 struct btrfs_block_group_cache
*btrfs_lookup_first_block_group(
236 struct btrfs_fs_info
*info
, u64 bytenr
)
238 return block_group_cache_tree_search(info
, bytenr
, 0);
242 * Return the block group that contains the given bytenr
244 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
245 struct btrfs_fs_info
*info
, u64 bytenr
)
247 return block_group_cache_tree_search(info
, bytenr
, 1);
250 struct btrfs_block_group_cache
*btrfs_next_block_group(
251 struct btrfs_block_group_cache
*cache
)
253 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
254 struct rb_node
*node
;
256 spin_lock(&fs_info
->block_group_cache_lock
);
258 /* If our block group was removed, we need a full search. */
259 if (RB_EMPTY_NODE(&cache
->cache_node
)) {
260 const u64 next_bytenr
= cache
->key
.objectid
+ cache
->key
.offset
;
262 spin_unlock(&fs_info
->block_group_cache_lock
);
263 btrfs_put_block_group(cache
);
264 cache
= btrfs_lookup_first_block_group(fs_info
, next_bytenr
); return cache
;
266 node
= rb_next(&cache
->cache_node
);
267 btrfs_put_block_group(cache
);
269 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
271 btrfs_get_block_group(cache
);
274 spin_unlock(&fs_info
->block_group_cache_lock
);
278 bool btrfs_inc_nocow_writers(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
280 struct btrfs_block_group_cache
*bg
;
283 bg
= btrfs_lookup_block_group(fs_info
, bytenr
);
287 spin_lock(&bg
->lock
);
291 atomic_inc(&bg
->nocow_writers
);
292 spin_unlock(&bg
->lock
);
294 /* No put on block group, done by btrfs_dec_nocow_writers */
296 btrfs_put_block_group(bg
);
301 void btrfs_dec_nocow_writers(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
303 struct btrfs_block_group_cache
*bg
;
305 bg
= btrfs_lookup_block_group(fs_info
, bytenr
);
307 if (atomic_dec_and_test(&bg
->nocow_writers
))
308 wake_up_var(&bg
->nocow_writers
);
310 * Once for our lookup and once for the lookup done by a previous call
311 * to btrfs_inc_nocow_writers()
313 btrfs_put_block_group(bg
);
314 btrfs_put_block_group(bg
);
317 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache
*bg
)
319 wait_var_event(&bg
->nocow_writers
, !atomic_read(&bg
->nocow_writers
));
322 void btrfs_dec_block_group_reservations(struct btrfs_fs_info
*fs_info
,
325 struct btrfs_block_group_cache
*bg
;
327 bg
= btrfs_lookup_block_group(fs_info
, start
);
329 if (atomic_dec_and_test(&bg
->reservations
))
330 wake_up_var(&bg
->reservations
);
331 btrfs_put_block_group(bg
);
334 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache
*bg
)
336 struct btrfs_space_info
*space_info
= bg
->space_info
;
340 if (!(bg
->flags
& BTRFS_BLOCK_GROUP_DATA
))
344 * Our block group is read only but before we set it to read only,
345 * some task might have had allocated an extent from it already, but it
346 * has not yet created a respective ordered extent (and added it to a
347 * root's list of ordered extents).
348 * Therefore wait for any task currently allocating extents, since the
349 * block group's reservations counter is incremented while a read lock
350 * on the groups' semaphore is held and decremented after releasing
351 * the read access on that semaphore and creating the ordered extent.
353 down_write(&space_info
->groups_sem
);
354 up_write(&space_info
->groups_sem
);
356 wait_var_event(&bg
->reservations
, !atomic_read(&bg
->reservations
));
359 struct btrfs_caching_control
*btrfs_get_caching_control(
360 struct btrfs_block_group_cache
*cache
)
362 struct btrfs_caching_control
*ctl
;
364 spin_lock(&cache
->lock
);
365 if (!cache
->caching_ctl
) {
366 spin_unlock(&cache
->lock
);
370 ctl
= cache
->caching_ctl
;
371 refcount_inc(&ctl
->count
);
372 spin_unlock(&cache
->lock
);
376 void btrfs_put_caching_control(struct btrfs_caching_control
*ctl
)
378 if (refcount_dec_and_test(&ctl
->count
))
383 * When we wait for progress in the block group caching, its because our
384 * allocation attempt failed at least once. So, we must sleep and let some
385 * progress happen before we try again.
387 * This function will sleep at least once waiting for new free space to show
388 * up, and then it will check the block group free space numbers for our min
389 * num_bytes. Another option is to have it go ahead and look in the rbtree for
390 * a free extent of a given size, but this is a good start.
392 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
393 * any of the information in this block group.
395 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
398 struct btrfs_caching_control
*caching_ctl
;
400 caching_ctl
= btrfs_get_caching_control(cache
);
404 wait_event(caching_ctl
->wait
, btrfs_block_group_cache_done(cache
) ||
405 (cache
->free_space_ctl
->free_space
>= num_bytes
));
407 btrfs_put_caching_control(caching_ctl
);
410 int btrfs_wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
412 struct btrfs_caching_control
*caching_ctl
;
415 caching_ctl
= btrfs_get_caching_control(cache
);
417 return (cache
->cached
== BTRFS_CACHE_ERROR
) ? -EIO
: 0;
419 wait_event(caching_ctl
->wait
, btrfs_block_group_cache_done(cache
));
420 if (cache
->cached
== BTRFS_CACHE_ERROR
)
422 btrfs_put_caching_control(caching_ctl
);
426 #ifdef CONFIG_BTRFS_DEBUG
427 static void fragment_free_space(struct btrfs_block_group_cache
*block_group
)
429 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
430 u64 start
= block_group
->key
.objectid
;
431 u64 len
= block_group
->key
.offset
;
432 u64 chunk
= block_group
->flags
& BTRFS_BLOCK_GROUP_METADATA
?
433 fs_info
->nodesize
: fs_info
->sectorsize
;
434 u64 step
= chunk
<< 1;
436 while (len
> chunk
) {
437 btrfs_remove_free_space(block_group
, start
, chunk
);
448 * This is only called by btrfs_cache_block_group, since we could have freed
449 * extents we need to check the pinned_extents for any extents that can't be
450 * used yet since their free space will be released as soon as the transaction
453 u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
456 struct btrfs_fs_info
*info
= block_group
->fs_info
;
457 u64 extent_start
, extent_end
, size
, total_added
= 0;
460 while (start
< end
) {
461 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
462 &extent_start
, &extent_end
,
463 EXTENT_DIRTY
| EXTENT_UPTODATE
,
468 if (extent_start
<= start
) {
469 start
= extent_end
+ 1;
470 } else if (extent_start
> start
&& extent_start
< end
) {
471 size
= extent_start
- start
;
473 ret
= btrfs_add_free_space(block_group
, start
,
475 BUG_ON(ret
); /* -ENOMEM or logic error */
476 start
= extent_end
+ 1;
485 ret
= btrfs_add_free_space(block_group
, start
, size
);
486 BUG_ON(ret
); /* -ENOMEM or logic error */
492 static int load_extent_tree_free(struct btrfs_caching_control
*caching_ctl
)
494 struct btrfs_block_group_cache
*block_group
= caching_ctl
->block_group
;
495 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
496 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
497 struct btrfs_path
*path
;
498 struct extent_buffer
*leaf
;
499 struct btrfs_key key
;
506 path
= btrfs_alloc_path();
510 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
512 #ifdef CONFIG_BTRFS_DEBUG
514 * If we're fragmenting we don't want to make anybody think we can
515 * allocate from this block group until we've had a chance to fragment
518 if (btrfs_should_fragment_free_space(block_group
))
522 * We don't want to deadlock with somebody trying to allocate a new
523 * extent for the extent root while also trying to search the extent
524 * root to add free space. So we skip locking and search the commit
525 * root, since its read-only
527 path
->skip_locking
= 1;
528 path
->search_commit_root
= 1;
529 path
->reada
= READA_FORWARD
;
533 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
536 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
540 leaf
= path
->nodes
[0];
541 nritems
= btrfs_header_nritems(leaf
);
544 if (btrfs_fs_closing(fs_info
) > 1) {
549 if (path
->slots
[0] < nritems
) {
550 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
552 ret
= btrfs_find_next_key(extent_root
, path
, &key
, 0, 0);
556 if (need_resched() ||
557 rwsem_is_contended(&fs_info
->commit_root_sem
)) {
559 caching_ctl
->progress
= last
;
560 btrfs_release_path(path
);
561 up_read(&fs_info
->commit_root_sem
);
562 mutex_unlock(&caching_ctl
->mutex
);
564 mutex_lock(&caching_ctl
->mutex
);
565 down_read(&fs_info
->commit_root_sem
);
569 ret
= btrfs_next_leaf(extent_root
, path
);
574 leaf
= path
->nodes
[0];
575 nritems
= btrfs_header_nritems(leaf
);
579 if (key
.objectid
< last
) {
582 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
585 caching_ctl
->progress
= last
;
586 btrfs_release_path(path
);
590 if (key
.objectid
< block_group
->key
.objectid
) {
595 if (key
.objectid
>= block_group
->key
.objectid
+
596 block_group
->key
.offset
)
599 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
600 key
.type
== BTRFS_METADATA_ITEM_KEY
) {
601 total_found
+= add_new_free_space(block_group
, last
,
603 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
604 last
= key
.objectid
+
607 last
= key
.objectid
+ key
.offset
;
609 if (total_found
> CACHING_CTL_WAKE_UP
) {
612 wake_up(&caching_ctl
->wait
);
619 total_found
+= add_new_free_space(block_group
, last
,
620 block_group
->key
.objectid
+
621 block_group
->key
.offset
);
622 caching_ctl
->progress
= (u64
)-1;
625 btrfs_free_path(path
);
629 static noinline
void caching_thread(struct btrfs_work
*work
)
631 struct btrfs_block_group_cache
*block_group
;
632 struct btrfs_fs_info
*fs_info
;
633 struct btrfs_caching_control
*caching_ctl
;
636 caching_ctl
= container_of(work
, struct btrfs_caching_control
, work
);
637 block_group
= caching_ctl
->block_group
;
638 fs_info
= block_group
->fs_info
;
640 mutex_lock(&caching_ctl
->mutex
);
641 down_read(&fs_info
->commit_root_sem
);
643 if (btrfs_fs_compat_ro(fs_info
, FREE_SPACE_TREE
))
644 ret
= load_free_space_tree(caching_ctl
);
646 ret
= load_extent_tree_free(caching_ctl
);
648 spin_lock(&block_group
->lock
);
649 block_group
->caching_ctl
= NULL
;
650 block_group
->cached
= ret
? BTRFS_CACHE_ERROR
: BTRFS_CACHE_FINISHED
;
651 spin_unlock(&block_group
->lock
);
653 #ifdef CONFIG_BTRFS_DEBUG
654 if (btrfs_should_fragment_free_space(block_group
)) {
657 spin_lock(&block_group
->space_info
->lock
);
658 spin_lock(&block_group
->lock
);
659 bytes_used
= block_group
->key
.offset
-
660 btrfs_block_group_used(&block_group
->item
);
661 block_group
->space_info
->bytes_used
+= bytes_used
>> 1;
662 spin_unlock(&block_group
->lock
);
663 spin_unlock(&block_group
->space_info
->lock
);
664 fragment_free_space(block_group
);
668 caching_ctl
->progress
= (u64
)-1;
670 up_read(&fs_info
->commit_root_sem
);
671 btrfs_free_excluded_extents(block_group
);
672 mutex_unlock(&caching_ctl
->mutex
);
674 wake_up(&caching_ctl
->wait
);
676 btrfs_put_caching_control(caching_ctl
);
677 btrfs_put_block_group(block_group
);
680 int btrfs_cache_block_group(struct btrfs_block_group_cache
*cache
,
684 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
685 struct btrfs_caching_control
*caching_ctl
;
688 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_NOFS
);
692 INIT_LIST_HEAD(&caching_ctl
->list
);
693 mutex_init(&caching_ctl
->mutex
);
694 init_waitqueue_head(&caching_ctl
->wait
);
695 caching_ctl
->block_group
= cache
;
696 caching_ctl
->progress
= cache
->key
.objectid
;
697 refcount_set(&caching_ctl
->count
, 1);
698 btrfs_init_work(&caching_ctl
->work
, btrfs_cache_helper
,
699 caching_thread
, NULL
, NULL
);
701 spin_lock(&cache
->lock
);
703 * This should be a rare occasion, but this could happen I think in the
704 * case where one thread starts to load the space cache info, and then
705 * some other thread starts a transaction commit which tries to do an
706 * allocation while the other thread is still loading the space cache
707 * info. The previous loop should have kept us from choosing this block
708 * group, but if we've moved to the state where we will wait on caching
709 * block groups we need to first check if we're doing a fast load here,
710 * so we can wait for it to finish, otherwise we could end up allocating
711 * from a block group who's cache gets evicted for one reason or
714 while (cache
->cached
== BTRFS_CACHE_FAST
) {
715 struct btrfs_caching_control
*ctl
;
717 ctl
= cache
->caching_ctl
;
718 refcount_inc(&ctl
->count
);
719 prepare_to_wait(&ctl
->wait
, &wait
, TASK_UNINTERRUPTIBLE
);
720 spin_unlock(&cache
->lock
);
724 finish_wait(&ctl
->wait
, &wait
);
725 btrfs_put_caching_control(ctl
);
726 spin_lock(&cache
->lock
);
729 if (cache
->cached
!= BTRFS_CACHE_NO
) {
730 spin_unlock(&cache
->lock
);
734 WARN_ON(cache
->caching_ctl
);
735 cache
->caching_ctl
= caching_ctl
;
736 cache
->cached
= BTRFS_CACHE_FAST
;
737 spin_unlock(&cache
->lock
);
739 if (btrfs_test_opt(fs_info
, SPACE_CACHE
)) {
740 mutex_lock(&caching_ctl
->mutex
);
741 ret
= load_free_space_cache(cache
);
743 spin_lock(&cache
->lock
);
745 cache
->caching_ctl
= NULL
;
746 cache
->cached
= BTRFS_CACHE_FINISHED
;
747 cache
->last_byte_to_unpin
= (u64
)-1;
748 caching_ctl
->progress
= (u64
)-1;
750 if (load_cache_only
) {
751 cache
->caching_ctl
= NULL
;
752 cache
->cached
= BTRFS_CACHE_NO
;
754 cache
->cached
= BTRFS_CACHE_STARTED
;
755 cache
->has_caching_ctl
= 1;
758 spin_unlock(&cache
->lock
);
759 #ifdef CONFIG_BTRFS_DEBUG
761 btrfs_should_fragment_free_space(cache
)) {
764 spin_lock(&cache
->space_info
->lock
);
765 spin_lock(&cache
->lock
);
766 bytes_used
= cache
->key
.offset
-
767 btrfs_block_group_used(&cache
->item
);
768 cache
->space_info
->bytes_used
+= bytes_used
>> 1;
769 spin_unlock(&cache
->lock
);
770 spin_unlock(&cache
->space_info
->lock
);
771 fragment_free_space(cache
);
774 mutex_unlock(&caching_ctl
->mutex
);
776 wake_up(&caching_ctl
->wait
);
778 btrfs_put_caching_control(caching_ctl
);
779 btrfs_free_excluded_extents(cache
);
784 * We're either using the free space tree or no caching at all.
785 * Set cached to the appropriate value and wakeup any waiters.
787 spin_lock(&cache
->lock
);
788 if (load_cache_only
) {
789 cache
->caching_ctl
= NULL
;
790 cache
->cached
= BTRFS_CACHE_NO
;
792 cache
->cached
= BTRFS_CACHE_STARTED
;
793 cache
->has_caching_ctl
= 1;
795 spin_unlock(&cache
->lock
);
796 wake_up(&caching_ctl
->wait
);
799 if (load_cache_only
) {
800 btrfs_put_caching_control(caching_ctl
);
804 down_write(&fs_info
->commit_root_sem
);
805 refcount_inc(&caching_ctl
->count
);
806 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
807 up_write(&fs_info
->commit_root_sem
);
809 btrfs_get_block_group(cache
);
811 btrfs_queue_work(fs_info
->caching_workers
, &caching_ctl
->work
);
816 static void clear_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
818 u64 extra_flags
= chunk_to_extended(flags
) &
819 BTRFS_EXTENDED_PROFILE_MASK
;
821 write_seqlock(&fs_info
->profiles_lock
);
822 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
823 fs_info
->avail_data_alloc_bits
&= ~extra_flags
;
824 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
825 fs_info
->avail_metadata_alloc_bits
&= ~extra_flags
;
826 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
827 fs_info
->avail_system_alloc_bits
&= ~extra_flags
;
828 write_sequnlock(&fs_info
->profiles_lock
);
832 * Clear incompat bits for the following feature(s):
834 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
835 * in the whole filesystem
837 static void clear_incompat_bg_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
839 if (flags
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
840 struct list_head
*head
= &fs_info
->space_info
;
841 struct btrfs_space_info
*sinfo
;
843 list_for_each_entry_rcu(sinfo
, head
, list
) {
846 down_read(&sinfo
->groups_sem
);
847 if (!list_empty(&sinfo
->block_groups
[BTRFS_RAID_RAID5
]))
849 if (!list_empty(&sinfo
->block_groups
[BTRFS_RAID_RAID6
]))
851 up_read(&sinfo
->groups_sem
);
856 btrfs_clear_fs_incompat(fs_info
, RAID56
);
860 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
861 u64 group_start
, struct extent_map
*em
)
863 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
864 struct btrfs_root
*root
= fs_info
->extent_root
;
865 struct btrfs_path
*path
;
866 struct btrfs_block_group_cache
*block_group
;
867 struct btrfs_free_cluster
*cluster
;
868 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
869 struct btrfs_key key
;
871 struct kobject
*kobj
= NULL
;
875 struct btrfs_caching_control
*caching_ctl
= NULL
;
877 bool remove_rsv
= false;
879 block_group
= btrfs_lookup_block_group(fs_info
, group_start
);
880 BUG_ON(!block_group
);
881 BUG_ON(!block_group
->ro
);
883 trace_btrfs_remove_block_group(block_group
);
885 * Free the reserved super bytes from this block group before
888 btrfs_free_excluded_extents(block_group
);
889 btrfs_free_ref_tree_range(fs_info
, block_group
->key
.objectid
,
890 block_group
->key
.offset
);
892 memcpy(&key
, &block_group
->key
, sizeof(key
));
893 index
= btrfs_bg_flags_to_raid_index(block_group
->flags
);
894 factor
= btrfs_bg_type_to_factor(block_group
->flags
);
896 /* make sure this block group isn't part of an allocation cluster */
897 cluster
= &fs_info
->data_alloc_cluster
;
898 spin_lock(&cluster
->refill_lock
);
899 btrfs_return_cluster_to_free_space(block_group
, cluster
);
900 spin_unlock(&cluster
->refill_lock
);
903 * make sure this block group isn't part of a metadata
906 cluster
= &fs_info
->meta_alloc_cluster
;
907 spin_lock(&cluster
->refill_lock
);
908 btrfs_return_cluster_to_free_space(block_group
, cluster
);
909 spin_unlock(&cluster
->refill_lock
);
911 path
= btrfs_alloc_path();
918 * get the inode first so any iput calls done for the io_list
919 * aren't the final iput (no unlinks allowed now)
921 inode
= lookup_free_space_inode(block_group
, path
);
923 mutex_lock(&trans
->transaction
->cache_write_mutex
);
925 * Make sure our free space cache IO is done before removing the
928 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
929 if (!list_empty(&block_group
->io_list
)) {
930 list_del_init(&block_group
->io_list
);
932 WARN_ON(!IS_ERR(inode
) && inode
!= block_group
->io_ctl
.inode
);
934 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
935 btrfs_wait_cache_io(trans
, block_group
, path
);
936 btrfs_put_block_group(block_group
);
937 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
940 if (!list_empty(&block_group
->dirty_list
)) {
941 list_del_init(&block_group
->dirty_list
);
943 btrfs_put_block_group(block_group
);
945 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
946 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
948 if (!IS_ERR(inode
)) {
949 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
951 btrfs_add_delayed_iput(inode
);
955 /* One for the block groups ref */
956 spin_lock(&block_group
->lock
);
957 if (block_group
->iref
) {
958 block_group
->iref
= 0;
959 block_group
->inode
= NULL
;
960 spin_unlock(&block_group
->lock
);
963 spin_unlock(&block_group
->lock
);
965 /* One for our lookup ref */
966 btrfs_add_delayed_iput(inode
);
969 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
970 key
.offset
= block_group
->key
.objectid
;
973 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
977 btrfs_release_path(path
);
979 ret
= btrfs_del_item(trans
, tree_root
, path
);
982 btrfs_release_path(path
);
985 spin_lock(&fs_info
->block_group_cache_lock
);
986 rb_erase(&block_group
->cache_node
,
987 &fs_info
->block_group_cache_tree
);
988 RB_CLEAR_NODE(&block_group
->cache_node
);
990 if (fs_info
->first_logical_byte
== block_group
->key
.objectid
)
991 fs_info
->first_logical_byte
= (u64
)-1;
992 spin_unlock(&fs_info
->block_group_cache_lock
);
994 down_write(&block_group
->space_info
->groups_sem
);
996 * we must use list_del_init so people can check to see if they
997 * are still on the list after taking the semaphore
999 list_del_init(&block_group
->list
);
1000 if (list_empty(&block_group
->space_info
->block_groups
[index
])) {
1001 kobj
= block_group
->space_info
->block_group_kobjs
[index
];
1002 block_group
->space_info
->block_group_kobjs
[index
] = NULL
;
1003 clear_avail_alloc_bits(fs_info
, block_group
->flags
);
1005 up_write(&block_group
->space_info
->groups_sem
);
1006 clear_incompat_bg_bits(fs_info
, block_group
->flags
);
1012 if (block_group
->has_caching_ctl
)
1013 caching_ctl
= btrfs_get_caching_control(block_group
);
1014 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
1015 btrfs_wait_block_group_cache_done(block_group
);
1016 if (block_group
->has_caching_ctl
) {
1017 down_write(&fs_info
->commit_root_sem
);
1019 struct btrfs_caching_control
*ctl
;
1021 list_for_each_entry(ctl
,
1022 &fs_info
->caching_block_groups
, list
)
1023 if (ctl
->block_group
== block_group
) {
1025 refcount_inc(&caching_ctl
->count
);
1030 list_del_init(&caching_ctl
->list
);
1031 up_write(&fs_info
->commit_root_sem
);
1033 /* Once for the caching bgs list and once for us. */
1034 btrfs_put_caching_control(caching_ctl
);
1035 btrfs_put_caching_control(caching_ctl
);
1039 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
1040 WARN_ON(!list_empty(&block_group
->dirty_list
));
1041 WARN_ON(!list_empty(&block_group
->io_list
));
1042 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
1044 btrfs_remove_free_space_cache(block_group
);
1046 spin_lock(&block_group
->space_info
->lock
);
1047 list_del_init(&block_group
->ro_list
);
1049 if (btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
1050 WARN_ON(block_group
->space_info
->total_bytes
1051 < block_group
->key
.offset
);
1052 WARN_ON(block_group
->space_info
->bytes_readonly
1053 < block_group
->key
.offset
);
1054 WARN_ON(block_group
->space_info
->disk_total
1055 < block_group
->key
.offset
* factor
);
1057 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
1058 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
1059 block_group
->space_info
->disk_total
-= block_group
->key
.offset
* factor
;
1061 spin_unlock(&block_group
->space_info
->lock
);
1063 memcpy(&key
, &block_group
->key
, sizeof(key
));
1065 mutex_lock(&fs_info
->chunk_mutex
);
1066 spin_lock(&block_group
->lock
);
1067 block_group
->removed
= 1;
1069 * At this point trimming can't start on this block group, because we
1070 * removed the block group from the tree fs_info->block_group_cache_tree
1071 * so no one can't find it anymore and even if someone already got this
1072 * block group before we removed it from the rbtree, they have already
1073 * incremented block_group->trimming - if they didn't, they won't find
1074 * any free space entries because we already removed them all when we
1075 * called btrfs_remove_free_space_cache().
1077 * And we must not remove the extent map from the fs_info->mapping_tree
1078 * to prevent the same logical address range and physical device space
1079 * ranges from being reused for a new block group. This is because our
1080 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1081 * completely transactionless, so while it is trimming a range the
1082 * currently running transaction might finish and a new one start,
1083 * allowing for new block groups to be created that can reuse the same
1084 * physical device locations unless we take this special care.
1086 * There may also be an implicit trim operation if the file system
1087 * is mounted with -odiscard. The same protections must remain
1088 * in place until the extents have been discarded completely when
1089 * the transaction commit has completed.
1091 remove_em
= (atomic_read(&block_group
->trimming
) == 0);
1092 spin_unlock(&block_group
->lock
);
1094 mutex_unlock(&fs_info
->chunk_mutex
);
1096 ret
= remove_block_group_free_space(trans
, block_group
);
1100 btrfs_put_block_group(block_group
);
1101 btrfs_put_block_group(block_group
);
1103 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1109 ret
= btrfs_del_item(trans
, root
, path
);
1114 struct extent_map_tree
*em_tree
;
1116 em_tree
= &fs_info
->mapping_tree
;
1117 write_lock(&em_tree
->lock
);
1118 remove_extent_mapping(em_tree
, em
);
1119 write_unlock(&em_tree
->lock
);
1120 /* once for the tree */
1121 free_extent_map(em
);
1125 btrfs_delayed_refs_rsv_release(fs_info
, 1);
1126 btrfs_free_path(path
);
1130 struct btrfs_trans_handle
*btrfs_start_trans_remove_block_group(
1131 struct btrfs_fs_info
*fs_info
, const u64 chunk_offset
)
1133 struct extent_map_tree
*em_tree
= &fs_info
->mapping_tree
;
1134 struct extent_map
*em
;
1135 struct map_lookup
*map
;
1136 unsigned int num_items
;
1138 read_lock(&em_tree
->lock
);
1139 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
1140 read_unlock(&em_tree
->lock
);
1141 ASSERT(em
&& em
->start
== chunk_offset
);
1144 * We need to reserve 3 + N units from the metadata space info in order
1145 * to remove a block group (done at btrfs_remove_chunk() and at
1146 * btrfs_remove_block_group()), which are used for:
1148 * 1 unit for adding the free space inode's orphan (located in the tree
1150 * 1 unit for deleting the block group item (located in the extent
1152 * 1 unit for deleting the free space item (located in tree of tree
1154 * N units for deleting N device extent items corresponding to each
1155 * stripe (located in the device tree).
1157 * In order to remove a block group we also need to reserve units in the
1158 * system space info in order to update the chunk tree (update one or
1159 * more device items and remove one chunk item), but this is done at
1160 * btrfs_remove_chunk() through a call to check_system_chunk().
1162 map
= em
->map_lookup
;
1163 num_items
= 3 + map
->num_stripes
;
1164 free_extent_map(em
);
1166 return btrfs_start_transaction_fallback_global_rsv(fs_info
->extent_root
,
1171 * Mark block group @cache read-only, so later write won't happen to block
1174 * If @force is not set, this function will only mark the block group readonly
1175 * if we have enough free space (1M) in other metadata/system block groups.
1176 * If @force is not set, this function will mark the block group readonly
1177 * without checking free space.
1179 * NOTE: This function doesn't care if other block groups can contain all the
1180 * data in this block group. That check should be done by relocation routine,
1181 * not this function.
1183 static int inc_block_group_ro(struct btrfs_block_group_cache
*cache
, int force
)
1185 struct btrfs_space_info
*sinfo
= cache
->space_info
;
1188 u64 min_allocable_bytes
;
1192 * We need some metadata space and system metadata space for
1193 * allocating chunks in some corner cases until we force to set
1194 * it to be readonly.
1197 (BTRFS_BLOCK_GROUP_SYSTEM
| BTRFS_BLOCK_GROUP_METADATA
)) &&
1199 min_allocable_bytes
= SZ_1M
;
1201 min_allocable_bytes
= 0;
1203 spin_lock(&sinfo
->lock
);
1204 spin_lock(&cache
->lock
);
1212 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
1213 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
1214 sinfo_used
= btrfs_space_info_used(sinfo
, true);
1217 * sinfo_used + num_bytes should always <= sinfo->total_bytes.
1219 * Here we make sure if we mark this bg RO, we still have enough
1220 * free space as buffer (if min_allocable_bytes is not 0).
1222 if (sinfo_used
+ num_bytes
+ min_allocable_bytes
<=
1223 sinfo
->total_bytes
) {
1224 sinfo
->bytes_readonly
+= num_bytes
;
1226 list_add_tail(&cache
->ro_list
, &sinfo
->ro_bgs
);
1230 spin_unlock(&cache
->lock
);
1231 spin_unlock(&sinfo
->lock
);
1232 if (ret
== -ENOSPC
&& btrfs_test_opt(cache
->fs_info
, ENOSPC_DEBUG
)) {
1233 btrfs_info(cache
->fs_info
,
1234 "unable to make block group %llu ro",
1235 cache
->key
.objectid
);
1236 btrfs_info(cache
->fs_info
,
1237 "sinfo_used=%llu bg_num_bytes=%llu min_allocable=%llu",
1238 sinfo_used
, num_bytes
, min_allocable_bytes
);
1239 btrfs_dump_space_info(cache
->fs_info
, cache
->space_info
, 0, 0);
1245 * Process the unused_bgs list and remove any that don't have any allocated
1246 * space inside of them.
1248 void btrfs_delete_unused_bgs(struct btrfs_fs_info
*fs_info
)
1250 struct btrfs_block_group_cache
*block_group
;
1251 struct btrfs_space_info
*space_info
;
1252 struct btrfs_trans_handle
*trans
;
1255 if (!test_bit(BTRFS_FS_OPEN
, &fs_info
->flags
))
1258 spin_lock(&fs_info
->unused_bgs_lock
);
1259 while (!list_empty(&fs_info
->unused_bgs
)) {
1263 block_group
= list_first_entry(&fs_info
->unused_bgs
,
1264 struct btrfs_block_group_cache
,
1266 list_del_init(&block_group
->bg_list
);
1268 space_info
= block_group
->space_info
;
1270 if (ret
|| btrfs_mixed_space_info(space_info
)) {
1271 btrfs_put_block_group(block_group
);
1274 spin_unlock(&fs_info
->unused_bgs_lock
);
1276 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
1278 /* Don't want to race with allocators so take the groups_sem */
1279 down_write(&space_info
->groups_sem
);
1280 spin_lock(&block_group
->lock
);
1281 if (block_group
->reserved
|| block_group
->pinned
||
1282 btrfs_block_group_used(&block_group
->item
) ||
1284 list_is_singular(&block_group
->list
)) {
1286 * We want to bail if we made new allocations or have
1287 * outstanding allocations in this block group. We do
1288 * the ro check in case balance is currently acting on
1291 trace_btrfs_skip_unused_block_group(block_group
);
1292 spin_unlock(&block_group
->lock
);
1293 up_write(&space_info
->groups_sem
);
1296 spin_unlock(&block_group
->lock
);
1298 /* We don't want to force the issue, only flip if it's ok. */
1299 ret
= inc_block_group_ro(block_group
, 0);
1300 up_write(&space_info
->groups_sem
);
1307 * Want to do this before we do anything else so we can recover
1308 * properly if we fail to join the transaction.
1310 trans
= btrfs_start_trans_remove_block_group(fs_info
,
1311 block_group
->key
.objectid
);
1312 if (IS_ERR(trans
)) {
1313 btrfs_dec_block_group_ro(block_group
);
1314 ret
= PTR_ERR(trans
);
1319 * We could have pending pinned extents for this block group,
1320 * just delete them, we don't care about them anymore.
1322 start
= block_group
->key
.objectid
;
1323 end
= start
+ block_group
->key
.offset
- 1;
1325 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1326 * btrfs_finish_extent_commit(). If we are at transaction N,
1327 * another task might be running finish_extent_commit() for the
1328 * previous transaction N - 1, and have seen a range belonging
1329 * to the block group in freed_extents[] before we were able to
1330 * clear the whole block group range from freed_extents[]. This
1331 * means that task can lookup for the block group after we
1332 * unpinned it from freed_extents[] and removed it, leading to
1333 * a BUG_ON() at btrfs_unpin_extent_range().
1335 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
1336 ret
= clear_extent_bits(&fs_info
->freed_extents
[0], start
, end
,
1339 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
1340 btrfs_dec_block_group_ro(block_group
);
1343 ret
= clear_extent_bits(&fs_info
->freed_extents
[1], start
, end
,
1346 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
1347 btrfs_dec_block_group_ro(block_group
);
1350 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
1352 /* Reset pinned so btrfs_put_block_group doesn't complain */
1353 spin_lock(&space_info
->lock
);
1354 spin_lock(&block_group
->lock
);
1356 btrfs_space_info_update_bytes_pinned(fs_info
, space_info
,
1357 -block_group
->pinned
);
1358 space_info
->bytes_readonly
+= block_group
->pinned
;
1359 percpu_counter_add_batch(&space_info
->total_bytes_pinned
,
1360 -block_group
->pinned
,
1361 BTRFS_TOTAL_BYTES_PINNED_BATCH
);
1362 block_group
->pinned
= 0;
1364 spin_unlock(&block_group
->lock
);
1365 spin_unlock(&space_info
->lock
);
1367 /* DISCARD can flip during remount */
1368 trimming
= btrfs_test_opt(fs_info
, DISCARD
);
1370 /* Implicit trim during transaction commit. */
1372 btrfs_get_block_group_trimming(block_group
);
1375 * Btrfs_remove_chunk will abort the transaction if things go
1378 ret
= btrfs_remove_chunk(trans
, block_group
->key
.objectid
);
1382 btrfs_put_block_group_trimming(block_group
);
1387 * If we're not mounted with -odiscard, we can just forget
1388 * about this block group. Otherwise we'll need to wait
1389 * until transaction commit to do the actual discard.
1392 spin_lock(&fs_info
->unused_bgs_lock
);
1394 * A concurrent scrub might have added us to the list
1395 * fs_info->unused_bgs, so use a list_move operation
1396 * to add the block group to the deleted_bgs list.
1398 list_move(&block_group
->bg_list
,
1399 &trans
->transaction
->deleted_bgs
);
1400 spin_unlock(&fs_info
->unused_bgs_lock
);
1401 btrfs_get_block_group(block_group
);
1404 btrfs_end_transaction(trans
);
1406 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
1407 btrfs_put_block_group(block_group
);
1408 spin_lock(&fs_info
->unused_bgs_lock
);
1410 spin_unlock(&fs_info
->unused_bgs_lock
);
1413 void btrfs_mark_bg_unused(struct btrfs_block_group_cache
*bg
)
1415 struct btrfs_fs_info
*fs_info
= bg
->fs_info
;
1417 spin_lock(&fs_info
->unused_bgs_lock
);
1418 if (list_empty(&bg
->bg_list
)) {
1419 btrfs_get_block_group(bg
);
1420 trace_btrfs_add_unused_block_group(bg
);
1421 list_add_tail(&bg
->bg_list
, &fs_info
->unused_bgs
);
1423 spin_unlock(&fs_info
->unused_bgs_lock
);
1426 static int find_first_block_group(struct btrfs_fs_info
*fs_info
,
1427 struct btrfs_path
*path
,
1428 struct btrfs_key
*key
)
1430 struct btrfs_root
*root
= fs_info
->extent_root
;
1432 struct btrfs_key found_key
;
1433 struct extent_buffer
*leaf
;
1434 struct btrfs_block_group_item bg
;
1438 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
1443 slot
= path
->slots
[0];
1444 leaf
= path
->nodes
[0];
1445 if (slot
>= btrfs_header_nritems(leaf
)) {
1446 ret
= btrfs_next_leaf(root
, path
);
1453 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
1455 if (found_key
.objectid
>= key
->objectid
&&
1456 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1457 struct extent_map_tree
*em_tree
;
1458 struct extent_map
*em
;
1460 em_tree
= &root
->fs_info
->mapping_tree
;
1461 read_lock(&em_tree
->lock
);
1462 em
= lookup_extent_mapping(em_tree
, found_key
.objectid
,
1464 read_unlock(&em_tree
->lock
);
1467 "logical %llu len %llu found bg but no related chunk",
1468 found_key
.objectid
, found_key
.offset
);
1470 } else if (em
->start
!= found_key
.objectid
||
1471 em
->len
!= found_key
.offset
) {
1473 "block group %llu len %llu mismatch with chunk %llu len %llu",
1474 found_key
.objectid
, found_key
.offset
,
1475 em
->start
, em
->len
);
1478 read_extent_buffer(leaf
, &bg
,
1479 btrfs_item_ptr_offset(leaf
, slot
),
1481 flags
= btrfs_block_group_flags(&bg
) &
1482 BTRFS_BLOCK_GROUP_TYPE_MASK
;
1484 if (flags
!= (em
->map_lookup
->type
&
1485 BTRFS_BLOCK_GROUP_TYPE_MASK
)) {
1487 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1489 found_key
.offset
, flags
,
1490 (BTRFS_BLOCK_GROUP_TYPE_MASK
&
1491 em
->map_lookup
->type
));
1497 free_extent_map(em
);
1506 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
1508 u64 extra_flags
= chunk_to_extended(flags
) &
1509 BTRFS_EXTENDED_PROFILE_MASK
;
1511 write_seqlock(&fs_info
->profiles_lock
);
1512 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
1513 fs_info
->avail_data_alloc_bits
|= extra_flags
;
1514 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
1515 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
1516 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
1517 fs_info
->avail_system_alloc_bits
|= extra_flags
;
1518 write_sequnlock(&fs_info
->profiles_lock
);
1521 static int exclude_super_stripes(struct btrfs_block_group_cache
*cache
)
1523 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
1529 if (cache
->key
.objectid
< BTRFS_SUPER_INFO_OFFSET
) {
1530 stripe_len
= BTRFS_SUPER_INFO_OFFSET
- cache
->key
.objectid
;
1531 cache
->bytes_super
+= stripe_len
;
1532 ret
= btrfs_add_excluded_extent(fs_info
, cache
->key
.objectid
,
1538 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
1539 bytenr
= btrfs_sb_offset(i
);
1540 ret
= btrfs_rmap_block(fs_info
, cache
->key
.objectid
,
1541 bytenr
, &logical
, &nr
, &stripe_len
);
1548 if (logical
[nr
] > cache
->key
.objectid
+
1552 if (logical
[nr
] + stripe_len
<= cache
->key
.objectid
)
1555 start
= logical
[nr
];
1556 if (start
< cache
->key
.objectid
) {
1557 start
= cache
->key
.objectid
;
1558 len
= (logical
[nr
] + stripe_len
) - start
;
1560 len
= min_t(u64
, stripe_len
,
1561 cache
->key
.objectid
+
1562 cache
->key
.offset
- start
);
1565 cache
->bytes_super
+= len
;
1566 ret
= btrfs_add_excluded_extent(fs_info
, start
, len
);
1578 static void link_block_group(struct btrfs_block_group_cache
*cache
)
1580 struct btrfs_space_info
*space_info
= cache
->space_info
;
1581 int index
= btrfs_bg_flags_to_raid_index(cache
->flags
);
1584 down_write(&space_info
->groups_sem
);
1585 if (list_empty(&space_info
->block_groups
[index
]))
1587 list_add_tail(&cache
->list
, &space_info
->block_groups
[index
]);
1588 up_write(&space_info
->groups_sem
);
1591 btrfs_sysfs_add_block_group_type(cache
);
1594 static struct btrfs_block_group_cache
*btrfs_create_block_group_cache(
1595 struct btrfs_fs_info
*fs_info
, u64 start
, u64 size
)
1597 struct btrfs_block_group_cache
*cache
;
1599 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
1603 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
1605 if (!cache
->free_space_ctl
) {
1610 cache
->key
.objectid
= start
;
1611 cache
->key
.offset
= size
;
1612 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
1614 cache
->fs_info
= fs_info
;
1615 cache
->full_stripe_len
= btrfs_full_stripe_len(fs_info
, start
);
1616 set_free_space_tree_thresholds(cache
);
1618 atomic_set(&cache
->count
, 1);
1619 spin_lock_init(&cache
->lock
);
1620 init_rwsem(&cache
->data_rwsem
);
1621 INIT_LIST_HEAD(&cache
->list
);
1622 INIT_LIST_HEAD(&cache
->cluster_list
);
1623 INIT_LIST_HEAD(&cache
->bg_list
);
1624 INIT_LIST_HEAD(&cache
->ro_list
);
1625 INIT_LIST_HEAD(&cache
->dirty_list
);
1626 INIT_LIST_HEAD(&cache
->io_list
);
1627 btrfs_init_free_space_ctl(cache
);
1628 atomic_set(&cache
->trimming
, 0);
1629 mutex_init(&cache
->free_space_lock
);
1630 btrfs_init_full_stripe_locks_tree(&cache
->full_stripe_locks_root
);
1636 * Iterate all chunks and verify that each of them has the corresponding block
1639 static int check_chunk_block_group_mappings(struct btrfs_fs_info
*fs_info
)
1641 struct extent_map_tree
*map_tree
= &fs_info
->mapping_tree
;
1642 struct extent_map
*em
;
1643 struct btrfs_block_group_cache
*bg
;
1648 read_lock(&map_tree
->lock
);
1650 * lookup_extent_mapping will return the first extent map
1651 * intersecting the range, so setting @len to 1 is enough to
1652 * get the first chunk.
1654 em
= lookup_extent_mapping(map_tree
, start
, 1);
1655 read_unlock(&map_tree
->lock
);
1659 bg
= btrfs_lookup_block_group(fs_info
, em
->start
);
1662 "chunk start=%llu len=%llu doesn't have corresponding block group",
1663 em
->start
, em
->len
);
1665 free_extent_map(em
);
1668 if (bg
->key
.objectid
!= em
->start
||
1669 bg
->key
.offset
!= em
->len
||
1670 (bg
->flags
& BTRFS_BLOCK_GROUP_TYPE_MASK
) !=
1671 (em
->map_lookup
->type
& BTRFS_BLOCK_GROUP_TYPE_MASK
)) {
1673 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1675 em
->map_lookup
->type
& BTRFS_BLOCK_GROUP_TYPE_MASK
,
1676 bg
->key
.objectid
, bg
->key
.offset
,
1677 bg
->flags
& BTRFS_BLOCK_GROUP_TYPE_MASK
);
1679 free_extent_map(em
);
1680 btrfs_put_block_group(bg
);
1683 start
= em
->start
+ em
->len
;
1684 free_extent_map(em
);
1685 btrfs_put_block_group(bg
);
1690 int btrfs_read_block_groups(struct btrfs_fs_info
*info
)
1692 struct btrfs_path
*path
;
1694 struct btrfs_block_group_cache
*cache
;
1695 struct btrfs_space_info
*space_info
;
1696 struct btrfs_key key
;
1697 struct btrfs_key found_key
;
1698 struct extent_buffer
*leaf
;
1704 feature
= btrfs_super_incompat_flags(info
->super_copy
);
1705 mixed
= !!(feature
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
);
1709 key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
1710 path
= btrfs_alloc_path();
1713 path
->reada
= READA_FORWARD
;
1715 cache_gen
= btrfs_super_cache_generation(info
->super_copy
);
1716 if (btrfs_test_opt(info
, SPACE_CACHE
) &&
1717 btrfs_super_generation(info
->super_copy
) != cache_gen
)
1719 if (btrfs_test_opt(info
, CLEAR_CACHE
))
1723 ret
= find_first_block_group(info
, path
, &key
);
1729 leaf
= path
->nodes
[0];
1730 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1732 cache
= btrfs_create_block_group_cache(info
, found_key
.objectid
,
1741 * When we mount with old space cache, we need to
1742 * set BTRFS_DC_CLEAR and set dirty flag.
1744 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1745 * truncate the old free space cache inode and
1747 * b) Setting 'dirty flag' makes sure that we flush
1748 * the new space cache info onto disk.
1750 if (btrfs_test_opt(info
, SPACE_CACHE
))
1751 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
1754 read_extent_buffer(leaf
, &cache
->item
,
1755 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
1756 sizeof(cache
->item
));
1757 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
1759 ((cache
->flags
& BTRFS_BLOCK_GROUP_METADATA
) &&
1760 (cache
->flags
& BTRFS_BLOCK_GROUP_DATA
))) {
1762 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1763 cache
->key
.objectid
);
1768 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
1769 btrfs_release_path(path
);
1772 * We need to exclude the super stripes now so that the space
1773 * info has super bytes accounted for, otherwise we'll think
1774 * we have more space than we actually do.
1776 ret
= exclude_super_stripes(cache
);
1779 * We may have excluded something, so call this just in
1782 btrfs_free_excluded_extents(cache
);
1783 btrfs_put_block_group(cache
);
1788 * Check for two cases, either we are full, and therefore
1789 * don't need to bother with the caching work since we won't
1790 * find any space, or we are empty, and we can just add all
1791 * the space in and be done with it. This saves us _a_lot_ of
1792 * time, particularly in the full case.
1794 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
1795 cache
->last_byte_to_unpin
= (u64
)-1;
1796 cache
->cached
= BTRFS_CACHE_FINISHED
;
1797 btrfs_free_excluded_extents(cache
);
1798 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
1799 cache
->last_byte_to_unpin
= (u64
)-1;
1800 cache
->cached
= BTRFS_CACHE_FINISHED
;
1801 add_new_free_space(cache
, found_key
.objectid
,
1802 found_key
.objectid
+
1804 btrfs_free_excluded_extents(cache
);
1807 ret
= btrfs_add_block_group_cache(info
, cache
);
1809 btrfs_remove_free_space_cache(cache
);
1810 btrfs_put_block_group(cache
);
1814 trace_btrfs_add_block_group(info
, cache
, 0);
1815 btrfs_update_space_info(info
, cache
->flags
, found_key
.offset
,
1816 btrfs_block_group_used(&cache
->item
),
1817 cache
->bytes_super
, &space_info
);
1819 cache
->space_info
= space_info
;
1821 link_block_group(cache
);
1823 set_avail_alloc_bits(info
, cache
->flags
);
1824 if (btrfs_chunk_readonly(info
, cache
->key
.objectid
)) {
1825 inc_block_group_ro(cache
, 1);
1826 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
1827 ASSERT(list_empty(&cache
->bg_list
));
1828 btrfs_mark_bg_unused(cache
);
1832 list_for_each_entry_rcu(space_info
, &info
->space_info
, list
) {
1833 if (!(btrfs_get_alloc_profile(info
, space_info
->flags
) &
1834 (BTRFS_BLOCK_GROUP_RAID10
|
1835 BTRFS_BLOCK_GROUP_RAID1_MASK
|
1836 BTRFS_BLOCK_GROUP_RAID56_MASK
|
1837 BTRFS_BLOCK_GROUP_DUP
)))
1840 * Avoid allocating from un-mirrored block group if there are
1841 * mirrored block groups.
1843 list_for_each_entry(cache
,
1844 &space_info
->block_groups
[BTRFS_RAID_RAID0
],
1846 inc_block_group_ro(cache
, 1);
1847 list_for_each_entry(cache
,
1848 &space_info
->block_groups
[BTRFS_RAID_SINGLE
],
1850 inc_block_group_ro(cache
, 1);
1853 btrfs_init_global_block_rsv(info
);
1854 ret
= check_chunk_block_group_mappings(info
);
1856 btrfs_free_path(path
);
1860 void btrfs_create_pending_block_groups(struct btrfs_trans_handle
*trans
)
1862 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1863 struct btrfs_block_group_cache
*block_group
;
1864 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
1865 struct btrfs_block_group_item item
;
1866 struct btrfs_key key
;
1869 if (!trans
->can_flush_pending_bgs
)
1872 while (!list_empty(&trans
->new_bgs
)) {
1873 block_group
= list_first_entry(&trans
->new_bgs
,
1874 struct btrfs_block_group_cache
,
1879 spin_lock(&block_group
->lock
);
1880 memcpy(&item
, &block_group
->item
, sizeof(item
));
1881 memcpy(&key
, &block_group
->key
, sizeof(key
));
1882 spin_unlock(&block_group
->lock
);
1884 ret
= btrfs_insert_item(trans
, extent_root
, &key
, &item
,
1887 btrfs_abort_transaction(trans
, ret
);
1888 ret
= btrfs_finish_chunk_alloc(trans
, key
.objectid
, key
.offset
);
1890 btrfs_abort_transaction(trans
, ret
);
1891 add_block_group_free_space(trans
, block_group
);
1892 /* Already aborted the transaction if it failed. */
1894 btrfs_delayed_refs_rsv_release(fs_info
, 1);
1895 list_del_init(&block_group
->bg_list
);
1897 btrfs_trans_release_chunk_metadata(trans
);
1900 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
, u64 bytes_used
,
1901 u64 type
, u64 chunk_offset
, u64 size
)
1903 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1904 struct btrfs_block_group_cache
*cache
;
1907 btrfs_set_log_full_commit(trans
);
1909 cache
= btrfs_create_block_group_cache(fs_info
, chunk_offset
, size
);
1913 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
1914 btrfs_set_block_group_chunk_objectid(&cache
->item
,
1915 BTRFS_FIRST_CHUNK_TREE_OBJECTID
);
1916 btrfs_set_block_group_flags(&cache
->item
, type
);
1918 cache
->flags
= type
;
1919 cache
->last_byte_to_unpin
= (u64
)-1;
1920 cache
->cached
= BTRFS_CACHE_FINISHED
;
1921 cache
->needs_free_space
= 1;
1922 ret
= exclude_super_stripes(cache
);
1924 /* We may have excluded something, so call this just in case */
1925 btrfs_free_excluded_extents(cache
);
1926 btrfs_put_block_group(cache
);
1930 add_new_free_space(cache
, chunk_offset
, chunk_offset
+ size
);
1932 btrfs_free_excluded_extents(cache
);
1934 #ifdef CONFIG_BTRFS_DEBUG
1935 if (btrfs_should_fragment_free_space(cache
)) {
1936 u64 new_bytes_used
= size
- bytes_used
;
1938 bytes_used
+= new_bytes_used
>> 1;
1939 fragment_free_space(cache
);
1943 * Ensure the corresponding space_info object is created and
1944 * assigned to our block group. We want our bg to be added to the rbtree
1945 * with its ->space_info set.
1947 cache
->space_info
= btrfs_find_space_info(fs_info
, cache
->flags
);
1948 ASSERT(cache
->space_info
);
1950 ret
= btrfs_add_block_group_cache(fs_info
, cache
);
1952 btrfs_remove_free_space_cache(cache
);
1953 btrfs_put_block_group(cache
);
1958 * Now that our block group has its ->space_info set and is inserted in
1959 * the rbtree, update the space info's counters.
1961 trace_btrfs_add_block_group(fs_info
, cache
, 1);
1962 btrfs_update_space_info(fs_info
, cache
->flags
, size
, bytes_used
,
1963 cache
->bytes_super
, &cache
->space_info
);
1964 btrfs_update_global_block_rsv(fs_info
);
1966 link_block_group(cache
);
1968 list_add_tail(&cache
->bg_list
, &trans
->new_bgs
);
1969 trans
->delayed_ref_updates
++;
1970 btrfs_update_delayed_refs_rsv(trans
);
1972 set_avail_alloc_bits(fs_info
, type
);
1976 static u64
update_block_group_flags(struct btrfs_fs_info
*fs_info
, u64 flags
)
1982 * if restripe for this chunk_type is on pick target profile and
1983 * return, otherwise do the usual balance
1985 stripped
= get_restripe_target(fs_info
, flags
);
1987 return extended_to_chunk(stripped
);
1989 num_devices
= fs_info
->fs_devices
->rw_devices
;
1991 stripped
= BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID56_MASK
|
1992 BTRFS_BLOCK_GROUP_RAID1_MASK
| BTRFS_BLOCK_GROUP_RAID10
;
1994 if (num_devices
== 1) {
1995 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
1996 stripped
= flags
& ~stripped
;
1998 /* turn raid0 into single device chunks */
1999 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
2002 /* turn mirroring into duplication */
2003 if (flags
& (BTRFS_BLOCK_GROUP_RAID1_MASK
|
2004 BTRFS_BLOCK_GROUP_RAID10
))
2005 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
2007 /* they already had raid on here, just return */
2008 if (flags
& stripped
)
2011 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
2012 stripped
= flags
& ~stripped
;
2014 /* switch duplicated blocks with raid1 */
2015 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
2016 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
2018 /* this is drive concat, leave it alone */
2024 int btrfs_inc_block_group_ro(struct btrfs_block_group_cache
*cache
)
2027 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
2028 struct btrfs_trans_handle
*trans
;
2033 trans
= btrfs_join_transaction(fs_info
->extent_root
);
2035 return PTR_ERR(trans
);
2038 * we're not allowed to set block groups readonly after the dirty
2039 * block groups cache has started writing. If it already started,
2040 * back off and let this transaction commit
2042 mutex_lock(&fs_info
->ro_block_group_mutex
);
2043 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN
, &trans
->transaction
->flags
)) {
2044 u64 transid
= trans
->transid
;
2046 mutex_unlock(&fs_info
->ro_block_group_mutex
);
2047 btrfs_end_transaction(trans
);
2049 ret
= btrfs_wait_for_commit(fs_info
, transid
);
2056 * if we are changing raid levels, try to allocate a corresponding
2057 * block group with the new raid level.
2059 alloc_flags
= update_block_group_flags(fs_info
, cache
->flags
);
2060 if (alloc_flags
!= cache
->flags
) {
2061 ret
= btrfs_chunk_alloc(trans
, alloc_flags
, CHUNK_ALLOC_FORCE
);
2063 * ENOSPC is allowed here, we may have enough space
2064 * already allocated at the new raid level to
2073 ret
= inc_block_group_ro(cache
, 0);
2076 alloc_flags
= btrfs_get_alloc_profile(fs_info
, cache
->space_info
->flags
);
2077 ret
= btrfs_chunk_alloc(trans
, alloc_flags
, CHUNK_ALLOC_FORCE
);
2080 ret
= inc_block_group_ro(cache
, 0);
2082 if (cache
->flags
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2083 alloc_flags
= update_block_group_flags(fs_info
, cache
->flags
);
2084 mutex_lock(&fs_info
->chunk_mutex
);
2085 check_system_chunk(trans
, alloc_flags
);
2086 mutex_unlock(&fs_info
->chunk_mutex
);
2088 mutex_unlock(&fs_info
->ro_block_group_mutex
);
2090 btrfs_end_transaction(trans
);
2094 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache
*cache
)
2096 struct btrfs_space_info
*sinfo
= cache
->space_info
;
2101 spin_lock(&sinfo
->lock
);
2102 spin_lock(&cache
->lock
);
2104 num_bytes
= cache
->key
.offset
- cache
->reserved
-
2105 cache
->pinned
- cache
->bytes_super
-
2106 btrfs_block_group_used(&cache
->item
);
2107 sinfo
->bytes_readonly
-= num_bytes
;
2108 list_del_init(&cache
->ro_list
);
2110 spin_unlock(&cache
->lock
);
2111 spin_unlock(&sinfo
->lock
);
2114 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
2115 struct btrfs_path
*path
,
2116 struct btrfs_block_group_cache
*cache
)
2118 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2120 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
2122 struct extent_buffer
*leaf
;
2124 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
2131 leaf
= path
->nodes
[0];
2132 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
2133 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
2134 btrfs_mark_buffer_dirty(leaf
);
2136 btrfs_release_path(path
);
2141 static int cache_save_setup(struct btrfs_block_group_cache
*block_group
,
2142 struct btrfs_trans_handle
*trans
,
2143 struct btrfs_path
*path
)
2145 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
2146 struct btrfs_root
*root
= fs_info
->tree_root
;
2147 struct inode
*inode
= NULL
;
2148 struct extent_changeset
*data_reserved
= NULL
;
2150 int dcs
= BTRFS_DC_ERROR
;
2156 * If this block group is smaller than 100 megs don't bother caching the
2159 if (block_group
->key
.offset
< (100 * SZ_1M
)) {
2160 spin_lock(&block_group
->lock
);
2161 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
2162 spin_unlock(&block_group
->lock
);
2169 inode
= lookup_free_space_inode(block_group
, path
);
2170 if (IS_ERR(inode
) && PTR_ERR(inode
) != -ENOENT
) {
2171 ret
= PTR_ERR(inode
);
2172 btrfs_release_path(path
);
2176 if (IS_ERR(inode
)) {
2180 if (block_group
->ro
)
2183 ret
= create_free_space_inode(trans
, block_group
, path
);
2190 * We want to set the generation to 0, that way if anything goes wrong
2191 * from here on out we know not to trust this cache when we load up next
2194 BTRFS_I(inode
)->generation
= 0;
2195 ret
= btrfs_update_inode(trans
, root
, inode
);
2198 * So theoretically we could recover from this, simply set the
2199 * super cache generation to 0 so we know to invalidate the
2200 * cache, but then we'd have to keep track of the block groups
2201 * that fail this way so we know we _have_ to reset this cache
2202 * before the next commit or risk reading stale cache. So to
2203 * limit our exposure to horrible edge cases lets just abort the
2204 * transaction, this only happens in really bad situations
2207 btrfs_abort_transaction(trans
, ret
);
2212 /* We've already setup this transaction, go ahead and exit */
2213 if (block_group
->cache_generation
== trans
->transid
&&
2214 i_size_read(inode
)) {
2215 dcs
= BTRFS_DC_SETUP
;
2219 if (i_size_read(inode
) > 0) {
2220 ret
= btrfs_check_trunc_cache_free_space(fs_info
,
2221 &fs_info
->global_block_rsv
);
2225 ret
= btrfs_truncate_free_space_cache(trans
, NULL
, inode
);
2230 spin_lock(&block_group
->lock
);
2231 if (block_group
->cached
!= BTRFS_CACHE_FINISHED
||
2232 !btrfs_test_opt(fs_info
, SPACE_CACHE
)) {
2234 * don't bother trying to write stuff out _if_
2235 * a) we're not cached,
2236 * b) we're with nospace_cache mount option,
2237 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2239 dcs
= BTRFS_DC_WRITTEN
;
2240 spin_unlock(&block_group
->lock
);
2243 spin_unlock(&block_group
->lock
);
2246 * We hit an ENOSPC when setting up the cache in this transaction, just
2247 * skip doing the setup, we've already cleared the cache so we're safe.
2249 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC
, &trans
->transaction
->flags
)) {
2255 * Try to preallocate enough space based on how big the block group is.
2256 * Keep in mind this has to include any pinned space which could end up
2257 * taking up quite a bit since it's not folded into the other space
2260 num_pages
= div_u64(block_group
->key
.offset
, SZ_256M
);
2265 num_pages
*= PAGE_SIZE
;
2267 ret
= btrfs_check_data_free_space(inode
, &data_reserved
, 0, num_pages
);
2271 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, num_pages
,
2272 num_pages
, num_pages
,
2275 * Our cache requires contiguous chunks so that we don't modify a bunch
2276 * of metadata or split extents when writing the cache out, which means
2277 * we can enospc if we are heavily fragmented in addition to just normal
2278 * out of space conditions. So if we hit this just skip setting up any
2279 * other block groups for this transaction, maybe we'll unpin enough
2280 * space the next time around.
2283 dcs
= BTRFS_DC_SETUP
;
2284 else if (ret
== -ENOSPC
)
2285 set_bit(BTRFS_TRANS_CACHE_ENOSPC
, &trans
->transaction
->flags
);
2290 btrfs_release_path(path
);
2292 spin_lock(&block_group
->lock
);
2293 if (!ret
&& dcs
== BTRFS_DC_SETUP
)
2294 block_group
->cache_generation
= trans
->transid
;
2295 block_group
->disk_cache_state
= dcs
;
2296 spin_unlock(&block_group
->lock
);
2298 extent_changeset_free(data_reserved
);
2302 int btrfs_setup_space_cache(struct btrfs_trans_handle
*trans
)
2304 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2305 struct btrfs_block_group_cache
*cache
, *tmp
;
2306 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
2307 struct btrfs_path
*path
;
2309 if (list_empty(&cur_trans
->dirty_bgs
) ||
2310 !btrfs_test_opt(fs_info
, SPACE_CACHE
))
2313 path
= btrfs_alloc_path();
2317 /* Could add new block groups, use _safe just in case */
2318 list_for_each_entry_safe(cache
, tmp
, &cur_trans
->dirty_bgs
,
2320 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
)
2321 cache_save_setup(cache
, trans
, path
);
2324 btrfs_free_path(path
);
2329 * Transaction commit does final block group cache writeback during a critical
2330 * section where nothing is allowed to change the FS. This is required in
2331 * order for the cache to actually match the block group, but can introduce a
2332 * lot of latency into the commit.
2334 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2335 * There's a chance we'll have to redo some of it if the block group changes
2336 * again during the commit, but it greatly reduces the commit latency by
2337 * getting rid of the easy block groups while we're still allowing others to
2340 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle
*trans
)
2342 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2343 struct btrfs_block_group_cache
*cache
;
2344 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
2347 struct btrfs_path
*path
= NULL
;
2349 struct list_head
*io
= &cur_trans
->io_bgs
;
2350 int num_started
= 0;
2353 spin_lock(&cur_trans
->dirty_bgs_lock
);
2354 if (list_empty(&cur_trans
->dirty_bgs
)) {
2355 spin_unlock(&cur_trans
->dirty_bgs_lock
);
2358 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
2359 spin_unlock(&cur_trans
->dirty_bgs_lock
);
2362 /* Make sure all the block groups on our dirty list actually exist */
2363 btrfs_create_pending_block_groups(trans
);
2366 path
= btrfs_alloc_path();
2372 * cache_write_mutex is here only to save us from balance or automatic
2373 * removal of empty block groups deleting this block group while we are
2374 * writing out the cache
2376 mutex_lock(&trans
->transaction
->cache_write_mutex
);
2377 while (!list_empty(&dirty
)) {
2378 bool drop_reserve
= true;
2380 cache
= list_first_entry(&dirty
,
2381 struct btrfs_block_group_cache
,
2384 * This can happen if something re-dirties a block group that
2385 * is already under IO. Just wait for it to finish and then do
2388 if (!list_empty(&cache
->io_list
)) {
2389 list_del_init(&cache
->io_list
);
2390 btrfs_wait_cache_io(trans
, cache
, path
);
2391 btrfs_put_block_group(cache
);
2396 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2397 * it should update the cache_state. Don't delete until after
2400 * Since we're not running in the commit critical section
2401 * we need the dirty_bgs_lock to protect from update_block_group
2403 spin_lock(&cur_trans
->dirty_bgs_lock
);
2404 list_del_init(&cache
->dirty_list
);
2405 spin_unlock(&cur_trans
->dirty_bgs_lock
);
2409 cache_save_setup(cache
, trans
, path
);
2411 if (cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
2412 cache
->io_ctl
.inode
= NULL
;
2413 ret
= btrfs_write_out_cache(trans
, cache
, path
);
2414 if (ret
== 0 && cache
->io_ctl
.inode
) {
2419 * The cache_write_mutex is protecting the
2420 * io_list, also refer to the definition of
2421 * btrfs_transaction::io_bgs for more details
2423 list_add_tail(&cache
->io_list
, io
);
2426 * If we failed to write the cache, the
2427 * generation will be bad and life goes on
2433 ret
= write_one_cache_group(trans
, path
, cache
);
2435 * Our block group might still be attached to the list
2436 * of new block groups in the transaction handle of some
2437 * other task (struct btrfs_trans_handle->new_bgs). This
2438 * means its block group item isn't yet in the extent
2439 * tree. If this happens ignore the error, as we will
2440 * try again later in the critical section of the
2441 * transaction commit.
2443 if (ret
== -ENOENT
) {
2445 spin_lock(&cur_trans
->dirty_bgs_lock
);
2446 if (list_empty(&cache
->dirty_list
)) {
2447 list_add_tail(&cache
->dirty_list
,
2448 &cur_trans
->dirty_bgs
);
2449 btrfs_get_block_group(cache
);
2450 drop_reserve
= false;
2452 spin_unlock(&cur_trans
->dirty_bgs_lock
);
2454 btrfs_abort_transaction(trans
, ret
);
2458 /* If it's not on the io list, we need to put the block group */
2460 btrfs_put_block_group(cache
);
2462 btrfs_delayed_refs_rsv_release(fs_info
, 1);
2468 * Avoid blocking other tasks for too long. It might even save
2469 * us from writing caches for block groups that are going to be
2472 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
2473 mutex_lock(&trans
->transaction
->cache_write_mutex
);
2475 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
2478 * Go through delayed refs for all the stuff we've just kicked off
2479 * and then loop back (just once)
2481 ret
= btrfs_run_delayed_refs(trans
, 0);
2482 if (!ret
&& loops
== 0) {
2484 spin_lock(&cur_trans
->dirty_bgs_lock
);
2485 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
2487 * dirty_bgs_lock protects us from concurrent block group
2488 * deletes too (not just cache_write_mutex).
2490 if (!list_empty(&dirty
)) {
2491 spin_unlock(&cur_trans
->dirty_bgs_lock
);
2494 spin_unlock(&cur_trans
->dirty_bgs_lock
);
2495 } else if (ret
< 0) {
2496 btrfs_cleanup_dirty_bgs(cur_trans
, fs_info
);
2499 btrfs_free_path(path
);
2503 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
)
2505 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2506 struct btrfs_block_group_cache
*cache
;
2507 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
2510 struct btrfs_path
*path
;
2511 struct list_head
*io
= &cur_trans
->io_bgs
;
2512 int num_started
= 0;
2514 path
= btrfs_alloc_path();
2519 * Even though we are in the critical section of the transaction commit,
2520 * we can still have concurrent tasks adding elements to this
2521 * transaction's list of dirty block groups. These tasks correspond to
2522 * endio free space workers started when writeback finishes for a
2523 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2524 * allocate new block groups as a result of COWing nodes of the root
2525 * tree when updating the free space inode. The writeback for the space
2526 * caches is triggered by an earlier call to
2527 * btrfs_start_dirty_block_groups() and iterations of the following
2529 * Also we want to do the cache_save_setup first and then run the
2530 * delayed refs to make sure we have the best chance at doing this all
2533 spin_lock(&cur_trans
->dirty_bgs_lock
);
2534 while (!list_empty(&cur_trans
->dirty_bgs
)) {
2535 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
2536 struct btrfs_block_group_cache
,
2540 * This can happen if cache_save_setup re-dirties a block group
2541 * that is already under IO. Just wait for it to finish and
2542 * then do it all again
2544 if (!list_empty(&cache
->io_list
)) {
2545 spin_unlock(&cur_trans
->dirty_bgs_lock
);
2546 list_del_init(&cache
->io_list
);
2547 btrfs_wait_cache_io(trans
, cache
, path
);
2548 btrfs_put_block_group(cache
);
2549 spin_lock(&cur_trans
->dirty_bgs_lock
);
2553 * Don't remove from the dirty list until after we've waited on
2556 list_del_init(&cache
->dirty_list
);
2557 spin_unlock(&cur_trans
->dirty_bgs_lock
);
2560 cache_save_setup(cache
, trans
, path
);
2563 ret
= btrfs_run_delayed_refs(trans
,
2564 (unsigned long) -1);
2566 if (!ret
&& cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
2567 cache
->io_ctl
.inode
= NULL
;
2568 ret
= btrfs_write_out_cache(trans
, cache
, path
);
2569 if (ret
== 0 && cache
->io_ctl
.inode
) {
2572 list_add_tail(&cache
->io_list
, io
);
2575 * If we failed to write the cache, the
2576 * generation will be bad and life goes on
2582 ret
= write_one_cache_group(trans
, path
, cache
);
2584 * One of the free space endio workers might have
2585 * created a new block group while updating a free space
2586 * cache's inode (at inode.c:btrfs_finish_ordered_io())
2587 * and hasn't released its transaction handle yet, in
2588 * which case the new block group is still attached to
2589 * its transaction handle and its creation has not
2590 * finished yet (no block group item in the extent tree
2591 * yet, etc). If this is the case, wait for all free
2592 * space endio workers to finish and retry. This is a
2593 * a very rare case so no need for a more efficient and
2596 if (ret
== -ENOENT
) {
2597 wait_event(cur_trans
->writer_wait
,
2598 atomic_read(&cur_trans
->num_writers
) == 1);
2599 ret
= write_one_cache_group(trans
, path
, cache
);
2602 btrfs_abort_transaction(trans
, ret
);
2605 /* If its not on the io list, we need to put the block group */
2607 btrfs_put_block_group(cache
);
2608 btrfs_delayed_refs_rsv_release(fs_info
, 1);
2609 spin_lock(&cur_trans
->dirty_bgs_lock
);
2611 spin_unlock(&cur_trans
->dirty_bgs_lock
);
2614 * Refer to the definition of io_bgs member for details why it's safe
2615 * to use it without any locking
2617 while (!list_empty(io
)) {
2618 cache
= list_first_entry(io
, struct btrfs_block_group_cache
,
2620 list_del_init(&cache
->io_list
);
2621 btrfs_wait_cache_io(trans
, cache
, path
);
2622 btrfs_put_block_group(cache
);
2625 btrfs_free_path(path
);
2629 int btrfs_update_block_group(struct btrfs_trans_handle
*trans
,
2630 u64 bytenr
, u64 num_bytes
, int alloc
)
2632 struct btrfs_fs_info
*info
= trans
->fs_info
;
2633 struct btrfs_block_group_cache
*cache
= NULL
;
2634 u64 total
= num_bytes
;
2640 /* Block accounting for super block */
2641 spin_lock(&info
->delalloc_root_lock
);
2642 old_val
= btrfs_super_bytes_used(info
->super_copy
);
2644 old_val
+= num_bytes
;
2646 old_val
-= num_bytes
;
2647 btrfs_set_super_bytes_used(info
->super_copy
, old_val
);
2648 spin_unlock(&info
->delalloc_root_lock
);
2651 cache
= btrfs_lookup_block_group(info
, bytenr
);
2656 factor
= btrfs_bg_type_to_factor(cache
->flags
);
2659 * If this block group has free space cache written out, we
2660 * need to make sure to load it if we are removing space. This
2661 * is because we need the unpinning stage to actually add the
2662 * space back to the block group, otherwise we will leak space.
2664 if (!alloc
&& cache
->cached
== BTRFS_CACHE_NO
)
2665 btrfs_cache_block_group(cache
, 1);
2667 byte_in_group
= bytenr
- cache
->key
.objectid
;
2668 WARN_ON(byte_in_group
> cache
->key
.offset
);
2670 spin_lock(&cache
->space_info
->lock
);
2671 spin_lock(&cache
->lock
);
2673 if (btrfs_test_opt(info
, SPACE_CACHE
) &&
2674 cache
->disk_cache_state
< BTRFS_DC_CLEAR
)
2675 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
2677 old_val
= btrfs_block_group_used(&cache
->item
);
2678 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
2680 old_val
+= num_bytes
;
2681 btrfs_set_block_group_used(&cache
->item
, old_val
);
2682 cache
->reserved
-= num_bytes
;
2683 cache
->space_info
->bytes_reserved
-= num_bytes
;
2684 cache
->space_info
->bytes_used
+= num_bytes
;
2685 cache
->space_info
->disk_used
+= num_bytes
* factor
;
2686 spin_unlock(&cache
->lock
);
2687 spin_unlock(&cache
->space_info
->lock
);
2689 old_val
-= num_bytes
;
2690 btrfs_set_block_group_used(&cache
->item
, old_val
);
2691 cache
->pinned
+= num_bytes
;
2692 btrfs_space_info_update_bytes_pinned(info
,
2693 cache
->space_info
, num_bytes
);
2694 cache
->space_info
->bytes_used
-= num_bytes
;
2695 cache
->space_info
->disk_used
-= num_bytes
* factor
;
2696 spin_unlock(&cache
->lock
);
2697 spin_unlock(&cache
->space_info
->lock
);
2699 percpu_counter_add_batch(
2700 &cache
->space_info
->total_bytes_pinned
,
2702 BTRFS_TOTAL_BYTES_PINNED_BATCH
);
2703 set_extent_dirty(info
->pinned_extents
,
2704 bytenr
, bytenr
+ num_bytes
- 1,
2705 GFP_NOFS
| __GFP_NOFAIL
);
2708 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
2709 if (list_empty(&cache
->dirty_list
)) {
2710 list_add_tail(&cache
->dirty_list
,
2711 &trans
->transaction
->dirty_bgs
);
2712 trans
->delayed_ref_updates
++;
2713 btrfs_get_block_group(cache
);
2715 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
2718 * No longer have used bytes in this block group, queue it for
2719 * deletion. We do this after adding the block group to the
2720 * dirty list to avoid races between cleaner kthread and space
2723 if (!alloc
&& old_val
== 0)
2724 btrfs_mark_bg_unused(cache
);
2726 btrfs_put_block_group(cache
);
2728 bytenr
+= num_bytes
;
2731 /* Modified block groups are accounted for in the delayed_refs_rsv. */
2732 btrfs_update_delayed_refs_rsv(trans
);
2737 * btrfs_add_reserved_bytes - update the block_group and space info counters
2738 * @cache: The cache we are manipulating
2739 * @ram_bytes: The number of bytes of file content, and will be same to
2740 * @num_bytes except for the compress path.
2741 * @num_bytes: The number of bytes in question
2742 * @delalloc: The blocks are allocated for the delalloc write
2744 * This is called by the allocator when it reserves space. If this is a
2745 * reservation and the block group has become read only we cannot make the
2746 * reservation and return -EAGAIN, otherwise this function always succeeds.
2748 int btrfs_add_reserved_bytes(struct btrfs_block_group_cache
*cache
,
2749 u64 ram_bytes
, u64 num_bytes
, int delalloc
)
2751 struct btrfs_space_info
*space_info
= cache
->space_info
;
2754 spin_lock(&space_info
->lock
);
2755 spin_lock(&cache
->lock
);
2759 cache
->reserved
+= num_bytes
;
2760 space_info
->bytes_reserved
+= num_bytes
;
2761 trace_btrfs_space_reservation(cache
->fs_info
, "space_info",
2762 space_info
->flags
, num_bytes
, 1);
2763 btrfs_space_info_update_bytes_may_use(cache
->fs_info
,
2764 space_info
, -ram_bytes
);
2766 cache
->delalloc_bytes
+= num_bytes
;
2768 spin_unlock(&cache
->lock
);
2769 spin_unlock(&space_info
->lock
);
2774 * btrfs_free_reserved_bytes - update the block_group and space info counters
2775 * @cache: The cache we are manipulating
2776 * @num_bytes: The number of bytes in question
2777 * @delalloc: The blocks are allocated for the delalloc write
2779 * This is called by somebody who is freeing space that was never actually used
2780 * on disk. For example if you reserve some space for a new leaf in transaction
2781 * A and before transaction A commits you free that leaf, you call this with
2782 * reserve set to 0 in order to clear the reservation.
2784 void btrfs_free_reserved_bytes(struct btrfs_block_group_cache
*cache
,
2785 u64 num_bytes
, int delalloc
)
2787 struct btrfs_space_info
*space_info
= cache
->space_info
;
2789 spin_lock(&space_info
->lock
);
2790 spin_lock(&cache
->lock
);
2792 space_info
->bytes_readonly
+= num_bytes
;
2793 cache
->reserved
-= num_bytes
;
2794 space_info
->bytes_reserved
-= num_bytes
;
2795 space_info
->max_extent_size
= 0;
2798 cache
->delalloc_bytes
-= num_bytes
;
2799 spin_unlock(&cache
->lock
);
2800 spin_unlock(&space_info
->lock
);
2803 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
2805 struct list_head
*head
= &info
->space_info
;
2806 struct btrfs_space_info
*found
;
2809 list_for_each_entry_rcu(found
, head
, list
) {
2810 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
2811 found
->force_alloc
= CHUNK_ALLOC_FORCE
;
2816 static int should_alloc_chunk(struct btrfs_fs_info
*fs_info
,
2817 struct btrfs_space_info
*sinfo
, int force
)
2819 u64 bytes_used
= btrfs_space_info_used(sinfo
, false);
2822 if (force
== CHUNK_ALLOC_FORCE
)
2826 * in limited mode, we want to have some free space up to
2827 * about 1% of the FS size.
2829 if (force
== CHUNK_ALLOC_LIMITED
) {
2830 thresh
= btrfs_super_total_bytes(fs_info
->super_copy
);
2831 thresh
= max_t(u64
, SZ_64M
, div_factor_fine(thresh
, 1));
2833 if (sinfo
->total_bytes
- bytes_used
< thresh
)
2837 if (bytes_used
+ SZ_2M
< div_factor(sinfo
->total_bytes
, 8))
2842 int btrfs_force_chunk_alloc(struct btrfs_trans_handle
*trans
, u64 type
)
2844 u64 alloc_flags
= btrfs_get_alloc_profile(trans
->fs_info
, type
);
2846 return btrfs_chunk_alloc(trans
, alloc_flags
, CHUNK_ALLOC_FORCE
);
2850 * If force is CHUNK_ALLOC_FORCE:
2851 * - return 1 if it successfully allocates a chunk,
2852 * - return errors including -ENOSPC otherwise.
2853 * If force is NOT CHUNK_ALLOC_FORCE:
2854 * - return 0 if it doesn't need to allocate a new chunk,
2855 * - return 1 if it successfully allocates a chunk,
2856 * - return errors including -ENOSPC otherwise.
2858 int btrfs_chunk_alloc(struct btrfs_trans_handle
*trans
, u64 flags
,
2859 enum btrfs_chunk_alloc_enum force
)
2861 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2862 struct btrfs_space_info
*space_info
;
2863 bool wait_for_alloc
= false;
2864 bool should_alloc
= false;
2867 /* Don't re-enter if we're already allocating a chunk */
2868 if (trans
->allocating_chunk
)
2871 space_info
= btrfs_find_space_info(fs_info
, flags
);
2875 spin_lock(&space_info
->lock
);
2876 if (force
< space_info
->force_alloc
)
2877 force
= space_info
->force_alloc
;
2878 should_alloc
= should_alloc_chunk(fs_info
, space_info
, force
);
2879 if (space_info
->full
) {
2880 /* No more free physical space */
2885 spin_unlock(&space_info
->lock
);
2887 } else if (!should_alloc
) {
2888 spin_unlock(&space_info
->lock
);
2890 } else if (space_info
->chunk_alloc
) {
2892 * Someone is already allocating, so we need to block
2893 * until this someone is finished and then loop to
2894 * recheck if we should continue with our allocation
2897 wait_for_alloc
= true;
2898 spin_unlock(&space_info
->lock
);
2899 mutex_lock(&fs_info
->chunk_mutex
);
2900 mutex_unlock(&fs_info
->chunk_mutex
);
2902 /* Proceed with allocation */
2903 space_info
->chunk_alloc
= 1;
2904 wait_for_alloc
= false;
2905 spin_unlock(&space_info
->lock
);
2909 } while (wait_for_alloc
);
2911 mutex_lock(&fs_info
->chunk_mutex
);
2912 trans
->allocating_chunk
= true;
2915 * If we have mixed data/metadata chunks we want to make sure we keep
2916 * allocating mixed chunks instead of individual chunks.
2918 if (btrfs_mixed_space_info(space_info
))
2919 flags
|= (BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
);
2922 * if we're doing a data chunk, go ahead and make sure that
2923 * we keep a reasonable number of metadata chunks allocated in the
2926 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
2927 fs_info
->data_chunk_allocations
++;
2928 if (!(fs_info
->data_chunk_allocations
%
2929 fs_info
->metadata_ratio
))
2930 force_metadata_allocation(fs_info
);
2934 * Check if we have enough space in SYSTEM chunk because we may need
2935 * to update devices.
2937 check_system_chunk(trans
, flags
);
2939 ret
= btrfs_alloc_chunk(trans
, flags
);
2940 trans
->allocating_chunk
= false;
2942 spin_lock(&space_info
->lock
);
2945 space_info
->full
= 1;
2950 space_info
->max_extent_size
= 0;
2953 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
2955 space_info
->chunk_alloc
= 0;
2956 spin_unlock(&space_info
->lock
);
2957 mutex_unlock(&fs_info
->chunk_mutex
);
2959 * When we allocate a new chunk we reserve space in the chunk block
2960 * reserve to make sure we can COW nodes/leafs in the chunk tree or
2961 * add new nodes/leafs to it if we end up needing to do it when
2962 * inserting the chunk item and updating device items as part of the
2963 * second phase of chunk allocation, performed by
2964 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
2965 * large number of new block groups to create in our transaction
2966 * handle's new_bgs list to avoid exhausting the chunk block reserve
2967 * in extreme cases - like having a single transaction create many new
2968 * block groups when starting to write out the free space caches of all
2969 * the block groups that were made dirty during the lifetime of the
2972 if (trans
->chunk_bytes_reserved
>= (u64
)SZ_2M
)
2973 btrfs_create_pending_block_groups(trans
);
2978 static u64
get_profile_num_devs(struct btrfs_fs_info
*fs_info
, u64 type
)
2982 num_dev
= btrfs_raid_array
[btrfs_bg_flags_to_raid_index(type
)].devs_max
;
2984 num_dev
= fs_info
->fs_devices
->rw_devices
;
2990 * If @is_allocation is true, reserve space in the system space info necessary
2991 * for allocating a chunk, otherwise if it's false, reserve space necessary for
2994 void check_system_chunk(struct btrfs_trans_handle
*trans
, u64 type
)
2996 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2997 struct btrfs_space_info
*info
;
3004 * Needed because we can end up allocating a system chunk and for an
3005 * atomic and race free space reservation in the chunk block reserve.
3007 lockdep_assert_held(&fs_info
->chunk_mutex
);
3009 info
= btrfs_find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
3010 spin_lock(&info
->lock
);
3011 left
= info
->total_bytes
- btrfs_space_info_used(info
, true);
3012 spin_unlock(&info
->lock
);
3014 num_devs
= get_profile_num_devs(fs_info
, type
);
3016 /* num_devs device items to update and 1 chunk item to add or remove */
3017 thresh
= btrfs_calc_metadata_size(fs_info
, num_devs
) +
3018 btrfs_calc_insert_metadata_size(fs_info
, 1);
3020 if (left
< thresh
&& btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
3021 btrfs_info(fs_info
, "left=%llu, need=%llu, flags=%llu",
3022 left
, thresh
, type
);
3023 btrfs_dump_space_info(fs_info
, info
, 0, 0);
3026 if (left
< thresh
) {
3027 u64 flags
= btrfs_system_alloc_profile(fs_info
);
3030 * Ignore failure to create system chunk. We might end up not
3031 * needing it, as we might not need to COW all nodes/leafs from
3032 * the paths we visit in the chunk tree (they were already COWed
3033 * or created in the current transaction for example).
3035 ret
= btrfs_alloc_chunk(trans
, flags
);
3039 ret
= btrfs_block_rsv_add(fs_info
->chunk_root
,
3040 &fs_info
->chunk_block_rsv
,
3041 thresh
, BTRFS_RESERVE_NO_FLUSH
);
3043 trans
->chunk_bytes_reserved
+= thresh
;
3047 void btrfs_put_block_group_cache(struct btrfs_fs_info
*info
)
3049 struct btrfs_block_group_cache
*block_group
;
3053 struct inode
*inode
;
3055 block_group
= btrfs_lookup_first_block_group(info
, last
);
3056 while (block_group
) {
3057 btrfs_wait_block_group_cache_done(block_group
);
3058 spin_lock(&block_group
->lock
);
3059 if (block_group
->iref
)
3061 spin_unlock(&block_group
->lock
);
3062 block_group
= btrfs_next_block_group(block_group
);
3071 inode
= block_group
->inode
;
3072 block_group
->iref
= 0;
3073 block_group
->inode
= NULL
;
3074 spin_unlock(&block_group
->lock
);
3075 ASSERT(block_group
->io_ctl
.inode
== NULL
);
3077 last
= block_group
->key
.objectid
+ block_group
->key
.offset
;
3078 btrfs_put_block_group(block_group
);
3083 * Must be called only after stopping all workers, since we could have block
3084 * group caching kthreads running, and therefore they could race with us if we
3085 * freed the block groups before stopping them.
3087 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
3089 struct btrfs_block_group_cache
*block_group
;
3090 struct btrfs_space_info
*space_info
;
3091 struct btrfs_caching_control
*caching_ctl
;
3094 down_write(&info
->commit_root_sem
);
3095 while (!list_empty(&info
->caching_block_groups
)) {
3096 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
3097 struct btrfs_caching_control
, list
);
3098 list_del(&caching_ctl
->list
);
3099 btrfs_put_caching_control(caching_ctl
);
3101 up_write(&info
->commit_root_sem
);
3103 spin_lock(&info
->unused_bgs_lock
);
3104 while (!list_empty(&info
->unused_bgs
)) {
3105 block_group
= list_first_entry(&info
->unused_bgs
,
3106 struct btrfs_block_group_cache
,
3108 list_del_init(&block_group
->bg_list
);
3109 btrfs_put_block_group(block_group
);
3111 spin_unlock(&info
->unused_bgs_lock
);
3113 spin_lock(&info
->block_group_cache_lock
);
3114 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
3115 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
3117 rb_erase(&block_group
->cache_node
,
3118 &info
->block_group_cache_tree
);
3119 RB_CLEAR_NODE(&block_group
->cache_node
);
3120 spin_unlock(&info
->block_group_cache_lock
);
3122 down_write(&block_group
->space_info
->groups_sem
);
3123 list_del(&block_group
->list
);
3124 up_write(&block_group
->space_info
->groups_sem
);
3127 * We haven't cached this block group, which means we could
3128 * possibly have excluded extents on this block group.
3130 if (block_group
->cached
== BTRFS_CACHE_NO
||
3131 block_group
->cached
== BTRFS_CACHE_ERROR
)
3132 btrfs_free_excluded_extents(block_group
);
3134 btrfs_remove_free_space_cache(block_group
);
3135 ASSERT(block_group
->cached
!= BTRFS_CACHE_STARTED
);
3136 ASSERT(list_empty(&block_group
->dirty_list
));
3137 ASSERT(list_empty(&block_group
->io_list
));
3138 ASSERT(list_empty(&block_group
->bg_list
));
3139 ASSERT(atomic_read(&block_group
->count
) == 1);
3140 btrfs_put_block_group(block_group
);
3142 spin_lock(&info
->block_group_cache_lock
);
3144 spin_unlock(&info
->block_group_cache_lock
);
3147 * Now that all the block groups are freed, go through and free all the
3148 * space_info structs. This is only called during the final stages of
3149 * unmount, and so we know nobody is using them. We call
3150 * synchronize_rcu() once before we start, just to be on the safe side.
3154 btrfs_release_global_block_rsv(info
);
3156 while (!list_empty(&info
->space_info
)) {
3157 space_info
= list_entry(info
->space_info
.next
,
3158 struct btrfs_space_info
,
3162 * Do not hide this behind enospc_debug, this is actually
3163 * important and indicates a real bug if this happens.
3165 if (WARN_ON(space_info
->bytes_pinned
> 0 ||
3166 space_info
->bytes_reserved
> 0 ||
3167 space_info
->bytes_may_use
> 0))
3168 btrfs_dump_space_info(info
, space_info
, 0, 0);
3169 list_del(&space_info
->list
);
3170 btrfs_sysfs_remove_space_info(space_info
);