1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
16 #include "transaction.h"
19 #include "inode-map.h"
21 #include "dev-replace.h"
23 #include "block-group.h"
25 #define BTRFS_ROOT_TRANS_TAG 0
27 static const unsigned int btrfs_blocked_trans_types
[TRANS_STATE_MAX
] = {
28 [TRANS_STATE_RUNNING
] = 0U,
29 [TRANS_STATE_BLOCKED
] = __TRANS_START
,
30 [TRANS_STATE_COMMIT_START
] = (__TRANS_START
| __TRANS_ATTACH
),
31 [TRANS_STATE_COMMIT_DOING
] = (__TRANS_START
|
34 __TRANS_JOIN_NOSTART
),
35 [TRANS_STATE_UNBLOCKED
] = (__TRANS_START
|
39 __TRANS_JOIN_NOSTART
),
40 [TRANS_STATE_COMPLETED
] = (__TRANS_START
|
44 __TRANS_JOIN_NOSTART
),
47 void btrfs_put_transaction(struct btrfs_transaction
*transaction
)
49 WARN_ON(refcount_read(&transaction
->use_count
) == 0);
50 if (refcount_dec_and_test(&transaction
->use_count
)) {
51 BUG_ON(!list_empty(&transaction
->list
));
52 WARN_ON(!RB_EMPTY_ROOT(
53 &transaction
->delayed_refs
.href_root
.rb_root
));
54 if (transaction
->delayed_refs
.pending_csums
)
55 btrfs_err(transaction
->fs_info
,
56 "pending csums is %llu",
57 transaction
->delayed_refs
.pending_csums
);
59 * If any block groups are found in ->deleted_bgs then it's
60 * because the transaction was aborted and a commit did not
61 * happen (things failed before writing the new superblock
62 * and calling btrfs_finish_extent_commit()), so we can not
63 * discard the physical locations of the block groups.
65 while (!list_empty(&transaction
->deleted_bgs
)) {
66 struct btrfs_block_group_cache
*cache
;
68 cache
= list_first_entry(&transaction
->deleted_bgs
,
69 struct btrfs_block_group_cache
,
71 list_del_init(&cache
->bg_list
);
72 btrfs_put_block_group_trimming(cache
);
73 btrfs_put_block_group(cache
);
75 WARN_ON(!list_empty(&transaction
->dev_update_list
));
80 static noinline
void switch_commit_roots(struct btrfs_transaction
*trans
)
82 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
83 struct btrfs_root
*root
, *tmp
;
85 down_write(&fs_info
->commit_root_sem
);
86 list_for_each_entry_safe(root
, tmp
, &trans
->switch_commits
,
88 list_del_init(&root
->dirty_list
);
89 free_extent_buffer(root
->commit_root
);
90 root
->commit_root
= btrfs_root_node(root
);
91 if (is_fstree(root
->root_key
.objectid
))
92 btrfs_unpin_free_ino(root
);
93 extent_io_tree_release(&root
->dirty_log_pages
);
94 btrfs_qgroup_clean_swapped_blocks(root
);
97 /* We can free old roots now. */
98 spin_lock(&trans
->dropped_roots_lock
);
99 while (!list_empty(&trans
->dropped_roots
)) {
100 root
= list_first_entry(&trans
->dropped_roots
,
101 struct btrfs_root
, root_list
);
102 list_del_init(&root
->root_list
);
103 spin_unlock(&trans
->dropped_roots_lock
);
104 btrfs_drop_and_free_fs_root(fs_info
, root
);
105 spin_lock(&trans
->dropped_roots_lock
);
107 spin_unlock(&trans
->dropped_roots_lock
);
108 up_write(&fs_info
->commit_root_sem
);
111 static inline void extwriter_counter_inc(struct btrfs_transaction
*trans
,
114 if (type
& TRANS_EXTWRITERS
)
115 atomic_inc(&trans
->num_extwriters
);
118 static inline void extwriter_counter_dec(struct btrfs_transaction
*trans
,
121 if (type
& TRANS_EXTWRITERS
)
122 atomic_dec(&trans
->num_extwriters
);
125 static inline void extwriter_counter_init(struct btrfs_transaction
*trans
,
128 atomic_set(&trans
->num_extwriters
, ((type
& TRANS_EXTWRITERS
) ? 1 : 0));
131 static inline int extwriter_counter_read(struct btrfs_transaction
*trans
)
133 return atomic_read(&trans
->num_extwriters
);
137 * To be called after all the new block groups attached to the transaction
138 * handle have been created (btrfs_create_pending_block_groups()).
140 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle
*trans
)
142 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
144 if (!trans
->chunk_bytes_reserved
)
147 WARN_ON_ONCE(!list_empty(&trans
->new_bgs
));
149 btrfs_block_rsv_release(fs_info
, &fs_info
->chunk_block_rsv
,
150 trans
->chunk_bytes_reserved
);
151 trans
->chunk_bytes_reserved
= 0;
155 * either allocate a new transaction or hop into the existing one
157 static noinline
int join_transaction(struct btrfs_fs_info
*fs_info
,
160 struct btrfs_transaction
*cur_trans
;
162 spin_lock(&fs_info
->trans_lock
);
164 /* The file system has been taken offline. No new transactions. */
165 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
166 spin_unlock(&fs_info
->trans_lock
);
170 cur_trans
= fs_info
->running_transaction
;
172 if (cur_trans
->aborted
) {
173 spin_unlock(&fs_info
->trans_lock
);
174 return cur_trans
->aborted
;
176 if (btrfs_blocked_trans_types
[cur_trans
->state
] & type
) {
177 spin_unlock(&fs_info
->trans_lock
);
180 refcount_inc(&cur_trans
->use_count
);
181 atomic_inc(&cur_trans
->num_writers
);
182 extwriter_counter_inc(cur_trans
, type
);
183 spin_unlock(&fs_info
->trans_lock
);
186 spin_unlock(&fs_info
->trans_lock
);
189 * If we are ATTACH, we just want to catch the current transaction,
190 * and commit it. If there is no transaction, just return ENOENT.
192 if (type
== TRANS_ATTACH
)
196 * JOIN_NOLOCK only happens during the transaction commit, so
197 * it is impossible that ->running_transaction is NULL
199 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
201 cur_trans
= kmalloc(sizeof(*cur_trans
), GFP_NOFS
);
205 spin_lock(&fs_info
->trans_lock
);
206 if (fs_info
->running_transaction
) {
208 * someone started a transaction after we unlocked. Make sure
209 * to redo the checks above
213 } else if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
214 spin_unlock(&fs_info
->trans_lock
);
219 cur_trans
->fs_info
= fs_info
;
220 atomic_set(&cur_trans
->num_writers
, 1);
221 extwriter_counter_init(cur_trans
, type
);
222 init_waitqueue_head(&cur_trans
->writer_wait
);
223 init_waitqueue_head(&cur_trans
->commit_wait
);
224 cur_trans
->state
= TRANS_STATE_RUNNING
;
226 * One for this trans handle, one so it will live on until we
227 * commit the transaction.
229 refcount_set(&cur_trans
->use_count
, 2);
230 cur_trans
->flags
= 0;
231 cur_trans
->start_time
= ktime_get_seconds();
233 memset(&cur_trans
->delayed_refs
, 0, sizeof(cur_trans
->delayed_refs
));
235 cur_trans
->delayed_refs
.href_root
= RB_ROOT_CACHED
;
236 cur_trans
->delayed_refs
.dirty_extent_root
= RB_ROOT
;
237 atomic_set(&cur_trans
->delayed_refs
.num_entries
, 0);
240 * although the tree mod log is per file system and not per transaction,
241 * the log must never go across transaction boundaries.
244 if (!list_empty(&fs_info
->tree_mod_seq_list
))
245 WARN(1, KERN_ERR
"BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
246 if (!RB_EMPTY_ROOT(&fs_info
->tree_mod_log
))
247 WARN(1, KERN_ERR
"BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
248 atomic64_set(&fs_info
->tree_mod_seq
, 0);
250 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
252 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
253 INIT_LIST_HEAD(&cur_trans
->dev_update_list
);
254 INIT_LIST_HEAD(&cur_trans
->switch_commits
);
255 INIT_LIST_HEAD(&cur_trans
->dirty_bgs
);
256 INIT_LIST_HEAD(&cur_trans
->io_bgs
);
257 INIT_LIST_HEAD(&cur_trans
->dropped_roots
);
258 mutex_init(&cur_trans
->cache_write_mutex
);
259 spin_lock_init(&cur_trans
->dirty_bgs_lock
);
260 INIT_LIST_HEAD(&cur_trans
->deleted_bgs
);
261 spin_lock_init(&cur_trans
->dropped_roots_lock
);
262 list_add_tail(&cur_trans
->list
, &fs_info
->trans_list
);
263 extent_io_tree_init(fs_info
, &cur_trans
->dirty_pages
,
264 IO_TREE_TRANS_DIRTY_PAGES
, fs_info
->btree_inode
);
265 fs_info
->generation
++;
266 cur_trans
->transid
= fs_info
->generation
;
267 fs_info
->running_transaction
= cur_trans
;
268 cur_trans
->aborted
= 0;
269 spin_unlock(&fs_info
->trans_lock
);
275 * this does all the record keeping required to make sure that a reference
276 * counted root is properly recorded in a given transaction. This is required
277 * to make sure the old root from before we joined the transaction is deleted
278 * when the transaction commits
280 static int record_root_in_trans(struct btrfs_trans_handle
*trans
,
281 struct btrfs_root
*root
,
284 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
286 if ((test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
287 root
->last_trans
< trans
->transid
) || force
) {
288 WARN_ON(root
== fs_info
->extent_root
);
289 WARN_ON(!force
&& root
->commit_root
!= root
->node
);
292 * see below for IN_TRANS_SETUP usage rules
293 * we have the reloc mutex held now, so there
294 * is only one writer in this function
296 set_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
298 /* make sure readers find IN_TRANS_SETUP before
299 * they find our root->last_trans update
303 spin_lock(&fs_info
->fs_roots_radix_lock
);
304 if (root
->last_trans
== trans
->transid
&& !force
) {
305 spin_unlock(&fs_info
->fs_roots_radix_lock
);
308 radix_tree_tag_set(&fs_info
->fs_roots_radix
,
309 (unsigned long)root
->root_key
.objectid
,
310 BTRFS_ROOT_TRANS_TAG
);
311 spin_unlock(&fs_info
->fs_roots_radix_lock
);
312 root
->last_trans
= trans
->transid
;
314 /* this is pretty tricky. We don't want to
315 * take the relocation lock in btrfs_record_root_in_trans
316 * unless we're really doing the first setup for this root in
319 * Normally we'd use root->last_trans as a flag to decide
320 * if we want to take the expensive mutex.
322 * But, we have to set root->last_trans before we
323 * init the relocation root, otherwise, we trip over warnings
324 * in ctree.c. The solution used here is to flag ourselves
325 * with root IN_TRANS_SETUP. When this is 1, we're still
326 * fixing up the reloc trees and everyone must wait.
328 * When this is zero, they can trust root->last_trans and fly
329 * through btrfs_record_root_in_trans without having to take the
330 * lock. smp_wmb() makes sure that all the writes above are
331 * done before we pop in the zero below
333 btrfs_init_reloc_root(trans
, root
);
334 smp_mb__before_atomic();
335 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
341 void btrfs_add_dropped_root(struct btrfs_trans_handle
*trans
,
342 struct btrfs_root
*root
)
344 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
345 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
347 /* Add ourselves to the transaction dropped list */
348 spin_lock(&cur_trans
->dropped_roots_lock
);
349 list_add_tail(&root
->root_list
, &cur_trans
->dropped_roots
);
350 spin_unlock(&cur_trans
->dropped_roots_lock
);
352 /* Make sure we don't try to update the root at commit time */
353 spin_lock(&fs_info
->fs_roots_radix_lock
);
354 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
355 (unsigned long)root
->root_key
.objectid
,
356 BTRFS_ROOT_TRANS_TAG
);
357 spin_unlock(&fs_info
->fs_roots_radix_lock
);
360 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
361 struct btrfs_root
*root
)
363 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
365 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
369 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
373 if (root
->last_trans
== trans
->transid
&&
374 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
))
377 mutex_lock(&fs_info
->reloc_mutex
);
378 record_root_in_trans(trans
, root
, 0);
379 mutex_unlock(&fs_info
->reloc_mutex
);
384 static inline int is_transaction_blocked(struct btrfs_transaction
*trans
)
386 return (trans
->state
>= TRANS_STATE_BLOCKED
&&
387 trans
->state
< TRANS_STATE_UNBLOCKED
&&
391 /* wait for commit against the current transaction to become unblocked
392 * when this is done, it is safe to start a new transaction, but the current
393 * transaction might not be fully on disk.
395 static void wait_current_trans(struct btrfs_fs_info
*fs_info
)
397 struct btrfs_transaction
*cur_trans
;
399 spin_lock(&fs_info
->trans_lock
);
400 cur_trans
= fs_info
->running_transaction
;
401 if (cur_trans
&& is_transaction_blocked(cur_trans
)) {
402 refcount_inc(&cur_trans
->use_count
);
403 spin_unlock(&fs_info
->trans_lock
);
405 wait_event(fs_info
->transaction_wait
,
406 cur_trans
->state
>= TRANS_STATE_UNBLOCKED
||
408 btrfs_put_transaction(cur_trans
);
410 spin_unlock(&fs_info
->trans_lock
);
414 static int may_wait_transaction(struct btrfs_fs_info
*fs_info
, int type
)
416 if (test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
))
419 if (type
== TRANS_START
)
425 static inline bool need_reserve_reloc_root(struct btrfs_root
*root
)
427 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
429 if (!fs_info
->reloc_ctl
||
430 !test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
431 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
438 static struct btrfs_trans_handle
*
439 start_transaction(struct btrfs_root
*root
, unsigned int num_items
,
440 unsigned int type
, enum btrfs_reserve_flush_enum flush
,
441 bool enforce_qgroups
)
443 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
444 struct btrfs_block_rsv
*delayed_refs_rsv
= &fs_info
->delayed_refs_rsv
;
445 struct btrfs_trans_handle
*h
;
446 struct btrfs_transaction
*cur_trans
;
448 u64 qgroup_reserved
= 0;
449 bool reloc_reserved
= false;
452 /* Send isn't supposed to start transactions. */
453 ASSERT(current
->journal_info
!= BTRFS_SEND_TRANS_STUB
);
455 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
456 return ERR_PTR(-EROFS
);
458 if (current
->journal_info
) {
459 WARN_ON(type
& TRANS_EXTWRITERS
);
460 h
= current
->journal_info
;
461 refcount_inc(&h
->use_count
);
462 WARN_ON(refcount_read(&h
->use_count
) > 2);
463 h
->orig_rsv
= h
->block_rsv
;
469 * Do the reservation before we join the transaction so we can do all
470 * the appropriate flushing if need be.
472 if (num_items
&& root
!= fs_info
->chunk_root
) {
473 struct btrfs_block_rsv
*rsv
= &fs_info
->trans_block_rsv
;
474 u64 delayed_refs_bytes
= 0;
476 qgroup_reserved
= num_items
* fs_info
->nodesize
;
477 ret
= btrfs_qgroup_reserve_meta_pertrans(root
, qgroup_reserved
,
483 * We want to reserve all the bytes we may need all at once, so
484 * we only do 1 enospc flushing cycle per transaction start. We
485 * accomplish this by simply assuming we'll do 2 x num_items
486 * worth of delayed refs updates in this trans handle, and
487 * refill that amount for whatever is missing in the reserve.
489 num_bytes
= btrfs_calc_insert_metadata_size(fs_info
, num_items
);
490 if (delayed_refs_rsv
->full
== 0) {
491 delayed_refs_bytes
= num_bytes
;
496 * Do the reservation for the relocation root creation
498 if (need_reserve_reloc_root(root
)) {
499 num_bytes
+= fs_info
->nodesize
;
500 reloc_reserved
= true;
503 ret
= btrfs_block_rsv_add(root
, rsv
, num_bytes
, flush
);
506 if (delayed_refs_bytes
) {
507 btrfs_migrate_to_delayed_refs_rsv(fs_info
, rsv
,
509 num_bytes
-= delayed_refs_bytes
;
511 } else if (num_items
== 0 && flush
== BTRFS_RESERVE_FLUSH_ALL
&&
512 !delayed_refs_rsv
->full
) {
514 * Some people call with btrfs_start_transaction(root, 0)
515 * because they can be throttled, but have some other mechanism
516 * for reserving space. We still want these guys to refill the
517 * delayed block_rsv so just add 1 items worth of reservation
520 ret
= btrfs_delayed_refs_rsv_refill(fs_info
, flush
);
525 h
= kmem_cache_zalloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
532 * If we are JOIN_NOLOCK we're already committing a transaction and
533 * waiting on this guy, so we don't need to do the sb_start_intwrite
534 * because we're already holding a ref. We need this because we could
535 * have raced in and did an fsync() on a file which can kick a commit
536 * and then we deadlock with somebody doing a freeze.
538 * If we are ATTACH, it means we just want to catch the current
539 * transaction and commit it, so we needn't do sb_start_intwrite().
541 if (type
& __TRANS_FREEZABLE
)
542 sb_start_intwrite(fs_info
->sb
);
544 if (may_wait_transaction(fs_info
, type
))
545 wait_current_trans(fs_info
);
548 ret
= join_transaction(fs_info
, type
);
550 wait_current_trans(fs_info
);
551 if (unlikely(type
== TRANS_ATTACH
||
552 type
== TRANS_JOIN_NOSTART
))
555 } while (ret
== -EBUSY
);
560 cur_trans
= fs_info
->running_transaction
;
562 h
->transid
= cur_trans
->transid
;
563 h
->transaction
= cur_trans
;
565 refcount_set(&h
->use_count
, 1);
566 h
->fs_info
= root
->fs_info
;
569 h
->can_flush_pending_bgs
= true;
570 INIT_LIST_HEAD(&h
->new_bgs
);
573 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
&&
574 may_wait_transaction(fs_info
, type
)) {
575 current
->journal_info
= h
;
576 btrfs_commit_transaction(h
);
581 trace_btrfs_space_reservation(fs_info
, "transaction",
582 h
->transid
, num_bytes
, 1);
583 h
->block_rsv
= &fs_info
->trans_block_rsv
;
584 h
->bytes_reserved
= num_bytes
;
585 h
->reloc_reserved
= reloc_reserved
;
589 btrfs_record_root_in_trans(h
, root
);
591 if (!current
->journal_info
)
592 current
->journal_info
= h
;
596 if (type
& __TRANS_FREEZABLE
)
597 sb_end_intwrite(fs_info
->sb
);
598 kmem_cache_free(btrfs_trans_handle_cachep
, h
);
601 btrfs_block_rsv_release(fs_info
, &fs_info
->trans_block_rsv
,
604 btrfs_qgroup_free_meta_pertrans(root
, qgroup_reserved
);
608 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
609 unsigned int num_items
)
611 return start_transaction(root
, num_items
, TRANS_START
,
612 BTRFS_RESERVE_FLUSH_ALL
, true);
615 struct btrfs_trans_handle
*btrfs_start_transaction_fallback_global_rsv(
616 struct btrfs_root
*root
,
617 unsigned int num_items
,
620 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
621 struct btrfs_trans_handle
*trans
;
626 * We have two callers: unlink and block group removal. The
627 * former should succeed even if we will temporarily exceed
628 * quota and the latter operates on the extent root so
629 * qgroup enforcement is ignored anyway.
631 trans
= start_transaction(root
, num_items
, TRANS_START
,
632 BTRFS_RESERVE_FLUSH_ALL
, false);
633 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
636 trans
= btrfs_start_transaction(root
, 0);
640 num_bytes
= btrfs_calc_insert_metadata_size(fs_info
, num_items
);
641 ret
= btrfs_cond_migrate_bytes(fs_info
, &fs_info
->trans_block_rsv
,
642 num_bytes
, min_factor
);
644 btrfs_end_transaction(trans
);
648 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
649 trans
->bytes_reserved
= num_bytes
;
650 trace_btrfs_space_reservation(fs_info
, "transaction",
651 trans
->transid
, num_bytes
, 1);
656 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
)
658 return start_transaction(root
, 0, TRANS_JOIN
, BTRFS_RESERVE_NO_FLUSH
,
662 struct btrfs_trans_handle
*btrfs_join_transaction_nolock(struct btrfs_root
*root
)
664 return start_transaction(root
, 0, TRANS_JOIN_NOLOCK
,
665 BTRFS_RESERVE_NO_FLUSH
, true);
669 * Similar to regular join but it never starts a transaction when none is
670 * running or after waiting for the current one to finish.
672 struct btrfs_trans_handle
*btrfs_join_transaction_nostart(struct btrfs_root
*root
)
674 return start_transaction(root
, 0, TRANS_JOIN_NOSTART
,
675 BTRFS_RESERVE_NO_FLUSH
, true);
679 * btrfs_attach_transaction() - catch the running transaction
681 * It is used when we want to commit the current the transaction, but
682 * don't want to start a new one.
684 * Note: If this function return -ENOENT, it just means there is no
685 * running transaction. But it is possible that the inactive transaction
686 * is still in the memory, not fully on disk. If you hope there is no
687 * inactive transaction in the fs when -ENOENT is returned, you should
689 * btrfs_attach_transaction_barrier()
691 struct btrfs_trans_handle
*btrfs_attach_transaction(struct btrfs_root
*root
)
693 return start_transaction(root
, 0, TRANS_ATTACH
,
694 BTRFS_RESERVE_NO_FLUSH
, true);
698 * btrfs_attach_transaction_barrier() - catch the running transaction
700 * It is similar to the above function, the difference is this one
701 * will wait for all the inactive transactions until they fully
704 struct btrfs_trans_handle
*
705 btrfs_attach_transaction_barrier(struct btrfs_root
*root
)
707 struct btrfs_trans_handle
*trans
;
709 trans
= start_transaction(root
, 0, TRANS_ATTACH
,
710 BTRFS_RESERVE_NO_FLUSH
, true);
711 if (trans
== ERR_PTR(-ENOENT
))
712 btrfs_wait_for_commit(root
->fs_info
, 0);
717 /* wait for a transaction commit to be fully complete */
718 static noinline
void wait_for_commit(struct btrfs_transaction
*commit
)
720 wait_event(commit
->commit_wait
, commit
->state
== TRANS_STATE_COMPLETED
);
723 int btrfs_wait_for_commit(struct btrfs_fs_info
*fs_info
, u64 transid
)
725 struct btrfs_transaction
*cur_trans
= NULL
, *t
;
729 if (transid
<= fs_info
->last_trans_committed
)
732 /* find specified transaction */
733 spin_lock(&fs_info
->trans_lock
);
734 list_for_each_entry(t
, &fs_info
->trans_list
, list
) {
735 if (t
->transid
== transid
) {
737 refcount_inc(&cur_trans
->use_count
);
741 if (t
->transid
> transid
) {
746 spin_unlock(&fs_info
->trans_lock
);
749 * The specified transaction doesn't exist, or we
750 * raced with btrfs_commit_transaction
753 if (transid
> fs_info
->last_trans_committed
)
758 /* find newest transaction that is committing | committed */
759 spin_lock(&fs_info
->trans_lock
);
760 list_for_each_entry_reverse(t
, &fs_info
->trans_list
,
762 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
763 if (t
->state
== TRANS_STATE_COMPLETED
)
766 refcount_inc(&cur_trans
->use_count
);
770 spin_unlock(&fs_info
->trans_lock
);
772 goto out
; /* nothing committing|committed */
775 wait_for_commit(cur_trans
);
776 btrfs_put_transaction(cur_trans
);
781 void btrfs_throttle(struct btrfs_fs_info
*fs_info
)
783 wait_current_trans(fs_info
);
786 static int should_end_transaction(struct btrfs_trans_handle
*trans
)
788 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
790 if (btrfs_check_space_for_delayed_refs(fs_info
))
793 return !!btrfs_block_rsv_check(&fs_info
->global_block_rsv
, 5);
796 int btrfs_should_end_transaction(struct btrfs_trans_handle
*trans
)
798 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
801 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
||
802 cur_trans
->delayed_refs
.flushing
)
805 return should_end_transaction(trans
);
808 static void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
)
811 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
813 if (!trans
->block_rsv
) {
814 ASSERT(!trans
->bytes_reserved
);
818 if (!trans
->bytes_reserved
)
821 ASSERT(trans
->block_rsv
== &fs_info
->trans_block_rsv
);
822 trace_btrfs_space_reservation(fs_info
, "transaction",
823 trans
->transid
, trans
->bytes_reserved
, 0);
824 btrfs_block_rsv_release(fs_info
, trans
->block_rsv
,
825 trans
->bytes_reserved
);
826 trans
->bytes_reserved
= 0;
829 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
832 struct btrfs_fs_info
*info
= trans
->fs_info
;
833 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
834 int lock
= (trans
->type
!= TRANS_JOIN_NOLOCK
);
837 if (refcount_read(&trans
->use_count
) > 1) {
838 refcount_dec(&trans
->use_count
);
839 trans
->block_rsv
= trans
->orig_rsv
;
843 btrfs_trans_release_metadata(trans
);
844 trans
->block_rsv
= NULL
;
846 btrfs_create_pending_block_groups(trans
);
848 btrfs_trans_release_chunk_metadata(trans
);
850 if (lock
&& READ_ONCE(cur_trans
->state
) == TRANS_STATE_BLOCKED
) {
852 return btrfs_commit_transaction(trans
);
854 wake_up_process(info
->transaction_kthread
);
857 if (trans
->type
& __TRANS_FREEZABLE
)
858 sb_end_intwrite(info
->sb
);
860 WARN_ON(cur_trans
!= info
->running_transaction
);
861 WARN_ON(atomic_read(&cur_trans
->num_writers
) < 1);
862 atomic_dec(&cur_trans
->num_writers
);
863 extwriter_counter_dec(cur_trans
, trans
->type
);
865 cond_wake_up(&cur_trans
->writer_wait
);
866 btrfs_put_transaction(cur_trans
);
868 if (current
->journal_info
== trans
)
869 current
->journal_info
= NULL
;
872 btrfs_run_delayed_iputs(info
);
874 if (trans
->aborted
||
875 test_bit(BTRFS_FS_STATE_ERROR
, &info
->fs_state
)) {
876 wake_up_process(info
->transaction_kthread
);
880 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
884 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
)
886 return __btrfs_end_transaction(trans
, 0);
889 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
)
891 return __btrfs_end_transaction(trans
, 1);
895 * when btree blocks are allocated, they have some corresponding bits set for
896 * them in one of two extent_io trees. This is used to make sure all of
897 * those extents are sent to disk but does not wait on them
899 int btrfs_write_marked_extents(struct btrfs_fs_info
*fs_info
,
900 struct extent_io_tree
*dirty_pages
, int mark
)
904 struct address_space
*mapping
= fs_info
->btree_inode
->i_mapping
;
905 struct extent_state
*cached_state
= NULL
;
909 atomic_inc(&BTRFS_I(fs_info
->btree_inode
)->sync_writers
);
910 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
911 mark
, &cached_state
)) {
912 bool wait_writeback
= false;
914 err
= convert_extent_bit(dirty_pages
, start
, end
,
916 mark
, &cached_state
);
918 * convert_extent_bit can return -ENOMEM, which is most of the
919 * time a temporary error. So when it happens, ignore the error
920 * and wait for writeback of this range to finish - because we
921 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
922 * to __btrfs_wait_marked_extents() would not know that
923 * writeback for this range started and therefore wouldn't
924 * wait for it to finish - we don't want to commit a
925 * superblock that points to btree nodes/leafs for which
926 * writeback hasn't finished yet (and without errors).
927 * We cleanup any entries left in the io tree when committing
928 * the transaction (through extent_io_tree_release()).
930 if (err
== -ENOMEM
) {
932 wait_writeback
= true;
935 err
= filemap_fdatawrite_range(mapping
, start
, end
);
938 else if (wait_writeback
)
939 werr
= filemap_fdatawait_range(mapping
, start
, end
);
940 free_extent_state(cached_state
);
945 atomic_dec(&BTRFS_I(fs_info
->btree_inode
)->sync_writers
);
950 * when btree blocks are allocated, they have some corresponding bits set for
951 * them in one of two extent_io trees. This is used to make sure all of
952 * those extents are on disk for transaction or log commit. We wait
953 * on all the pages and clear them from the dirty pages state tree
955 static int __btrfs_wait_marked_extents(struct btrfs_fs_info
*fs_info
,
956 struct extent_io_tree
*dirty_pages
)
960 struct address_space
*mapping
= fs_info
->btree_inode
->i_mapping
;
961 struct extent_state
*cached_state
= NULL
;
965 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
966 EXTENT_NEED_WAIT
, &cached_state
)) {
968 * Ignore -ENOMEM errors returned by clear_extent_bit().
969 * When committing the transaction, we'll remove any entries
970 * left in the io tree. For a log commit, we don't remove them
971 * after committing the log because the tree can be accessed
972 * concurrently - we do it only at transaction commit time when
973 * it's safe to do it (through extent_io_tree_release()).
975 err
= clear_extent_bit(dirty_pages
, start
, end
,
976 EXTENT_NEED_WAIT
, 0, 0, &cached_state
);
980 err
= filemap_fdatawait_range(mapping
, start
, end
);
983 free_extent_state(cached_state
);
993 int btrfs_wait_extents(struct btrfs_fs_info
*fs_info
,
994 struct extent_io_tree
*dirty_pages
)
999 err
= __btrfs_wait_marked_extents(fs_info
, dirty_pages
);
1000 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR
, &fs_info
->flags
))
1008 int btrfs_wait_tree_log_extents(struct btrfs_root
*log_root
, int mark
)
1010 struct btrfs_fs_info
*fs_info
= log_root
->fs_info
;
1011 struct extent_io_tree
*dirty_pages
= &log_root
->dirty_log_pages
;
1012 bool errors
= false;
1015 ASSERT(log_root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
);
1017 err
= __btrfs_wait_marked_extents(fs_info
, dirty_pages
);
1018 if ((mark
& EXTENT_DIRTY
) &&
1019 test_and_clear_bit(BTRFS_FS_LOG1_ERR
, &fs_info
->flags
))
1022 if ((mark
& EXTENT_NEW
) &&
1023 test_and_clear_bit(BTRFS_FS_LOG2_ERR
, &fs_info
->flags
))
1032 * When btree blocks are allocated the corresponding extents are marked dirty.
1033 * This function ensures such extents are persisted on disk for transaction or
1036 * @trans: transaction whose dirty pages we'd like to write
1038 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
)
1042 struct extent_io_tree
*dirty_pages
= &trans
->transaction
->dirty_pages
;
1043 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1044 struct blk_plug plug
;
1046 blk_start_plug(&plug
);
1047 ret
= btrfs_write_marked_extents(fs_info
, dirty_pages
, EXTENT_DIRTY
);
1048 blk_finish_plug(&plug
);
1049 ret2
= btrfs_wait_extents(fs_info
, dirty_pages
);
1051 extent_io_tree_release(&trans
->transaction
->dirty_pages
);
1062 * this is used to update the root pointer in the tree of tree roots.
1064 * But, in the case of the extent allocation tree, updating the root
1065 * pointer may allocate blocks which may change the root of the extent
1068 * So, this loops and repeats and makes sure the cowonly root didn't
1069 * change while the root pointer was being updated in the metadata.
1071 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
1072 struct btrfs_root
*root
)
1075 u64 old_root_bytenr
;
1077 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1078 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1080 old_root_used
= btrfs_root_used(&root
->root_item
);
1083 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
1084 if (old_root_bytenr
== root
->node
->start
&&
1085 old_root_used
== btrfs_root_used(&root
->root_item
))
1088 btrfs_set_root_node(&root
->root_item
, root
->node
);
1089 ret
= btrfs_update_root(trans
, tree_root
,
1095 old_root_used
= btrfs_root_used(&root
->root_item
);
1102 * update all the cowonly tree roots on disk
1104 * The error handling in this function may not be obvious. Any of the
1105 * failures will cause the file system to go offline. We still need
1106 * to clean up the delayed refs.
1108 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
)
1110 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1111 struct list_head
*dirty_bgs
= &trans
->transaction
->dirty_bgs
;
1112 struct list_head
*io_bgs
= &trans
->transaction
->io_bgs
;
1113 struct list_head
*next
;
1114 struct extent_buffer
*eb
;
1117 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
1118 ret
= btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
,
1120 btrfs_tree_unlock(eb
);
1121 free_extent_buffer(eb
);
1126 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1130 ret
= btrfs_run_dev_stats(trans
);
1133 ret
= btrfs_run_dev_replace(trans
);
1136 ret
= btrfs_run_qgroups(trans
);
1140 ret
= btrfs_setup_space_cache(trans
);
1144 /* run_qgroups might have added some more refs */
1145 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1149 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
1150 struct btrfs_root
*root
;
1151 next
= fs_info
->dirty_cowonly_roots
.next
;
1152 list_del_init(next
);
1153 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
1154 clear_bit(BTRFS_ROOT_DIRTY
, &root
->state
);
1156 if (root
!= fs_info
->extent_root
)
1157 list_add_tail(&root
->dirty_list
,
1158 &trans
->transaction
->switch_commits
);
1159 ret
= update_cowonly_root(trans
, root
);
1162 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1167 while (!list_empty(dirty_bgs
) || !list_empty(io_bgs
)) {
1168 ret
= btrfs_write_dirty_block_groups(trans
);
1171 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1176 if (!list_empty(&fs_info
->dirty_cowonly_roots
))
1179 list_add_tail(&fs_info
->extent_root
->dirty_list
,
1180 &trans
->transaction
->switch_commits
);
1182 /* Update dev-replace pointer once everything is committed */
1183 fs_info
->dev_replace
.committed_cursor_left
=
1184 fs_info
->dev_replace
.cursor_left_last_write_of_item
;
1190 * dead roots are old snapshots that need to be deleted. This allocates
1191 * a dirty root struct and adds it into the list of dead roots that need to
1194 void btrfs_add_dead_root(struct btrfs_root
*root
)
1196 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1198 spin_lock(&fs_info
->trans_lock
);
1199 if (list_empty(&root
->root_list
))
1200 list_add_tail(&root
->root_list
, &fs_info
->dead_roots
);
1201 spin_unlock(&fs_info
->trans_lock
);
1205 * update all the cowonly tree roots on disk
1207 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
)
1209 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1210 struct btrfs_root
*gang
[8];
1215 spin_lock(&fs_info
->fs_roots_radix_lock
);
1217 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
1220 BTRFS_ROOT_TRANS_TAG
);
1223 for (i
= 0; i
< ret
; i
++) {
1224 struct btrfs_root
*root
= gang
[i
];
1225 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
1226 (unsigned long)root
->root_key
.objectid
,
1227 BTRFS_ROOT_TRANS_TAG
);
1228 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1230 btrfs_free_log(trans
, root
);
1231 btrfs_update_reloc_root(trans
, root
);
1233 btrfs_save_ino_cache(root
, trans
);
1235 /* see comments in should_cow_block() */
1236 clear_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1237 smp_mb__after_atomic();
1239 if (root
->commit_root
!= root
->node
) {
1240 list_add_tail(&root
->dirty_list
,
1241 &trans
->transaction
->switch_commits
);
1242 btrfs_set_root_node(&root
->root_item
,
1246 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
1249 spin_lock(&fs_info
->fs_roots_radix_lock
);
1252 btrfs_qgroup_free_meta_all_pertrans(root
);
1255 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1260 * defrag a given btree.
1261 * Every leaf in the btree is read and defragged.
1263 int btrfs_defrag_root(struct btrfs_root
*root
)
1265 struct btrfs_fs_info
*info
= root
->fs_info
;
1266 struct btrfs_trans_handle
*trans
;
1269 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
))
1273 trans
= btrfs_start_transaction(root
, 0);
1275 return PTR_ERR(trans
);
1277 ret
= btrfs_defrag_leaves(trans
, root
);
1279 btrfs_end_transaction(trans
);
1280 btrfs_btree_balance_dirty(info
);
1283 if (btrfs_fs_closing(info
) || ret
!= -EAGAIN
)
1286 if (btrfs_defrag_cancelled(info
)) {
1287 btrfs_debug(info
, "defrag_root cancelled");
1292 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
);
1297 * Do all special snapshot related qgroup dirty hack.
1299 * Will do all needed qgroup inherit and dirty hack like switch commit
1300 * roots inside one transaction and write all btree into disk, to make
1303 static int qgroup_account_snapshot(struct btrfs_trans_handle
*trans
,
1304 struct btrfs_root
*src
,
1305 struct btrfs_root
*parent
,
1306 struct btrfs_qgroup_inherit
*inherit
,
1309 struct btrfs_fs_info
*fs_info
= src
->fs_info
;
1313 * Save some performance in the case that qgroups are not
1314 * enabled. If this check races with the ioctl, rescan will
1317 if (!test_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
))
1321 * Ensure dirty @src will be committed. Or, after coming
1322 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1323 * recorded root will never be updated again, causing an outdated root
1326 record_root_in_trans(trans
, src
, 1);
1329 * We are going to commit transaction, see btrfs_commit_transaction()
1330 * comment for reason locking tree_log_mutex
1332 mutex_lock(&fs_info
->tree_log_mutex
);
1334 ret
= commit_fs_roots(trans
);
1337 ret
= btrfs_qgroup_account_extents(trans
);
1341 /* Now qgroup are all updated, we can inherit it to new qgroups */
1342 ret
= btrfs_qgroup_inherit(trans
, src
->root_key
.objectid
, dst_objectid
,
1348 * Now we do a simplified commit transaction, which will:
1349 * 1) commit all subvolume and extent tree
1350 * To ensure all subvolume and extent tree have a valid
1351 * commit_root to accounting later insert_dir_item()
1352 * 2) write all btree blocks onto disk
1353 * This is to make sure later btree modification will be cowed
1354 * Or commit_root can be populated and cause wrong qgroup numbers
1355 * In this simplified commit, we don't really care about other trees
1356 * like chunk and root tree, as they won't affect qgroup.
1357 * And we don't write super to avoid half committed status.
1359 ret
= commit_cowonly_roots(trans
);
1362 switch_commit_roots(trans
->transaction
);
1363 ret
= btrfs_write_and_wait_transaction(trans
);
1365 btrfs_handle_fs_error(fs_info
, ret
,
1366 "Error while writing out transaction for qgroup");
1369 mutex_unlock(&fs_info
->tree_log_mutex
);
1372 * Force parent root to be updated, as we recorded it before so its
1373 * last_trans == cur_transid.
1374 * Or it won't be committed again onto disk after later
1378 record_root_in_trans(trans
, parent
, 1);
1383 * new snapshots need to be created at a very specific time in the
1384 * transaction commit. This does the actual creation.
1387 * If the error which may affect the commitment of the current transaction
1388 * happens, we should return the error number. If the error which just affect
1389 * the creation of the pending snapshots, just return 0.
1391 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
1392 struct btrfs_pending_snapshot
*pending
)
1395 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1396 struct btrfs_key key
;
1397 struct btrfs_root_item
*new_root_item
;
1398 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1399 struct btrfs_root
*root
= pending
->root
;
1400 struct btrfs_root
*parent_root
;
1401 struct btrfs_block_rsv
*rsv
;
1402 struct inode
*parent_inode
;
1403 struct btrfs_path
*path
;
1404 struct btrfs_dir_item
*dir_item
;
1405 struct dentry
*dentry
;
1406 struct extent_buffer
*tmp
;
1407 struct extent_buffer
*old
;
1408 struct timespec64 cur_time
;
1416 ASSERT(pending
->path
);
1417 path
= pending
->path
;
1419 ASSERT(pending
->root_item
);
1420 new_root_item
= pending
->root_item
;
1422 pending
->error
= btrfs_find_free_objectid(tree_root
, &objectid
);
1424 goto no_free_objectid
;
1427 * Make qgroup to skip current new snapshot's qgroupid, as it is
1428 * accounted by later btrfs_qgroup_inherit().
1430 btrfs_set_skip_qgroup(trans
, objectid
);
1432 btrfs_reloc_pre_snapshot(pending
, &to_reserve
);
1434 if (to_reserve
> 0) {
1435 pending
->error
= btrfs_block_rsv_add(root
,
1436 &pending
->block_rsv
,
1438 BTRFS_RESERVE_NO_FLUSH
);
1440 goto clear_skip_qgroup
;
1443 key
.objectid
= objectid
;
1444 key
.offset
= (u64
)-1;
1445 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1447 rsv
= trans
->block_rsv
;
1448 trans
->block_rsv
= &pending
->block_rsv
;
1449 trans
->bytes_reserved
= trans
->block_rsv
->reserved
;
1450 trace_btrfs_space_reservation(fs_info
, "transaction",
1452 trans
->bytes_reserved
, 1);
1453 dentry
= pending
->dentry
;
1454 parent_inode
= pending
->dir
;
1455 parent_root
= BTRFS_I(parent_inode
)->root
;
1456 record_root_in_trans(trans
, parent_root
, 0);
1458 cur_time
= current_time(parent_inode
);
1461 * insert the directory item
1463 ret
= btrfs_set_inode_index(BTRFS_I(parent_inode
), &index
);
1464 BUG_ON(ret
); /* -ENOMEM */
1466 /* check if there is a file/dir which has the same name. */
1467 dir_item
= btrfs_lookup_dir_item(NULL
, parent_root
, path
,
1468 btrfs_ino(BTRFS_I(parent_inode
)),
1469 dentry
->d_name
.name
,
1470 dentry
->d_name
.len
, 0);
1471 if (dir_item
!= NULL
&& !IS_ERR(dir_item
)) {
1472 pending
->error
= -EEXIST
;
1473 goto dir_item_existed
;
1474 } else if (IS_ERR(dir_item
)) {
1475 ret
= PTR_ERR(dir_item
);
1476 btrfs_abort_transaction(trans
, ret
);
1479 btrfs_release_path(path
);
1482 * pull in the delayed directory update
1483 * and the delayed inode item
1484 * otherwise we corrupt the FS during
1487 ret
= btrfs_run_delayed_items(trans
);
1488 if (ret
) { /* Transaction aborted */
1489 btrfs_abort_transaction(trans
, ret
);
1493 record_root_in_trans(trans
, root
, 0);
1494 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
1495 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
1496 btrfs_check_and_init_root_item(new_root_item
);
1498 root_flags
= btrfs_root_flags(new_root_item
);
1499 if (pending
->readonly
)
1500 root_flags
|= BTRFS_ROOT_SUBVOL_RDONLY
;
1502 root_flags
&= ~BTRFS_ROOT_SUBVOL_RDONLY
;
1503 btrfs_set_root_flags(new_root_item
, root_flags
);
1505 btrfs_set_root_generation_v2(new_root_item
,
1507 uuid_le_gen(&new_uuid
);
1508 memcpy(new_root_item
->uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
1509 memcpy(new_root_item
->parent_uuid
, root
->root_item
.uuid
,
1511 if (!(root_flags
& BTRFS_ROOT_SUBVOL_RDONLY
)) {
1512 memset(new_root_item
->received_uuid
, 0,
1513 sizeof(new_root_item
->received_uuid
));
1514 memset(&new_root_item
->stime
, 0, sizeof(new_root_item
->stime
));
1515 memset(&new_root_item
->rtime
, 0, sizeof(new_root_item
->rtime
));
1516 btrfs_set_root_stransid(new_root_item
, 0);
1517 btrfs_set_root_rtransid(new_root_item
, 0);
1519 btrfs_set_stack_timespec_sec(&new_root_item
->otime
, cur_time
.tv_sec
);
1520 btrfs_set_stack_timespec_nsec(&new_root_item
->otime
, cur_time
.tv_nsec
);
1521 btrfs_set_root_otransid(new_root_item
, trans
->transid
);
1523 old
= btrfs_lock_root_node(root
);
1524 ret
= btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
);
1526 btrfs_tree_unlock(old
);
1527 free_extent_buffer(old
);
1528 btrfs_abort_transaction(trans
, ret
);
1532 btrfs_set_lock_blocking_write(old
);
1534 ret
= btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
1535 /* clean up in any case */
1536 btrfs_tree_unlock(old
);
1537 free_extent_buffer(old
);
1539 btrfs_abort_transaction(trans
, ret
);
1542 /* see comments in should_cow_block() */
1543 set_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1546 btrfs_set_root_node(new_root_item
, tmp
);
1547 /* record when the snapshot was created in key.offset */
1548 key
.offset
= trans
->transid
;
1549 ret
= btrfs_insert_root(trans
, tree_root
, &key
, new_root_item
);
1550 btrfs_tree_unlock(tmp
);
1551 free_extent_buffer(tmp
);
1553 btrfs_abort_transaction(trans
, ret
);
1558 * insert root back/forward references
1560 ret
= btrfs_add_root_ref(trans
, objectid
,
1561 parent_root
->root_key
.objectid
,
1562 btrfs_ino(BTRFS_I(parent_inode
)), index
,
1563 dentry
->d_name
.name
, dentry
->d_name
.len
);
1565 btrfs_abort_transaction(trans
, ret
);
1569 key
.offset
= (u64
)-1;
1570 pending
->snap
= btrfs_read_fs_root_no_name(fs_info
, &key
);
1571 if (IS_ERR(pending
->snap
)) {
1572 ret
= PTR_ERR(pending
->snap
);
1573 btrfs_abort_transaction(trans
, ret
);
1577 ret
= btrfs_reloc_post_snapshot(trans
, pending
);
1579 btrfs_abort_transaction(trans
, ret
);
1583 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1585 btrfs_abort_transaction(trans
, ret
);
1590 * Do special qgroup accounting for snapshot, as we do some qgroup
1591 * snapshot hack to do fast snapshot.
1592 * To co-operate with that hack, we do hack again.
1593 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1595 ret
= qgroup_account_snapshot(trans
, root
, parent_root
,
1596 pending
->inherit
, objectid
);
1600 ret
= btrfs_insert_dir_item(trans
, dentry
->d_name
.name
,
1601 dentry
->d_name
.len
, BTRFS_I(parent_inode
),
1602 &key
, BTRFS_FT_DIR
, index
);
1603 /* We have check then name at the beginning, so it is impossible. */
1604 BUG_ON(ret
== -EEXIST
|| ret
== -EOVERFLOW
);
1606 btrfs_abort_transaction(trans
, ret
);
1610 btrfs_i_size_write(BTRFS_I(parent_inode
), parent_inode
->i_size
+
1611 dentry
->d_name
.len
* 2);
1612 parent_inode
->i_mtime
= parent_inode
->i_ctime
=
1613 current_time(parent_inode
);
1614 ret
= btrfs_update_inode_fallback(trans
, parent_root
, parent_inode
);
1616 btrfs_abort_transaction(trans
, ret
);
1619 ret
= btrfs_uuid_tree_add(trans
, new_uuid
.b
, BTRFS_UUID_KEY_SUBVOL
,
1622 btrfs_abort_transaction(trans
, ret
);
1625 if (!btrfs_is_empty_uuid(new_root_item
->received_uuid
)) {
1626 ret
= btrfs_uuid_tree_add(trans
, new_root_item
->received_uuid
,
1627 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
1629 if (ret
&& ret
!= -EEXIST
) {
1630 btrfs_abort_transaction(trans
, ret
);
1635 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1637 btrfs_abort_transaction(trans
, ret
);
1642 pending
->error
= ret
;
1644 trans
->block_rsv
= rsv
;
1645 trans
->bytes_reserved
= 0;
1647 btrfs_clear_skip_qgroup(trans
);
1649 kfree(new_root_item
);
1650 pending
->root_item
= NULL
;
1651 btrfs_free_path(path
);
1652 pending
->path
= NULL
;
1658 * create all the snapshots we've scheduled for creation
1660 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
)
1662 struct btrfs_pending_snapshot
*pending
, *next
;
1663 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1666 list_for_each_entry_safe(pending
, next
, head
, list
) {
1667 list_del(&pending
->list
);
1668 ret
= create_pending_snapshot(trans
, pending
);
1675 static void update_super_roots(struct btrfs_fs_info
*fs_info
)
1677 struct btrfs_root_item
*root_item
;
1678 struct btrfs_super_block
*super
;
1680 super
= fs_info
->super_copy
;
1682 root_item
= &fs_info
->chunk_root
->root_item
;
1683 super
->chunk_root
= root_item
->bytenr
;
1684 super
->chunk_root_generation
= root_item
->generation
;
1685 super
->chunk_root_level
= root_item
->level
;
1687 root_item
= &fs_info
->tree_root
->root_item
;
1688 super
->root
= root_item
->bytenr
;
1689 super
->generation
= root_item
->generation
;
1690 super
->root_level
= root_item
->level
;
1691 if (btrfs_test_opt(fs_info
, SPACE_CACHE
))
1692 super
->cache_generation
= root_item
->generation
;
1693 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
))
1694 super
->uuid_tree_generation
= root_item
->generation
;
1697 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
1699 struct btrfs_transaction
*trans
;
1702 spin_lock(&info
->trans_lock
);
1703 trans
= info
->running_transaction
;
1705 ret
= (trans
->state
>= TRANS_STATE_COMMIT_START
);
1706 spin_unlock(&info
->trans_lock
);
1710 int btrfs_transaction_blocked(struct btrfs_fs_info
*info
)
1712 struct btrfs_transaction
*trans
;
1715 spin_lock(&info
->trans_lock
);
1716 trans
= info
->running_transaction
;
1718 ret
= is_transaction_blocked(trans
);
1719 spin_unlock(&info
->trans_lock
);
1724 * wait for the current transaction commit to start and block subsequent
1727 static void wait_current_trans_commit_start(struct btrfs_fs_info
*fs_info
,
1728 struct btrfs_transaction
*trans
)
1730 wait_event(fs_info
->transaction_blocked_wait
,
1731 trans
->state
>= TRANS_STATE_COMMIT_START
|| trans
->aborted
);
1735 * wait for the current transaction to start and then become unblocked.
1738 static void wait_current_trans_commit_start_and_unblock(
1739 struct btrfs_fs_info
*fs_info
,
1740 struct btrfs_transaction
*trans
)
1742 wait_event(fs_info
->transaction_wait
,
1743 trans
->state
>= TRANS_STATE_UNBLOCKED
|| trans
->aborted
);
1747 * commit transactions asynchronously. once btrfs_commit_transaction_async
1748 * returns, any subsequent transaction will not be allowed to join.
1750 struct btrfs_async_commit
{
1751 struct btrfs_trans_handle
*newtrans
;
1752 struct work_struct work
;
1755 static void do_async_commit(struct work_struct
*work
)
1757 struct btrfs_async_commit
*ac
=
1758 container_of(work
, struct btrfs_async_commit
, work
);
1761 * We've got freeze protection passed with the transaction.
1762 * Tell lockdep about it.
1764 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1765 __sb_writers_acquired(ac
->newtrans
->fs_info
->sb
, SB_FREEZE_FS
);
1767 current
->journal_info
= ac
->newtrans
;
1769 btrfs_commit_transaction(ac
->newtrans
);
1773 int btrfs_commit_transaction_async(struct btrfs_trans_handle
*trans
,
1774 int wait_for_unblock
)
1776 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1777 struct btrfs_async_commit
*ac
;
1778 struct btrfs_transaction
*cur_trans
;
1780 ac
= kmalloc(sizeof(*ac
), GFP_NOFS
);
1784 INIT_WORK(&ac
->work
, do_async_commit
);
1785 ac
->newtrans
= btrfs_join_transaction(trans
->root
);
1786 if (IS_ERR(ac
->newtrans
)) {
1787 int err
= PTR_ERR(ac
->newtrans
);
1792 /* take transaction reference */
1793 cur_trans
= trans
->transaction
;
1794 refcount_inc(&cur_trans
->use_count
);
1796 btrfs_end_transaction(trans
);
1799 * Tell lockdep we've released the freeze rwsem, since the
1800 * async commit thread will be the one to unlock it.
1802 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1803 __sb_writers_release(fs_info
->sb
, SB_FREEZE_FS
);
1805 schedule_work(&ac
->work
);
1807 /* wait for transaction to start and unblock */
1808 if (wait_for_unblock
)
1809 wait_current_trans_commit_start_and_unblock(fs_info
, cur_trans
);
1811 wait_current_trans_commit_start(fs_info
, cur_trans
);
1813 if (current
->journal_info
== trans
)
1814 current
->journal_info
= NULL
;
1816 btrfs_put_transaction(cur_trans
);
1821 static void cleanup_transaction(struct btrfs_trans_handle
*trans
, int err
)
1823 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1824 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1826 WARN_ON(refcount_read(&trans
->use_count
) > 1);
1828 btrfs_abort_transaction(trans
, err
);
1830 spin_lock(&fs_info
->trans_lock
);
1833 * If the transaction is removed from the list, it means this
1834 * transaction has been committed successfully, so it is impossible
1835 * to call the cleanup function.
1837 BUG_ON(list_empty(&cur_trans
->list
));
1839 list_del_init(&cur_trans
->list
);
1840 if (cur_trans
== fs_info
->running_transaction
) {
1841 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1842 spin_unlock(&fs_info
->trans_lock
);
1843 wait_event(cur_trans
->writer_wait
,
1844 atomic_read(&cur_trans
->num_writers
) == 1);
1846 spin_lock(&fs_info
->trans_lock
);
1848 spin_unlock(&fs_info
->trans_lock
);
1850 btrfs_cleanup_one_transaction(trans
->transaction
, fs_info
);
1852 spin_lock(&fs_info
->trans_lock
);
1853 if (cur_trans
== fs_info
->running_transaction
)
1854 fs_info
->running_transaction
= NULL
;
1855 spin_unlock(&fs_info
->trans_lock
);
1857 if (trans
->type
& __TRANS_FREEZABLE
)
1858 sb_end_intwrite(fs_info
->sb
);
1859 btrfs_put_transaction(cur_trans
);
1860 btrfs_put_transaction(cur_trans
);
1862 trace_btrfs_transaction_commit(trans
->root
);
1864 if (current
->journal_info
== trans
)
1865 current
->journal_info
= NULL
;
1866 btrfs_scrub_cancel(fs_info
);
1868 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1872 * Release reserved delayed ref space of all pending block groups of the
1873 * transaction and remove them from the list
1875 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle
*trans
)
1877 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1878 struct btrfs_block_group_cache
*block_group
, *tmp
;
1880 list_for_each_entry_safe(block_group
, tmp
, &trans
->new_bgs
, bg_list
) {
1881 btrfs_delayed_refs_rsv_release(fs_info
, 1);
1882 list_del_init(&block_group
->bg_list
);
1886 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle
*trans
)
1888 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1891 * We use writeback_inodes_sb here because if we used
1892 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1893 * Currently are holding the fs freeze lock, if we do an async flush
1894 * we'll do btrfs_join_transaction() and deadlock because we need to
1895 * wait for the fs freeze lock. Using the direct flushing we benefit
1896 * from already being in a transaction and our join_transaction doesn't
1897 * have to re-take the fs freeze lock.
1899 if (btrfs_test_opt(fs_info
, FLUSHONCOMMIT
)) {
1900 writeback_inodes_sb(fs_info
->sb
, WB_REASON_SYNC
);
1902 struct btrfs_pending_snapshot
*pending
;
1903 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1906 * Flush dellaloc for any root that is going to be snapshotted.
1907 * This is done to avoid a corrupted version of files, in the
1908 * snapshots, that had both buffered and direct IO writes (even
1909 * if they were done sequentially) due to an unordered update of
1910 * the inode's size on disk.
1912 list_for_each_entry(pending
, head
, list
) {
1915 ret
= btrfs_start_delalloc_snapshot(pending
->root
);
1923 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle
*trans
)
1925 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1927 if (btrfs_test_opt(fs_info
, FLUSHONCOMMIT
)) {
1928 btrfs_wait_ordered_roots(fs_info
, U64_MAX
, 0, (u64
)-1);
1930 struct btrfs_pending_snapshot
*pending
;
1931 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1934 * Wait for any dellaloc that we started previously for the roots
1935 * that are going to be snapshotted. This is to avoid a corrupted
1936 * version of files in the snapshots that had both buffered and
1937 * direct IO writes (even if they were done sequentially).
1939 list_for_each_entry(pending
, head
, list
)
1940 btrfs_wait_ordered_extents(pending
->root
,
1941 U64_MAX
, 0, U64_MAX
);
1945 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
)
1947 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1948 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1949 struct btrfs_transaction
*prev_trans
= NULL
;
1952 /* Stop the commit early if ->aborted is set */
1953 if (unlikely(READ_ONCE(cur_trans
->aborted
))) {
1954 ret
= cur_trans
->aborted
;
1955 btrfs_end_transaction(trans
);
1959 btrfs_trans_release_metadata(trans
);
1960 trans
->block_rsv
= NULL
;
1962 /* make a pass through all the delayed refs we have so far
1963 * any runnings procs may add more while we are here
1965 ret
= btrfs_run_delayed_refs(trans
, 0);
1967 btrfs_end_transaction(trans
);
1971 cur_trans
= trans
->transaction
;
1974 * set the flushing flag so procs in this transaction have to
1975 * start sending their work down.
1977 cur_trans
->delayed_refs
.flushing
= 1;
1980 btrfs_create_pending_block_groups(trans
);
1982 ret
= btrfs_run_delayed_refs(trans
, 0);
1984 btrfs_end_transaction(trans
);
1988 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN
, &cur_trans
->flags
)) {
1991 /* this mutex is also taken before trying to set
1992 * block groups readonly. We need to make sure
1993 * that nobody has set a block group readonly
1994 * after a extents from that block group have been
1995 * allocated for cache files. btrfs_set_block_group_ro
1996 * will wait for the transaction to commit if it
1997 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1999 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2000 * only one process starts all the block group IO. It wouldn't
2001 * hurt to have more than one go through, but there's no
2002 * real advantage to it either.
2004 mutex_lock(&fs_info
->ro_block_group_mutex
);
2005 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN
,
2008 mutex_unlock(&fs_info
->ro_block_group_mutex
);
2011 ret
= btrfs_start_dirty_block_groups(trans
);
2013 btrfs_end_transaction(trans
);
2019 spin_lock(&fs_info
->trans_lock
);
2020 if (cur_trans
->state
>= TRANS_STATE_COMMIT_START
) {
2021 spin_unlock(&fs_info
->trans_lock
);
2022 refcount_inc(&cur_trans
->use_count
);
2023 ret
= btrfs_end_transaction(trans
);
2025 wait_for_commit(cur_trans
);
2027 if (unlikely(cur_trans
->aborted
))
2028 ret
= cur_trans
->aborted
;
2030 btrfs_put_transaction(cur_trans
);
2035 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
2036 wake_up(&fs_info
->transaction_blocked_wait
);
2038 if (cur_trans
->list
.prev
!= &fs_info
->trans_list
) {
2039 prev_trans
= list_entry(cur_trans
->list
.prev
,
2040 struct btrfs_transaction
, list
);
2041 if (prev_trans
->state
!= TRANS_STATE_COMPLETED
) {
2042 refcount_inc(&prev_trans
->use_count
);
2043 spin_unlock(&fs_info
->trans_lock
);
2045 wait_for_commit(prev_trans
);
2046 ret
= prev_trans
->aborted
;
2048 btrfs_put_transaction(prev_trans
);
2050 goto cleanup_transaction
;
2052 spin_unlock(&fs_info
->trans_lock
);
2055 spin_unlock(&fs_info
->trans_lock
);
2057 * The previous transaction was aborted and was already removed
2058 * from the list of transactions at fs_info->trans_list. So we
2059 * abort to prevent writing a new superblock that reflects a
2060 * corrupt state (pointing to trees with unwritten nodes/leafs).
2062 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED
, &fs_info
->fs_state
)) {
2064 goto cleanup_transaction
;
2068 extwriter_counter_dec(cur_trans
, trans
->type
);
2070 ret
= btrfs_start_delalloc_flush(trans
);
2072 goto cleanup_transaction
;
2074 ret
= btrfs_run_delayed_items(trans
);
2076 goto cleanup_transaction
;
2078 wait_event(cur_trans
->writer_wait
,
2079 extwriter_counter_read(cur_trans
) == 0);
2081 /* some pending stuffs might be added after the previous flush. */
2082 ret
= btrfs_run_delayed_items(trans
);
2084 goto cleanup_transaction
;
2086 btrfs_wait_delalloc_flush(trans
);
2088 btrfs_scrub_pause(fs_info
);
2090 * Ok now we need to make sure to block out any other joins while we
2091 * commit the transaction. We could have started a join before setting
2092 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2094 spin_lock(&fs_info
->trans_lock
);
2095 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
2096 spin_unlock(&fs_info
->trans_lock
);
2097 wait_event(cur_trans
->writer_wait
,
2098 atomic_read(&cur_trans
->num_writers
) == 1);
2100 /* ->aborted might be set after the previous check, so check it */
2101 if (unlikely(READ_ONCE(cur_trans
->aborted
))) {
2102 ret
= cur_trans
->aborted
;
2103 goto scrub_continue
;
2106 * the reloc mutex makes sure that we stop
2107 * the balancing code from coming in and moving
2108 * extents around in the middle of the commit
2110 mutex_lock(&fs_info
->reloc_mutex
);
2113 * We needn't worry about the delayed items because we will
2114 * deal with them in create_pending_snapshot(), which is the
2115 * core function of the snapshot creation.
2117 ret
= create_pending_snapshots(trans
);
2119 mutex_unlock(&fs_info
->reloc_mutex
);
2120 goto scrub_continue
;
2124 * We insert the dir indexes of the snapshots and update the inode
2125 * of the snapshots' parents after the snapshot creation, so there
2126 * are some delayed items which are not dealt with. Now deal with
2129 * We needn't worry that this operation will corrupt the snapshots,
2130 * because all the tree which are snapshoted will be forced to COW
2131 * the nodes and leaves.
2133 ret
= btrfs_run_delayed_items(trans
);
2135 mutex_unlock(&fs_info
->reloc_mutex
);
2136 goto scrub_continue
;
2139 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
2141 mutex_unlock(&fs_info
->reloc_mutex
);
2142 goto scrub_continue
;
2146 * make sure none of the code above managed to slip in a
2149 btrfs_assert_delayed_root_empty(fs_info
);
2151 WARN_ON(cur_trans
!= trans
->transaction
);
2153 /* btrfs_commit_tree_roots is responsible for getting the
2154 * various roots consistent with each other. Every pointer
2155 * in the tree of tree roots has to point to the most up to date
2156 * root for every subvolume and other tree. So, we have to keep
2157 * the tree logging code from jumping in and changing any
2160 * At this point in the commit, there can't be any tree-log
2161 * writers, but a little lower down we drop the trans mutex
2162 * and let new people in. By holding the tree_log_mutex
2163 * from now until after the super is written, we avoid races
2164 * with the tree-log code.
2166 mutex_lock(&fs_info
->tree_log_mutex
);
2168 ret
= commit_fs_roots(trans
);
2170 mutex_unlock(&fs_info
->tree_log_mutex
);
2171 mutex_unlock(&fs_info
->reloc_mutex
);
2172 goto scrub_continue
;
2176 * Since the transaction is done, we can apply the pending changes
2177 * before the next transaction.
2179 btrfs_apply_pending_changes(fs_info
);
2181 /* commit_fs_roots gets rid of all the tree log roots, it is now
2182 * safe to free the root of tree log roots
2184 btrfs_free_log_root_tree(trans
, fs_info
);
2187 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2188 * new delayed refs. Must handle them or qgroup can be wrong.
2190 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
2192 mutex_unlock(&fs_info
->tree_log_mutex
);
2193 mutex_unlock(&fs_info
->reloc_mutex
);
2194 goto scrub_continue
;
2198 * Since fs roots are all committed, we can get a quite accurate
2199 * new_roots. So let's do quota accounting.
2201 ret
= btrfs_qgroup_account_extents(trans
);
2203 mutex_unlock(&fs_info
->tree_log_mutex
);
2204 mutex_unlock(&fs_info
->reloc_mutex
);
2205 goto scrub_continue
;
2208 ret
= commit_cowonly_roots(trans
);
2210 mutex_unlock(&fs_info
->tree_log_mutex
);
2211 mutex_unlock(&fs_info
->reloc_mutex
);
2212 goto scrub_continue
;
2216 * The tasks which save the space cache and inode cache may also
2217 * update ->aborted, check it.
2219 if (unlikely(READ_ONCE(cur_trans
->aborted
))) {
2220 ret
= cur_trans
->aborted
;
2221 mutex_unlock(&fs_info
->tree_log_mutex
);
2222 mutex_unlock(&fs_info
->reloc_mutex
);
2223 goto scrub_continue
;
2226 btrfs_prepare_extent_commit(fs_info
);
2228 cur_trans
= fs_info
->running_transaction
;
2230 btrfs_set_root_node(&fs_info
->tree_root
->root_item
,
2231 fs_info
->tree_root
->node
);
2232 list_add_tail(&fs_info
->tree_root
->dirty_list
,
2233 &cur_trans
->switch_commits
);
2235 btrfs_set_root_node(&fs_info
->chunk_root
->root_item
,
2236 fs_info
->chunk_root
->node
);
2237 list_add_tail(&fs_info
->chunk_root
->dirty_list
,
2238 &cur_trans
->switch_commits
);
2240 switch_commit_roots(cur_trans
);
2242 ASSERT(list_empty(&cur_trans
->dirty_bgs
));
2243 ASSERT(list_empty(&cur_trans
->io_bgs
));
2244 update_super_roots(fs_info
);
2246 btrfs_set_super_log_root(fs_info
->super_copy
, 0);
2247 btrfs_set_super_log_root_level(fs_info
->super_copy
, 0);
2248 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2249 sizeof(*fs_info
->super_copy
));
2251 btrfs_commit_device_sizes(cur_trans
);
2253 clear_bit(BTRFS_FS_LOG1_ERR
, &fs_info
->flags
);
2254 clear_bit(BTRFS_FS_LOG2_ERR
, &fs_info
->flags
);
2256 btrfs_trans_release_chunk_metadata(trans
);
2258 spin_lock(&fs_info
->trans_lock
);
2259 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
2260 fs_info
->running_transaction
= NULL
;
2261 spin_unlock(&fs_info
->trans_lock
);
2262 mutex_unlock(&fs_info
->reloc_mutex
);
2264 wake_up(&fs_info
->transaction_wait
);
2266 ret
= btrfs_write_and_wait_transaction(trans
);
2268 btrfs_handle_fs_error(fs_info
, ret
,
2269 "Error while writing out transaction");
2270 mutex_unlock(&fs_info
->tree_log_mutex
);
2271 goto scrub_continue
;
2274 ret
= write_all_supers(fs_info
, 0);
2276 * the super is written, we can safely allow the tree-loggers
2277 * to go about their business
2279 mutex_unlock(&fs_info
->tree_log_mutex
);
2281 goto scrub_continue
;
2283 btrfs_finish_extent_commit(trans
);
2285 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &cur_trans
->flags
))
2286 btrfs_clear_space_info_full(fs_info
);
2288 fs_info
->last_trans_committed
= cur_trans
->transid
;
2290 * We needn't acquire the lock here because there is no other task
2291 * which can change it.
2293 cur_trans
->state
= TRANS_STATE_COMPLETED
;
2294 wake_up(&cur_trans
->commit_wait
);
2295 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT
, &fs_info
->flags
);
2297 spin_lock(&fs_info
->trans_lock
);
2298 list_del_init(&cur_trans
->list
);
2299 spin_unlock(&fs_info
->trans_lock
);
2301 btrfs_put_transaction(cur_trans
);
2302 btrfs_put_transaction(cur_trans
);
2304 if (trans
->type
& __TRANS_FREEZABLE
)
2305 sb_end_intwrite(fs_info
->sb
);
2307 trace_btrfs_transaction_commit(trans
->root
);
2309 btrfs_scrub_continue(fs_info
);
2311 if (current
->journal_info
== trans
)
2312 current
->journal_info
= NULL
;
2314 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
2319 btrfs_scrub_continue(fs_info
);
2320 cleanup_transaction
:
2321 btrfs_trans_release_metadata(trans
);
2322 btrfs_cleanup_pending_block_groups(trans
);
2323 btrfs_trans_release_chunk_metadata(trans
);
2324 trans
->block_rsv
= NULL
;
2325 btrfs_warn(fs_info
, "Skipping commit of aborted transaction.");
2326 if (current
->journal_info
== trans
)
2327 current
->journal_info
= NULL
;
2328 cleanup_transaction(trans
, ret
);
2334 * return < 0 if error
2335 * 0 if there are no more dead_roots at the time of call
2336 * 1 there are more to be processed, call me again
2338 * The return value indicates there are certainly more snapshots to delete, but
2339 * if there comes a new one during processing, it may return 0. We don't mind,
2340 * because btrfs_commit_super will poke cleaner thread and it will process it a
2341 * few seconds later.
2343 int btrfs_clean_one_deleted_snapshot(struct btrfs_root
*root
)
2346 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2348 spin_lock(&fs_info
->trans_lock
);
2349 if (list_empty(&fs_info
->dead_roots
)) {
2350 spin_unlock(&fs_info
->trans_lock
);
2353 root
= list_first_entry(&fs_info
->dead_roots
,
2354 struct btrfs_root
, root_list
);
2355 list_del_init(&root
->root_list
);
2356 spin_unlock(&fs_info
->trans_lock
);
2358 btrfs_debug(fs_info
, "cleaner removing %llu", root
->root_key
.objectid
);
2360 btrfs_kill_all_delayed_nodes(root
);
2362 if (btrfs_header_backref_rev(root
->node
) <
2363 BTRFS_MIXED_BACKREF_REV
)
2364 ret
= btrfs_drop_snapshot(root
, NULL
, 0, 0);
2366 ret
= btrfs_drop_snapshot(root
, NULL
, 1, 0);
2368 return (ret
< 0) ? 0 : 1;
2371 void btrfs_apply_pending_changes(struct btrfs_fs_info
*fs_info
)
2376 prev
= xchg(&fs_info
->pending_changes
, 0);
2380 bit
= 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE
;
2382 btrfs_set_opt(fs_info
->mount_opt
, INODE_MAP_CACHE
);
2385 bit
= 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE
;
2387 btrfs_clear_opt(fs_info
->mount_opt
, INODE_MAP_CACHE
);
2390 bit
= 1 << BTRFS_PENDING_COMMIT
;
2392 btrfs_debug(fs_info
, "pending commit done");
2397 "unknown pending changes left 0x%lx, ignoring", prev
);