xtensa: fix type conversion in __get_user_[no]check
[linux/fpc-iii.git] / fs / libfs.c
blob540611b99b9aa07cae8693e8de46e9fd78e518d6
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/libfs.c
4 * Library for filesystems writers.
5 */
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/writeback.h>
19 #include <linux/buffer_head.h> /* sync_mapping_buffers */
20 #include <linux/fs_context.h>
21 #include <linux/pseudo_fs.h>
23 #include <linux/uaccess.h>
25 #include "internal.h"
27 int simple_getattr(const struct path *path, struct kstat *stat,
28 u32 request_mask, unsigned int query_flags)
30 struct inode *inode = d_inode(path->dentry);
31 generic_fillattr(inode, stat);
32 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
33 return 0;
35 EXPORT_SYMBOL(simple_getattr);
37 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
39 buf->f_type = dentry->d_sb->s_magic;
40 buf->f_bsize = PAGE_SIZE;
41 buf->f_namelen = NAME_MAX;
42 return 0;
44 EXPORT_SYMBOL(simple_statfs);
47 * Retaining negative dentries for an in-memory filesystem just wastes
48 * memory and lookup time: arrange for them to be deleted immediately.
50 int always_delete_dentry(const struct dentry *dentry)
52 return 1;
54 EXPORT_SYMBOL(always_delete_dentry);
56 const struct dentry_operations simple_dentry_operations = {
57 .d_delete = always_delete_dentry,
59 EXPORT_SYMBOL(simple_dentry_operations);
62 * Lookup the data. This is trivial - if the dentry didn't already
63 * exist, we know it is negative. Set d_op to delete negative dentries.
65 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
67 if (dentry->d_name.len > NAME_MAX)
68 return ERR_PTR(-ENAMETOOLONG);
69 if (!dentry->d_sb->s_d_op)
70 d_set_d_op(dentry, &simple_dentry_operations);
71 d_add(dentry, NULL);
72 return NULL;
74 EXPORT_SYMBOL(simple_lookup);
76 int dcache_dir_open(struct inode *inode, struct file *file)
78 file->private_data = d_alloc_cursor(file->f_path.dentry);
80 return file->private_data ? 0 : -ENOMEM;
82 EXPORT_SYMBOL(dcache_dir_open);
84 int dcache_dir_close(struct inode *inode, struct file *file)
86 dput(file->private_data);
87 return 0;
89 EXPORT_SYMBOL(dcache_dir_close);
91 /* parent is locked at least shared */
93 * Returns an element of siblings' list.
94 * We are looking for <count>th positive after <p>; if
95 * found, dentry is grabbed and returned to caller.
96 * If no such element exists, NULL is returned.
98 static struct dentry *scan_positives(struct dentry *cursor,
99 struct list_head *p,
100 loff_t count,
101 struct dentry *last)
103 struct dentry *dentry = cursor->d_parent, *found = NULL;
105 spin_lock(&dentry->d_lock);
106 while ((p = p->next) != &dentry->d_subdirs) {
107 struct dentry *d = list_entry(p, struct dentry, d_child);
108 // we must at least skip cursors, to avoid livelocks
109 if (d->d_flags & DCACHE_DENTRY_CURSOR)
110 continue;
111 if (simple_positive(d) && !--count) {
112 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
113 if (simple_positive(d))
114 found = dget_dlock(d);
115 spin_unlock(&d->d_lock);
116 if (likely(found))
117 break;
118 count = 1;
120 if (need_resched()) {
121 list_move(&cursor->d_child, p);
122 p = &cursor->d_child;
123 spin_unlock(&dentry->d_lock);
124 cond_resched();
125 spin_lock(&dentry->d_lock);
128 spin_unlock(&dentry->d_lock);
129 dput(last);
130 return found;
133 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
135 struct dentry *dentry = file->f_path.dentry;
136 switch (whence) {
137 case 1:
138 offset += file->f_pos;
139 /* fall through */
140 case 0:
141 if (offset >= 0)
142 break;
143 /* fall through */
144 default:
145 return -EINVAL;
147 if (offset != file->f_pos) {
148 struct dentry *cursor = file->private_data;
149 struct dentry *to = NULL;
151 inode_lock_shared(dentry->d_inode);
153 if (offset > 2)
154 to = scan_positives(cursor, &dentry->d_subdirs,
155 offset - 2, NULL);
156 spin_lock(&dentry->d_lock);
157 if (to)
158 list_move(&cursor->d_child, &to->d_child);
159 else
160 list_del_init(&cursor->d_child);
161 spin_unlock(&dentry->d_lock);
162 dput(to);
164 file->f_pos = offset;
166 inode_unlock_shared(dentry->d_inode);
168 return offset;
170 EXPORT_SYMBOL(dcache_dir_lseek);
172 /* Relationship between i_mode and the DT_xxx types */
173 static inline unsigned char dt_type(struct inode *inode)
175 return (inode->i_mode >> 12) & 15;
179 * Directory is locked and all positive dentries in it are safe, since
180 * for ramfs-type trees they can't go away without unlink() or rmdir(),
181 * both impossible due to the lock on directory.
184 int dcache_readdir(struct file *file, struct dir_context *ctx)
186 struct dentry *dentry = file->f_path.dentry;
187 struct dentry *cursor = file->private_data;
188 struct list_head *anchor = &dentry->d_subdirs;
189 struct dentry *next = NULL;
190 struct list_head *p;
192 if (!dir_emit_dots(file, ctx))
193 return 0;
195 if (ctx->pos == 2)
196 p = anchor;
197 else if (!list_empty(&cursor->d_child))
198 p = &cursor->d_child;
199 else
200 return 0;
202 while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
203 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
204 d_inode(next)->i_ino, dt_type(d_inode(next))))
205 break;
206 ctx->pos++;
207 p = &next->d_child;
209 spin_lock(&dentry->d_lock);
210 if (next)
211 list_move_tail(&cursor->d_child, &next->d_child);
212 else
213 list_del_init(&cursor->d_child);
214 spin_unlock(&dentry->d_lock);
215 dput(next);
217 return 0;
219 EXPORT_SYMBOL(dcache_readdir);
221 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
223 return -EISDIR;
225 EXPORT_SYMBOL(generic_read_dir);
227 const struct file_operations simple_dir_operations = {
228 .open = dcache_dir_open,
229 .release = dcache_dir_close,
230 .llseek = dcache_dir_lseek,
231 .read = generic_read_dir,
232 .iterate_shared = dcache_readdir,
233 .fsync = noop_fsync,
235 EXPORT_SYMBOL(simple_dir_operations);
237 const struct inode_operations simple_dir_inode_operations = {
238 .lookup = simple_lookup,
240 EXPORT_SYMBOL(simple_dir_inode_operations);
242 static const struct super_operations simple_super_operations = {
243 .statfs = simple_statfs,
246 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
248 struct pseudo_fs_context *ctx = fc->fs_private;
249 struct inode *root;
251 s->s_maxbytes = MAX_LFS_FILESIZE;
252 s->s_blocksize = PAGE_SIZE;
253 s->s_blocksize_bits = PAGE_SHIFT;
254 s->s_magic = ctx->magic;
255 s->s_op = ctx->ops ?: &simple_super_operations;
256 s->s_xattr = ctx->xattr;
257 s->s_time_gran = 1;
258 root = new_inode(s);
259 if (!root)
260 return -ENOMEM;
263 * since this is the first inode, make it number 1. New inodes created
264 * after this must take care not to collide with it (by passing
265 * max_reserved of 1 to iunique).
267 root->i_ino = 1;
268 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
269 root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
270 s->s_root = d_make_root(root);
271 if (!s->s_root)
272 return -ENOMEM;
273 s->s_d_op = ctx->dops;
274 return 0;
277 static int pseudo_fs_get_tree(struct fs_context *fc)
279 return get_tree_nodev(fc, pseudo_fs_fill_super);
282 static void pseudo_fs_free(struct fs_context *fc)
284 kfree(fc->fs_private);
287 static const struct fs_context_operations pseudo_fs_context_ops = {
288 .free = pseudo_fs_free,
289 .get_tree = pseudo_fs_get_tree,
293 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
294 * will never be mountable)
296 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
297 unsigned long magic)
299 struct pseudo_fs_context *ctx;
301 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
302 if (likely(ctx)) {
303 ctx->magic = magic;
304 fc->fs_private = ctx;
305 fc->ops = &pseudo_fs_context_ops;
306 fc->sb_flags |= SB_NOUSER;
307 fc->global = true;
309 return ctx;
311 EXPORT_SYMBOL(init_pseudo);
313 int simple_open(struct inode *inode, struct file *file)
315 if (inode->i_private)
316 file->private_data = inode->i_private;
317 return 0;
319 EXPORT_SYMBOL(simple_open);
321 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
323 struct inode *inode = d_inode(old_dentry);
325 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
326 inc_nlink(inode);
327 ihold(inode);
328 dget(dentry);
329 d_instantiate(dentry, inode);
330 return 0;
332 EXPORT_SYMBOL(simple_link);
334 int simple_empty(struct dentry *dentry)
336 struct dentry *child;
337 int ret = 0;
339 spin_lock(&dentry->d_lock);
340 list_for_each_entry(child, &dentry->d_subdirs, d_child) {
341 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
342 if (simple_positive(child)) {
343 spin_unlock(&child->d_lock);
344 goto out;
346 spin_unlock(&child->d_lock);
348 ret = 1;
349 out:
350 spin_unlock(&dentry->d_lock);
351 return ret;
353 EXPORT_SYMBOL(simple_empty);
355 int simple_unlink(struct inode *dir, struct dentry *dentry)
357 struct inode *inode = d_inode(dentry);
359 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
360 drop_nlink(inode);
361 dput(dentry);
362 return 0;
364 EXPORT_SYMBOL(simple_unlink);
366 int simple_rmdir(struct inode *dir, struct dentry *dentry)
368 if (!simple_empty(dentry))
369 return -ENOTEMPTY;
371 drop_nlink(d_inode(dentry));
372 simple_unlink(dir, dentry);
373 drop_nlink(dir);
374 return 0;
376 EXPORT_SYMBOL(simple_rmdir);
378 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
379 struct inode *new_dir, struct dentry *new_dentry,
380 unsigned int flags)
382 struct inode *inode = d_inode(old_dentry);
383 int they_are_dirs = d_is_dir(old_dentry);
385 if (flags & ~RENAME_NOREPLACE)
386 return -EINVAL;
388 if (!simple_empty(new_dentry))
389 return -ENOTEMPTY;
391 if (d_really_is_positive(new_dentry)) {
392 simple_unlink(new_dir, new_dentry);
393 if (they_are_dirs) {
394 drop_nlink(d_inode(new_dentry));
395 drop_nlink(old_dir);
397 } else if (they_are_dirs) {
398 drop_nlink(old_dir);
399 inc_nlink(new_dir);
402 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
403 new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
405 return 0;
407 EXPORT_SYMBOL(simple_rename);
410 * simple_setattr - setattr for simple filesystem
411 * @dentry: dentry
412 * @iattr: iattr structure
414 * Returns 0 on success, -error on failure.
416 * simple_setattr is a simple ->setattr implementation without a proper
417 * implementation of size changes.
419 * It can either be used for in-memory filesystems or special files
420 * on simple regular filesystems. Anything that needs to change on-disk
421 * or wire state on size changes needs its own setattr method.
423 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
425 struct inode *inode = d_inode(dentry);
426 int error;
428 error = setattr_prepare(dentry, iattr);
429 if (error)
430 return error;
432 if (iattr->ia_valid & ATTR_SIZE)
433 truncate_setsize(inode, iattr->ia_size);
434 setattr_copy(inode, iattr);
435 mark_inode_dirty(inode);
436 return 0;
438 EXPORT_SYMBOL(simple_setattr);
440 int simple_readpage(struct file *file, struct page *page)
442 clear_highpage(page);
443 flush_dcache_page(page);
444 SetPageUptodate(page);
445 unlock_page(page);
446 return 0;
448 EXPORT_SYMBOL(simple_readpage);
450 int simple_write_begin(struct file *file, struct address_space *mapping,
451 loff_t pos, unsigned len, unsigned flags,
452 struct page **pagep, void **fsdata)
454 struct page *page;
455 pgoff_t index;
457 index = pos >> PAGE_SHIFT;
459 page = grab_cache_page_write_begin(mapping, index, flags);
460 if (!page)
461 return -ENOMEM;
463 *pagep = page;
465 if (!PageUptodate(page) && (len != PAGE_SIZE)) {
466 unsigned from = pos & (PAGE_SIZE - 1);
468 zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
470 return 0;
472 EXPORT_SYMBOL(simple_write_begin);
475 * simple_write_end - .write_end helper for non-block-device FSes
476 * @available: See .write_end of address_space_operations
477 * @file: "
478 * @mapping: "
479 * @pos: "
480 * @len: "
481 * @copied: "
482 * @page: "
483 * @fsdata: "
485 * simple_write_end does the minimum needed for updating a page after writing is
486 * done. It has the same API signature as the .write_end of
487 * address_space_operations vector. So it can just be set onto .write_end for
488 * FSes that don't need any other processing. i_mutex is assumed to be held.
489 * Block based filesystems should use generic_write_end().
490 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
491 * is not called, so a filesystem that actually does store data in .write_inode
492 * should extend on what's done here with a call to mark_inode_dirty() in the
493 * case that i_size has changed.
495 * Use *ONLY* with simple_readpage()
497 int simple_write_end(struct file *file, struct address_space *mapping,
498 loff_t pos, unsigned len, unsigned copied,
499 struct page *page, void *fsdata)
501 struct inode *inode = page->mapping->host;
502 loff_t last_pos = pos + copied;
504 /* zero the stale part of the page if we did a short copy */
505 if (!PageUptodate(page)) {
506 if (copied < len) {
507 unsigned from = pos & (PAGE_SIZE - 1);
509 zero_user(page, from + copied, len - copied);
511 SetPageUptodate(page);
514 * No need to use i_size_read() here, the i_size
515 * cannot change under us because we hold the i_mutex.
517 if (last_pos > inode->i_size)
518 i_size_write(inode, last_pos);
520 set_page_dirty(page);
521 unlock_page(page);
522 put_page(page);
524 return copied;
526 EXPORT_SYMBOL(simple_write_end);
529 * the inodes created here are not hashed. If you use iunique to generate
530 * unique inode values later for this filesystem, then you must take care
531 * to pass it an appropriate max_reserved value to avoid collisions.
533 int simple_fill_super(struct super_block *s, unsigned long magic,
534 const struct tree_descr *files)
536 struct inode *inode;
537 struct dentry *root;
538 struct dentry *dentry;
539 int i;
541 s->s_blocksize = PAGE_SIZE;
542 s->s_blocksize_bits = PAGE_SHIFT;
543 s->s_magic = magic;
544 s->s_op = &simple_super_operations;
545 s->s_time_gran = 1;
547 inode = new_inode(s);
548 if (!inode)
549 return -ENOMEM;
551 * because the root inode is 1, the files array must not contain an
552 * entry at index 1
554 inode->i_ino = 1;
555 inode->i_mode = S_IFDIR | 0755;
556 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
557 inode->i_op = &simple_dir_inode_operations;
558 inode->i_fop = &simple_dir_operations;
559 set_nlink(inode, 2);
560 root = d_make_root(inode);
561 if (!root)
562 return -ENOMEM;
563 for (i = 0; !files->name || files->name[0]; i++, files++) {
564 if (!files->name)
565 continue;
567 /* warn if it tries to conflict with the root inode */
568 if (unlikely(i == 1))
569 printk(KERN_WARNING "%s: %s passed in a files array"
570 "with an index of 1!\n", __func__,
571 s->s_type->name);
573 dentry = d_alloc_name(root, files->name);
574 if (!dentry)
575 goto out;
576 inode = new_inode(s);
577 if (!inode) {
578 dput(dentry);
579 goto out;
581 inode->i_mode = S_IFREG | files->mode;
582 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
583 inode->i_fop = files->ops;
584 inode->i_ino = i;
585 d_add(dentry, inode);
587 s->s_root = root;
588 return 0;
589 out:
590 d_genocide(root);
591 shrink_dcache_parent(root);
592 dput(root);
593 return -ENOMEM;
595 EXPORT_SYMBOL(simple_fill_super);
597 static DEFINE_SPINLOCK(pin_fs_lock);
599 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
601 struct vfsmount *mnt = NULL;
602 spin_lock(&pin_fs_lock);
603 if (unlikely(!*mount)) {
604 spin_unlock(&pin_fs_lock);
605 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
606 if (IS_ERR(mnt))
607 return PTR_ERR(mnt);
608 spin_lock(&pin_fs_lock);
609 if (!*mount)
610 *mount = mnt;
612 mntget(*mount);
613 ++*count;
614 spin_unlock(&pin_fs_lock);
615 mntput(mnt);
616 return 0;
618 EXPORT_SYMBOL(simple_pin_fs);
620 void simple_release_fs(struct vfsmount **mount, int *count)
622 struct vfsmount *mnt;
623 spin_lock(&pin_fs_lock);
624 mnt = *mount;
625 if (!--*count)
626 *mount = NULL;
627 spin_unlock(&pin_fs_lock);
628 mntput(mnt);
630 EXPORT_SYMBOL(simple_release_fs);
633 * simple_read_from_buffer - copy data from the buffer to user space
634 * @to: the user space buffer to read to
635 * @count: the maximum number of bytes to read
636 * @ppos: the current position in the buffer
637 * @from: the buffer to read from
638 * @available: the size of the buffer
640 * The simple_read_from_buffer() function reads up to @count bytes from the
641 * buffer @from at offset @ppos into the user space address starting at @to.
643 * On success, the number of bytes read is returned and the offset @ppos is
644 * advanced by this number, or negative value is returned on error.
646 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
647 const void *from, size_t available)
649 loff_t pos = *ppos;
650 size_t ret;
652 if (pos < 0)
653 return -EINVAL;
654 if (pos >= available || !count)
655 return 0;
656 if (count > available - pos)
657 count = available - pos;
658 ret = copy_to_user(to, from + pos, count);
659 if (ret == count)
660 return -EFAULT;
661 count -= ret;
662 *ppos = pos + count;
663 return count;
665 EXPORT_SYMBOL(simple_read_from_buffer);
668 * simple_write_to_buffer - copy data from user space to the buffer
669 * @to: the buffer to write to
670 * @available: the size of the buffer
671 * @ppos: the current position in the buffer
672 * @from: the user space buffer to read from
673 * @count: the maximum number of bytes to read
675 * The simple_write_to_buffer() function reads up to @count bytes from the user
676 * space address starting at @from into the buffer @to at offset @ppos.
678 * On success, the number of bytes written is returned and the offset @ppos is
679 * advanced by this number, or negative value is returned on error.
681 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
682 const void __user *from, size_t count)
684 loff_t pos = *ppos;
685 size_t res;
687 if (pos < 0)
688 return -EINVAL;
689 if (pos >= available || !count)
690 return 0;
691 if (count > available - pos)
692 count = available - pos;
693 res = copy_from_user(to + pos, from, count);
694 if (res == count)
695 return -EFAULT;
696 count -= res;
697 *ppos = pos + count;
698 return count;
700 EXPORT_SYMBOL(simple_write_to_buffer);
703 * memory_read_from_buffer - copy data from the buffer
704 * @to: the kernel space buffer to read to
705 * @count: the maximum number of bytes to read
706 * @ppos: the current position in the buffer
707 * @from: the buffer to read from
708 * @available: the size of the buffer
710 * The memory_read_from_buffer() function reads up to @count bytes from the
711 * buffer @from at offset @ppos into the kernel space address starting at @to.
713 * On success, the number of bytes read is returned and the offset @ppos is
714 * advanced by this number, or negative value is returned on error.
716 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
717 const void *from, size_t available)
719 loff_t pos = *ppos;
721 if (pos < 0)
722 return -EINVAL;
723 if (pos >= available)
724 return 0;
725 if (count > available - pos)
726 count = available - pos;
727 memcpy(to, from + pos, count);
728 *ppos = pos + count;
730 return count;
732 EXPORT_SYMBOL(memory_read_from_buffer);
735 * Transaction based IO.
736 * The file expects a single write which triggers the transaction, and then
737 * possibly a read which collects the result - which is stored in a
738 * file-local buffer.
741 void simple_transaction_set(struct file *file, size_t n)
743 struct simple_transaction_argresp *ar = file->private_data;
745 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
748 * The barrier ensures that ar->size will really remain zero until
749 * ar->data is ready for reading.
751 smp_mb();
752 ar->size = n;
754 EXPORT_SYMBOL(simple_transaction_set);
756 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
758 struct simple_transaction_argresp *ar;
759 static DEFINE_SPINLOCK(simple_transaction_lock);
761 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
762 return ERR_PTR(-EFBIG);
764 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
765 if (!ar)
766 return ERR_PTR(-ENOMEM);
768 spin_lock(&simple_transaction_lock);
770 /* only one write allowed per open */
771 if (file->private_data) {
772 spin_unlock(&simple_transaction_lock);
773 free_page((unsigned long)ar);
774 return ERR_PTR(-EBUSY);
777 file->private_data = ar;
779 spin_unlock(&simple_transaction_lock);
781 if (copy_from_user(ar->data, buf, size))
782 return ERR_PTR(-EFAULT);
784 return ar->data;
786 EXPORT_SYMBOL(simple_transaction_get);
788 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
790 struct simple_transaction_argresp *ar = file->private_data;
792 if (!ar)
793 return 0;
794 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
796 EXPORT_SYMBOL(simple_transaction_read);
798 int simple_transaction_release(struct inode *inode, struct file *file)
800 free_page((unsigned long)file->private_data);
801 return 0;
803 EXPORT_SYMBOL(simple_transaction_release);
805 /* Simple attribute files */
807 struct simple_attr {
808 int (*get)(void *, u64 *);
809 int (*set)(void *, u64);
810 char get_buf[24]; /* enough to store a u64 and "\n\0" */
811 char set_buf[24];
812 void *data;
813 const char *fmt; /* format for read operation */
814 struct mutex mutex; /* protects access to these buffers */
817 /* simple_attr_open is called by an actual attribute open file operation
818 * to set the attribute specific access operations. */
819 int simple_attr_open(struct inode *inode, struct file *file,
820 int (*get)(void *, u64 *), int (*set)(void *, u64),
821 const char *fmt)
823 struct simple_attr *attr;
825 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
826 if (!attr)
827 return -ENOMEM;
829 attr->get = get;
830 attr->set = set;
831 attr->data = inode->i_private;
832 attr->fmt = fmt;
833 mutex_init(&attr->mutex);
835 file->private_data = attr;
837 return nonseekable_open(inode, file);
839 EXPORT_SYMBOL_GPL(simple_attr_open);
841 int simple_attr_release(struct inode *inode, struct file *file)
843 kfree(file->private_data);
844 return 0;
846 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
848 /* read from the buffer that is filled with the get function */
849 ssize_t simple_attr_read(struct file *file, char __user *buf,
850 size_t len, loff_t *ppos)
852 struct simple_attr *attr;
853 size_t size;
854 ssize_t ret;
856 attr = file->private_data;
858 if (!attr->get)
859 return -EACCES;
861 ret = mutex_lock_interruptible(&attr->mutex);
862 if (ret)
863 return ret;
865 if (*ppos) { /* continued read */
866 size = strlen(attr->get_buf);
867 } else { /* first read */
868 u64 val;
869 ret = attr->get(attr->data, &val);
870 if (ret)
871 goto out;
873 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
874 attr->fmt, (unsigned long long)val);
877 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
878 out:
879 mutex_unlock(&attr->mutex);
880 return ret;
882 EXPORT_SYMBOL_GPL(simple_attr_read);
884 /* interpret the buffer as a number to call the set function with */
885 ssize_t simple_attr_write(struct file *file, const char __user *buf,
886 size_t len, loff_t *ppos)
888 struct simple_attr *attr;
889 u64 val;
890 size_t size;
891 ssize_t ret;
893 attr = file->private_data;
894 if (!attr->set)
895 return -EACCES;
897 ret = mutex_lock_interruptible(&attr->mutex);
898 if (ret)
899 return ret;
901 ret = -EFAULT;
902 size = min(sizeof(attr->set_buf) - 1, len);
903 if (copy_from_user(attr->set_buf, buf, size))
904 goto out;
906 attr->set_buf[size] = '\0';
907 val = simple_strtoll(attr->set_buf, NULL, 0);
908 ret = attr->set(attr->data, val);
909 if (ret == 0)
910 ret = len; /* on success, claim we got the whole input */
911 out:
912 mutex_unlock(&attr->mutex);
913 return ret;
915 EXPORT_SYMBOL_GPL(simple_attr_write);
918 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
919 * @sb: filesystem to do the file handle conversion on
920 * @fid: file handle to convert
921 * @fh_len: length of the file handle in bytes
922 * @fh_type: type of file handle
923 * @get_inode: filesystem callback to retrieve inode
925 * This function decodes @fid as long as it has one of the well-known
926 * Linux filehandle types and calls @get_inode on it to retrieve the
927 * inode for the object specified in the file handle.
929 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
930 int fh_len, int fh_type, struct inode *(*get_inode)
931 (struct super_block *sb, u64 ino, u32 gen))
933 struct inode *inode = NULL;
935 if (fh_len < 2)
936 return NULL;
938 switch (fh_type) {
939 case FILEID_INO32_GEN:
940 case FILEID_INO32_GEN_PARENT:
941 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
942 break;
945 return d_obtain_alias(inode);
947 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
950 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
951 * @sb: filesystem to do the file handle conversion on
952 * @fid: file handle to convert
953 * @fh_len: length of the file handle in bytes
954 * @fh_type: type of file handle
955 * @get_inode: filesystem callback to retrieve inode
957 * This function decodes @fid as long as it has one of the well-known
958 * Linux filehandle types and calls @get_inode on it to retrieve the
959 * inode for the _parent_ object specified in the file handle if it
960 * is specified in the file handle, or NULL otherwise.
962 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
963 int fh_len, int fh_type, struct inode *(*get_inode)
964 (struct super_block *sb, u64 ino, u32 gen))
966 struct inode *inode = NULL;
968 if (fh_len <= 2)
969 return NULL;
971 switch (fh_type) {
972 case FILEID_INO32_GEN_PARENT:
973 inode = get_inode(sb, fid->i32.parent_ino,
974 (fh_len > 3 ? fid->i32.parent_gen : 0));
975 break;
978 return d_obtain_alias(inode);
980 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
983 * __generic_file_fsync - generic fsync implementation for simple filesystems
985 * @file: file to synchronize
986 * @start: start offset in bytes
987 * @end: end offset in bytes (inclusive)
988 * @datasync: only synchronize essential metadata if true
990 * This is a generic implementation of the fsync method for simple
991 * filesystems which track all non-inode metadata in the buffers list
992 * hanging off the address_space structure.
994 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
995 int datasync)
997 struct inode *inode = file->f_mapping->host;
998 int err;
999 int ret;
1001 err = file_write_and_wait_range(file, start, end);
1002 if (err)
1003 return err;
1005 inode_lock(inode);
1006 ret = sync_mapping_buffers(inode->i_mapping);
1007 if (!(inode->i_state & I_DIRTY_ALL))
1008 goto out;
1009 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1010 goto out;
1012 err = sync_inode_metadata(inode, 1);
1013 if (ret == 0)
1014 ret = err;
1016 out:
1017 inode_unlock(inode);
1018 /* check and advance again to catch errors after syncing out buffers */
1019 err = file_check_and_advance_wb_err(file);
1020 if (ret == 0)
1021 ret = err;
1022 return ret;
1024 EXPORT_SYMBOL(__generic_file_fsync);
1027 * generic_file_fsync - generic fsync implementation for simple filesystems
1028 * with flush
1029 * @file: file to synchronize
1030 * @start: start offset in bytes
1031 * @end: end offset in bytes (inclusive)
1032 * @datasync: only synchronize essential metadata if true
1036 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1037 int datasync)
1039 struct inode *inode = file->f_mapping->host;
1040 int err;
1042 err = __generic_file_fsync(file, start, end, datasync);
1043 if (err)
1044 return err;
1045 return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1047 EXPORT_SYMBOL(generic_file_fsync);
1050 * generic_check_addressable - Check addressability of file system
1051 * @blocksize_bits: log of file system block size
1052 * @num_blocks: number of blocks in file system
1054 * Determine whether a file system with @num_blocks blocks (and a
1055 * block size of 2**@blocksize_bits) is addressable by the sector_t
1056 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1058 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1060 u64 last_fs_block = num_blocks - 1;
1061 u64 last_fs_page =
1062 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1064 if (unlikely(num_blocks == 0))
1065 return 0;
1067 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1068 return -EINVAL;
1070 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1071 (last_fs_page > (pgoff_t)(~0ULL))) {
1072 return -EFBIG;
1074 return 0;
1076 EXPORT_SYMBOL(generic_check_addressable);
1079 * No-op implementation of ->fsync for in-memory filesystems.
1081 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1083 return 0;
1085 EXPORT_SYMBOL(noop_fsync);
1087 int noop_set_page_dirty(struct page *page)
1090 * Unlike __set_page_dirty_no_writeback that handles dirty page
1091 * tracking in the page object, dax does all dirty tracking in
1092 * the inode address_space in response to mkwrite faults. In the
1093 * dax case we only need to worry about potentially dirty CPU
1094 * caches, not dirty page cache pages to write back.
1096 * This callback is defined to prevent fallback to
1097 * __set_page_dirty_buffers() in set_page_dirty().
1099 return 0;
1101 EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1103 void noop_invalidatepage(struct page *page, unsigned int offset,
1104 unsigned int length)
1107 * There is no page cache to invalidate in the dax case, however
1108 * we need this callback defined to prevent falling back to
1109 * block_invalidatepage() in do_invalidatepage().
1112 EXPORT_SYMBOL_GPL(noop_invalidatepage);
1114 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1117 * iomap based filesystems support direct I/O without need for
1118 * this callback. However, it still needs to be set in
1119 * inode->a_ops so that open/fcntl know that direct I/O is
1120 * generally supported.
1122 return -EINVAL;
1124 EXPORT_SYMBOL_GPL(noop_direct_IO);
1126 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1127 void kfree_link(void *p)
1129 kfree(p);
1131 EXPORT_SYMBOL(kfree_link);
1134 * nop .set_page_dirty method so that people can use .page_mkwrite on
1135 * anon inodes.
1137 static int anon_set_page_dirty(struct page *page)
1139 return 0;
1143 * A single inode exists for all anon_inode files. Contrary to pipes,
1144 * anon_inode inodes have no associated per-instance data, so we need
1145 * only allocate one of them.
1147 struct inode *alloc_anon_inode(struct super_block *s)
1149 static const struct address_space_operations anon_aops = {
1150 .set_page_dirty = anon_set_page_dirty,
1152 struct inode *inode = new_inode_pseudo(s);
1154 if (!inode)
1155 return ERR_PTR(-ENOMEM);
1157 inode->i_ino = get_next_ino();
1158 inode->i_mapping->a_ops = &anon_aops;
1161 * Mark the inode dirty from the very beginning,
1162 * that way it will never be moved to the dirty
1163 * list because mark_inode_dirty() will think
1164 * that it already _is_ on the dirty list.
1166 inode->i_state = I_DIRTY;
1167 inode->i_mode = S_IRUSR | S_IWUSR;
1168 inode->i_uid = current_fsuid();
1169 inode->i_gid = current_fsgid();
1170 inode->i_flags |= S_PRIVATE;
1171 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1172 return inode;
1174 EXPORT_SYMBOL(alloc_anon_inode);
1177 * simple_nosetlease - generic helper for prohibiting leases
1178 * @filp: file pointer
1179 * @arg: type of lease to obtain
1180 * @flp: new lease supplied for insertion
1181 * @priv: private data for lm_setup operation
1183 * Generic helper for filesystems that do not wish to allow leases to be set.
1184 * All arguments are ignored and it just returns -EINVAL.
1187 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1188 void **priv)
1190 return -EINVAL;
1192 EXPORT_SYMBOL(simple_nosetlease);
1195 * simple_get_link - generic helper to get the target of "fast" symlinks
1196 * @dentry: not used here
1197 * @inode: the symlink inode
1198 * @done: not used here
1200 * Generic helper for filesystems to use for symlink inodes where a pointer to
1201 * the symlink target is stored in ->i_link. NOTE: this isn't normally called,
1202 * since as an optimization the path lookup code uses any non-NULL ->i_link
1203 * directly, without calling ->get_link(). But ->get_link() still must be set,
1204 * to mark the inode_operations as being for a symlink.
1206 * Return: the symlink target
1208 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1209 struct delayed_call *done)
1211 return inode->i_link;
1213 EXPORT_SYMBOL(simple_get_link);
1215 const struct inode_operations simple_symlink_inode_operations = {
1216 .get_link = simple_get_link,
1218 EXPORT_SYMBOL(simple_symlink_inode_operations);
1221 * Operations for a permanently empty directory.
1223 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1225 return ERR_PTR(-ENOENT);
1228 static int empty_dir_getattr(const struct path *path, struct kstat *stat,
1229 u32 request_mask, unsigned int query_flags)
1231 struct inode *inode = d_inode(path->dentry);
1232 generic_fillattr(inode, stat);
1233 return 0;
1236 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1238 return -EPERM;
1241 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1243 return -EOPNOTSUPP;
1246 static const struct inode_operations empty_dir_inode_operations = {
1247 .lookup = empty_dir_lookup,
1248 .permission = generic_permission,
1249 .setattr = empty_dir_setattr,
1250 .getattr = empty_dir_getattr,
1251 .listxattr = empty_dir_listxattr,
1254 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1256 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1257 return generic_file_llseek_size(file, offset, whence, 2, 2);
1260 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1262 dir_emit_dots(file, ctx);
1263 return 0;
1266 static const struct file_operations empty_dir_operations = {
1267 .llseek = empty_dir_llseek,
1268 .read = generic_read_dir,
1269 .iterate_shared = empty_dir_readdir,
1270 .fsync = noop_fsync,
1274 void make_empty_dir_inode(struct inode *inode)
1276 set_nlink(inode, 2);
1277 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1278 inode->i_uid = GLOBAL_ROOT_UID;
1279 inode->i_gid = GLOBAL_ROOT_GID;
1280 inode->i_rdev = 0;
1281 inode->i_size = 0;
1282 inode->i_blkbits = PAGE_SHIFT;
1283 inode->i_blocks = 0;
1285 inode->i_op = &empty_dir_inode_operations;
1286 inode->i_opflags &= ~IOP_XATTR;
1287 inode->i_fop = &empty_dir_operations;
1290 bool is_empty_dir_inode(struct inode *inode)
1292 return (inode->i_fop == &empty_dir_operations) &&
1293 (inode->i_op == &empty_dir_inode_operations);