btrfs: improve messages when updating feature flags
[linux/fpc-iii.git] / fs / btrfs / ctree.c
blob5df76c17775ad4650c6deb71617f9e2e5b75f2b1
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 */
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include "ctree.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "print-tree.h"
14 #include "locking.h"
15 #include "volumes.h"
16 #include "qgroup.h"
18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
19 *root, struct btrfs_path *path, int level);
20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
21 const struct btrfs_key *ins_key, struct btrfs_path *path,
22 int data_size, int extend);
23 static int push_node_left(struct btrfs_trans_handle *trans,
24 struct extent_buffer *dst,
25 struct extent_buffer *src, int empty);
26 static int balance_node_right(struct btrfs_trans_handle *trans,
27 struct extent_buffer *dst_buf,
28 struct extent_buffer *src_buf);
29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
30 int level, int slot);
32 struct btrfs_path *btrfs_alloc_path(void)
34 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
38 * set all locked nodes in the path to blocking locks. This should
39 * be done before scheduling
41 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
43 int i;
44 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
45 if (!p->nodes[i] || !p->locks[i])
46 continue;
48 * If we currently have a spinning reader or writer lock this
49 * will bump the count of blocking holders and drop the
50 * spinlock.
52 if (p->locks[i] == BTRFS_READ_LOCK) {
53 btrfs_set_lock_blocking_read(p->nodes[i]);
54 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
55 } else if (p->locks[i] == BTRFS_WRITE_LOCK) {
56 btrfs_set_lock_blocking_write(p->nodes[i]);
57 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
62 /* this also releases the path */
63 void btrfs_free_path(struct btrfs_path *p)
65 if (!p)
66 return;
67 btrfs_release_path(p);
68 kmem_cache_free(btrfs_path_cachep, p);
72 * path release drops references on the extent buffers in the path
73 * and it drops any locks held by this path
75 * It is safe to call this on paths that no locks or extent buffers held.
77 noinline void btrfs_release_path(struct btrfs_path *p)
79 int i;
81 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
82 p->slots[i] = 0;
83 if (!p->nodes[i])
84 continue;
85 if (p->locks[i]) {
86 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
87 p->locks[i] = 0;
89 free_extent_buffer(p->nodes[i]);
90 p->nodes[i] = NULL;
95 * safely gets a reference on the root node of a tree. A lock
96 * is not taken, so a concurrent writer may put a different node
97 * at the root of the tree. See btrfs_lock_root_node for the
98 * looping required.
100 * The extent buffer returned by this has a reference taken, so
101 * it won't disappear. It may stop being the root of the tree
102 * at any time because there are no locks held.
104 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
106 struct extent_buffer *eb;
108 while (1) {
109 rcu_read_lock();
110 eb = rcu_dereference(root->node);
113 * RCU really hurts here, we could free up the root node because
114 * it was COWed but we may not get the new root node yet so do
115 * the inc_not_zero dance and if it doesn't work then
116 * synchronize_rcu and try again.
118 if (atomic_inc_not_zero(&eb->refs)) {
119 rcu_read_unlock();
120 break;
122 rcu_read_unlock();
123 synchronize_rcu();
125 return eb;
128 /* loop around taking references on and locking the root node of the
129 * tree until you end up with a lock on the root. A locked buffer
130 * is returned, with a reference held.
132 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
134 struct extent_buffer *eb;
136 while (1) {
137 eb = btrfs_root_node(root);
138 btrfs_tree_lock(eb);
139 if (eb == root->node)
140 break;
141 btrfs_tree_unlock(eb);
142 free_extent_buffer(eb);
144 return eb;
147 /* loop around taking references on and locking the root node of the
148 * tree until you end up with a lock on the root. A locked buffer
149 * is returned, with a reference held.
151 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
153 struct extent_buffer *eb;
155 while (1) {
156 eb = btrfs_root_node(root);
157 btrfs_tree_read_lock(eb);
158 if (eb == root->node)
159 break;
160 btrfs_tree_read_unlock(eb);
161 free_extent_buffer(eb);
163 return eb;
166 /* cowonly root (everything not a reference counted cow subvolume), just get
167 * put onto a simple dirty list. transaction.c walks this to make sure they
168 * get properly updated on disk.
170 static void add_root_to_dirty_list(struct btrfs_root *root)
172 struct btrfs_fs_info *fs_info = root->fs_info;
174 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
175 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
176 return;
178 spin_lock(&fs_info->trans_lock);
179 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
180 /* Want the extent tree to be the last on the list */
181 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
182 list_move_tail(&root->dirty_list,
183 &fs_info->dirty_cowonly_roots);
184 else
185 list_move(&root->dirty_list,
186 &fs_info->dirty_cowonly_roots);
188 spin_unlock(&fs_info->trans_lock);
192 * used by snapshot creation to make a copy of a root for a tree with
193 * a given objectid. The buffer with the new root node is returned in
194 * cow_ret, and this func returns zero on success or a negative error code.
196 int btrfs_copy_root(struct btrfs_trans_handle *trans,
197 struct btrfs_root *root,
198 struct extent_buffer *buf,
199 struct extent_buffer **cow_ret, u64 new_root_objectid)
201 struct btrfs_fs_info *fs_info = root->fs_info;
202 struct extent_buffer *cow;
203 int ret = 0;
204 int level;
205 struct btrfs_disk_key disk_key;
207 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
208 trans->transid != fs_info->running_transaction->transid);
209 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
210 trans->transid != root->last_trans);
212 level = btrfs_header_level(buf);
213 if (level == 0)
214 btrfs_item_key(buf, &disk_key, 0);
215 else
216 btrfs_node_key(buf, &disk_key, 0);
218 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
219 &disk_key, level, buf->start, 0);
220 if (IS_ERR(cow))
221 return PTR_ERR(cow);
223 copy_extent_buffer_full(cow, buf);
224 btrfs_set_header_bytenr(cow, cow->start);
225 btrfs_set_header_generation(cow, trans->transid);
226 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
227 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
228 BTRFS_HEADER_FLAG_RELOC);
229 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
230 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
231 else
232 btrfs_set_header_owner(cow, new_root_objectid);
234 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
236 WARN_ON(btrfs_header_generation(buf) > trans->transid);
237 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
238 ret = btrfs_inc_ref(trans, root, cow, 1);
239 else
240 ret = btrfs_inc_ref(trans, root, cow, 0);
242 if (ret)
243 return ret;
245 btrfs_mark_buffer_dirty(cow);
246 *cow_ret = cow;
247 return 0;
250 enum mod_log_op {
251 MOD_LOG_KEY_REPLACE,
252 MOD_LOG_KEY_ADD,
253 MOD_LOG_KEY_REMOVE,
254 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
255 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
256 MOD_LOG_MOVE_KEYS,
257 MOD_LOG_ROOT_REPLACE,
260 struct tree_mod_root {
261 u64 logical;
262 u8 level;
265 struct tree_mod_elem {
266 struct rb_node node;
267 u64 logical;
268 u64 seq;
269 enum mod_log_op op;
271 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
272 int slot;
274 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
275 u64 generation;
277 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
278 struct btrfs_disk_key key;
279 u64 blockptr;
281 /* this is used for op == MOD_LOG_MOVE_KEYS */
282 struct {
283 int dst_slot;
284 int nr_items;
285 } move;
287 /* this is used for op == MOD_LOG_ROOT_REPLACE */
288 struct tree_mod_root old_root;
292 * Pull a new tree mod seq number for our operation.
294 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
296 return atomic64_inc_return(&fs_info->tree_mod_seq);
300 * This adds a new blocker to the tree mod log's blocker list if the @elem
301 * passed does not already have a sequence number set. So when a caller expects
302 * to record tree modifications, it should ensure to set elem->seq to zero
303 * before calling btrfs_get_tree_mod_seq.
304 * Returns a fresh, unused tree log modification sequence number, even if no new
305 * blocker was added.
307 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
308 struct seq_list *elem)
310 write_lock(&fs_info->tree_mod_log_lock);
311 spin_lock(&fs_info->tree_mod_seq_lock);
312 if (!elem->seq) {
313 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
314 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
316 spin_unlock(&fs_info->tree_mod_seq_lock);
317 write_unlock(&fs_info->tree_mod_log_lock);
319 return elem->seq;
322 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
323 struct seq_list *elem)
325 struct rb_root *tm_root;
326 struct rb_node *node;
327 struct rb_node *next;
328 struct seq_list *cur_elem;
329 struct tree_mod_elem *tm;
330 u64 min_seq = (u64)-1;
331 u64 seq_putting = elem->seq;
333 if (!seq_putting)
334 return;
336 spin_lock(&fs_info->tree_mod_seq_lock);
337 list_del(&elem->list);
338 elem->seq = 0;
340 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
341 if (cur_elem->seq < min_seq) {
342 if (seq_putting > cur_elem->seq) {
344 * blocker with lower sequence number exists, we
345 * cannot remove anything from the log
347 spin_unlock(&fs_info->tree_mod_seq_lock);
348 return;
350 min_seq = cur_elem->seq;
353 spin_unlock(&fs_info->tree_mod_seq_lock);
356 * anything that's lower than the lowest existing (read: blocked)
357 * sequence number can be removed from the tree.
359 write_lock(&fs_info->tree_mod_log_lock);
360 tm_root = &fs_info->tree_mod_log;
361 for (node = rb_first(tm_root); node; node = next) {
362 next = rb_next(node);
363 tm = rb_entry(node, struct tree_mod_elem, node);
364 if (tm->seq > min_seq)
365 continue;
366 rb_erase(node, tm_root);
367 kfree(tm);
369 write_unlock(&fs_info->tree_mod_log_lock);
373 * key order of the log:
374 * node/leaf start address -> sequence
376 * The 'start address' is the logical address of the *new* root node
377 * for root replace operations, or the logical address of the affected
378 * block for all other operations.
380 * Note: must be called with write lock for fs_info::tree_mod_log_lock.
382 static noinline int
383 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
385 struct rb_root *tm_root;
386 struct rb_node **new;
387 struct rb_node *parent = NULL;
388 struct tree_mod_elem *cur;
390 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
392 tm_root = &fs_info->tree_mod_log;
393 new = &tm_root->rb_node;
394 while (*new) {
395 cur = rb_entry(*new, struct tree_mod_elem, node);
396 parent = *new;
397 if (cur->logical < tm->logical)
398 new = &((*new)->rb_left);
399 else if (cur->logical > tm->logical)
400 new = &((*new)->rb_right);
401 else if (cur->seq < tm->seq)
402 new = &((*new)->rb_left);
403 else if (cur->seq > tm->seq)
404 new = &((*new)->rb_right);
405 else
406 return -EEXIST;
409 rb_link_node(&tm->node, parent, new);
410 rb_insert_color(&tm->node, tm_root);
411 return 0;
415 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
416 * returns zero with the tree_mod_log_lock acquired. The caller must hold
417 * this until all tree mod log insertions are recorded in the rb tree and then
418 * write unlock fs_info::tree_mod_log_lock.
420 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
421 struct extent_buffer *eb) {
422 smp_mb();
423 if (list_empty(&(fs_info)->tree_mod_seq_list))
424 return 1;
425 if (eb && btrfs_header_level(eb) == 0)
426 return 1;
428 write_lock(&fs_info->tree_mod_log_lock);
429 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
430 write_unlock(&fs_info->tree_mod_log_lock);
431 return 1;
434 return 0;
437 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
438 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
439 struct extent_buffer *eb)
441 smp_mb();
442 if (list_empty(&(fs_info)->tree_mod_seq_list))
443 return 0;
444 if (eb && btrfs_header_level(eb) == 0)
445 return 0;
447 return 1;
450 static struct tree_mod_elem *
451 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
452 enum mod_log_op op, gfp_t flags)
454 struct tree_mod_elem *tm;
456 tm = kzalloc(sizeof(*tm), flags);
457 if (!tm)
458 return NULL;
460 tm->logical = eb->start;
461 if (op != MOD_LOG_KEY_ADD) {
462 btrfs_node_key(eb, &tm->key, slot);
463 tm->blockptr = btrfs_node_blockptr(eb, slot);
465 tm->op = op;
466 tm->slot = slot;
467 tm->generation = btrfs_node_ptr_generation(eb, slot);
468 RB_CLEAR_NODE(&tm->node);
470 return tm;
473 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
474 enum mod_log_op op, gfp_t flags)
476 struct tree_mod_elem *tm;
477 int ret;
479 if (!tree_mod_need_log(eb->fs_info, eb))
480 return 0;
482 tm = alloc_tree_mod_elem(eb, slot, op, flags);
483 if (!tm)
484 return -ENOMEM;
486 if (tree_mod_dont_log(eb->fs_info, eb)) {
487 kfree(tm);
488 return 0;
491 ret = __tree_mod_log_insert(eb->fs_info, tm);
492 write_unlock(&eb->fs_info->tree_mod_log_lock);
493 if (ret)
494 kfree(tm);
496 return ret;
499 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
500 int dst_slot, int src_slot, int nr_items)
502 struct tree_mod_elem *tm = NULL;
503 struct tree_mod_elem **tm_list = NULL;
504 int ret = 0;
505 int i;
506 int locked = 0;
508 if (!tree_mod_need_log(eb->fs_info, eb))
509 return 0;
511 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
512 if (!tm_list)
513 return -ENOMEM;
515 tm = kzalloc(sizeof(*tm), GFP_NOFS);
516 if (!tm) {
517 ret = -ENOMEM;
518 goto free_tms;
521 tm->logical = eb->start;
522 tm->slot = src_slot;
523 tm->move.dst_slot = dst_slot;
524 tm->move.nr_items = nr_items;
525 tm->op = MOD_LOG_MOVE_KEYS;
527 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
528 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
529 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
530 if (!tm_list[i]) {
531 ret = -ENOMEM;
532 goto free_tms;
536 if (tree_mod_dont_log(eb->fs_info, eb))
537 goto free_tms;
538 locked = 1;
541 * When we override something during the move, we log these removals.
542 * This can only happen when we move towards the beginning of the
543 * buffer, i.e. dst_slot < src_slot.
545 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
546 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
547 if (ret)
548 goto free_tms;
551 ret = __tree_mod_log_insert(eb->fs_info, tm);
552 if (ret)
553 goto free_tms;
554 write_unlock(&eb->fs_info->tree_mod_log_lock);
555 kfree(tm_list);
557 return 0;
558 free_tms:
559 for (i = 0; i < nr_items; i++) {
560 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
561 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
562 kfree(tm_list[i]);
564 if (locked)
565 write_unlock(&eb->fs_info->tree_mod_log_lock);
566 kfree(tm_list);
567 kfree(tm);
569 return ret;
572 static inline int
573 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
574 struct tree_mod_elem **tm_list,
575 int nritems)
577 int i, j;
578 int ret;
580 for (i = nritems - 1; i >= 0; i--) {
581 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
582 if (ret) {
583 for (j = nritems - 1; j > i; j--)
584 rb_erase(&tm_list[j]->node,
585 &fs_info->tree_mod_log);
586 return ret;
590 return 0;
593 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
594 struct extent_buffer *new_root, int log_removal)
596 struct btrfs_fs_info *fs_info = old_root->fs_info;
597 struct tree_mod_elem *tm = NULL;
598 struct tree_mod_elem **tm_list = NULL;
599 int nritems = 0;
600 int ret = 0;
601 int i;
603 if (!tree_mod_need_log(fs_info, NULL))
604 return 0;
606 if (log_removal && btrfs_header_level(old_root) > 0) {
607 nritems = btrfs_header_nritems(old_root);
608 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
609 GFP_NOFS);
610 if (!tm_list) {
611 ret = -ENOMEM;
612 goto free_tms;
614 for (i = 0; i < nritems; i++) {
615 tm_list[i] = alloc_tree_mod_elem(old_root, i,
616 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
617 if (!tm_list[i]) {
618 ret = -ENOMEM;
619 goto free_tms;
624 tm = kzalloc(sizeof(*tm), GFP_NOFS);
625 if (!tm) {
626 ret = -ENOMEM;
627 goto free_tms;
630 tm->logical = new_root->start;
631 tm->old_root.logical = old_root->start;
632 tm->old_root.level = btrfs_header_level(old_root);
633 tm->generation = btrfs_header_generation(old_root);
634 tm->op = MOD_LOG_ROOT_REPLACE;
636 if (tree_mod_dont_log(fs_info, NULL))
637 goto free_tms;
639 if (tm_list)
640 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
641 if (!ret)
642 ret = __tree_mod_log_insert(fs_info, tm);
644 write_unlock(&fs_info->tree_mod_log_lock);
645 if (ret)
646 goto free_tms;
647 kfree(tm_list);
649 return ret;
651 free_tms:
652 if (tm_list) {
653 for (i = 0; i < nritems; i++)
654 kfree(tm_list[i]);
655 kfree(tm_list);
657 kfree(tm);
659 return ret;
662 static struct tree_mod_elem *
663 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
664 int smallest)
666 struct rb_root *tm_root;
667 struct rb_node *node;
668 struct tree_mod_elem *cur = NULL;
669 struct tree_mod_elem *found = NULL;
671 read_lock(&fs_info->tree_mod_log_lock);
672 tm_root = &fs_info->tree_mod_log;
673 node = tm_root->rb_node;
674 while (node) {
675 cur = rb_entry(node, struct tree_mod_elem, node);
676 if (cur->logical < start) {
677 node = node->rb_left;
678 } else if (cur->logical > start) {
679 node = node->rb_right;
680 } else if (cur->seq < min_seq) {
681 node = node->rb_left;
682 } else if (!smallest) {
683 /* we want the node with the highest seq */
684 if (found)
685 BUG_ON(found->seq > cur->seq);
686 found = cur;
687 node = node->rb_left;
688 } else if (cur->seq > min_seq) {
689 /* we want the node with the smallest seq */
690 if (found)
691 BUG_ON(found->seq < cur->seq);
692 found = cur;
693 node = node->rb_right;
694 } else {
695 found = cur;
696 break;
699 read_unlock(&fs_info->tree_mod_log_lock);
701 return found;
705 * this returns the element from the log with the smallest time sequence
706 * value that's in the log (the oldest log item). any element with a time
707 * sequence lower than min_seq will be ignored.
709 static struct tree_mod_elem *
710 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
711 u64 min_seq)
713 return __tree_mod_log_search(fs_info, start, min_seq, 1);
717 * this returns the element from the log with the largest time sequence
718 * value that's in the log (the most recent log item). any element with
719 * a time sequence lower than min_seq will be ignored.
721 static struct tree_mod_elem *
722 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
724 return __tree_mod_log_search(fs_info, start, min_seq, 0);
727 static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
728 struct extent_buffer *src, unsigned long dst_offset,
729 unsigned long src_offset, int nr_items)
731 struct btrfs_fs_info *fs_info = dst->fs_info;
732 int ret = 0;
733 struct tree_mod_elem **tm_list = NULL;
734 struct tree_mod_elem **tm_list_add, **tm_list_rem;
735 int i;
736 int locked = 0;
738 if (!tree_mod_need_log(fs_info, NULL))
739 return 0;
741 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
742 return 0;
744 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
745 GFP_NOFS);
746 if (!tm_list)
747 return -ENOMEM;
749 tm_list_add = tm_list;
750 tm_list_rem = tm_list + nr_items;
751 for (i = 0; i < nr_items; i++) {
752 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
753 MOD_LOG_KEY_REMOVE, GFP_NOFS);
754 if (!tm_list_rem[i]) {
755 ret = -ENOMEM;
756 goto free_tms;
759 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
760 MOD_LOG_KEY_ADD, GFP_NOFS);
761 if (!tm_list_add[i]) {
762 ret = -ENOMEM;
763 goto free_tms;
767 if (tree_mod_dont_log(fs_info, NULL))
768 goto free_tms;
769 locked = 1;
771 for (i = 0; i < nr_items; i++) {
772 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
773 if (ret)
774 goto free_tms;
775 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
776 if (ret)
777 goto free_tms;
780 write_unlock(&fs_info->tree_mod_log_lock);
781 kfree(tm_list);
783 return 0;
785 free_tms:
786 for (i = 0; i < nr_items * 2; i++) {
787 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
788 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
789 kfree(tm_list[i]);
791 if (locked)
792 write_unlock(&fs_info->tree_mod_log_lock);
793 kfree(tm_list);
795 return ret;
798 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
800 struct tree_mod_elem **tm_list = NULL;
801 int nritems = 0;
802 int i;
803 int ret = 0;
805 if (btrfs_header_level(eb) == 0)
806 return 0;
808 if (!tree_mod_need_log(eb->fs_info, NULL))
809 return 0;
811 nritems = btrfs_header_nritems(eb);
812 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
813 if (!tm_list)
814 return -ENOMEM;
816 for (i = 0; i < nritems; i++) {
817 tm_list[i] = alloc_tree_mod_elem(eb, i,
818 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
819 if (!tm_list[i]) {
820 ret = -ENOMEM;
821 goto free_tms;
825 if (tree_mod_dont_log(eb->fs_info, eb))
826 goto free_tms;
828 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
829 write_unlock(&eb->fs_info->tree_mod_log_lock);
830 if (ret)
831 goto free_tms;
832 kfree(tm_list);
834 return 0;
836 free_tms:
837 for (i = 0; i < nritems; i++)
838 kfree(tm_list[i]);
839 kfree(tm_list);
841 return ret;
845 * check if the tree block can be shared by multiple trees
847 int btrfs_block_can_be_shared(struct btrfs_root *root,
848 struct extent_buffer *buf)
851 * Tree blocks not in reference counted trees and tree roots
852 * are never shared. If a block was allocated after the last
853 * snapshot and the block was not allocated by tree relocation,
854 * we know the block is not shared.
856 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
857 buf != root->node && buf != root->commit_root &&
858 (btrfs_header_generation(buf) <=
859 btrfs_root_last_snapshot(&root->root_item) ||
860 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
861 return 1;
863 return 0;
866 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
867 struct btrfs_root *root,
868 struct extent_buffer *buf,
869 struct extent_buffer *cow,
870 int *last_ref)
872 struct btrfs_fs_info *fs_info = root->fs_info;
873 u64 refs;
874 u64 owner;
875 u64 flags;
876 u64 new_flags = 0;
877 int ret;
880 * Backrefs update rules:
882 * Always use full backrefs for extent pointers in tree block
883 * allocated by tree relocation.
885 * If a shared tree block is no longer referenced by its owner
886 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
887 * use full backrefs for extent pointers in tree block.
889 * If a tree block is been relocating
890 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
891 * use full backrefs for extent pointers in tree block.
892 * The reason for this is some operations (such as drop tree)
893 * are only allowed for blocks use full backrefs.
896 if (btrfs_block_can_be_shared(root, buf)) {
897 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
898 btrfs_header_level(buf), 1,
899 &refs, &flags);
900 if (ret)
901 return ret;
902 if (refs == 0) {
903 ret = -EROFS;
904 btrfs_handle_fs_error(fs_info, ret, NULL);
905 return ret;
907 } else {
908 refs = 1;
909 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
910 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
911 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
912 else
913 flags = 0;
916 owner = btrfs_header_owner(buf);
917 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
918 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
920 if (refs > 1) {
921 if ((owner == root->root_key.objectid ||
922 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
923 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
924 ret = btrfs_inc_ref(trans, root, buf, 1);
925 if (ret)
926 return ret;
928 if (root->root_key.objectid ==
929 BTRFS_TREE_RELOC_OBJECTID) {
930 ret = btrfs_dec_ref(trans, root, buf, 0);
931 if (ret)
932 return ret;
933 ret = btrfs_inc_ref(trans, root, cow, 1);
934 if (ret)
935 return ret;
937 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
938 } else {
940 if (root->root_key.objectid ==
941 BTRFS_TREE_RELOC_OBJECTID)
942 ret = btrfs_inc_ref(trans, root, cow, 1);
943 else
944 ret = btrfs_inc_ref(trans, root, cow, 0);
945 if (ret)
946 return ret;
948 if (new_flags != 0) {
949 int level = btrfs_header_level(buf);
951 ret = btrfs_set_disk_extent_flags(trans,
952 buf->start,
953 buf->len,
954 new_flags, level, 0);
955 if (ret)
956 return ret;
958 } else {
959 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
960 if (root->root_key.objectid ==
961 BTRFS_TREE_RELOC_OBJECTID)
962 ret = btrfs_inc_ref(trans, root, cow, 1);
963 else
964 ret = btrfs_inc_ref(trans, root, cow, 0);
965 if (ret)
966 return ret;
967 ret = btrfs_dec_ref(trans, root, buf, 1);
968 if (ret)
969 return ret;
971 btrfs_clean_tree_block(buf);
972 *last_ref = 1;
974 return 0;
977 static struct extent_buffer *alloc_tree_block_no_bg_flush(
978 struct btrfs_trans_handle *trans,
979 struct btrfs_root *root,
980 u64 parent_start,
981 const struct btrfs_disk_key *disk_key,
982 int level,
983 u64 hint,
984 u64 empty_size)
986 struct btrfs_fs_info *fs_info = root->fs_info;
987 struct extent_buffer *ret;
990 * If we are COWing a node/leaf from the extent, chunk, device or free
991 * space trees, make sure that we do not finish block group creation of
992 * pending block groups. We do this to avoid a deadlock.
993 * COWing can result in allocation of a new chunk, and flushing pending
994 * block groups (btrfs_create_pending_block_groups()) can be triggered
995 * when finishing allocation of a new chunk. Creation of a pending block
996 * group modifies the extent, chunk, device and free space trees,
997 * therefore we could deadlock with ourselves since we are holding a
998 * lock on an extent buffer that btrfs_create_pending_block_groups() may
999 * try to COW later.
1000 * For similar reasons, we also need to delay flushing pending block
1001 * groups when splitting a leaf or node, from one of those trees, since
1002 * we are holding a write lock on it and its parent or when inserting a
1003 * new root node for one of those trees.
1005 if (root == fs_info->extent_root ||
1006 root == fs_info->chunk_root ||
1007 root == fs_info->dev_root ||
1008 root == fs_info->free_space_root)
1009 trans->can_flush_pending_bgs = false;
1011 ret = btrfs_alloc_tree_block(trans, root, parent_start,
1012 root->root_key.objectid, disk_key, level,
1013 hint, empty_size);
1014 trans->can_flush_pending_bgs = true;
1016 return ret;
1020 * does the dirty work in cow of a single block. The parent block (if
1021 * supplied) is updated to point to the new cow copy. The new buffer is marked
1022 * dirty and returned locked. If you modify the block it needs to be marked
1023 * dirty again.
1025 * search_start -- an allocation hint for the new block
1027 * empty_size -- a hint that you plan on doing more cow. This is the size in
1028 * bytes the allocator should try to find free next to the block it returns.
1029 * This is just a hint and may be ignored by the allocator.
1031 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1032 struct btrfs_root *root,
1033 struct extent_buffer *buf,
1034 struct extent_buffer *parent, int parent_slot,
1035 struct extent_buffer **cow_ret,
1036 u64 search_start, u64 empty_size)
1038 struct btrfs_fs_info *fs_info = root->fs_info;
1039 struct btrfs_disk_key disk_key;
1040 struct extent_buffer *cow;
1041 int level, ret;
1042 int last_ref = 0;
1043 int unlock_orig = 0;
1044 u64 parent_start = 0;
1046 if (*cow_ret == buf)
1047 unlock_orig = 1;
1049 btrfs_assert_tree_locked(buf);
1051 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1052 trans->transid != fs_info->running_transaction->transid);
1053 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1054 trans->transid != root->last_trans);
1056 level = btrfs_header_level(buf);
1058 if (level == 0)
1059 btrfs_item_key(buf, &disk_key, 0);
1060 else
1061 btrfs_node_key(buf, &disk_key, 0);
1063 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1064 parent_start = parent->start;
1066 cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1067 level, search_start, empty_size);
1068 if (IS_ERR(cow))
1069 return PTR_ERR(cow);
1071 /* cow is set to blocking by btrfs_init_new_buffer */
1073 copy_extent_buffer_full(cow, buf);
1074 btrfs_set_header_bytenr(cow, cow->start);
1075 btrfs_set_header_generation(cow, trans->transid);
1076 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1077 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1078 BTRFS_HEADER_FLAG_RELOC);
1079 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1080 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1081 else
1082 btrfs_set_header_owner(cow, root->root_key.objectid);
1084 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1086 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1087 if (ret) {
1088 btrfs_abort_transaction(trans, ret);
1089 return ret;
1092 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1093 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1094 if (ret) {
1095 btrfs_abort_transaction(trans, ret);
1096 return ret;
1100 if (buf == root->node) {
1101 WARN_ON(parent && parent != buf);
1102 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1103 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1104 parent_start = buf->start;
1106 extent_buffer_get(cow);
1107 ret = tree_mod_log_insert_root(root->node, cow, 1);
1108 BUG_ON(ret < 0);
1109 rcu_assign_pointer(root->node, cow);
1111 btrfs_free_tree_block(trans, root, buf, parent_start,
1112 last_ref);
1113 free_extent_buffer(buf);
1114 add_root_to_dirty_list(root);
1115 } else {
1116 WARN_ON(trans->transid != btrfs_header_generation(parent));
1117 tree_mod_log_insert_key(parent, parent_slot,
1118 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1119 btrfs_set_node_blockptr(parent, parent_slot,
1120 cow->start);
1121 btrfs_set_node_ptr_generation(parent, parent_slot,
1122 trans->transid);
1123 btrfs_mark_buffer_dirty(parent);
1124 if (last_ref) {
1125 ret = tree_mod_log_free_eb(buf);
1126 if (ret) {
1127 btrfs_abort_transaction(trans, ret);
1128 return ret;
1131 btrfs_free_tree_block(trans, root, buf, parent_start,
1132 last_ref);
1134 if (unlock_orig)
1135 btrfs_tree_unlock(buf);
1136 free_extent_buffer_stale(buf);
1137 btrfs_mark_buffer_dirty(cow);
1138 *cow_ret = cow;
1139 return 0;
1143 * returns the logical address of the oldest predecessor of the given root.
1144 * entries older than time_seq are ignored.
1146 static struct tree_mod_elem *__tree_mod_log_oldest_root(
1147 struct extent_buffer *eb_root, u64 time_seq)
1149 struct tree_mod_elem *tm;
1150 struct tree_mod_elem *found = NULL;
1151 u64 root_logical = eb_root->start;
1152 int looped = 0;
1154 if (!time_seq)
1155 return NULL;
1158 * the very last operation that's logged for a root is the
1159 * replacement operation (if it is replaced at all). this has
1160 * the logical address of the *new* root, making it the very
1161 * first operation that's logged for this root.
1163 while (1) {
1164 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1165 time_seq);
1166 if (!looped && !tm)
1167 return NULL;
1169 * if there are no tree operation for the oldest root, we simply
1170 * return it. this should only happen if that (old) root is at
1171 * level 0.
1173 if (!tm)
1174 break;
1177 * if there's an operation that's not a root replacement, we
1178 * found the oldest version of our root. normally, we'll find a
1179 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1181 if (tm->op != MOD_LOG_ROOT_REPLACE)
1182 break;
1184 found = tm;
1185 root_logical = tm->old_root.logical;
1186 looped = 1;
1189 /* if there's no old root to return, return what we found instead */
1190 if (!found)
1191 found = tm;
1193 return found;
1197 * tm is a pointer to the first operation to rewind within eb. then, all
1198 * previous operations will be rewound (until we reach something older than
1199 * time_seq).
1201 static void
1202 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1203 u64 time_seq, struct tree_mod_elem *first_tm)
1205 u32 n;
1206 struct rb_node *next;
1207 struct tree_mod_elem *tm = first_tm;
1208 unsigned long o_dst;
1209 unsigned long o_src;
1210 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1212 n = btrfs_header_nritems(eb);
1213 read_lock(&fs_info->tree_mod_log_lock);
1214 while (tm && tm->seq >= time_seq) {
1216 * all the operations are recorded with the operator used for
1217 * the modification. as we're going backwards, we do the
1218 * opposite of each operation here.
1220 switch (tm->op) {
1221 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1222 BUG_ON(tm->slot < n);
1223 /* Fallthrough */
1224 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1225 case MOD_LOG_KEY_REMOVE:
1226 btrfs_set_node_key(eb, &tm->key, tm->slot);
1227 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1228 btrfs_set_node_ptr_generation(eb, tm->slot,
1229 tm->generation);
1230 n++;
1231 break;
1232 case MOD_LOG_KEY_REPLACE:
1233 BUG_ON(tm->slot >= n);
1234 btrfs_set_node_key(eb, &tm->key, tm->slot);
1235 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1236 btrfs_set_node_ptr_generation(eb, tm->slot,
1237 tm->generation);
1238 break;
1239 case MOD_LOG_KEY_ADD:
1240 /* if a move operation is needed it's in the log */
1241 n--;
1242 break;
1243 case MOD_LOG_MOVE_KEYS:
1244 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1245 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1246 memmove_extent_buffer(eb, o_dst, o_src,
1247 tm->move.nr_items * p_size);
1248 break;
1249 case MOD_LOG_ROOT_REPLACE:
1251 * this operation is special. for roots, this must be
1252 * handled explicitly before rewinding.
1253 * for non-roots, this operation may exist if the node
1254 * was a root: root A -> child B; then A gets empty and
1255 * B is promoted to the new root. in the mod log, we'll
1256 * have a root-replace operation for B, a tree block
1257 * that is no root. we simply ignore that operation.
1259 break;
1261 next = rb_next(&tm->node);
1262 if (!next)
1263 break;
1264 tm = rb_entry(next, struct tree_mod_elem, node);
1265 if (tm->logical != first_tm->logical)
1266 break;
1268 read_unlock(&fs_info->tree_mod_log_lock);
1269 btrfs_set_header_nritems(eb, n);
1273 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1274 * is returned. If rewind operations happen, a fresh buffer is returned. The
1275 * returned buffer is always read-locked. If the returned buffer is not the
1276 * input buffer, the lock on the input buffer is released and the input buffer
1277 * is freed (its refcount is decremented).
1279 static struct extent_buffer *
1280 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1281 struct extent_buffer *eb, u64 time_seq)
1283 struct extent_buffer *eb_rewin;
1284 struct tree_mod_elem *tm;
1286 if (!time_seq)
1287 return eb;
1289 if (btrfs_header_level(eb) == 0)
1290 return eb;
1292 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1293 if (!tm)
1294 return eb;
1296 btrfs_set_path_blocking(path);
1297 btrfs_set_lock_blocking_read(eb);
1299 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1300 BUG_ON(tm->slot != 0);
1301 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1302 if (!eb_rewin) {
1303 btrfs_tree_read_unlock_blocking(eb);
1304 free_extent_buffer(eb);
1305 return NULL;
1307 btrfs_set_header_bytenr(eb_rewin, eb->start);
1308 btrfs_set_header_backref_rev(eb_rewin,
1309 btrfs_header_backref_rev(eb));
1310 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1311 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1312 } else {
1313 eb_rewin = btrfs_clone_extent_buffer(eb);
1314 if (!eb_rewin) {
1315 btrfs_tree_read_unlock_blocking(eb);
1316 free_extent_buffer(eb);
1317 return NULL;
1321 btrfs_tree_read_unlock_blocking(eb);
1322 free_extent_buffer(eb);
1324 btrfs_tree_read_lock(eb_rewin);
1325 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1326 WARN_ON(btrfs_header_nritems(eb_rewin) >
1327 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1329 return eb_rewin;
1333 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1334 * value. If there are no changes, the current root->root_node is returned. If
1335 * anything changed in between, there's a fresh buffer allocated on which the
1336 * rewind operations are done. In any case, the returned buffer is read locked.
1337 * Returns NULL on error (with no locks held).
1339 static inline struct extent_buffer *
1340 get_old_root(struct btrfs_root *root, u64 time_seq)
1342 struct btrfs_fs_info *fs_info = root->fs_info;
1343 struct tree_mod_elem *tm;
1344 struct extent_buffer *eb = NULL;
1345 struct extent_buffer *eb_root;
1346 struct extent_buffer *old;
1347 struct tree_mod_root *old_root = NULL;
1348 u64 old_generation = 0;
1349 u64 logical;
1350 int level;
1352 eb_root = btrfs_read_lock_root_node(root);
1353 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1354 if (!tm)
1355 return eb_root;
1357 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1358 old_root = &tm->old_root;
1359 old_generation = tm->generation;
1360 logical = old_root->logical;
1361 level = old_root->level;
1362 } else {
1363 logical = eb_root->start;
1364 level = btrfs_header_level(eb_root);
1367 tm = tree_mod_log_search(fs_info, logical, time_seq);
1368 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1369 btrfs_tree_read_unlock(eb_root);
1370 free_extent_buffer(eb_root);
1371 old = read_tree_block(fs_info, logical, 0, level, NULL);
1372 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1373 if (!IS_ERR(old))
1374 free_extent_buffer(old);
1375 btrfs_warn(fs_info,
1376 "failed to read tree block %llu from get_old_root",
1377 logical);
1378 } else {
1379 eb = btrfs_clone_extent_buffer(old);
1380 free_extent_buffer(old);
1382 } else if (old_root) {
1383 btrfs_tree_read_unlock(eb_root);
1384 free_extent_buffer(eb_root);
1385 eb = alloc_dummy_extent_buffer(fs_info, logical);
1386 } else {
1387 btrfs_set_lock_blocking_read(eb_root);
1388 eb = btrfs_clone_extent_buffer(eb_root);
1389 btrfs_tree_read_unlock_blocking(eb_root);
1390 free_extent_buffer(eb_root);
1393 if (!eb)
1394 return NULL;
1395 btrfs_tree_read_lock(eb);
1396 if (old_root) {
1397 btrfs_set_header_bytenr(eb, eb->start);
1398 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1399 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1400 btrfs_set_header_level(eb, old_root->level);
1401 btrfs_set_header_generation(eb, old_generation);
1403 if (tm)
1404 __tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1405 else
1406 WARN_ON(btrfs_header_level(eb) != 0);
1407 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1409 return eb;
1412 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1414 struct tree_mod_elem *tm;
1415 int level;
1416 struct extent_buffer *eb_root = btrfs_root_node(root);
1418 tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1419 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1420 level = tm->old_root.level;
1421 } else {
1422 level = btrfs_header_level(eb_root);
1424 free_extent_buffer(eb_root);
1426 return level;
1429 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1430 struct btrfs_root *root,
1431 struct extent_buffer *buf)
1433 if (btrfs_is_testing(root->fs_info))
1434 return 0;
1436 /* Ensure we can see the FORCE_COW bit */
1437 smp_mb__before_atomic();
1440 * We do not need to cow a block if
1441 * 1) this block is not created or changed in this transaction;
1442 * 2) this block does not belong to TREE_RELOC tree;
1443 * 3) the root is not forced COW.
1445 * What is forced COW:
1446 * when we create snapshot during committing the transaction,
1447 * after we've finished copying src root, we must COW the shared
1448 * block to ensure the metadata consistency.
1450 if (btrfs_header_generation(buf) == trans->transid &&
1451 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1452 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1453 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1454 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1455 return 0;
1456 return 1;
1460 * cows a single block, see __btrfs_cow_block for the real work.
1461 * This version of it has extra checks so that a block isn't COWed more than
1462 * once per transaction, as long as it hasn't been written yet
1464 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1465 struct btrfs_root *root, struct extent_buffer *buf,
1466 struct extent_buffer *parent, int parent_slot,
1467 struct extent_buffer **cow_ret)
1469 struct btrfs_fs_info *fs_info = root->fs_info;
1470 u64 search_start;
1471 int ret;
1473 if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1474 btrfs_err(fs_info,
1475 "COW'ing blocks on a fs root that's being dropped");
1477 if (trans->transaction != fs_info->running_transaction)
1478 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1479 trans->transid,
1480 fs_info->running_transaction->transid);
1482 if (trans->transid != fs_info->generation)
1483 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1484 trans->transid, fs_info->generation);
1486 if (!should_cow_block(trans, root, buf)) {
1487 trans->dirty = true;
1488 *cow_ret = buf;
1489 return 0;
1492 search_start = buf->start & ~((u64)SZ_1G - 1);
1494 if (parent)
1495 btrfs_set_lock_blocking_write(parent);
1496 btrfs_set_lock_blocking_write(buf);
1499 * Before CoWing this block for later modification, check if it's
1500 * the subtree root and do the delayed subtree trace if needed.
1502 * Also We don't care about the error, as it's handled internally.
1504 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1505 ret = __btrfs_cow_block(trans, root, buf, parent,
1506 parent_slot, cow_ret, search_start, 0);
1508 trace_btrfs_cow_block(root, buf, *cow_ret);
1510 return ret;
1514 * helper function for defrag to decide if two blocks pointed to by a
1515 * node are actually close by
1517 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1519 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1520 return 1;
1521 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1522 return 1;
1523 return 0;
1527 * compare two keys in a memcmp fashion
1529 static int comp_keys(const struct btrfs_disk_key *disk,
1530 const struct btrfs_key *k2)
1532 struct btrfs_key k1;
1534 btrfs_disk_key_to_cpu(&k1, disk);
1536 return btrfs_comp_cpu_keys(&k1, k2);
1540 * same as comp_keys only with two btrfs_key's
1542 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1544 if (k1->objectid > k2->objectid)
1545 return 1;
1546 if (k1->objectid < k2->objectid)
1547 return -1;
1548 if (k1->type > k2->type)
1549 return 1;
1550 if (k1->type < k2->type)
1551 return -1;
1552 if (k1->offset > k2->offset)
1553 return 1;
1554 if (k1->offset < k2->offset)
1555 return -1;
1556 return 0;
1560 * this is used by the defrag code to go through all the
1561 * leaves pointed to by a node and reallocate them so that
1562 * disk order is close to key order
1564 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1565 struct btrfs_root *root, struct extent_buffer *parent,
1566 int start_slot, u64 *last_ret,
1567 struct btrfs_key *progress)
1569 struct btrfs_fs_info *fs_info = root->fs_info;
1570 struct extent_buffer *cur;
1571 u64 blocknr;
1572 u64 gen;
1573 u64 search_start = *last_ret;
1574 u64 last_block = 0;
1575 u64 other;
1576 u32 parent_nritems;
1577 int end_slot;
1578 int i;
1579 int err = 0;
1580 int parent_level;
1581 int uptodate;
1582 u32 blocksize;
1583 int progress_passed = 0;
1584 struct btrfs_disk_key disk_key;
1586 parent_level = btrfs_header_level(parent);
1588 WARN_ON(trans->transaction != fs_info->running_transaction);
1589 WARN_ON(trans->transid != fs_info->generation);
1591 parent_nritems = btrfs_header_nritems(parent);
1592 blocksize = fs_info->nodesize;
1593 end_slot = parent_nritems - 1;
1595 if (parent_nritems <= 1)
1596 return 0;
1598 btrfs_set_lock_blocking_write(parent);
1600 for (i = start_slot; i <= end_slot; i++) {
1601 struct btrfs_key first_key;
1602 int close = 1;
1604 btrfs_node_key(parent, &disk_key, i);
1605 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1606 continue;
1608 progress_passed = 1;
1609 blocknr = btrfs_node_blockptr(parent, i);
1610 gen = btrfs_node_ptr_generation(parent, i);
1611 btrfs_node_key_to_cpu(parent, &first_key, i);
1612 if (last_block == 0)
1613 last_block = blocknr;
1615 if (i > 0) {
1616 other = btrfs_node_blockptr(parent, i - 1);
1617 close = close_blocks(blocknr, other, blocksize);
1619 if (!close && i < end_slot) {
1620 other = btrfs_node_blockptr(parent, i + 1);
1621 close = close_blocks(blocknr, other, blocksize);
1623 if (close) {
1624 last_block = blocknr;
1625 continue;
1628 cur = find_extent_buffer(fs_info, blocknr);
1629 if (cur)
1630 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1631 else
1632 uptodate = 0;
1633 if (!cur || !uptodate) {
1634 if (!cur) {
1635 cur = read_tree_block(fs_info, blocknr, gen,
1636 parent_level - 1,
1637 &first_key);
1638 if (IS_ERR(cur)) {
1639 return PTR_ERR(cur);
1640 } else if (!extent_buffer_uptodate(cur)) {
1641 free_extent_buffer(cur);
1642 return -EIO;
1644 } else if (!uptodate) {
1645 err = btrfs_read_buffer(cur, gen,
1646 parent_level - 1,&first_key);
1647 if (err) {
1648 free_extent_buffer(cur);
1649 return err;
1653 if (search_start == 0)
1654 search_start = last_block;
1656 btrfs_tree_lock(cur);
1657 btrfs_set_lock_blocking_write(cur);
1658 err = __btrfs_cow_block(trans, root, cur, parent, i,
1659 &cur, search_start,
1660 min(16 * blocksize,
1661 (end_slot - i) * blocksize));
1662 if (err) {
1663 btrfs_tree_unlock(cur);
1664 free_extent_buffer(cur);
1665 break;
1667 search_start = cur->start;
1668 last_block = cur->start;
1669 *last_ret = search_start;
1670 btrfs_tree_unlock(cur);
1671 free_extent_buffer(cur);
1673 return err;
1677 * search for key in the extent_buffer. The items start at offset p,
1678 * and they are item_size apart. There are 'max' items in p.
1680 * the slot in the array is returned via slot, and it points to
1681 * the place where you would insert key if it is not found in
1682 * the array.
1684 * slot may point to max if the key is bigger than all of the keys
1686 static noinline int generic_bin_search(struct extent_buffer *eb,
1687 unsigned long p, int item_size,
1688 const struct btrfs_key *key,
1689 int max, int *slot)
1691 int low = 0;
1692 int high = max;
1693 int mid;
1694 int ret;
1695 struct btrfs_disk_key *tmp = NULL;
1696 struct btrfs_disk_key unaligned;
1697 unsigned long offset;
1698 char *kaddr = NULL;
1699 unsigned long map_start = 0;
1700 unsigned long map_len = 0;
1701 int err;
1703 if (low > high) {
1704 btrfs_err(eb->fs_info,
1705 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1706 __func__, low, high, eb->start,
1707 btrfs_header_owner(eb), btrfs_header_level(eb));
1708 return -EINVAL;
1711 while (low < high) {
1712 mid = (low + high) / 2;
1713 offset = p + mid * item_size;
1715 if (!kaddr || offset < map_start ||
1716 (offset + sizeof(struct btrfs_disk_key)) >
1717 map_start + map_len) {
1719 err = map_private_extent_buffer(eb, offset,
1720 sizeof(struct btrfs_disk_key),
1721 &kaddr, &map_start, &map_len);
1723 if (!err) {
1724 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1725 map_start);
1726 } else if (err == 1) {
1727 read_extent_buffer(eb, &unaligned,
1728 offset, sizeof(unaligned));
1729 tmp = &unaligned;
1730 } else {
1731 return err;
1734 } else {
1735 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1736 map_start);
1738 ret = comp_keys(tmp, key);
1740 if (ret < 0)
1741 low = mid + 1;
1742 else if (ret > 0)
1743 high = mid;
1744 else {
1745 *slot = mid;
1746 return 0;
1749 *slot = low;
1750 return 1;
1754 * simple bin_search frontend that does the right thing for
1755 * leaves vs nodes
1757 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1758 int level, int *slot)
1760 if (level == 0)
1761 return generic_bin_search(eb,
1762 offsetof(struct btrfs_leaf, items),
1763 sizeof(struct btrfs_item),
1764 key, btrfs_header_nritems(eb),
1765 slot);
1766 else
1767 return generic_bin_search(eb,
1768 offsetof(struct btrfs_node, ptrs),
1769 sizeof(struct btrfs_key_ptr),
1770 key, btrfs_header_nritems(eb),
1771 slot);
1774 static void root_add_used(struct btrfs_root *root, u32 size)
1776 spin_lock(&root->accounting_lock);
1777 btrfs_set_root_used(&root->root_item,
1778 btrfs_root_used(&root->root_item) + size);
1779 spin_unlock(&root->accounting_lock);
1782 static void root_sub_used(struct btrfs_root *root, u32 size)
1784 spin_lock(&root->accounting_lock);
1785 btrfs_set_root_used(&root->root_item,
1786 btrfs_root_used(&root->root_item) - size);
1787 spin_unlock(&root->accounting_lock);
1790 /* given a node and slot number, this reads the blocks it points to. The
1791 * extent buffer is returned with a reference taken (but unlocked).
1793 static noinline struct extent_buffer *read_node_slot(
1794 struct extent_buffer *parent, int slot)
1796 int level = btrfs_header_level(parent);
1797 struct extent_buffer *eb;
1798 struct btrfs_key first_key;
1800 if (slot < 0 || slot >= btrfs_header_nritems(parent))
1801 return ERR_PTR(-ENOENT);
1803 BUG_ON(level == 0);
1805 btrfs_node_key_to_cpu(parent, &first_key, slot);
1806 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1807 btrfs_node_ptr_generation(parent, slot),
1808 level - 1, &first_key);
1809 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1810 free_extent_buffer(eb);
1811 eb = ERR_PTR(-EIO);
1814 return eb;
1818 * node level balancing, used to make sure nodes are in proper order for
1819 * item deletion. We balance from the top down, so we have to make sure
1820 * that a deletion won't leave an node completely empty later on.
1822 static noinline int balance_level(struct btrfs_trans_handle *trans,
1823 struct btrfs_root *root,
1824 struct btrfs_path *path, int level)
1826 struct btrfs_fs_info *fs_info = root->fs_info;
1827 struct extent_buffer *right = NULL;
1828 struct extent_buffer *mid;
1829 struct extent_buffer *left = NULL;
1830 struct extent_buffer *parent = NULL;
1831 int ret = 0;
1832 int wret;
1833 int pslot;
1834 int orig_slot = path->slots[level];
1835 u64 orig_ptr;
1837 ASSERT(level > 0);
1839 mid = path->nodes[level];
1841 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1842 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1843 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1845 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1847 if (level < BTRFS_MAX_LEVEL - 1) {
1848 parent = path->nodes[level + 1];
1849 pslot = path->slots[level + 1];
1853 * deal with the case where there is only one pointer in the root
1854 * by promoting the node below to a root
1856 if (!parent) {
1857 struct extent_buffer *child;
1859 if (btrfs_header_nritems(mid) != 1)
1860 return 0;
1862 /* promote the child to a root */
1863 child = read_node_slot(mid, 0);
1864 if (IS_ERR(child)) {
1865 ret = PTR_ERR(child);
1866 btrfs_handle_fs_error(fs_info, ret, NULL);
1867 goto enospc;
1870 btrfs_tree_lock(child);
1871 btrfs_set_lock_blocking_write(child);
1872 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1873 if (ret) {
1874 btrfs_tree_unlock(child);
1875 free_extent_buffer(child);
1876 goto enospc;
1879 ret = tree_mod_log_insert_root(root->node, child, 1);
1880 BUG_ON(ret < 0);
1881 rcu_assign_pointer(root->node, child);
1883 add_root_to_dirty_list(root);
1884 btrfs_tree_unlock(child);
1886 path->locks[level] = 0;
1887 path->nodes[level] = NULL;
1888 btrfs_clean_tree_block(mid);
1889 btrfs_tree_unlock(mid);
1890 /* once for the path */
1891 free_extent_buffer(mid);
1893 root_sub_used(root, mid->len);
1894 btrfs_free_tree_block(trans, root, mid, 0, 1);
1895 /* once for the root ptr */
1896 free_extent_buffer_stale(mid);
1897 return 0;
1899 if (btrfs_header_nritems(mid) >
1900 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1901 return 0;
1903 left = read_node_slot(parent, pslot - 1);
1904 if (IS_ERR(left))
1905 left = NULL;
1907 if (left) {
1908 btrfs_tree_lock(left);
1909 btrfs_set_lock_blocking_write(left);
1910 wret = btrfs_cow_block(trans, root, left,
1911 parent, pslot - 1, &left);
1912 if (wret) {
1913 ret = wret;
1914 goto enospc;
1918 right = read_node_slot(parent, pslot + 1);
1919 if (IS_ERR(right))
1920 right = NULL;
1922 if (right) {
1923 btrfs_tree_lock(right);
1924 btrfs_set_lock_blocking_write(right);
1925 wret = btrfs_cow_block(trans, root, right,
1926 parent, pslot + 1, &right);
1927 if (wret) {
1928 ret = wret;
1929 goto enospc;
1933 /* first, try to make some room in the middle buffer */
1934 if (left) {
1935 orig_slot += btrfs_header_nritems(left);
1936 wret = push_node_left(trans, left, mid, 1);
1937 if (wret < 0)
1938 ret = wret;
1942 * then try to empty the right most buffer into the middle
1944 if (right) {
1945 wret = push_node_left(trans, mid, right, 1);
1946 if (wret < 0 && wret != -ENOSPC)
1947 ret = wret;
1948 if (btrfs_header_nritems(right) == 0) {
1949 btrfs_clean_tree_block(right);
1950 btrfs_tree_unlock(right);
1951 del_ptr(root, path, level + 1, pslot + 1);
1952 root_sub_used(root, right->len);
1953 btrfs_free_tree_block(trans, root, right, 0, 1);
1954 free_extent_buffer_stale(right);
1955 right = NULL;
1956 } else {
1957 struct btrfs_disk_key right_key;
1958 btrfs_node_key(right, &right_key, 0);
1959 ret = tree_mod_log_insert_key(parent, pslot + 1,
1960 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1961 BUG_ON(ret < 0);
1962 btrfs_set_node_key(parent, &right_key, pslot + 1);
1963 btrfs_mark_buffer_dirty(parent);
1966 if (btrfs_header_nritems(mid) == 1) {
1968 * we're not allowed to leave a node with one item in the
1969 * tree during a delete. A deletion from lower in the tree
1970 * could try to delete the only pointer in this node.
1971 * So, pull some keys from the left.
1972 * There has to be a left pointer at this point because
1973 * otherwise we would have pulled some pointers from the
1974 * right
1976 if (!left) {
1977 ret = -EROFS;
1978 btrfs_handle_fs_error(fs_info, ret, NULL);
1979 goto enospc;
1981 wret = balance_node_right(trans, mid, left);
1982 if (wret < 0) {
1983 ret = wret;
1984 goto enospc;
1986 if (wret == 1) {
1987 wret = push_node_left(trans, left, mid, 1);
1988 if (wret < 0)
1989 ret = wret;
1991 BUG_ON(wret == 1);
1993 if (btrfs_header_nritems(mid) == 0) {
1994 btrfs_clean_tree_block(mid);
1995 btrfs_tree_unlock(mid);
1996 del_ptr(root, path, level + 1, pslot);
1997 root_sub_used(root, mid->len);
1998 btrfs_free_tree_block(trans, root, mid, 0, 1);
1999 free_extent_buffer_stale(mid);
2000 mid = NULL;
2001 } else {
2002 /* update the parent key to reflect our changes */
2003 struct btrfs_disk_key mid_key;
2004 btrfs_node_key(mid, &mid_key, 0);
2005 ret = tree_mod_log_insert_key(parent, pslot,
2006 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2007 BUG_ON(ret < 0);
2008 btrfs_set_node_key(parent, &mid_key, pslot);
2009 btrfs_mark_buffer_dirty(parent);
2012 /* update the path */
2013 if (left) {
2014 if (btrfs_header_nritems(left) > orig_slot) {
2015 extent_buffer_get(left);
2016 /* left was locked after cow */
2017 path->nodes[level] = left;
2018 path->slots[level + 1] -= 1;
2019 path->slots[level] = orig_slot;
2020 if (mid) {
2021 btrfs_tree_unlock(mid);
2022 free_extent_buffer(mid);
2024 } else {
2025 orig_slot -= btrfs_header_nritems(left);
2026 path->slots[level] = orig_slot;
2029 /* double check we haven't messed things up */
2030 if (orig_ptr !=
2031 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2032 BUG();
2033 enospc:
2034 if (right) {
2035 btrfs_tree_unlock(right);
2036 free_extent_buffer(right);
2038 if (left) {
2039 if (path->nodes[level] != left)
2040 btrfs_tree_unlock(left);
2041 free_extent_buffer(left);
2043 return ret;
2046 /* Node balancing for insertion. Here we only split or push nodes around
2047 * when they are completely full. This is also done top down, so we
2048 * have to be pessimistic.
2050 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2051 struct btrfs_root *root,
2052 struct btrfs_path *path, int level)
2054 struct btrfs_fs_info *fs_info = root->fs_info;
2055 struct extent_buffer *right = NULL;
2056 struct extent_buffer *mid;
2057 struct extent_buffer *left = NULL;
2058 struct extent_buffer *parent = NULL;
2059 int ret = 0;
2060 int wret;
2061 int pslot;
2062 int orig_slot = path->slots[level];
2064 if (level == 0)
2065 return 1;
2067 mid = path->nodes[level];
2068 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2070 if (level < BTRFS_MAX_LEVEL - 1) {
2071 parent = path->nodes[level + 1];
2072 pslot = path->slots[level + 1];
2075 if (!parent)
2076 return 1;
2078 left = read_node_slot(parent, pslot - 1);
2079 if (IS_ERR(left))
2080 left = NULL;
2082 /* first, try to make some room in the middle buffer */
2083 if (left) {
2084 u32 left_nr;
2086 btrfs_tree_lock(left);
2087 btrfs_set_lock_blocking_write(left);
2089 left_nr = btrfs_header_nritems(left);
2090 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2091 wret = 1;
2092 } else {
2093 ret = btrfs_cow_block(trans, root, left, parent,
2094 pslot - 1, &left);
2095 if (ret)
2096 wret = 1;
2097 else {
2098 wret = push_node_left(trans, left, mid, 0);
2101 if (wret < 0)
2102 ret = wret;
2103 if (wret == 0) {
2104 struct btrfs_disk_key disk_key;
2105 orig_slot += left_nr;
2106 btrfs_node_key(mid, &disk_key, 0);
2107 ret = tree_mod_log_insert_key(parent, pslot,
2108 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2109 BUG_ON(ret < 0);
2110 btrfs_set_node_key(parent, &disk_key, pslot);
2111 btrfs_mark_buffer_dirty(parent);
2112 if (btrfs_header_nritems(left) > orig_slot) {
2113 path->nodes[level] = left;
2114 path->slots[level + 1] -= 1;
2115 path->slots[level] = orig_slot;
2116 btrfs_tree_unlock(mid);
2117 free_extent_buffer(mid);
2118 } else {
2119 orig_slot -=
2120 btrfs_header_nritems(left);
2121 path->slots[level] = orig_slot;
2122 btrfs_tree_unlock(left);
2123 free_extent_buffer(left);
2125 return 0;
2127 btrfs_tree_unlock(left);
2128 free_extent_buffer(left);
2130 right = read_node_slot(parent, pslot + 1);
2131 if (IS_ERR(right))
2132 right = NULL;
2135 * then try to empty the right most buffer into the middle
2137 if (right) {
2138 u32 right_nr;
2140 btrfs_tree_lock(right);
2141 btrfs_set_lock_blocking_write(right);
2143 right_nr = btrfs_header_nritems(right);
2144 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2145 wret = 1;
2146 } else {
2147 ret = btrfs_cow_block(trans, root, right,
2148 parent, pslot + 1,
2149 &right);
2150 if (ret)
2151 wret = 1;
2152 else {
2153 wret = balance_node_right(trans, right, mid);
2156 if (wret < 0)
2157 ret = wret;
2158 if (wret == 0) {
2159 struct btrfs_disk_key disk_key;
2161 btrfs_node_key(right, &disk_key, 0);
2162 ret = tree_mod_log_insert_key(parent, pslot + 1,
2163 MOD_LOG_KEY_REPLACE, GFP_NOFS);
2164 BUG_ON(ret < 0);
2165 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2166 btrfs_mark_buffer_dirty(parent);
2168 if (btrfs_header_nritems(mid) <= orig_slot) {
2169 path->nodes[level] = right;
2170 path->slots[level + 1] += 1;
2171 path->slots[level] = orig_slot -
2172 btrfs_header_nritems(mid);
2173 btrfs_tree_unlock(mid);
2174 free_extent_buffer(mid);
2175 } else {
2176 btrfs_tree_unlock(right);
2177 free_extent_buffer(right);
2179 return 0;
2181 btrfs_tree_unlock(right);
2182 free_extent_buffer(right);
2184 return 1;
2188 * readahead one full node of leaves, finding things that are close
2189 * to the block in 'slot', and triggering ra on them.
2191 static void reada_for_search(struct btrfs_fs_info *fs_info,
2192 struct btrfs_path *path,
2193 int level, int slot, u64 objectid)
2195 struct extent_buffer *node;
2196 struct btrfs_disk_key disk_key;
2197 u32 nritems;
2198 u64 search;
2199 u64 target;
2200 u64 nread = 0;
2201 struct extent_buffer *eb;
2202 u32 nr;
2203 u32 blocksize;
2204 u32 nscan = 0;
2206 if (level != 1)
2207 return;
2209 if (!path->nodes[level])
2210 return;
2212 node = path->nodes[level];
2214 search = btrfs_node_blockptr(node, slot);
2215 blocksize = fs_info->nodesize;
2216 eb = find_extent_buffer(fs_info, search);
2217 if (eb) {
2218 free_extent_buffer(eb);
2219 return;
2222 target = search;
2224 nritems = btrfs_header_nritems(node);
2225 nr = slot;
2227 while (1) {
2228 if (path->reada == READA_BACK) {
2229 if (nr == 0)
2230 break;
2231 nr--;
2232 } else if (path->reada == READA_FORWARD) {
2233 nr++;
2234 if (nr >= nritems)
2235 break;
2237 if (path->reada == READA_BACK && objectid) {
2238 btrfs_node_key(node, &disk_key, nr);
2239 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2240 break;
2242 search = btrfs_node_blockptr(node, nr);
2243 if ((search <= target && target - search <= 65536) ||
2244 (search > target && search - target <= 65536)) {
2245 readahead_tree_block(fs_info, search);
2246 nread += blocksize;
2248 nscan++;
2249 if ((nread > 65536 || nscan > 32))
2250 break;
2254 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2255 struct btrfs_path *path, int level)
2257 int slot;
2258 int nritems;
2259 struct extent_buffer *parent;
2260 struct extent_buffer *eb;
2261 u64 gen;
2262 u64 block1 = 0;
2263 u64 block2 = 0;
2265 parent = path->nodes[level + 1];
2266 if (!parent)
2267 return;
2269 nritems = btrfs_header_nritems(parent);
2270 slot = path->slots[level + 1];
2272 if (slot > 0) {
2273 block1 = btrfs_node_blockptr(parent, slot - 1);
2274 gen = btrfs_node_ptr_generation(parent, slot - 1);
2275 eb = find_extent_buffer(fs_info, block1);
2277 * if we get -eagain from btrfs_buffer_uptodate, we
2278 * don't want to return eagain here. That will loop
2279 * forever
2281 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2282 block1 = 0;
2283 free_extent_buffer(eb);
2285 if (slot + 1 < nritems) {
2286 block2 = btrfs_node_blockptr(parent, slot + 1);
2287 gen = btrfs_node_ptr_generation(parent, slot + 1);
2288 eb = find_extent_buffer(fs_info, block2);
2289 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2290 block2 = 0;
2291 free_extent_buffer(eb);
2294 if (block1)
2295 readahead_tree_block(fs_info, block1);
2296 if (block2)
2297 readahead_tree_block(fs_info, block2);
2302 * when we walk down the tree, it is usually safe to unlock the higher layers
2303 * in the tree. The exceptions are when our path goes through slot 0, because
2304 * operations on the tree might require changing key pointers higher up in the
2305 * tree.
2307 * callers might also have set path->keep_locks, which tells this code to keep
2308 * the lock if the path points to the last slot in the block. This is part of
2309 * walking through the tree, and selecting the next slot in the higher block.
2311 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2312 * if lowest_unlock is 1, level 0 won't be unlocked
2314 static noinline void unlock_up(struct btrfs_path *path, int level,
2315 int lowest_unlock, int min_write_lock_level,
2316 int *write_lock_level)
2318 int i;
2319 int skip_level = level;
2320 int no_skips = 0;
2321 struct extent_buffer *t;
2323 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2324 if (!path->nodes[i])
2325 break;
2326 if (!path->locks[i])
2327 break;
2328 if (!no_skips && path->slots[i] == 0) {
2329 skip_level = i + 1;
2330 continue;
2332 if (!no_skips && path->keep_locks) {
2333 u32 nritems;
2334 t = path->nodes[i];
2335 nritems = btrfs_header_nritems(t);
2336 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2337 skip_level = i + 1;
2338 continue;
2341 if (skip_level < i && i >= lowest_unlock)
2342 no_skips = 1;
2344 t = path->nodes[i];
2345 if (i >= lowest_unlock && i > skip_level) {
2346 btrfs_tree_unlock_rw(t, path->locks[i]);
2347 path->locks[i] = 0;
2348 if (write_lock_level &&
2349 i > min_write_lock_level &&
2350 i <= *write_lock_level) {
2351 *write_lock_level = i - 1;
2358 * This releases any locks held in the path starting at level and
2359 * going all the way up to the root.
2361 * btrfs_search_slot will keep the lock held on higher nodes in a few
2362 * corner cases, such as COW of the block at slot zero in the node. This
2363 * ignores those rules, and it should only be called when there are no
2364 * more updates to be done higher up in the tree.
2366 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2368 int i;
2370 if (path->keep_locks)
2371 return;
2373 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2374 if (!path->nodes[i])
2375 continue;
2376 if (!path->locks[i])
2377 continue;
2378 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2379 path->locks[i] = 0;
2384 * helper function for btrfs_search_slot. The goal is to find a block
2385 * in cache without setting the path to blocking. If we find the block
2386 * we return zero and the path is unchanged.
2388 * If we can't find the block, we set the path blocking and do some
2389 * reada. -EAGAIN is returned and the search must be repeated.
2391 static int
2392 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2393 struct extent_buffer **eb_ret, int level, int slot,
2394 const struct btrfs_key *key)
2396 struct btrfs_fs_info *fs_info = root->fs_info;
2397 u64 blocknr;
2398 u64 gen;
2399 struct extent_buffer *b = *eb_ret;
2400 struct extent_buffer *tmp;
2401 struct btrfs_key first_key;
2402 int ret;
2403 int parent_level;
2405 blocknr = btrfs_node_blockptr(b, slot);
2406 gen = btrfs_node_ptr_generation(b, slot);
2407 parent_level = btrfs_header_level(b);
2408 btrfs_node_key_to_cpu(b, &first_key, slot);
2410 tmp = find_extent_buffer(fs_info, blocknr);
2411 if (tmp) {
2412 /* first we do an atomic uptodate check */
2413 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2415 * Do extra check for first_key, eb can be stale due to
2416 * being cached, read from scrub, or have multiple
2417 * parents (shared tree blocks).
2419 if (btrfs_verify_level_key(tmp,
2420 parent_level - 1, &first_key, gen)) {
2421 free_extent_buffer(tmp);
2422 return -EUCLEAN;
2424 *eb_ret = tmp;
2425 return 0;
2428 /* the pages were up to date, but we failed
2429 * the generation number check. Do a full
2430 * read for the generation number that is correct.
2431 * We must do this without dropping locks so
2432 * we can trust our generation number
2434 btrfs_set_path_blocking(p);
2436 /* now we're allowed to do a blocking uptodate check */
2437 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2438 if (!ret) {
2439 *eb_ret = tmp;
2440 return 0;
2442 free_extent_buffer(tmp);
2443 btrfs_release_path(p);
2444 return -EIO;
2448 * reduce lock contention at high levels
2449 * of the btree by dropping locks before
2450 * we read. Don't release the lock on the current
2451 * level because we need to walk this node to figure
2452 * out which blocks to read.
2454 btrfs_unlock_up_safe(p, level + 1);
2455 btrfs_set_path_blocking(p);
2457 if (p->reada != READA_NONE)
2458 reada_for_search(fs_info, p, level, slot, key->objectid);
2460 ret = -EAGAIN;
2461 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2462 &first_key);
2463 if (!IS_ERR(tmp)) {
2465 * If the read above didn't mark this buffer up to date,
2466 * it will never end up being up to date. Set ret to EIO now
2467 * and give up so that our caller doesn't loop forever
2468 * on our EAGAINs.
2470 if (!extent_buffer_uptodate(tmp))
2471 ret = -EIO;
2472 free_extent_buffer(tmp);
2473 } else {
2474 ret = PTR_ERR(tmp);
2477 btrfs_release_path(p);
2478 return ret;
2482 * helper function for btrfs_search_slot. This does all of the checks
2483 * for node-level blocks and does any balancing required based on
2484 * the ins_len.
2486 * If no extra work was required, zero is returned. If we had to
2487 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2488 * start over
2490 static int
2491 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2492 struct btrfs_root *root, struct btrfs_path *p,
2493 struct extent_buffer *b, int level, int ins_len,
2494 int *write_lock_level)
2496 struct btrfs_fs_info *fs_info = root->fs_info;
2497 int ret;
2499 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2500 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2501 int sret;
2503 if (*write_lock_level < level + 1) {
2504 *write_lock_level = level + 1;
2505 btrfs_release_path(p);
2506 goto again;
2509 btrfs_set_path_blocking(p);
2510 reada_for_balance(fs_info, p, level);
2511 sret = split_node(trans, root, p, level);
2513 BUG_ON(sret > 0);
2514 if (sret) {
2515 ret = sret;
2516 goto done;
2518 b = p->nodes[level];
2519 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2520 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2521 int sret;
2523 if (*write_lock_level < level + 1) {
2524 *write_lock_level = level + 1;
2525 btrfs_release_path(p);
2526 goto again;
2529 btrfs_set_path_blocking(p);
2530 reada_for_balance(fs_info, p, level);
2531 sret = balance_level(trans, root, p, level);
2533 if (sret) {
2534 ret = sret;
2535 goto done;
2537 b = p->nodes[level];
2538 if (!b) {
2539 btrfs_release_path(p);
2540 goto again;
2542 BUG_ON(btrfs_header_nritems(b) == 1);
2544 return 0;
2546 again:
2547 ret = -EAGAIN;
2548 done:
2549 return ret;
2552 static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2553 int level, int *prev_cmp, int *slot)
2555 if (*prev_cmp != 0) {
2556 *prev_cmp = btrfs_bin_search(b, key, level, slot);
2557 return *prev_cmp;
2560 *slot = 0;
2562 return 0;
2565 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2566 u64 iobjectid, u64 ioff, u8 key_type,
2567 struct btrfs_key *found_key)
2569 int ret;
2570 struct btrfs_key key;
2571 struct extent_buffer *eb;
2573 ASSERT(path);
2574 ASSERT(found_key);
2576 key.type = key_type;
2577 key.objectid = iobjectid;
2578 key.offset = ioff;
2580 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2581 if (ret < 0)
2582 return ret;
2584 eb = path->nodes[0];
2585 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2586 ret = btrfs_next_leaf(fs_root, path);
2587 if (ret)
2588 return ret;
2589 eb = path->nodes[0];
2592 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2593 if (found_key->type != key.type ||
2594 found_key->objectid != key.objectid)
2595 return 1;
2597 return 0;
2600 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2601 struct btrfs_path *p,
2602 int write_lock_level)
2604 struct btrfs_fs_info *fs_info = root->fs_info;
2605 struct extent_buffer *b;
2606 int root_lock;
2607 int level = 0;
2609 /* We try very hard to do read locks on the root */
2610 root_lock = BTRFS_READ_LOCK;
2612 if (p->search_commit_root) {
2614 * The commit roots are read only so we always do read locks,
2615 * and we always must hold the commit_root_sem when doing
2616 * searches on them, the only exception is send where we don't
2617 * want to block transaction commits for a long time, so
2618 * we need to clone the commit root in order to avoid races
2619 * with transaction commits that create a snapshot of one of
2620 * the roots used by a send operation.
2622 if (p->need_commit_sem) {
2623 down_read(&fs_info->commit_root_sem);
2624 b = btrfs_clone_extent_buffer(root->commit_root);
2625 up_read(&fs_info->commit_root_sem);
2626 if (!b)
2627 return ERR_PTR(-ENOMEM);
2629 } else {
2630 b = root->commit_root;
2631 extent_buffer_get(b);
2633 level = btrfs_header_level(b);
2635 * Ensure that all callers have set skip_locking when
2636 * p->search_commit_root = 1.
2638 ASSERT(p->skip_locking == 1);
2640 goto out;
2643 if (p->skip_locking) {
2644 b = btrfs_root_node(root);
2645 level = btrfs_header_level(b);
2646 goto out;
2650 * If the level is set to maximum, we can skip trying to get the read
2651 * lock.
2653 if (write_lock_level < BTRFS_MAX_LEVEL) {
2655 * We don't know the level of the root node until we actually
2656 * have it read locked
2658 b = btrfs_read_lock_root_node(root);
2659 level = btrfs_header_level(b);
2660 if (level > write_lock_level)
2661 goto out;
2663 /* Whoops, must trade for write lock */
2664 btrfs_tree_read_unlock(b);
2665 free_extent_buffer(b);
2668 b = btrfs_lock_root_node(root);
2669 root_lock = BTRFS_WRITE_LOCK;
2671 /* The level might have changed, check again */
2672 level = btrfs_header_level(b);
2674 out:
2675 p->nodes[level] = b;
2676 if (!p->skip_locking)
2677 p->locks[level] = root_lock;
2679 * Callers are responsible for dropping b's references.
2681 return b;
2686 * btrfs_search_slot - look for a key in a tree and perform necessary
2687 * modifications to preserve tree invariants.
2689 * @trans: Handle of transaction, used when modifying the tree
2690 * @p: Holds all btree nodes along the search path
2691 * @root: The root node of the tree
2692 * @key: The key we are looking for
2693 * @ins_len: Indicates purpose of search, for inserts it is 1, for
2694 * deletions it's -1. 0 for plain searches
2695 * @cow: boolean should CoW operations be performed. Must always be 1
2696 * when modifying the tree.
2698 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2699 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2701 * If @key is found, 0 is returned and you can find the item in the leaf level
2702 * of the path (level 0)
2704 * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2705 * points to the slot where it should be inserted
2707 * If an error is encountered while searching the tree a negative error number
2708 * is returned
2710 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2711 const struct btrfs_key *key, struct btrfs_path *p,
2712 int ins_len, int cow)
2714 struct extent_buffer *b;
2715 int slot;
2716 int ret;
2717 int err;
2718 int level;
2719 int lowest_unlock = 1;
2720 /* everything at write_lock_level or lower must be write locked */
2721 int write_lock_level = 0;
2722 u8 lowest_level = 0;
2723 int min_write_lock_level;
2724 int prev_cmp;
2726 lowest_level = p->lowest_level;
2727 WARN_ON(lowest_level && ins_len > 0);
2728 WARN_ON(p->nodes[0] != NULL);
2729 BUG_ON(!cow && ins_len);
2731 if (ins_len < 0) {
2732 lowest_unlock = 2;
2734 /* when we are removing items, we might have to go up to level
2735 * two as we update tree pointers Make sure we keep write
2736 * for those levels as well
2738 write_lock_level = 2;
2739 } else if (ins_len > 0) {
2741 * for inserting items, make sure we have a write lock on
2742 * level 1 so we can update keys
2744 write_lock_level = 1;
2747 if (!cow)
2748 write_lock_level = -1;
2750 if (cow && (p->keep_locks || p->lowest_level))
2751 write_lock_level = BTRFS_MAX_LEVEL;
2753 min_write_lock_level = write_lock_level;
2755 again:
2756 prev_cmp = -1;
2757 b = btrfs_search_slot_get_root(root, p, write_lock_level);
2758 if (IS_ERR(b)) {
2759 ret = PTR_ERR(b);
2760 goto done;
2763 while (b) {
2764 level = btrfs_header_level(b);
2767 * setup the path here so we can release it under lock
2768 * contention with the cow code
2770 if (cow) {
2771 bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2774 * if we don't really need to cow this block
2775 * then we don't want to set the path blocking,
2776 * so we test it here
2778 if (!should_cow_block(trans, root, b)) {
2779 trans->dirty = true;
2780 goto cow_done;
2784 * must have write locks on this node and the
2785 * parent
2787 if (level > write_lock_level ||
2788 (level + 1 > write_lock_level &&
2789 level + 1 < BTRFS_MAX_LEVEL &&
2790 p->nodes[level + 1])) {
2791 write_lock_level = level + 1;
2792 btrfs_release_path(p);
2793 goto again;
2796 btrfs_set_path_blocking(p);
2797 if (last_level)
2798 err = btrfs_cow_block(trans, root, b, NULL, 0,
2799 &b);
2800 else
2801 err = btrfs_cow_block(trans, root, b,
2802 p->nodes[level + 1],
2803 p->slots[level + 1], &b);
2804 if (err) {
2805 ret = err;
2806 goto done;
2809 cow_done:
2810 p->nodes[level] = b;
2812 * Leave path with blocking locks to avoid massive
2813 * lock context switch, this is made on purpose.
2817 * we have a lock on b and as long as we aren't changing
2818 * the tree, there is no way to for the items in b to change.
2819 * It is safe to drop the lock on our parent before we
2820 * go through the expensive btree search on b.
2822 * If we're inserting or deleting (ins_len != 0), then we might
2823 * be changing slot zero, which may require changing the parent.
2824 * So, we can't drop the lock until after we know which slot
2825 * we're operating on.
2827 if (!ins_len && !p->keep_locks) {
2828 int u = level + 1;
2830 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2831 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2832 p->locks[u] = 0;
2836 ret = key_search(b, key, level, &prev_cmp, &slot);
2837 if (ret < 0)
2838 goto done;
2840 if (level != 0) {
2841 int dec = 0;
2842 if (ret && slot > 0) {
2843 dec = 1;
2844 slot -= 1;
2846 p->slots[level] = slot;
2847 err = setup_nodes_for_search(trans, root, p, b, level,
2848 ins_len, &write_lock_level);
2849 if (err == -EAGAIN)
2850 goto again;
2851 if (err) {
2852 ret = err;
2853 goto done;
2855 b = p->nodes[level];
2856 slot = p->slots[level];
2859 * slot 0 is special, if we change the key
2860 * we have to update the parent pointer
2861 * which means we must have a write lock
2862 * on the parent
2864 if (slot == 0 && ins_len &&
2865 write_lock_level < level + 1) {
2866 write_lock_level = level + 1;
2867 btrfs_release_path(p);
2868 goto again;
2871 unlock_up(p, level, lowest_unlock,
2872 min_write_lock_level, &write_lock_level);
2874 if (level == lowest_level) {
2875 if (dec)
2876 p->slots[level]++;
2877 goto done;
2880 err = read_block_for_search(root, p, &b, level,
2881 slot, key);
2882 if (err == -EAGAIN)
2883 goto again;
2884 if (err) {
2885 ret = err;
2886 goto done;
2889 if (!p->skip_locking) {
2890 level = btrfs_header_level(b);
2891 if (level <= write_lock_level) {
2892 err = btrfs_try_tree_write_lock(b);
2893 if (!err) {
2894 btrfs_set_path_blocking(p);
2895 btrfs_tree_lock(b);
2897 p->locks[level] = BTRFS_WRITE_LOCK;
2898 } else {
2899 err = btrfs_tree_read_lock_atomic(b);
2900 if (!err) {
2901 btrfs_set_path_blocking(p);
2902 btrfs_tree_read_lock(b);
2904 p->locks[level] = BTRFS_READ_LOCK;
2906 p->nodes[level] = b;
2908 } else {
2909 p->slots[level] = slot;
2910 if (ins_len > 0 &&
2911 btrfs_leaf_free_space(b) < ins_len) {
2912 if (write_lock_level < 1) {
2913 write_lock_level = 1;
2914 btrfs_release_path(p);
2915 goto again;
2918 btrfs_set_path_blocking(p);
2919 err = split_leaf(trans, root, key,
2920 p, ins_len, ret == 0);
2922 BUG_ON(err > 0);
2923 if (err) {
2924 ret = err;
2925 goto done;
2928 if (!p->search_for_split)
2929 unlock_up(p, level, lowest_unlock,
2930 min_write_lock_level, NULL);
2931 goto done;
2934 ret = 1;
2935 done:
2937 * we don't really know what they plan on doing with the path
2938 * from here on, so for now just mark it as blocking
2940 if (!p->leave_spinning)
2941 btrfs_set_path_blocking(p);
2942 if (ret < 0 && !p->skip_release_on_error)
2943 btrfs_release_path(p);
2944 return ret;
2948 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2949 * current state of the tree together with the operations recorded in the tree
2950 * modification log to search for the key in a previous version of this tree, as
2951 * denoted by the time_seq parameter.
2953 * Naturally, there is no support for insert, delete or cow operations.
2955 * The resulting path and return value will be set up as if we called
2956 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2958 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2959 struct btrfs_path *p, u64 time_seq)
2961 struct btrfs_fs_info *fs_info = root->fs_info;
2962 struct extent_buffer *b;
2963 int slot;
2964 int ret;
2965 int err;
2966 int level;
2967 int lowest_unlock = 1;
2968 u8 lowest_level = 0;
2969 int prev_cmp = -1;
2971 lowest_level = p->lowest_level;
2972 WARN_ON(p->nodes[0] != NULL);
2974 if (p->search_commit_root) {
2975 BUG_ON(time_seq);
2976 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2979 again:
2980 b = get_old_root(root, time_seq);
2981 if (!b) {
2982 ret = -EIO;
2983 goto done;
2985 level = btrfs_header_level(b);
2986 p->locks[level] = BTRFS_READ_LOCK;
2988 while (b) {
2989 level = btrfs_header_level(b);
2990 p->nodes[level] = b;
2993 * we have a lock on b and as long as we aren't changing
2994 * the tree, there is no way to for the items in b to change.
2995 * It is safe to drop the lock on our parent before we
2996 * go through the expensive btree search on b.
2998 btrfs_unlock_up_safe(p, level + 1);
3001 * Since we can unwind ebs we want to do a real search every
3002 * time.
3004 prev_cmp = -1;
3005 ret = key_search(b, key, level, &prev_cmp, &slot);
3006 if (ret < 0)
3007 goto done;
3009 if (level != 0) {
3010 int dec = 0;
3011 if (ret && slot > 0) {
3012 dec = 1;
3013 slot -= 1;
3015 p->slots[level] = slot;
3016 unlock_up(p, level, lowest_unlock, 0, NULL);
3018 if (level == lowest_level) {
3019 if (dec)
3020 p->slots[level]++;
3021 goto done;
3024 err = read_block_for_search(root, p, &b, level,
3025 slot, key);
3026 if (err == -EAGAIN)
3027 goto again;
3028 if (err) {
3029 ret = err;
3030 goto done;
3033 level = btrfs_header_level(b);
3034 err = btrfs_tree_read_lock_atomic(b);
3035 if (!err) {
3036 btrfs_set_path_blocking(p);
3037 btrfs_tree_read_lock(b);
3039 b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3040 if (!b) {
3041 ret = -ENOMEM;
3042 goto done;
3044 p->locks[level] = BTRFS_READ_LOCK;
3045 p->nodes[level] = b;
3046 } else {
3047 p->slots[level] = slot;
3048 unlock_up(p, level, lowest_unlock, 0, NULL);
3049 goto done;
3052 ret = 1;
3053 done:
3054 if (!p->leave_spinning)
3055 btrfs_set_path_blocking(p);
3056 if (ret < 0)
3057 btrfs_release_path(p);
3059 return ret;
3063 * helper to use instead of search slot if no exact match is needed but
3064 * instead the next or previous item should be returned.
3065 * When find_higher is true, the next higher item is returned, the next lower
3066 * otherwise.
3067 * When return_any and find_higher are both true, and no higher item is found,
3068 * return the next lower instead.
3069 * When return_any is true and find_higher is false, and no lower item is found,
3070 * return the next higher instead.
3071 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3072 * < 0 on error
3074 int btrfs_search_slot_for_read(struct btrfs_root *root,
3075 const struct btrfs_key *key,
3076 struct btrfs_path *p, int find_higher,
3077 int return_any)
3079 int ret;
3080 struct extent_buffer *leaf;
3082 again:
3083 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3084 if (ret <= 0)
3085 return ret;
3087 * a return value of 1 means the path is at the position where the
3088 * item should be inserted. Normally this is the next bigger item,
3089 * but in case the previous item is the last in a leaf, path points
3090 * to the first free slot in the previous leaf, i.e. at an invalid
3091 * item.
3093 leaf = p->nodes[0];
3095 if (find_higher) {
3096 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3097 ret = btrfs_next_leaf(root, p);
3098 if (ret <= 0)
3099 return ret;
3100 if (!return_any)
3101 return 1;
3103 * no higher item found, return the next
3104 * lower instead
3106 return_any = 0;
3107 find_higher = 0;
3108 btrfs_release_path(p);
3109 goto again;
3111 } else {
3112 if (p->slots[0] == 0) {
3113 ret = btrfs_prev_leaf(root, p);
3114 if (ret < 0)
3115 return ret;
3116 if (!ret) {
3117 leaf = p->nodes[0];
3118 if (p->slots[0] == btrfs_header_nritems(leaf))
3119 p->slots[0]--;
3120 return 0;
3122 if (!return_any)
3123 return 1;
3125 * no lower item found, return the next
3126 * higher instead
3128 return_any = 0;
3129 find_higher = 1;
3130 btrfs_release_path(p);
3131 goto again;
3132 } else {
3133 --p->slots[0];
3136 return 0;
3140 * adjust the pointers going up the tree, starting at level
3141 * making sure the right key of each node is points to 'key'.
3142 * This is used after shifting pointers to the left, so it stops
3143 * fixing up pointers when a given leaf/node is not in slot 0 of the
3144 * higher levels
3147 static void fixup_low_keys(struct btrfs_path *path,
3148 struct btrfs_disk_key *key, int level)
3150 int i;
3151 struct extent_buffer *t;
3152 int ret;
3154 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3155 int tslot = path->slots[i];
3157 if (!path->nodes[i])
3158 break;
3159 t = path->nodes[i];
3160 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3161 GFP_ATOMIC);
3162 BUG_ON(ret < 0);
3163 btrfs_set_node_key(t, key, tslot);
3164 btrfs_mark_buffer_dirty(path->nodes[i]);
3165 if (tslot != 0)
3166 break;
3171 * update item key.
3173 * This function isn't completely safe. It's the caller's responsibility
3174 * that the new key won't break the order
3176 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3177 struct btrfs_path *path,
3178 const struct btrfs_key *new_key)
3180 struct btrfs_disk_key disk_key;
3181 struct extent_buffer *eb;
3182 int slot;
3184 eb = path->nodes[0];
3185 slot = path->slots[0];
3186 if (slot > 0) {
3187 btrfs_item_key(eb, &disk_key, slot - 1);
3188 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
3189 btrfs_crit(fs_info,
3190 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3191 slot, btrfs_disk_key_objectid(&disk_key),
3192 btrfs_disk_key_type(&disk_key),
3193 btrfs_disk_key_offset(&disk_key),
3194 new_key->objectid, new_key->type,
3195 new_key->offset);
3196 btrfs_print_leaf(eb);
3197 BUG();
3200 if (slot < btrfs_header_nritems(eb) - 1) {
3201 btrfs_item_key(eb, &disk_key, slot + 1);
3202 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
3203 btrfs_crit(fs_info,
3204 "slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3205 slot, btrfs_disk_key_objectid(&disk_key),
3206 btrfs_disk_key_type(&disk_key),
3207 btrfs_disk_key_offset(&disk_key),
3208 new_key->objectid, new_key->type,
3209 new_key->offset);
3210 btrfs_print_leaf(eb);
3211 BUG();
3215 btrfs_cpu_key_to_disk(&disk_key, new_key);
3216 btrfs_set_item_key(eb, &disk_key, slot);
3217 btrfs_mark_buffer_dirty(eb);
3218 if (slot == 0)
3219 fixup_low_keys(path, &disk_key, 1);
3223 * try to push data from one node into the next node left in the
3224 * tree.
3226 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3227 * error, and > 0 if there was no room in the left hand block.
3229 static int push_node_left(struct btrfs_trans_handle *trans,
3230 struct extent_buffer *dst,
3231 struct extent_buffer *src, int empty)
3233 struct btrfs_fs_info *fs_info = trans->fs_info;
3234 int push_items = 0;
3235 int src_nritems;
3236 int dst_nritems;
3237 int ret = 0;
3239 src_nritems = btrfs_header_nritems(src);
3240 dst_nritems = btrfs_header_nritems(dst);
3241 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3242 WARN_ON(btrfs_header_generation(src) != trans->transid);
3243 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3245 if (!empty && src_nritems <= 8)
3246 return 1;
3248 if (push_items <= 0)
3249 return 1;
3251 if (empty) {
3252 push_items = min(src_nritems, push_items);
3253 if (push_items < src_nritems) {
3254 /* leave at least 8 pointers in the node if
3255 * we aren't going to empty it
3257 if (src_nritems - push_items < 8) {
3258 if (push_items <= 8)
3259 return 1;
3260 push_items -= 8;
3263 } else
3264 push_items = min(src_nritems - 8, push_items);
3266 ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3267 if (ret) {
3268 btrfs_abort_transaction(trans, ret);
3269 return ret;
3271 copy_extent_buffer(dst, src,
3272 btrfs_node_key_ptr_offset(dst_nritems),
3273 btrfs_node_key_ptr_offset(0),
3274 push_items * sizeof(struct btrfs_key_ptr));
3276 if (push_items < src_nritems) {
3278 * Don't call tree_mod_log_insert_move here, key removal was
3279 * already fully logged by tree_mod_log_eb_copy above.
3281 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3282 btrfs_node_key_ptr_offset(push_items),
3283 (src_nritems - push_items) *
3284 sizeof(struct btrfs_key_ptr));
3286 btrfs_set_header_nritems(src, src_nritems - push_items);
3287 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3288 btrfs_mark_buffer_dirty(src);
3289 btrfs_mark_buffer_dirty(dst);
3291 return ret;
3295 * try to push data from one node into the next node right in the
3296 * tree.
3298 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3299 * error, and > 0 if there was no room in the right hand block.
3301 * this will only push up to 1/2 the contents of the left node over
3303 static int balance_node_right(struct btrfs_trans_handle *trans,
3304 struct extent_buffer *dst,
3305 struct extent_buffer *src)
3307 struct btrfs_fs_info *fs_info = trans->fs_info;
3308 int push_items = 0;
3309 int max_push;
3310 int src_nritems;
3311 int dst_nritems;
3312 int ret = 0;
3314 WARN_ON(btrfs_header_generation(src) != trans->transid);
3315 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3317 src_nritems = btrfs_header_nritems(src);
3318 dst_nritems = btrfs_header_nritems(dst);
3319 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3320 if (push_items <= 0)
3321 return 1;
3323 if (src_nritems < 4)
3324 return 1;
3326 max_push = src_nritems / 2 + 1;
3327 /* don't try to empty the node */
3328 if (max_push >= src_nritems)
3329 return 1;
3331 if (max_push < push_items)
3332 push_items = max_push;
3334 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3335 BUG_ON(ret < 0);
3336 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3337 btrfs_node_key_ptr_offset(0),
3338 (dst_nritems) *
3339 sizeof(struct btrfs_key_ptr));
3341 ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
3342 push_items);
3343 if (ret) {
3344 btrfs_abort_transaction(trans, ret);
3345 return ret;
3347 copy_extent_buffer(dst, src,
3348 btrfs_node_key_ptr_offset(0),
3349 btrfs_node_key_ptr_offset(src_nritems - push_items),
3350 push_items * sizeof(struct btrfs_key_ptr));
3352 btrfs_set_header_nritems(src, src_nritems - push_items);
3353 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3355 btrfs_mark_buffer_dirty(src);
3356 btrfs_mark_buffer_dirty(dst);
3358 return ret;
3362 * helper function to insert a new root level in the tree.
3363 * A new node is allocated, and a single item is inserted to
3364 * point to the existing root
3366 * returns zero on success or < 0 on failure.
3368 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3369 struct btrfs_root *root,
3370 struct btrfs_path *path, int level)
3372 struct btrfs_fs_info *fs_info = root->fs_info;
3373 u64 lower_gen;
3374 struct extent_buffer *lower;
3375 struct extent_buffer *c;
3376 struct extent_buffer *old;
3377 struct btrfs_disk_key lower_key;
3378 int ret;
3380 BUG_ON(path->nodes[level]);
3381 BUG_ON(path->nodes[level-1] != root->node);
3383 lower = path->nodes[level-1];
3384 if (level == 1)
3385 btrfs_item_key(lower, &lower_key, 0);
3386 else
3387 btrfs_node_key(lower, &lower_key, 0);
3389 c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3390 root->node->start, 0);
3391 if (IS_ERR(c))
3392 return PTR_ERR(c);
3394 root_add_used(root, fs_info->nodesize);
3396 btrfs_set_header_nritems(c, 1);
3397 btrfs_set_node_key(c, &lower_key, 0);
3398 btrfs_set_node_blockptr(c, 0, lower->start);
3399 lower_gen = btrfs_header_generation(lower);
3400 WARN_ON(lower_gen != trans->transid);
3402 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3404 btrfs_mark_buffer_dirty(c);
3406 old = root->node;
3407 ret = tree_mod_log_insert_root(root->node, c, 0);
3408 BUG_ON(ret < 0);
3409 rcu_assign_pointer(root->node, c);
3411 /* the super has an extra ref to root->node */
3412 free_extent_buffer(old);
3414 add_root_to_dirty_list(root);
3415 extent_buffer_get(c);
3416 path->nodes[level] = c;
3417 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3418 path->slots[level] = 0;
3419 return 0;
3423 * worker function to insert a single pointer in a node.
3424 * the node should have enough room for the pointer already
3426 * slot and level indicate where you want the key to go, and
3427 * blocknr is the block the key points to.
3429 static void insert_ptr(struct btrfs_trans_handle *trans,
3430 struct btrfs_path *path,
3431 struct btrfs_disk_key *key, u64 bytenr,
3432 int slot, int level)
3434 struct extent_buffer *lower;
3435 int nritems;
3436 int ret;
3438 BUG_ON(!path->nodes[level]);
3439 btrfs_assert_tree_locked(path->nodes[level]);
3440 lower = path->nodes[level];
3441 nritems = btrfs_header_nritems(lower);
3442 BUG_ON(slot > nritems);
3443 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3444 if (slot != nritems) {
3445 if (level) {
3446 ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3447 nritems - slot);
3448 BUG_ON(ret < 0);
3450 memmove_extent_buffer(lower,
3451 btrfs_node_key_ptr_offset(slot + 1),
3452 btrfs_node_key_ptr_offset(slot),
3453 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3455 if (level) {
3456 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3457 GFP_NOFS);
3458 BUG_ON(ret < 0);
3460 btrfs_set_node_key(lower, key, slot);
3461 btrfs_set_node_blockptr(lower, slot, bytenr);
3462 WARN_ON(trans->transid == 0);
3463 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3464 btrfs_set_header_nritems(lower, nritems + 1);
3465 btrfs_mark_buffer_dirty(lower);
3469 * split the node at the specified level in path in two.
3470 * The path is corrected to point to the appropriate node after the split
3472 * Before splitting this tries to make some room in the node by pushing
3473 * left and right, if either one works, it returns right away.
3475 * returns 0 on success and < 0 on failure
3477 static noinline int split_node(struct btrfs_trans_handle *trans,
3478 struct btrfs_root *root,
3479 struct btrfs_path *path, int level)
3481 struct btrfs_fs_info *fs_info = root->fs_info;
3482 struct extent_buffer *c;
3483 struct extent_buffer *split;
3484 struct btrfs_disk_key disk_key;
3485 int mid;
3486 int ret;
3487 u32 c_nritems;
3489 c = path->nodes[level];
3490 WARN_ON(btrfs_header_generation(c) != trans->transid);
3491 if (c == root->node) {
3493 * trying to split the root, lets make a new one
3495 * tree mod log: We don't log_removal old root in
3496 * insert_new_root, because that root buffer will be kept as a
3497 * normal node. We are going to log removal of half of the
3498 * elements below with tree_mod_log_eb_copy. We're holding a
3499 * tree lock on the buffer, which is why we cannot race with
3500 * other tree_mod_log users.
3502 ret = insert_new_root(trans, root, path, level + 1);
3503 if (ret)
3504 return ret;
3505 } else {
3506 ret = push_nodes_for_insert(trans, root, path, level);
3507 c = path->nodes[level];
3508 if (!ret && btrfs_header_nritems(c) <
3509 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3510 return 0;
3511 if (ret < 0)
3512 return ret;
3515 c_nritems = btrfs_header_nritems(c);
3516 mid = (c_nritems + 1) / 2;
3517 btrfs_node_key(c, &disk_key, mid);
3519 split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3520 c->start, 0);
3521 if (IS_ERR(split))
3522 return PTR_ERR(split);
3524 root_add_used(root, fs_info->nodesize);
3525 ASSERT(btrfs_header_level(c) == level);
3527 ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3528 if (ret) {
3529 btrfs_abort_transaction(trans, ret);
3530 return ret;
3532 copy_extent_buffer(split, c,
3533 btrfs_node_key_ptr_offset(0),
3534 btrfs_node_key_ptr_offset(mid),
3535 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3536 btrfs_set_header_nritems(split, c_nritems - mid);
3537 btrfs_set_header_nritems(c, mid);
3538 ret = 0;
3540 btrfs_mark_buffer_dirty(c);
3541 btrfs_mark_buffer_dirty(split);
3543 insert_ptr(trans, path, &disk_key, split->start,
3544 path->slots[level + 1] + 1, level + 1);
3546 if (path->slots[level] >= mid) {
3547 path->slots[level] -= mid;
3548 btrfs_tree_unlock(c);
3549 free_extent_buffer(c);
3550 path->nodes[level] = split;
3551 path->slots[level + 1] += 1;
3552 } else {
3553 btrfs_tree_unlock(split);
3554 free_extent_buffer(split);
3556 return ret;
3560 * how many bytes are required to store the items in a leaf. start
3561 * and nr indicate which items in the leaf to check. This totals up the
3562 * space used both by the item structs and the item data
3564 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3566 struct btrfs_item *start_item;
3567 struct btrfs_item *end_item;
3568 struct btrfs_map_token token;
3569 int data_len;
3570 int nritems = btrfs_header_nritems(l);
3571 int end = min(nritems, start + nr) - 1;
3573 if (!nr)
3574 return 0;
3575 btrfs_init_map_token(&token);
3576 start_item = btrfs_item_nr(start);
3577 end_item = btrfs_item_nr(end);
3578 data_len = btrfs_token_item_offset(l, start_item, &token) +
3579 btrfs_token_item_size(l, start_item, &token);
3580 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3581 data_len += sizeof(struct btrfs_item) * nr;
3582 WARN_ON(data_len < 0);
3583 return data_len;
3587 * The space between the end of the leaf items and
3588 * the start of the leaf data. IOW, how much room
3589 * the leaf has left for both items and data
3591 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3593 struct btrfs_fs_info *fs_info = leaf->fs_info;
3594 int nritems = btrfs_header_nritems(leaf);
3595 int ret;
3597 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3598 if (ret < 0) {
3599 btrfs_crit(fs_info,
3600 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3601 ret,
3602 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3603 leaf_space_used(leaf, 0, nritems), nritems);
3605 return ret;
3609 * min slot controls the lowest index we're willing to push to the
3610 * right. We'll push up to and including min_slot, but no lower
3612 static noinline int __push_leaf_right(struct btrfs_path *path,
3613 int data_size, int empty,
3614 struct extent_buffer *right,
3615 int free_space, u32 left_nritems,
3616 u32 min_slot)
3618 struct btrfs_fs_info *fs_info = right->fs_info;
3619 struct extent_buffer *left = path->nodes[0];
3620 struct extent_buffer *upper = path->nodes[1];
3621 struct btrfs_map_token token;
3622 struct btrfs_disk_key disk_key;
3623 int slot;
3624 u32 i;
3625 int push_space = 0;
3626 int push_items = 0;
3627 struct btrfs_item *item;
3628 u32 nr;
3629 u32 right_nritems;
3630 u32 data_end;
3631 u32 this_item_size;
3633 btrfs_init_map_token(&token);
3635 if (empty)
3636 nr = 0;
3637 else
3638 nr = max_t(u32, 1, min_slot);
3640 if (path->slots[0] >= left_nritems)
3641 push_space += data_size;
3643 slot = path->slots[1];
3644 i = left_nritems - 1;
3645 while (i >= nr) {
3646 item = btrfs_item_nr(i);
3648 if (!empty && push_items > 0) {
3649 if (path->slots[0] > i)
3650 break;
3651 if (path->slots[0] == i) {
3652 int space = btrfs_leaf_free_space(left);
3654 if (space + push_space * 2 > free_space)
3655 break;
3659 if (path->slots[0] == i)
3660 push_space += data_size;
3662 this_item_size = btrfs_item_size(left, item);
3663 if (this_item_size + sizeof(*item) + push_space > free_space)
3664 break;
3666 push_items++;
3667 push_space += this_item_size + sizeof(*item);
3668 if (i == 0)
3669 break;
3670 i--;
3673 if (push_items == 0)
3674 goto out_unlock;
3676 WARN_ON(!empty && push_items == left_nritems);
3678 /* push left to right */
3679 right_nritems = btrfs_header_nritems(right);
3681 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3682 push_space -= leaf_data_end(left);
3684 /* make room in the right data area */
3685 data_end = leaf_data_end(right);
3686 memmove_extent_buffer(right,
3687 BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3688 BTRFS_LEAF_DATA_OFFSET + data_end,
3689 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3691 /* copy from the left data area */
3692 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3693 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3694 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
3695 push_space);
3697 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3698 btrfs_item_nr_offset(0),
3699 right_nritems * sizeof(struct btrfs_item));
3701 /* copy the items from left to right */
3702 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3703 btrfs_item_nr_offset(left_nritems - push_items),
3704 push_items * sizeof(struct btrfs_item));
3706 /* update the item pointers */
3707 right_nritems += push_items;
3708 btrfs_set_header_nritems(right, right_nritems);
3709 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3710 for (i = 0; i < right_nritems; i++) {
3711 item = btrfs_item_nr(i);
3712 push_space -= btrfs_token_item_size(right, item, &token);
3713 btrfs_set_token_item_offset(right, item, push_space, &token);
3716 left_nritems -= push_items;
3717 btrfs_set_header_nritems(left, left_nritems);
3719 if (left_nritems)
3720 btrfs_mark_buffer_dirty(left);
3721 else
3722 btrfs_clean_tree_block(left);
3724 btrfs_mark_buffer_dirty(right);
3726 btrfs_item_key(right, &disk_key, 0);
3727 btrfs_set_node_key(upper, &disk_key, slot + 1);
3728 btrfs_mark_buffer_dirty(upper);
3730 /* then fixup the leaf pointer in the path */
3731 if (path->slots[0] >= left_nritems) {
3732 path->slots[0] -= left_nritems;
3733 if (btrfs_header_nritems(path->nodes[0]) == 0)
3734 btrfs_clean_tree_block(path->nodes[0]);
3735 btrfs_tree_unlock(path->nodes[0]);
3736 free_extent_buffer(path->nodes[0]);
3737 path->nodes[0] = right;
3738 path->slots[1] += 1;
3739 } else {
3740 btrfs_tree_unlock(right);
3741 free_extent_buffer(right);
3743 return 0;
3745 out_unlock:
3746 btrfs_tree_unlock(right);
3747 free_extent_buffer(right);
3748 return 1;
3752 * push some data in the path leaf to the right, trying to free up at
3753 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3755 * returns 1 if the push failed because the other node didn't have enough
3756 * room, 0 if everything worked out and < 0 if there were major errors.
3758 * this will push starting from min_slot to the end of the leaf. It won't
3759 * push any slot lower than min_slot
3761 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3762 *root, struct btrfs_path *path,
3763 int min_data_size, int data_size,
3764 int empty, u32 min_slot)
3766 struct extent_buffer *left = path->nodes[0];
3767 struct extent_buffer *right;
3768 struct extent_buffer *upper;
3769 int slot;
3770 int free_space;
3771 u32 left_nritems;
3772 int ret;
3774 if (!path->nodes[1])
3775 return 1;
3777 slot = path->slots[1];
3778 upper = path->nodes[1];
3779 if (slot >= btrfs_header_nritems(upper) - 1)
3780 return 1;
3782 btrfs_assert_tree_locked(path->nodes[1]);
3784 right = read_node_slot(upper, slot + 1);
3786 * slot + 1 is not valid or we fail to read the right node,
3787 * no big deal, just return.
3789 if (IS_ERR(right))
3790 return 1;
3792 btrfs_tree_lock(right);
3793 btrfs_set_lock_blocking_write(right);
3795 free_space = btrfs_leaf_free_space(right);
3796 if (free_space < data_size)
3797 goto out_unlock;
3799 /* cow and double check */
3800 ret = btrfs_cow_block(trans, root, right, upper,
3801 slot + 1, &right);
3802 if (ret)
3803 goto out_unlock;
3805 free_space = btrfs_leaf_free_space(right);
3806 if (free_space < data_size)
3807 goto out_unlock;
3809 left_nritems = btrfs_header_nritems(left);
3810 if (left_nritems == 0)
3811 goto out_unlock;
3813 if (path->slots[0] == left_nritems && !empty) {
3814 /* Key greater than all keys in the leaf, right neighbor has
3815 * enough room for it and we're not emptying our leaf to delete
3816 * it, therefore use right neighbor to insert the new item and
3817 * no need to touch/dirty our left leaf. */
3818 btrfs_tree_unlock(left);
3819 free_extent_buffer(left);
3820 path->nodes[0] = right;
3821 path->slots[0] = 0;
3822 path->slots[1]++;
3823 return 0;
3826 return __push_leaf_right(path, min_data_size, empty,
3827 right, free_space, left_nritems, min_slot);
3828 out_unlock:
3829 btrfs_tree_unlock(right);
3830 free_extent_buffer(right);
3831 return 1;
3835 * push some data in the path leaf to the left, trying to free up at
3836 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3838 * max_slot can put a limit on how far into the leaf we'll push items. The
3839 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3840 * items
3842 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3843 int empty, struct extent_buffer *left,
3844 int free_space, u32 right_nritems,
3845 u32 max_slot)
3847 struct btrfs_fs_info *fs_info = left->fs_info;
3848 struct btrfs_disk_key disk_key;
3849 struct extent_buffer *right = path->nodes[0];
3850 int i;
3851 int push_space = 0;
3852 int push_items = 0;
3853 struct btrfs_item *item;
3854 u32 old_left_nritems;
3855 u32 nr;
3856 int ret = 0;
3857 u32 this_item_size;
3858 u32 old_left_item_size;
3859 struct btrfs_map_token token;
3861 btrfs_init_map_token(&token);
3863 if (empty)
3864 nr = min(right_nritems, max_slot);
3865 else
3866 nr = min(right_nritems - 1, max_slot);
3868 for (i = 0; i < nr; i++) {
3869 item = btrfs_item_nr(i);
3871 if (!empty && push_items > 0) {
3872 if (path->slots[0] < i)
3873 break;
3874 if (path->slots[0] == i) {
3875 int space = btrfs_leaf_free_space(right);
3877 if (space + push_space * 2 > free_space)
3878 break;
3882 if (path->slots[0] == i)
3883 push_space += data_size;
3885 this_item_size = btrfs_item_size(right, item);
3886 if (this_item_size + sizeof(*item) + push_space > free_space)
3887 break;
3889 push_items++;
3890 push_space += this_item_size + sizeof(*item);
3893 if (push_items == 0) {
3894 ret = 1;
3895 goto out;
3897 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3899 /* push data from right to left */
3900 copy_extent_buffer(left, right,
3901 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3902 btrfs_item_nr_offset(0),
3903 push_items * sizeof(struct btrfs_item));
3905 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3906 btrfs_item_offset_nr(right, push_items - 1);
3908 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3909 leaf_data_end(left) - push_space,
3910 BTRFS_LEAF_DATA_OFFSET +
3911 btrfs_item_offset_nr(right, push_items - 1),
3912 push_space);
3913 old_left_nritems = btrfs_header_nritems(left);
3914 BUG_ON(old_left_nritems <= 0);
3916 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3917 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3918 u32 ioff;
3920 item = btrfs_item_nr(i);
3922 ioff = btrfs_token_item_offset(left, item, &token);
3923 btrfs_set_token_item_offset(left, item,
3924 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3925 &token);
3927 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3929 /* fixup right node */
3930 if (push_items > right_nritems)
3931 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3932 right_nritems);
3934 if (push_items < right_nritems) {
3935 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3936 leaf_data_end(right);
3937 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3938 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3939 BTRFS_LEAF_DATA_OFFSET +
3940 leaf_data_end(right), push_space);
3942 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3943 btrfs_item_nr_offset(push_items),
3944 (btrfs_header_nritems(right) - push_items) *
3945 sizeof(struct btrfs_item));
3947 right_nritems -= push_items;
3948 btrfs_set_header_nritems(right, right_nritems);
3949 push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3950 for (i = 0; i < right_nritems; i++) {
3951 item = btrfs_item_nr(i);
3953 push_space = push_space - btrfs_token_item_size(right,
3954 item, &token);
3955 btrfs_set_token_item_offset(right, item, push_space, &token);
3958 btrfs_mark_buffer_dirty(left);
3959 if (right_nritems)
3960 btrfs_mark_buffer_dirty(right);
3961 else
3962 btrfs_clean_tree_block(right);
3964 btrfs_item_key(right, &disk_key, 0);
3965 fixup_low_keys(path, &disk_key, 1);
3967 /* then fixup the leaf pointer in the path */
3968 if (path->slots[0] < push_items) {
3969 path->slots[0] += old_left_nritems;
3970 btrfs_tree_unlock(path->nodes[0]);
3971 free_extent_buffer(path->nodes[0]);
3972 path->nodes[0] = left;
3973 path->slots[1] -= 1;
3974 } else {
3975 btrfs_tree_unlock(left);
3976 free_extent_buffer(left);
3977 path->slots[0] -= push_items;
3979 BUG_ON(path->slots[0] < 0);
3980 return ret;
3981 out:
3982 btrfs_tree_unlock(left);
3983 free_extent_buffer(left);
3984 return ret;
3988 * push some data in the path leaf to the left, trying to free up at
3989 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3991 * max_slot can put a limit on how far into the leaf we'll push items. The
3992 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3993 * items
3995 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3996 *root, struct btrfs_path *path, int min_data_size,
3997 int data_size, int empty, u32 max_slot)
3999 struct extent_buffer *right = path->nodes[0];
4000 struct extent_buffer *left;
4001 int slot;
4002 int free_space;
4003 u32 right_nritems;
4004 int ret = 0;
4006 slot = path->slots[1];
4007 if (slot == 0)
4008 return 1;
4009 if (!path->nodes[1])
4010 return 1;
4012 right_nritems = btrfs_header_nritems(right);
4013 if (right_nritems == 0)
4014 return 1;
4016 btrfs_assert_tree_locked(path->nodes[1]);
4018 left = read_node_slot(path->nodes[1], slot - 1);
4020 * slot - 1 is not valid or we fail to read the left node,
4021 * no big deal, just return.
4023 if (IS_ERR(left))
4024 return 1;
4026 btrfs_tree_lock(left);
4027 btrfs_set_lock_blocking_write(left);
4029 free_space = btrfs_leaf_free_space(left);
4030 if (free_space < data_size) {
4031 ret = 1;
4032 goto out;
4035 /* cow and double check */
4036 ret = btrfs_cow_block(trans, root, left,
4037 path->nodes[1], slot - 1, &left);
4038 if (ret) {
4039 /* we hit -ENOSPC, but it isn't fatal here */
4040 if (ret == -ENOSPC)
4041 ret = 1;
4042 goto out;
4045 free_space = btrfs_leaf_free_space(left);
4046 if (free_space < data_size) {
4047 ret = 1;
4048 goto out;
4051 return __push_leaf_left(path, min_data_size,
4052 empty, left, free_space, right_nritems,
4053 max_slot);
4054 out:
4055 btrfs_tree_unlock(left);
4056 free_extent_buffer(left);
4057 return ret;
4061 * split the path's leaf in two, making sure there is at least data_size
4062 * available for the resulting leaf level of the path.
4064 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4065 struct btrfs_path *path,
4066 struct extent_buffer *l,
4067 struct extent_buffer *right,
4068 int slot, int mid, int nritems)
4070 struct btrfs_fs_info *fs_info = trans->fs_info;
4071 int data_copy_size;
4072 int rt_data_off;
4073 int i;
4074 struct btrfs_disk_key disk_key;
4075 struct btrfs_map_token token;
4077 btrfs_init_map_token(&token);
4079 nritems = nritems - mid;
4080 btrfs_set_header_nritems(right, nritems);
4081 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4083 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4084 btrfs_item_nr_offset(mid),
4085 nritems * sizeof(struct btrfs_item));
4087 copy_extent_buffer(right, l,
4088 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4089 data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4090 leaf_data_end(l), data_copy_size);
4092 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4094 for (i = 0; i < nritems; i++) {
4095 struct btrfs_item *item = btrfs_item_nr(i);
4096 u32 ioff;
4098 ioff = btrfs_token_item_offset(right, item, &token);
4099 btrfs_set_token_item_offset(right, item,
4100 ioff + rt_data_off, &token);
4103 btrfs_set_header_nritems(l, mid);
4104 btrfs_item_key(right, &disk_key, 0);
4105 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4107 btrfs_mark_buffer_dirty(right);
4108 btrfs_mark_buffer_dirty(l);
4109 BUG_ON(path->slots[0] != slot);
4111 if (mid <= slot) {
4112 btrfs_tree_unlock(path->nodes[0]);
4113 free_extent_buffer(path->nodes[0]);
4114 path->nodes[0] = right;
4115 path->slots[0] -= mid;
4116 path->slots[1] += 1;
4117 } else {
4118 btrfs_tree_unlock(right);
4119 free_extent_buffer(right);
4122 BUG_ON(path->slots[0] < 0);
4126 * double splits happen when we need to insert a big item in the middle
4127 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4128 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4129 * A B C
4131 * We avoid this by trying to push the items on either side of our target
4132 * into the adjacent leaves. If all goes well we can avoid the double split
4133 * completely.
4135 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4136 struct btrfs_root *root,
4137 struct btrfs_path *path,
4138 int data_size)
4140 int ret;
4141 int progress = 0;
4142 int slot;
4143 u32 nritems;
4144 int space_needed = data_size;
4146 slot = path->slots[0];
4147 if (slot < btrfs_header_nritems(path->nodes[0]))
4148 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4151 * try to push all the items after our slot into the
4152 * right leaf
4154 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4155 if (ret < 0)
4156 return ret;
4158 if (ret == 0)
4159 progress++;
4161 nritems = btrfs_header_nritems(path->nodes[0]);
4163 * our goal is to get our slot at the start or end of a leaf. If
4164 * we've done so we're done
4166 if (path->slots[0] == 0 || path->slots[0] == nritems)
4167 return 0;
4169 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4170 return 0;
4172 /* try to push all the items before our slot into the next leaf */
4173 slot = path->slots[0];
4174 space_needed = data_size;
4175 if (slot > 0)
4176 space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4177 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4178 if (ret < 0)
4179 return ret;
4181 if (ret == 0)
4182 progress++;
4184 if (progress)
4185 return 0;
4186 return 1;
4190 * split the path's leaf in two, making sure there is at least data_size
4191 * available for the resulting leaf level of the path.
4193 * returns 0 if all went well and < 0 on failure.
4195 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4196 struct btrfs_root *root,
4197 const struct btrfs_key *ins_key,
4198 struct btrfs_path *path, int data_size,
4199 int extend)
4201 struct btrfs_disk_key disk_key;
4202 struct extent_buffer *l;
4203 u32 nritems;
4204 int mid;
4205 int slot;
4206 struct extent_buffer *right;
4207 struct btrfs_fs_info *fs_info = root->fs_info;
4208 int ret = 0;
4209 int wret;
4210 int split;
4211 int num_doubles = 0;
4212 int tried_avoid_double = 0;
4214 l = path->nodes[0];
4215 slot = path->slots[0];
4216 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4217 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4218 return -EOVERFLOW;
4220 /* first try to make some room by pushing left and right */
4221 if (data_size && path->nodes[1]) {
4222 int space_needed = data_size;
4224 if (slot < btrfs_header_nritems(l))
4225 space_needed -= btrfs_leaf_free_space(l);
4227 wret = push_leaf_right(trans, root, path, space_needed,
4228 space_needed, 0, 0);
4229 if (wret < 0)
4230 return wret;
4231 if (wret) {
4232 space_needed = data_size;
4233 if (slot > 0)
4234 space_needed -= btrfs_leaf_free_space(l);
4235 wret = push_leaf_left(trans, root, path, space_needed,
4236 space_needed, 0, (u32)-1);
4237 if (wret < 0)
4238 return wret;
4240 l = path->nodes[0];
4242 /* did the pushes work? */
4243 if (btrfs_leaf_free_space(l) >= data_size)
4244 return 0;
4247 if (!path->nodes[1]) {
4248 ret = insert_new_root(trans, root, path, 1);
4249 if (ret)
4250 return ret;
4252 again:
4253 split = 1;
4254 l = path->nodes[0];
4255 slot = path->slots[0];
4256 nritems = btrfs_header_nritems(l);
4257 mid = (nritems + 1) / 2;
4259 if (mid <= slot) {
4260 if (nritems == 1 ||
4261 leaf_space_used(l, mid, nritems - mid) + data_size >
4262 BTRFS_LEAF_DATA_SIZE(fs_info)) {
4263 if (slot >= nritems) {
4264 split = 0;
4265 } else {
4266 mid = slot;
4267 if (mid != nritems &&
4268 leaf_space_used(l, mid, nritems - mid) +
4269 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4270 if (data_size && !tried_avoid_double)
4271 goto push_for_double;
4272 split = 2;
4276 } else {
4277 if (leaf_space_used(l, 0, mid) + data_size >
4278 BTRFS_LEAF_DATA_SIZE(fs_info)) {
4279 if (!extend && data_size && slot == 0) {
4280 split = 0;
4281 } else if ((extend || !data_size) && slot == 0) {
4282 mid = 1;
4283 } else {
4284 mid = slot;
4285 if (mid != nritems &&
4286 leaf_space_used(l, mid, nritems - mid) +
4287 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4288 if (data_size && !tried_avoid_double)
4289 goto push_for_double;
4290 split = 2;
4296 if (split == 0)
4297 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4298 else
4299 btrfs_item_key(l, &disk_key, mid);
4301 right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4302 l->start, 0);
4303 if (IS_ERR(right))
4304 return PTR_ERR(right);
4306 root_add_used(root, fs_info->nodesize);
4308 if (split == 0) {
4309 if (mid <= slot) {
4310 btrfs_set_header_nritems(right, 0);
4311 insert_ptr(trans, path, &disk_key,
4312 right->start, path->slots[1] + 1, 1);
4313 btrfs_tree_unlock(path->nodes[0]);
4314 free_extent_buffer(path->nodes[0]);
4315 path->nodes[0] = right;
4316 path->slots[0] = 0;
4317 path->slots[1] += 1;
4318 } else {
4319 btrfs_set_header_nritems(right, 0);
4320 insert_ptr(trans, path, &disk_key,
4321 right->start, path->slots[1], 1);
4322 btrfs_tree_unlock(path->nodes[0]);
4323 free_extent_buffer(path->nodes[0]);
4324 path->nodes[0] = right;
4325 path->slots[0] = 0;
4326 if (path->slots[1] == 0)
4327 fixup_low_keys(path, &disk_key, 1);
4330 * We create a new leaf 'right' for the required ins_len and
4331 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4332 * the content of ins_len to 'right'.
4334 return ret;
4337 copy_for_split(trans, path, l, right, slot, mid, nritems);
4339 if (split == 2) {
4340 BUG_ON(num_doubles != 0);
4341 num_doubles++;
4342 goto again;
4345 return 0;
4347 push_for_double:
4348 push_for_double_split(trans, root, path, data_size);
4349 tried_avoid_double = 1;
4350 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4351 return 0;
4352 goto again;
4355 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4356 struct btrfs_root *root,
4357 struct btrfs_path *path, int ins_len)
4359 struct btrfs_key key;
4360 struct extent_buffer *leaf;
4361 struct btrfs_file_extent_item *fi;
4362 u64 extent_len = 0;
4363 u32 item_size;
4364 int ret;
4366 leaf = path->nodes[0];
4367 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4369 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4370 key.type != BTRFS_EXTENT_CSUM_KEY);
4372 if (btrfs_leaf_free_space(leaf) >= ins_len)
4373 return 0;
4375 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4376 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4377 fi = btrfs_item_ptr(leaf, path->slots[0],
4378 struct btrfs_file_extent_item);
4379 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4381 btrfs_release_path(path);
4383 path->keep_locks = 1;
4384 path->search_for_split = 1;
4385 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4386 path->search_for_split = 0;
4387 if (ret > 0)
4388 ret = -EAGAIN;
4389 if (ret < 0)
4390 goto err;
4392 ret = -EAGAIN;
4393 leaf = path->nodes[0];
4394 /* if our item isn't there, return now */
4395 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4396 goto err;
4398 /* the leaf has changed, it now has room. return now */
4399 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4400 goto err;
4402 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4403 fi = btrfs_item_ptr(leaf, path->slots[0],
4404 struct btrfs_file_extent_item);
4405 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4406 goto err;
4409 btrfs_set_path_blocking(path);
4410 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4411 if (ret)
4412 goto err;
4414 path->keep_locks = 0;
4415 btrfs_unlock_up_safe(path, 1);
4416 return 0;
4417 err:
4418 path->keep_locks = 0;
4419 return ret;
4422 static noinline int split_item(struct btrfs_path *path,
4423 const struct btrfs_key *new_key,
4424 unsigned long split_offset)
4426 struct extent_buffer *leaf;
4427 struct btrfs_item *item;
4428 struct btrfs_item *new_item;
4429 int slot;
4430 char *buf;
4431 u32 nritems;
4432 u32 item_size;
4433 u32 orig_offset;
4434 struct btrfs_disk_key disk_key;
4436 leaf = path->nodes[0];
4437 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4439 btrfs_set_path_blocking(path);
4441 item = btrfs_item_nr(path->slots[0]);
4442 orig_offset = btrfs_item_offset(leaf, item);
4443 item_size = btrfs_item_size(leaf, item);
4445 buf = kmalloc(item_size, GFP_NOFS);
4446 if (!buf)
4447 return -ENOMEM;
4449 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4450 path->slots[0]), item_size);
4452 slot = path->slots[0] + 1;
4453 nritems = btrfs_header_nritems(leaf);
4454 if (slot != nritems) {
4455 /* shift the items */
4456 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4457 btrfs_item_nr_offset(slot),
4458 (nritems - slot) * sizeof(struct btrfs_item));
4461 btrfs_cpu_key_to_disk(&disk_key, new_key);
4462 btrfs_set_item_key(leaf, &disk_key, slot);
4464 new_item = btrfs_item_nr(slot);
4466 btrfs_set_item_offset(leaf, new_item, orig_offset);
4467 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4469 btrfs_set_item_offset(leaf, item,
4470 orig_offset + item_size - split_offset);
4471 btrfs_set_item_size(leaf, item, split_offset);
4473 btrfs_set_header_nritems(leaf, nritems + 1);
4475 /* write the data for the start of the original item */
4476 write_extent_buffer(leaf, buf,
4477 btrfs_item_ptr_offset(leaf, path->slots[0]),
4478 split_offset);
4480 /* write the data for the new item */
4481 write_extent_buffer(leaf, buf + split_offset,
4482 btrfs_item_ptr_offset(leaf, slot),
4483 item_size - split_offset);
4484 btrfs_mark_buffer_dirty(leaf);
4486 BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4487 kfree(buf);
4488 return 0;
4492 * This function splits a single item into two items,
4493 * giving 'new_key' to the new item and splitting the
4494 * old one at split_offset (from the start of the item).
4496 * The path may be released by this operation. After
4497 * the split, the path is pointing to the old item. The
4498 * new item is going to be in the same node as the old one.
4500 * Note, the item being split must be smaller enough to live alone on
4501 * a tree block with room for one extra struct btrfs_item
4503 * This allows us to split the item in place, keeping a lock on the
4504 * leaf the entire time.
4506 int btrfs_split_item(struct btrfs_trans_handle *trans,
4507 struct btrfs_root *root,
4508 struct btrfs_path *path,
4509 const struct btrfs_key *new_key,
4510 unsigned long split_offset)
4512 int ret;
4513 ret = setup_leaf_for_split(trans, root, path,
4514 sizeof(struct btrfs_item));
4515 if (ret)
4516 return ret;
4518 ret = split_item(path, new_key, split_offset);
4519 return ret;
4523 * This function duplicate a item, giving 'new_key' to the new item.
4524 * It guarantees both items live in the same tree leaf and the new item
4525 * is contiguous with the original item.
4527 * This allows us to split file extent in place, keeping a lock on the
4528 * leaf the entire time.
4530 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4531 struct btrfs_root *root,
4532 struct btrfs_path *path,
4533 const struct btrfs_key *new_key)
4535 struct extent_buffer *leaf;
4536 int ret;
4537 u32 item_size;
4539 leaf = path->nodes[0];
4540 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4541 ret = setup_leaf_for_split(trans, root, path,
4542 item_size + sizeof(struct btrfs_item));
4543 if (ret)
4544 return ret;
4546 path->slots[0]++;
4547 setup_items_for_insert(root, path, new_key, &item_size,
4548 item_size, item_size +
4549 sizeof(struct btrfs_item), 1);
4550 leaf = path->nodes[0];
4551 memcpy_extent_buffer(leaf,
4552 btrfs_item_ptr_offset(leaf, path->slots[0]),
4553 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4554 item_size);
4555 return 0;
4559 * make the item pointed to by the path smaller. new_size indicates
4560 * how small to make it, and from_end tells us if we just chop bytes
4561 * off the end of the item or if we shift the item to chop bytes off
4562 * the front.
4564 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
4566 int slot;
4567 struct extent_buffer *leaf;
4568 struct btrfs_item *item;
4569 u32 nritems;
4570 unsigned int data_end;
4571 unsigned int old_data_start;
4572 unsigned int old_size;
4573 unsigned int size_diff;
4574 int i;
4575 struct btrfs_map_token token;
4577 btrfs_init_map_token(&token);
4579 leaf = path->nodes[0];
4580 slot = path->slots[0];
4582 old_size = btrfs_item_size_nr(leaf, slot);
4583 if (old_size == new_size)
4584 return;
4586 nritems = btrfs_header_nritems(leaf);
4587 data_end = leaf_data_end(leaf);
4589 old_data_start = btrfs_item_offset_nr(leaf, slot);
4591 size_diff = old_size - new_size;
4593 BUG_ON(slot < 0);
4594 BUG_ON(slot >= nritems);
4597 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4599 /* first correct the data pointers */
4600 for (i = slot; i < nritems; i++) {
4601 u32 ioff;
4602 item = btrfs_item_nr(i);
4604 ioff = btrfs_token_item_offset(leaf, item, &token);
4605 btrfs_set_token_item_offset(leaf, item,
4606 ioff + size_diff, &token);
4609 /* shift the data */
4610 if (from_end) {
4611 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4612 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4613 data_end, old_data_start + new_size - data_end);
4614 } else {
4615 struct btrfs_disk_key disk_key;
4616 u64 offset;
4618 btrfs_item_key(leaf, &disk_key, slot);
4620 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4621 unsigned long ptr;
4622 struct btrfs_file_extent_item *fi;
4624 fi = btrfs_item_ptr(leaf, slot,
4625 struct btrfs_file_extent_item);
4626 fi = (struct btrfs_file_extent_item *)(
4627 (unsigned long)fi - size_diff);
4629 if (btrfs_file_extent_type(leaf, fi) ==
4630 BTRFS_FILE_EXTENT_INLINE) {
4631 ptr = btrfs_item_ptr_offset(leaf, slot);
4632 memmove_extent_buffer(leaf, ptr,
4633 (unsigned long)fi,
4634 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4638 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4639 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4640 data_end, old_data_start - data_end);
4642 offset = btrfs_disk_key_offset(&disk_key);
4643 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4644 btrfs_set_item_key(leaf, &disk_key, slot);
4645 if (slot == 0)
4646 fixup_low_keys(path, &disk_key, 1);
4649 item = btrfs_item_nr(slot);
4650 btrfs_set_item_size(leaf, item, new_size);
4651 btrfs_mark_buffer_dirty(leaf);
4653 if (btrfs_leaf_free_space(leaf) < 0) {
4654 btrfs_print_leaf(leaf);
4655 BUG();
4660 * make the item pointed to by the path bigger, data_size is the added size.
4662 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4664 int slot;
4665 struct extent_buffer *leaf;
4666 struct btrfs_item *item;
4667 u32 nritems;
4668 unsigned int data_end;
4669 unsigned int old_data;
4670 unsigned int old_size;
4671 int i;
4672 struct btrfs_map_token token;
4674 btrfs_init_map_token(&token);
4676 leaf = path->nodes[0];
4678 nritems = btrfs_header_nritems(leaf);
4679 data_end = leaf_data_end(leaf);
4681 if (btrfs_leaf_free_space(leaf) < data_size) {
4682 btrfs_print_leaf(leaf);
4683 BUG();
4685 slot = path->slots[0];
4686 old_data = btrfs_item_end_nr(leaf, slot);
4688 BUG_ON(slot < 0);
4689 if (slot >= nritems) {
4690 btrfs_print_leaf(leaf);
4691 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4692 slot, nritems);
4693 BUG();
4697 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4699 /* first correct the data pointers */
4700 for (i = slot; i < nritems; i++) {
4701 u32 ioff;
4702 item = btrfs_item_nr(i);
4704 ioff = btrfs_token_item_offset(leaf, item, &token);
4705 btrfs_set_token_item_offset(leaf, item,
4706 ioff - data_size, &token);
4709 /* shift the data */
4710 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4711 data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4712 data_end, old_data - data_end);
4714 data_end = old_data;
4715 old_size = btrfs_item_size_nr(leaf, slot);
4716 item = btrfs_item_nr(slot);
4717 btrfs_set_item_size(leaf, item, old_size + data_size);
4718 btrfs_mark_buffer_dirty(leaf);
4720 if (btrfs_leaf_free_space(leaf) < 0) {
4721 btrfs_print_leaf(leaf);
4722 BUG();
4727 * this is a helper for btrfs_insert_empty_items, the main goal here is
4728 * to save stack depth by doing the bulk of the work in a function
4729 * that doesn't call btrfs_search_slot
4731 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4732 const struct btrfs_key *cpu_key, u32 *data_size,
4733 u32 total_data, u32 total_size, int nr)
4735 struct btrfs_fs_info *fs_info = root->fs_info;
4736 struct btrfs_item *item;
4737 int i;
4738 u32 nritems;
4739 unsigned int data_end;
4740 struct btrfs_disk_key disk_key;
4741 struct extent_buffer *leaf;
4742 int slot;
4743 struct btrfs_map_token token;
4745 if (path->slots[0] == 0) {
4746 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4747 fixup_low_keys(path, &disk_key, 1);
4749 btrfs_unlock_up_safe(path, 1);
4751 btrfs_init_map_token(&token);
4753 leaf = path->nodes[0];
4754 slot = path->slots[0];
4756 nritems = btrfs_header_nritems(leaf);
4757 data_end = leaf_data_end(leaf);
4759 if (btrfs_leaf_free_space(leaf) < total_size) {
4760 btrfs_print_leaf(leaf);
4761 btrfs_crit(fs_info, "not enough freespace need %u have %d",
4762 total_size, btrfs_leaf_free_space(leaf));
4763 BUG();
4766 if (slot != nritems) {
4767 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4769 if (old_data < data_end) {
4770 btrfs_print_leaf(leaf);
4771 btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4772 slot, old_data, data_end);
4773 BUG();
4776 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4778 /* first correct the data pointers */
4779 for (i = slot; i < nritems; i++) {
4780 u32 ioff;
4782 item = btrfs_item_nr(i);
4783 ioff = btrfs_token_item_offset(leaf, item, &token);
4784 btrfs_set_token_item_offset(leaf, item,
4785 ioff - total_data, &token);
4787 /* shift the items */
4788 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4789 btrfs_item_nr_offset(slot),
4790 (nritems - slot) * sizeof(struct btrfs_item));
4792 /* shift the data */
4793 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4794 data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4795 data_end, old_data - data_end);
4796 data_end = old_data;
4799 /* setup the item for the new data */
4800 for (i = 0; i < nr; i++) {
4801 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4802 btrfs_set_item_key(leaf, &disk_key, slot + i);
4803 item = btrfs_item_nr(slot + i);
4804 btrfs_set_token_item_offset(leaf, item,
4805 data_end - data_size[i], &token);
4806 data_end -= data_size[i];
4807 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4810 btrfs_set_header_nritems(leaf, nritems + nr);
4811 btrfs_mark_buffer_dirty(leaf);
4813 if (btrfs_leaf_free_space(leaf) < 0) {
4814 btrfs_print_leaf(leaf);
4815 BUG();
4820 * Given a key and some data, insert items into the tree.
4821 * This does all the path init required, making room in the tree if needed.
4823 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4824 struct btrfs_root *root,
4825 struct btrfs_path *path,
4826 const struct btrfs_key *cpu_key, u32 *data_size,
4827 int nr)
4829 int ret = 0;
4830 int slot;
4831 int i;
4832 u32 total_size = 0;
4833 u32 total_data = 0;
4835 for (i = 0; i < nr; i++)
4836 total_data += data_size[i];
4838 total_size = total_data + (nr * sizeof(struct btrfs_item));
4839 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4840 if (ret == 0)
4841 return -EEXIST;
4842 if (ret < 0)
4843 return ret;
4845 slot = path->slots[0];
4846 BUG_ON(slot < 0);
4848 setup_items_for_insert(root, path, cpu_key, data_size,
4849 total_data, total_size, nr);
4850 return 0;
4854 * Given a key and some data, insert an item into the tree.
4855 * This does all the path init required, making room in the tree if needed.
4857 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4858 const struct btrfs_key *cpu_key, void *data,
4859 u32 data_size)
4861 int ret = 0;
4862 struct btrfs_path *path;
4863 struct extent_buffer *leaf;
4864 unsigned long ptr;
4866 path = btrfs_alloc_path();
4867 if (!path)
4868 return -ENOMEM;
4869 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4870 if (!ret) {
4871 leaf = path->nodes[0];
4872 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4873 write_extent_buffer(leaf, data, ptr, data_size);
4874 btrfs_mark_buffer_dirty(leaf);
4876 btrfs_free_path(path);
4877 return ret;
4881 * delete the pointer from a given node.
4883 * the tree should have been previously balanced so the deletion does not
4884 * empty a node.
4886 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4887 int level, int slot)
4889 struct extent_buffer *parent = path->nodes[level];
4890 u32 nritems;
4891 int ret;
4893 nritems = btrfs_header_nritems(parent);
4894 if (slot != nritems - 1) {
4895 if (level) {
4896 ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4897 nritems - slot - 1);
4898 BUG_ON(ret < 0);
4900 memmove_extent_buffer(parent,
4901 btrfs_node_key_ptr_offset(slot),
4902 btrfs_node_key_ptr_offset(slot + 1),
4903 sizeof(struct btrfs_key_ptr) *
4904 (nritems - slot - 1));
4905 } else if (level) {
4906 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4907 GFP_NOFS);
4908 BUG_ON(ret < 0);
4911 nritems--;
4912 btrfs_set_header_nritems(parent, nritems);
4913 if (nritems == 0 && parent == root->node) {
4914 BUG_ON(btrfs_header_level(root->node) != 1);
4915 /* just turn the root into a leaf and break */
4916 btrfs_set_header_level(root->node, 0);
4917 } else if (slot == 0) {
4918 struct btrfs_disk_key disk_key;
4920 btrfs_node_key(parent, &disk_key, 0);
4921 fixup_low_keys(path, &disk_key, level + 1);
4923 btrfs_mark_buffer_dirty(parent);
4927 * a helper function to delete the leaf pointed to by path->slots[1] and
4928 * path->nodes[1].
4930 * This deletes the pointer in path->nodes[1] and frees the leaf
4931 * block extent. zero is returned if it all worked out, < 0 otherwise.
4933 * The path must have already been setup for deleting the leaf, including
4934 * all the proper balancing. path->nodes[1] must be locked.
4936 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4937 struct btrfs_root *root,
4938 struct btrfs_path *path,
4939 struct extent_buffer *leaf)
4941 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4942 del_ptr(root, path, 1, path->slots[1]);
4945 * btrfs_free_extent is expensive, we want to make sure we
4946 * aren't holding any locks when we call it
4948 btrfs_unlock_up_safe(path, 0);
4950 root_sub_used(root, leaf->len);
4952 extent_buffer_get(leaf);
4953 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4954 free_extent_buffer_stale(leaf);
4957 * delete the item at the leaf level in path. If that empties
4958 * the leaf, remove it from the tree
4960 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4961 struct btrfs_path *path, int slot, int nr)
4963 struct btrfs_fs_info *fs_info = root->fs_info;
4964 struct extent_buffer *leaf;
4965 struct btrfs_item *item;
4966 u32 last_off;
4967 u32 dsize = 0;
4968 int ret = 0;
4969 int wret;
4970 int i;
4971 u32 nritems;
4972 struct btrfs_map_token token;
4974 btrfs_init_map_token(&token);
4976 leaf = path->nodes[0];
4977 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4979 for (i = 0; i < nr; i++)
4980 dsize += btrfs_item_size_nr(leaf, slot + i);
4982 nritems = btrfs_header_nritems(leaf);
4984 if (slot + nr != nritems) {
4985 int data_end = leaf_data_end(leaf);
4987 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4988 data_end + dsize,
4989 BTRFS_LEAF_DATA_OFFSET + data_end,
4990 last_off - data_end);
4992 for (i = slot + nr; i < nritems; i++) {
4993 u32 ioff;
4995 item = btrfs_item_nr(i);
4996 ioff = btrfs_token_item_offset(leaf, item, &token);
4997 btrfs_set_token_item_offset(leaf, item,
4998 ioff + dsize, &token);
5001 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5002 btrfs_item_nr_offset(slot + nr),
5003 sizeof(struct btrfs_item) *
5004 (nritems - slot - nr));
5006 btrfs_set_header_nritems(leaf, nritems - nr);
5007 nritems -= nr;
5009 /* delete the leaf if we've emptied it */
5010 if (nritems == 0) {
5011 if (leaf == root->node) {
5012 btrfs_set_header_level(leaf, 0);
5013 } else {
5014 btrfs_set_path_blocking(path);
5015 btrfs_clean_tree_block(leaf);
5016 btrfs_del_leaf(trans, root, path, leaf);
5018 } else {
5019 int used = leaf_space_used(leaf, 0, nritems);
5020 if (slot == 0) {
5021 struct btrfs_disk_key disk_key;
5023 btrfs_item_key(leaf, &disk_key, 0);
5024 fixup_low_keys(path, &disk_key, 1);
5027 /* delete the leaf if it is mostly empty */
5028 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5029 /* push_leaf_left fixes the path.
5030 * make sure the path still points to our leaf
5031 * for possible call to del_ptr below
5033 slot = path->slots[1];
5034 extent_buffer_get(leaf);
5036 btrfs_set_path_blocking(path);
5037 wret = push_leaf_left(trans, root, path, 1, 1,
5038 1, (u32)-1);
5039 if (wret < 0 && wret != -ENOSPC)
5040 ret = wret;
5042 if (path->nodes[0] == leaf &&
5043 btrfs_header_nritems(leaf)) {
5044 wret = push_leaf_right(trans, root, path, 1,
5045 1, 1, 0);
5046 if (wret < 0 && wret != -ENOSPC)
5047 ret = wret;
5050 if (btrfs_header_nritems(leaf) == 0) {
5051 path->slots[1] = slot;
5052 btrfs_del_leaf(trans, root, path, leaf);
5053 free_extent_buffer(leaf);
5054 ret = 0;
5055 } else {
5056 /* if we're still in the path, make sure
5057 * we're dirty. Otherwise, one of the
5058 * push_leaf functions must have already
5059 * dirtied this buffer
5061 if (path->nodes[0] == leaf)
5062 btrfs_mark_buffer_dirty(leaf);
5063 free_extent_buffer(leaf);
5065 } else {
5066 btrfs_mark_buffer_dirty(leaf);
5069 return ret;
5073 * search the tree again to find a leaf with lesser keys
5074 * returns 0 if it found something or 1 if there are no lesser leaves.
5075 * returns < 0 on io errors.
5077 * This may release the path, and so you may lose any locks held at the
5078 * time you call it.
5080 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5082 struct btrfs_key key;
5083 struct btrfs_disk_key found_key;
5084 int ret;
5086 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5088 if (key.offset > 0) {
5089 key.offset--;
5090 } else if (key.type > 0) {
5091 key.type--;
5092 key.offset = (u64)-1;
5093 } else if (key.objectid > 0) {
5094 key.objectid--;
5095 key.type = (u8)-1;
5096 key.offset = (u64)-1;
5097 } else {
5098 return 1;
5101 btrfs_release_path(path);
5102 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5103 if (ret < 0)
5104 return ret;
5105 btrfs_item_key(path->nodes[0], &found_key, 0);
5106 ret = comp_keys(&found_key, &key);
5108 * We might have had an item with the previous key in the tree right
5109 * before we released our path. And after we released our path, that
5110 * item might have been pushed to the first slot (0) of the leaf we
5111 * were holding due to a tree balance. Alternatively, an item with the
5112 * previous key can exist as the only element of a leaf (big fat item).
5113 * Therefore account for these 2 cases, so that our callers (like
5114 * btrfs_previous_item) don't miss an existing item with a key matching
5115 * the previous key we computed above.
5117 if (ret <= 0)
5118 return 0;
5119 return 1;
5123 * A helper function to walk down the tree starting at min_key, and looking
5124 * for nodes or leaves that are have a minimum transaction id.
5125 * This is used by the btree defrag code, and tree logging
5127 * This does not cow, but it does stuff the starting key it finds back
5128 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5129 * key and get a writable path.
5131 * This honors path->lowest_level to prevent descent past a given level
5132 * of the tree.
5134 * min_trans indicates the oldest transaction that you are interested
5135 * in walking through. Any nodes or leaves older than min_trans are
5136 * skipped over (without reading them).
5138 * returns zero if something useful was found, < 0 on error and 1 if there
5139 * was nothing in the tree that matched the search criteria.
5141 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5142 struct btrfs_path *path,
5143 u64 min_trans)
5145 struct extent_buffer *cur;
5146 struct btrfs_key found_key;
5147 int slot;
5148 int sret;
5149 u32 nritems;
5150 int level;
5151 int ret = 1;
5152 int keep_locks = path->keep_locks;
5154 path->keep_locks = 1;
5155 again:
5156 cur = btrfs_read_lock_root_node(root);
5157 level = btrfs_header_level(cur);
5158 WARN_ON(path->nodes[level]);
5159 path->nodes[level] = cur;
5160 path->locks[level] = BTRFS_READ_LOCK;
5162 if (btrfs_header_generation(cur) < min_trans) {
5163 ret = 1;
5164 goto out;
5166 while (1) {
5167 nritems = btrfs_header_nritems(cur);
5168 level = btrfs_header_level(cur);
5169 sret = btrfs_bin_search(cur, min_key, level, &slot);
5170 if (sret < 0) {
5171 ret = sret;
5172 goto out;
5175 /* at the lowest level, we're done, setup the path and exit */
5176 if (level == path->lowest_level) {
5177 if (slot >= nritems)
5178 goto find_next_key;
5179 ret = 0;
5180 path->slots[level] = slot;
5181 btrfs_item_key_to_cpu(cur, &found_key, slot);
5182 goto out;
5184 if (sret && slot > 0)
5185 slot--;
5187 * check this node pointer against the min_trans parameters.
5188 * If it is too old, old, skip to the next one.
5190 while (slot < nritems) {
5191 u64 gen;
5193 gen = btrfs_node_ptr_generation(cur, slot);
5194 if (gen < min_trans) {
5195 slot++;
5196 continue;
5198 break;
5200 find_next_key:
5202 * we didn't find a candidate key in this node, walk forward
5203 * and find another one
5205 if (slot >= nritems) {
5206 path->slots[level] = slot;
5207 btrfs_set_path_blocking(path);
5208 sret = btrfs_find_next_key(root, path, min_key, level,
5209 min_trans);
5210 if (sret == 0) {
5211 btrfs_release_path(path);
5212 goto again;
5213 } else {
5214 goto out;
5217 /* save our key for returning back */
5218 btrfs_node_key_to_cpu(cur, &found_key, slot);
5219 path->slots[level] = slot;
5220 if (level == path->lowest_level) {
5221 ret = 0;
5222 goto out;
5224 btrfs_set_path_blocking(path);
5225 cur = read_node_slot(cur, slot);
5226 if (IS_ERR(cur)) {
5227 ret = PTR_ERR(cur);
5228 goto out;
5231 btrfs_tree_read_lock(cur);
5233 path->locks[level - 1] = BTRFS_READ_LOCK;
5234 path->nodes[level - 1] = cur;
5235 unlock_up(path, level, 1, 0, NULL);
5237 out:
5238 path->keep_locks = keep_locks;
5239 if (ret == 0) {
5240 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5241 btrfs_set_path_blocking(path);
5242 memcpy(min_key, &found_key, sizeof(found_key));
5244 return ret;
5247 static int tree_move_down(struct btrfs_path *path, int *level)
5249 struct extent_buffer *eb;
5251 BUG_ON(*level == 0);
5252 eb = read_node_slot(path->nodes[*level], path->slots[*level]);
5253 if (IS_ERR(eb))
5254 return PTR_ERR(eb);
5256 path->nodes[*level - 1] = eb;
5257 path->slots[*level - 1] = 0;
5258 (*level)--;
5259 return 0;
5262 static int tree_move_next_or_upnext(struct btrfs_path *path,
5263 int *level, int root_level)
5265 int ret = 0;
5266 int nritems;
5267 nritems = btrfs_header_nritems(path->nodes[*level]);
5269 path->slots[*level]++;
5271 while (path->slots[*level] >= nritems) {
5272 if (*level == root_level)
5273 return -1;
5275 /* move upnext */
5276 path->slots[*level] = 0;
5277 free_extent_buffer(path->nodes[*level]);
5278 path->nodes[*level] = NULL;
5279 (*level)++;
5280 path->slots[*level]++;
5282 nritems = btrfs_header_nritems(path->nodes[*level]);
5283 ret = 1;
5285 return ret;
5289 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5290 * or down.
5292 static int tree_advance(struct btrfs_path *path,
5293 int *level, int root_level,
5294 int allow_down,
5295 struct btrfs_key *key)
5297 int ret;
5299 if (*level == 0 || !allow_down) {
5300 ret = tree_move_next_or_upnext(path, level, root_level);
5301 } else {
5302 ret = tree_move_down(path, level);
5304 if (ret >= 0) {
5305 if (*level == 0)
5306 btrfs_item_key_to_cpu(path->nodes[*level], key,
5307 path->slots[*level]);
5308 else
5309 btrfs_node_key_to_cpu(path->nodes[*level], key,
5310 path->slots[*level]);
5312 return ret;
5315 static int tree_compare_item(struct btrfs_path *left_path,
5316 struct btrfs_path *right_path,
5317 char *tmp_buf)
5319 int cmp;
5320 int len1, len2;
5321 unsigned long off1, off2;
5323 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5324 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5325 if (len1 != len2)
5326 return 1;
5328 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5329 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5330 right_path->slots[0]);
5332 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5334 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5335 if (cmp)
5336 return 1;
5337 return 0;
5340 #define ADVANCE 1
5341 #define ADVANCE_ONLY_NEXT -1
5344 * This function compares two trees and calls the provided callback for
5345 * every changed/new/deleted item it finds.
5346 * If shared tree blocks are encountered, whole subtrees are skipped, making
5347 * the compare pretty fast on snapshotted subvolumes.
5349 * This currently works on commit roots only. As commit roots are read only,
5350 * we don't do any locking. The commit roots are protected with transactions.
5351 * Transactions are ended and rejoined when a commit is tried in between.
5353 * This function checks for modifications done to the trees while comparing.
5354 * If it detects a change, it aborts immediately.
5356 int btrfs_compare_trees(struct btrfs_root *left_root,
5357 struct btrfs_root *right_root,
5358 btrfs_changed_cb_t changed_cb, void *ctx)
5360 struct btrfs_fs_info *fs_info = left_root->fs_info;
5361 int ret;
5362 int cmp;
5363 struct btrfs_path *left_path = NULL;
5364 struct btrfs_path *right_path = NULL;
5365 struct btrfs_key left_key;
5366 struct btrfs_key right_key;
5367 char *tmp_buf = NULL;
5368 int left_root_level;
5369 int right_root_level;
5370 int left_level;
5371 int right_level;
5372 int left_end_reached;
5373 int right_end_reached;
5374 int advance_left;
5375 int advance_right;
5376 u64 left_blockptr;
5377 u64 right_blockptr;
5378 u64 left_gen;
5379 u64 right_gen;
5381 left_path = btrfs_alloc_path();
5382 if (!left_path) {
5383 ret = -ENOMEM;
5384 goto out;
5386 right_path = btrfs_alloc_path();
5387 if (!right_path) {
5388 ret = -ENOMEM;
5389 goto out;
5392 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5393 if (!tmp_buf) {
5394 ret = -ENOMEM;
5395 goto out;
5398 left_path->search_commit_root = 1;
5399 left_path->skip_locking = 1;
5400 right_path->search_commit_root = 1;
5401 right_path->skip_locking = 1;
5404 * Strategy: Go to the first items of both trees. Then do
5406 * If both trees are at level 0
5407 * Compare keys of current items
5408 * If left < right treat left item as new, advance left tree
5409 * and repeat
5410 * If left > right treat right item as deleted, advance right tree
5411 * and repeat
5412 * If left == right do deep compare of items, treat as changed if
5413 * needed, advance both trees and repeat
5414 * If both trees are at the same level but not at level 0
5415 * Compare keys of current nodes/leafs
5416 * If left < right advance left tree and repeat
5417 * If left > right advance right tree and repeat
5418 * If left == right compare blockptrs of the next nodes/leafs
5419 * If they match advance both trees but stay at the same level
5420 * and repeat
5421 * If they don't match advance both trees while allowing to go
5422 * deeper and repeat
5423 * If tree levels are different
5424 * Advance the tree that needs it and repeat
5426 * Advancing a tree means:
5427 * If we are at level 0, try to go to the next slot. If that's not
5428 * possible, go one level up and repeat. Stop when we found a level
5429 * where we could go to the next slot. We may at this point be on a
5430 * node or a leaf.
5432 * If we are not at level 0 and not on shared tree blocks, go one
5433 * level deeper.
5435 * If we are not at level 0 and on shared tree blocks, go one slot to
5436 * the right if possible or go up and right.
5439 down_read(&fs_info->commit_root_sem);
5440 left_level = btrfs_header_level(left_root->commit_root);
5441 left_root_level = left_level;
5442 left_path->nodes[left_level] =
5443 btrfs_clone_extent_buffer(left_root->commit_root);
5444 if (!left_path->nodes[left_level]) {
5445 up_read(&fs_info->commit_root_sem);
5446 ret = -ENOMEM;
5447 goto out;
5450 right_level = btrfs_header_level(right_root->commit_root);
5451 right_root_level = right_level;
5452 right_path->nodes[right_level] =
5453 btrfs_clone_extent_buffer(right_root->commit_root);
5454 if (!right_path->nodes[right_level]) {
5455 up_read(&fs_info->commit_root_sem);
5456 ret = -ENOMEM;
5457 goto out;
5459 up_read(&fs_info->commit_root_sem);
5461 if (left_level == 0)
5462 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5463 &left_key, left_path->slots[left_level]);
5464 else
5465 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5466 &left_key, left_path->slots[left_level]);
5467 if (right_level == 0)
5468 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5469 &right_key, right_path->slots[right_level]);
5470 else
5471 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5472 &right_key, right_path->slots[right_level]);
5474 left_end_reached = right_end_reached = 0;
5475 advance_left = advance_right = 0;
5477 while (1) {
5478 if (advance_left && !left_end_reached) {
5479 ret = tree_advance(left_path, &left_level,
5480 left_root_level,
5481 advance_left != ADVANCE_ONLY_NEXT,
5482 &left_key);
5483 if (ret == -1)
5484 left_end_reached = ADVANCE;
5485 else if (ret < 0)
5486 goto out;
5487 advance_left = 0;
5489 if (advance_right && !right_end_reached) {
5490 ret = tree_advance(right_path, &right_level,
5491 right_root_level,
5492 advance_right != ADVANCE_ONLY_NEXT,
5493 &right_key);
5494 if (ret == -1)
5495 right_end_reached = ADVANCE;
5496 else if (ret < 0)
5497 goto out;
5498 advance_right = 0;
5501 if (left_end_reached && right_end_reached) {
5502 ret = 0;
5503 goto out;
5504 } else if (left_end_reached) {
5505 if (right_level == 0) {
5506 ret = changed_cb(left_path, right_path,
5507 &right_key,
5508 BTRFS_COMPARE_TREE_DELETED,
5509 ctx);
5510 if (ret < 0)
5511 goto out;
5513 advance_right = ADVANCE;
5514 continue;
5515 } else if (right_end_reached) {
5516 if (left_level == 0) {
5517 ret = changed_cb(left_path, right_path,
5518 &left_key,
5519 BTRFS_COMPARE_TREE_NEW,
5520 ctx);
5521 if (ret < 0)
5522 goto out;
5524 advance_left = ADVANCE;
5525 continue;
5528 if (left_level == 0 && right_level == 0) {
5529 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5530 if (cmp < 0) {
5531 ret = changed_cb(left_path, right_path,
5532 &left_key,
5533 BTRFS_COMPARE_TREE_NEW,
5534 ctx);
5535 if (ret < 0)
5536 goto out;
5537 advance_left = ADVANCE;
5538 } else if (cmp > 0) {
5539 ret = changed_cb(left_path, right_path,
5540 &right_key,
5541 BTRFS_COMPARE_TREE_DELETED,
5542 ctx);
5543 if (ret < 0)
5544 goto out;
5545 advance_right = ADVANCE;
5546 } else {
5547 enum btrfs_compare_tree_result result;
5549 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5550 ret = tree_compare_item(left_path, right_path,
5551 tmp_buf);
5552 if (ret)
5553 result = BTRFS_COMPARE_TREE_CHANGED;
5554 else
5555 result = BTRFS_COMPARE_TREE_SAME;
5556 ret = changed_cb(left_path, right_path,
5557 &left_key, result, ctx);
5558 if (ret < 0)
5559 goto out;
5560 advance_left = ADVANCE;
5561 advance_right = ADVANCE;
5563 } else if (left_level == right_level) {
5564 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5565 if (cmp < 0) {
5566 advance_left = ADVANCE;
5567 } else if (cmp > 0) {
5568 advance_right = ADVANCE;
5569 } else {
5570 left_blockptr = btrfs_node_blockptr(
5571 left_path->nodes[left_level],
5572 left_path->slots[left_level]);
5573 right_blockptr = btrfs_node_blockptr(
5574 right_path->nodes[right_level],
5575 right_path->slots[right_level]);
5576 left_gen = btrfs_node_ptr_generation(
5577 left_path->nodes[left_level],
5578 left_path->slots[left_level]);
5579 right_gen = btrfs_node_ptr_generation(
5580 right_path->nodes[right_level],
5581 right_path->slots[right_level]);
5582 if (left_blockptr == right_blockptr &&
5583 left_gen == right_gen) {
5585 * As we're on a shared block, don't
5586 * allow to go deeper.
5588 advance_left = ADVANCE_ONLY_NEXT;
5589 advance_right = ADVANCE_ONLY_NEXT;
5590 } else {
5591 advance_left = ADVANCE;
5592 advance_right = ADVANCE;
5595 } else if (left_level < right_level) {
5596 advance_right = ADVANCE;
5597 } else {
5598 advance_left = ADVANCE;
5602 out:
5603 btrfs_free_path(left_path);
5604 btrfs_free_path(right_path);
5605 kvfree(tmp_buf);
5606 return ret;
5610 * this is similar to btrfs_next_leaf, but does not try to preserve
5611 * and fixup the path. It looks for and returns the next key in the
5612 * tree based on the current path and the min_trans parameters.
5614 * 0 is returned if another key is found, < 0 if there are any errors
5615 * and 1 is returned if there are no higher keys in the tree
5617 * path->keep_locks should be set to 1 on the search made before
5618 * calling this function.
5620 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5621 struct btrfs_key *key, int level, u64 min_trans)
5623 int slot;
5624 struct extent_buffer *c;
5626 WARN_ON(!path->keep_locks);
5627 while (level < BTRFS_MAX_LEVEL) {
5628 if (!path->nodes[level])
5629 return 1;
5631 slot = path->slots[level] + 1;
5632 c = path->nodes[level];
5633 next:
5634 if (slot >= btrfs_header_nritems(c)) {
5635 int ret;
5636 int orig_lowest;
5637 struct btrfs_key cur_key;
5638 if (level + 1 >= BTRFS_MAX_LEVEL ||
5639 !path->nodes[level + 1])
5640 return 1;
5642 if (path->locks[level + 1]) {
5643 level++;
5644 continue;
5647 slot = btrfs_header_nritems(c) - 1;
5648 if (level == 0)
5649 btrfs_item_key_to_cpu(c, &cur_key, slot);
5650 else
5651 btrfs_node_key_to_cpu(c, &cur_key, slot);
5653 orig_lowest = path->lowest_level;
5654 btrfs_release_path(path);
5655 path->lowest_level = level;
5656 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5657 0, 0);
5658 path->lowest_level = orig_lowest;
5659 if (ret < 0)
5660 return ret;
5662 c = path->nodes[level];
5663 slot = path->slots[level];
5664 if (ret == 0)
5665 slot++;
5666 goto next;
5669 if (level == 0)
5670 btrfs_item_key_to_cpu(c, key, slot);
5671 else {
5672 u64 gen = btrfs_node_ptr_generation(c, slot);
5674 if (gen < min_trans) {
5675 slot++;
5676 goto next;
5678 btrfs_node_key_to_cpu(c, key, slot);
5680 return 0;
5682 return 1;
5686 * search the tree again to find a leaf with greater keys
5687 * returns 0 if it found something or 1 if there are no greater leaves.
5688 * returns < 0 on io errors.
5690 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5692 return btrfs_next_old_leaf(root, path, 0);
5695 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5696 u64 time_seq)
5698 int slot;
5699 int level;
5700 struct extent_buffer *c;
5701 struct extent_buffer *next;
5702 struct btrfs_key key;
5703 u32 nritems;
5704 int ret;
5705 int old_spinning = path->leave_spinning;
5706 int next_rw_lock = 0;
5708 nritems = btrfs_header_nritems(path->nodes[0]);
5709 if (nritems == 0)
5710 return 1;
5712 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5713 again:
5714 level = 1;
5715 next = NULL;
5716 next_rw_lock = 0;
5717 btrfs_release_path(path);
5719 path->keep_locks = 1;
5720 path->leave_spinning = 1;
5722 if (time_seq)
5723 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5724 else
5725 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5726 path->keep_locks = 0;
5728 if (ret < 0)
5729 return ret;
5731 nritems = btrfs_header_nritems(path->nodes[0]);
5733 * by releasing the path above we dropped all our locks. A balance
5734 * could have added more items next to the key that used to be
5735 * at the very end of the block. So, check again here and
5736 * advance the path if there are now more items available.
5738 if (nritems > 0 && path->slots[0] < nritems - 1) {
5739 if (ret == 0)
5740 path->slots[0]++;
5741 ret = 0;
5742 goto done;
5745 * So the above check misses one case:
5746 * - after releasing the path above, someone has removed the item that
5747 * used to be at the very end of the block, and balance between leafs
5748 * gets another one with bigger key.offset to replace it.
5750 * This one should be returned as well, or we can get leaf corruption
5751 * later(esp. in __btrfs_drop_extents()).
5753 * And a bit more explanation about this check,
5754 * with ret > 0, the key isn't found, the path points to the slot
5755 * where it should be inserted, so the path->slots[0] item must be the
5756 * bigger one.
5758 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5759 ret = 0;
5760 goto done;
5763 while (level < BTRFS_MAX_LEVEL) {
5764 if (!path->nodes[level]) {
5765 ret = 1;
5766 goto done;
5769 slot = path->slots[level] + 1;
5770 c = path->nodes[level];
5771 if (slot >= btrfs_header_nritems(c)) {
5772 level++;
5773 if (level == BTRFS_MAX_LEVEL) {
5774 ret = 1;
5775 goto done;
5777 continue;
5780 if (next) {
5781 btrfs_tree_unlock_rw(next, next_rw_lock);
5782 free_extent_buffer(next);
5785 next = c;
5786 next_rw_lock = path->locks[level];
5787 ret = read_block_for_search(root, path, &next, level,
5788 slot, &key);
5789 if (ret == -EAGAIN)
5790 goto again;
5792 if (ret < 0) {
5793 btrfs_release_path(path);
5794 goto done;
5797 if (!path->skip_locking) {
5798 ret = btrfs_try_tree_read_lock(next);
5799 if (!ret && time_seq) {
5801 * If we don't get the lock, we may be racing
5802 * with push_leaf_left, holding that lock while
5803 * itself waiting for the leaf we've currently
5804 * locked. To solve this situation, we give up
5805 * on our lock and cycle.
5807 free_extent_buffer(next);
5808 btrfs_release_path(path);
5809 cond_resched();
5810 goto again;
5812 if (!ret) {
5813 btrfs_set_path_blocking(path);
5814 btrfs_tree_read_lock(next);
5816 next_rw_lock = BTRFS_READ_LOCK;
5818 break;
5820 path->slots[level] = slot;
5821 while (1) {
5822 level--;
5823 c = path->nodes[level];
5824 if (path->locks[level])
5825 btrfs_tree_unlock_rw(c, path->locks[level]);
5827 free_extent_buffer(c);
5828 path->nodes[level] = next;
5829 path->slots[level] = 0;
5830 if (!path->skip_locking)
5831 path->locks[level] = next_rw_lock;
5832 if (!level)
5833 break;
5835 ret = read_block_for_search(root, path, &next, level,
5836 0, &key);
5837 if (ret == -EAGAIN)
5838 goto again;
5840 if (ret < 0) {
5841 btrfs_release_path(path);
5842 goto done;
5845 if (!path->skip_locking) {
5846 ret = btrfs_try_tree_read_lock(next);
5847 if (!ret) {
5848 btrfs_set_path_blocking(path);
5849 btrfs_tree_read_lock(next);
5851 next_rw_lock = BTRFS_READ_LOCK;
5854 ret = 0;
5855 done:
5856 unlock_up(path, 0, 1, 0, NULL);
5857 path->leave_spinning = old_spinning;
5858 if (!old_spinning)
5859 btrfs_set_path_blocking(path);
5861 return ret;
5865 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5866 * searching until it gets past min_objectid or finds an item of 'type'
5868 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5870 int btrfs_previous_item(struct btrfs_root *root,
5871 struct btrfs_path *path, u64 min_objectid,
5872 int type)
5874 struct btrfs_key found_key;
5875 struct extent_buffer *leaf;
5876 u32 nritems;
5877 int ret;
5879 while (1) {
5880 if (path->slots[0] == 0) {
5881 btrfs_set_path_blocking(path);
5882 ret = btrfs_prev_leaf(root, path);
5883 if (ret != 0)
5884 return ret;
5885 } else {
5886 path->slots[0]--;
5888 leaf = path->nodes[0];
5889 nritems = btrfs_header_nritems(leaf);
5890 if (nritems == 0)
5891 return 1;
5892 if (path->slots[0] == nritems)
5893 path->slots[0]--;
5895 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5896 if (found_key.objectid < min_objectid)
5897 break;
5898 if (found_key.type == type)
5899 return 0;
5900 if (found_key.objectid == min_objectid &&
5901 found_key.type < type)
5902 break;
5904 return 1;
5908 * search in extent tree to find a previous Metadata/Data extent item with
5909 * min objecitd.
5911 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5913 int btrfs_previous_extent_item(struct btrfs_root *root,
5914 struct btrfs_path *path, u64 min_objectid)
5916 struct btrfs_key found_key;
5917 struct extent_buffer *leaf;
5918 u32 nritems;
5919 int ret;
5921 while (1) {
5922 if (path->slots[0] == 0) {
5923 btrfs_set_path_blocking(path);
5924 ret = btrfs_prev_leaf(root, path);
5925 if (ret != 0)
5926 return ret;
5927 } else {
5928 path->slots[0]--;
5930 leaf = path->nodes[0];
5931 nritems = btrfs_header_nritems(leaf);
5932 if (nritems == 0)
5933 return 1;
5934 if (path->slots[0] == nritems)
5935 path->slots[0]--;
5937 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5938 if (found_key.objectid < min_objectid)
5939 break;
5940 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5941 found_key.type == BTRFS_METADATA_ITEM_KEY)
5942 return 0;
5943 if (found_key.objectid == min_objectid &&
5944 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5945 break;
5947 return 1;