1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/file.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
31 #include "transaction.h"
32 #include "btrfs_inode.h"
33 #include "print-tree.h"
36 #include "inode-map.h"
38 #include "rcu-string.h"
40 #include "dev-replace.h"
45 #include "compression.h"
48 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
49 * structures are incorrect, as the timespec structure from userspace
50 * is 4 bytes too small. We define these alternatives here to teach
51 * the kernel about the 32-bit struct packing.
53 struct btrfs_ioctl_timespec_32
{
56 } __attribute__ ((__packed__
));
58 struct btrfs_ioctl_received_subvol_args_32
{
59 char uuid
[BTRFS_UUID_SIZE
]; /* in */
60 __u64 stransid
; /* in */
61 __u64 rtransid
; /* out */
62 struct btrfs_ioctl_timespec_32 stime
; /* in */
63 struct btrfs_ioctl_timespec_32 rtime
; /* out */
65 __u64 reserved
[16]; /* in */
66 } __attribute__ ((__packed__
));
68 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
69 struct btrfs_ioctl_received_subvol_args_32)
72 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
73 struct btrfs_ioctl_send_args_32
{
74 __s64 send_fd
; /* in */
75 __u64 clone_sources_count
; /* in */
76 compat_uptr_t clone_sources
; /* in */
77 __u64 parent_root
; /* in */
79 __u64 reserved
[4]; /* in */
80 } __attribute__ ((__packed__
));
82 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
83 struct btrfs_ioctl_send_args_32)
86 static int btrfs_clone(struct inode
*src
, struct inode
*inode
,
87 u64 off
, u64 olen
, u64 olen_aligned
, u64 destoff
,
90 /* Mask out flags that are inappropriate for the given type of inode. */
91 static unsigned int btrfs_mask_fsflags_for_type(struct inode
*inode
,
94 if (S_ISDIR(inode
->i_mode
))
96 else if (S_ISREG(inode
->i_mode
))
97 return flags
& ~FS_DIRSYNC_FL
;
99 return flags
& (FS_NODUMP_FL
| FS_NOATIME_FL
);
103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags
)
108 unsigned int iflags
= 0;
110 if (flags
& BTRFS_INODE_SYNC
)
111 iflags
|= FS_SYNC_FL
;
112 if (flags
& BTRFS_INODE_IMMUTABLE
)
113 iflags
|= FS_IMMUTABLE_FL
;
114 if (flags
& BTRFS_INODE_APPEND
)
115 iflags
|= FS_APPEND_FL
;
116 if (flags
& BTRFS_INODE_NODUMP
)
117 iflags
|= FS_NODUMP_FL
;
118 if (flags
& BTRFS_INODE_NOATIME
)
119 iflags
|= FS_NOATIME_FL
;
120 if (flags
& BTRFS_INODE_DIRSYNC
)
121 iflags
|= FS_DIRSYNC_FL
;
122 if (flags
& BTRFS_INODE_NODATACOW
)
123 iflags
|= FS_NOCOW_FL
;
125 if (flags
& BTRFS_INODE_NOCOMPRESS
)
126 iflags
|= FS_NOCOMP_FL
;
127 else if (flags
& BTRFS_INODE_COMPRESS
)
128 iflags
|= FS_COMPR_FL
;
134 * Update inode->i_flags based on the btrfs internal flags.
136 void btrfs_sync_inode_flags_to_i_flags(struct inode
*inode
)
138 struct btrfs_inode
*binode
= BTRFS_I(inode
);
139 unsigned int new_fl
= 0;
141 if (binode
->flags
& BTRFS_INODE_SYNC
)
143 if (binode
->flags
& BTRFS_INODE_IMMUTABLE
)
144 new_fl
|= S_IMMUTABLE
;
145 if (binode
->flags
& BTRFS_INODE_APPEND
)
147 if (binode
->flags
& BTRFS_INODE_NOATIME
)
149 if (binode
->flags
& BTRFS_INODE_DIRSYNC
)
152 set_mask_bits(&inode
->i_flags
,
153 S_SYNC
| S_APPEND
| S_IMMUTABLE
| S_NOATIME
| S_DIRSYNC
,
157 static int btrfs_ioctl_getflags(struct file
*file
, void __user
*arg
)
159 struct btrfs_inode
*binode
= BTRFS_I(file_inode(file
));
160 unsigned int flags
= btrfs_inode_flags_to_fsflags(binode
->flags
);
162 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
167 /* Check if @flags are a supported and valid set of FS_*_FL flags */
168 static int check_fsflags(unsigned int flags
)
170 if (flags
& ~(FS_IMMUTABLE_FL
| FS_APPEND_FL
| \
171 FS_NOATIME_FL
| FS_NODUMP_FL
| \
172 FS_SYNC_FL
| FS_DIRSYNC_FL
| \
173 FS_NOCOMP_FL
| FS_COMPR_FL
|
177 if ((flags
& FS_NOCOMP_FL
) && (flags
& FS_COMPR_FL
))
183 static int btrfs_ioctl_setflags(struct file
*file
, void __user
*arg
)
185 struct inode
*inode
= file_inode(file
);
186 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
187 struct btrfs_inode
*binode
= BTRFS_I(inode
);
188 struct btrfs_root
*root
= binode
->root
;
189 struct btrfs_trans_handle
*trans
;
190 unsigned int fsflags
;
192 const char *comp
= NULL
;
193 u32 binode_flags
= binode
->flags
;
195 if (!inode_owner_or_capable(inode
))
198 if (btrfs_root_readonly(root
))
201 if (copy_from_user(&fsflags
, arg
, sizeof(fsflags
)))
204 ret
= check_fsflags(fsflags
);
208 ret
= mnt_want_write_file(file
);
214 fsflags
= btrfs_mask_fsflags_for_type(inode
, fsflags
);
215 if ((fsflags
^ btrfs_inode_flags_to_fsflags(binode
->flags
)) &
216 (FS_APPEND_FL
| FS_IMMUTABLE_FL
)) {
217 if (!capable(CAP_LINUX_IMMUTABLE
)) {
223 if (fsflags
& FS_SYNC_FL
)
224 binode_flags
|= BTRFS_INODE_SYNC
;
226 binode_flags
&= ~BTRFS_INODE_SYNC
;
227 if (fsflags
& FS_IMMUTABLE_FL
)
228 binode_flags
|= BTRFS_INODE_IMMUTABLE
;
230 binode_flags
&= ~BTRFS_INODE_IMMUTABLE
;
231 if (fsflags
& FS_APPEND_FL
)
232 binode_flags
|= BTRFS_INODE_APPEND
;
234 binode_flags
&= ~BTRFS_INODE_APPEND
;
235 if (fsflags
& FS_NODUMP_FL
)
236 binode_flags
|= BTRFS_INODE_NODUMP
;
238 binode_flags
&= ~BTRFS_INODE_NODUMP
;
239 if (fsflags
& FS_NOATIME_FL
)
240 binode_flags
|= BTRFS_INODE_NOATIME
;
242 binode_flags
&= ~BTRFS_INODE_NOATIME
;
243 if (fsflags
& FS_DIRSYNC_FL
)
244 binode_flags
|= BTRFS_INODE_DIRSYNC
;
246 binode_flags
&= ~BTRFS_INODE_DIRSYNC
;
247 if (fsflags
& FS_NOCOW_FL
) {
248 if (S_ISREG(inode
->i_mode
)) {
250 * It's safe to turn csums off here, no extents exist.
251 * Otherwise we want the flag to reflect the real COW
252 * status of the file and will not set it.
254 if (inode
->i_size
== 0)
255 binode_flags
|= BTRFS_INODE_NODATACOW
|
256 BTRFS_INODE_NODATASUM
;
258 binode_flags
|= BTRFS_INODE_NODATACOW
;
262 * Revert back under same assumptions as above
264 if (S_ISREG(inode
->i_mode
)) {
265 if (inode
->i_size
== 0)
266 binode_flags
&= ~(BTRFS_INODE_NODATACOW
|
267 BTRFS_INODE_NODATASUM
);
269 binode_flags
&= ~BTRFS_INODE_NODATACOW
;
274 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
275 * flag may be changed automatically if compression code won't make
278 if (fsflags
& FS_NOCOMP_FL
) {
279 binode_flags
&= ~BTRFS_INODE_COMPRESS
;
280 binode_flags
|= BTRFS_INODE_NOCOMPRESS
;
281 } else if (fsflags
& FS_COMPR_FL
) {
283 if (IS_SWAPFILE(inode
)) {
288 binode_flags
|= BTRFS_INODE_COMPRESS
;
289 binode_flags
&= ~BTRFS_INODE_NOCOMPRESS
;
291 comp
= btrfs_compress_type2str(fs_info
->compress_type
);
292 if (!comp
|| comp
[0] == 0)
293 comp
= btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB
);
295 binode_flags
&= ~(BTRFS_INODE_COMPRESS
| BTRFS_INODE_NOCOMPRESS
);
302 trans
= btrfs_start_transaction(root
, 3);
304 ret
= PTR_ERR(trans
);
309 ret
= btrfs_set_prop(trans
, inode
, "btrfs.compression", comp
,
312 btrfs_abort_transaction(trans
, ret
);
316 ret
= btrfs_set_prop(trans
, inode
, "btrfs.compression", NULL
,
318 if (ret
&& ret
!= -ENODATA
) {
319 btrfs_abort_transaction(trans
, ret
);
324 binode
->flags
= binode_flags
;
325 btrfs_sync_inode_flags_to_i_flags(inode
);
326 inode_inc_iversion(inode
);
327 inode
->i_ctime
= current_time(inode
);
328 ret
= btrfs_update_inode(trans
, root
, inode
);
331 btrfs_end_transaction(trans
);
334 mnt_drop_write_file(file
);
339 * Translate btrfs internal inode flags to xflags as expected by the
340 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
343 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags
)
345 unsigned int xflags
= 0;
347 if (flags
& BTRFS_INODE_APPEND
)
348 xflags
|= FS_XFLAG_APPEND
;
349 if (flags
& BTRFS_INODE_IMMUTABLE
)
350 xflags
|= FS_XFLAG_IMMUTABLE
;
351 if (flags
& BTRFS_INODE_NOATIME
)
352 xflags
|= FS_XFLAG_NOATIME
;
353 if (flags
& BTRFS_INODE_NODUMP
)
354 xflags
|= FS_XFLAG_NODUMP
;
355 if (flags
& BTRFS_INODE_SYNC
)
356 xflags
|= FS_XFLAG_SYNC
;
361 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
362 static int check_xflags(unsigned int flags
)
364 if (flags
& ~(FS_XFLAG_APPEND
| FS_XFLAG_IMMUTABLE
| FS_XFLAG_NOATIME
|
365 FS_XFLAG_NODUMP
| FS_XFLAG_SYNC
))
371 * Set the xflags from the internal inode flags. The remaining items of fsxattr
374 static int btrfs_ioctl_fsgetxattr(struct file
*file
, void __user
*arg
)
376 struct btrfs_inode
*binode
= BTRFS_I(file_inode(file
));
379 memset(&fa
, 0, sizeof(fa
));
380 fa
.fsx_xflags
= btrfs_inode_flags_to_xflags(binode
->flags
);
382 if (copy_to_user(arg
, &fa
, sizeof(fa
)))
388 static int btrfs_ioctl_fssetxattr(struct file
*file
, void __user
*arg
)
390 struct inode
*inode
= file_inode(file
);
391 struct btrfs_inode
*binode
= BTRFS_I(inode
);
392 struct btrfs_root
*root
= binode
->root
;
393 struct btrfs_trans_handle
*trans
;
396 unsigned old_i_flags
;
399 if (!inode_owner_or_capable(inode
))
402 if (btrfs_root_readonly(root
))
405 memset(&fa
, 0, sizeof(fa
));
406 if (copy_from_user(&fa
, arg
, sizeof(fa
)))
409 ret
= check_xflags(fa
.fsx_xflags
);
413 if (fa
.fsx_extsize
!= 0 || fa
.fsx_projid
!= 0 || fa
.fsx_cowextsize
!= 0)
416 ret
= mnt_want_write_file(file
);
422 old_flags
= binode
->flags
;
423 old_i_flags
= inode
->i_flags
;
425 /* We need the capabilities to change append-only or immutable inode */
426 if (((old_flags
& (BTRFS_INODE_APPEND
| BTRFS_INODE_IMMUTABLE
)) ||
427 (fa
.fsx_xflags
& (FS_XFLAG_APPEND
| FS_XFLAG_IMMUTABLE
))) &&
428 !capable(CAP_LINUX_IMMUTABLE
)) {
433 if (fa
.fsx_xflags
& FS_XFLAG_SYNC
)
434 binode
->flags
|= BTRFS_INODE_SYNC
;
436 binode
->flags
&= ~BTRFS_INODE_SYNC
;
437 if (fa
.fsx_xflags
& FS_XFLAG_IMMUTABLE
)
438 binode
->flags
|= BTRFS_INODE_IMMUTABLE
;
440 binode
->flags
&= ~BTRFS_INODE_IMMUTABLE
;
441 if (fa
.fsx_xflags
& FS_XFLAG_APPEND
)
442 binode
->flags
|= BTRFS_INODE_APPEND
;
444 binode
->flags
&= ~BTRFS_INODE_APPEND
;
445 if (fa
.fsx_xflags
& FS_XFLAG_NODUMP
)
446 binode
->flags
|= BTRFS_INODE_NODUMP
;
448 binode
->flags
&= ~BTRFS_INODE_NODUMP
;
449 if (fa
.fsx_xflags
& FS_XFLAG_NOATIME
)
450 binode
->flags
|= BTRFS_INODE_NOATIME
;
452 binode
->flags
&= ~BTRFS_INODE_NOATIME
;
454 /* 1 item for the inode */
455 trans
= btrfs_start_transaction(root
, 1);
457 ret
= PTR_ERR(trans
);
461 btrfs_sync_inode_flags_to_i_flags(inode
);
462 inode_inc_iversion(inode
);
463 inode
->i_ctime
= current_time(inode
);
464 ret
= btrfs_update_inode(trans
, root
, inode
);
466 btrfs_end_transaction(trans
);
470 binode
->flags
= old_flags
;
471 inode
->i_flags
= old_i_flags
;
475 mnt_drop_write_file(file
);
480 static int btrfs_ioctl_getversion(struct file
*file
, int __user
*arg
)
482 struct inode
*inode
= file_inode(file
);
484 return put_user(inode
->i_generation
, arg
);
487 static noinline
int btrfs_ioctl_fitrim(struct file
*file
, void __user
*arg
)
489 struct inode
*inode
= file_inode(file
);
490 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
491 struct btrfs_device
*device
;
492 struct request_queue
*q
;
493 struct fstrim_range range
;
494 u64 minlen
= ULLONG_MAX
;
498 if (!capable(CAP_SYS_ADMIN
))
502 * If the fs is mounted with nologreplay, which requires it to be
503 * mounted in RO mode as well, we can not allow discard on free space
504 * inside block groups, because log trees refer to extents that are not
505 * pinned in a block group's free space cache (pinning the extents is
506 * precisely the first phase of replaying a log tree).
508 if (btrfs_test_opt(fs_info
, NOLOGREPLAY
))
512 list_for_each_entry_rcu(device
, &fs_info
->fs_devices
->devices
,
516 q
= bdev_get_queue(device
->bdev
);
517 if (blk_queue_discard(q
)) {
519 minlen
= min_t(u64
, q
->limits
.discard_granularity
,
527 if (copy_from_user(&range
, arg
, sizeof(range
)))
531 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
532 * block group is in the logical address space, which can be any
533 * sectorsize aligned bytenr in the range [0, U64_MAX].
535 if (range
.len
< fs_info
->sb
->s_blocksize
)
538 range
.minlen
= max(range
.minlen
, minlen
);
539 ret
= btrfs_trim_fs(fs_info
, &range
);
543 if (copy_to_user(arg
, &range
, sizeof(range
)))
549 int btrfs_is_empty_uuid(u8
*uuid
)
553 for (i
= 0; i
< BTRFS_UUID_SIZE
; i
++) {
560 static noinline
int create_subvol(struct inode
*dir
,
561 struct dentry
*dentry
,
562 const char *name
, int namelen
,
564 struct btrfs_qgroup_inherit
*inherit
)
566 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
567 struct btrfs_trans_handle
*trans
;
568 struct btrfs_key key
;
569 struct btrfs_root_item
*root_item
;
570 struct btrfs_inode_item
*inode_item
;
571 struct extent_buffer
*leaf
;
572 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
573 struct btrfs_root
*new_root
;
574 struct btrfs_block_rsv block_rsv
;
575 struct timespec64 cur_time
= current_time(dir
);
580 u64 new_dirid
= BTRFS_FIRST_FREE_OBJECTID
;
584 root_item
= kzalloc(sizeof(*root_item
), GFP_KERNEL
);
588 ret
= btrfs_find_free_objectid(fs_info
->tree_root
, &objectid
);
593 * Don't create subvolume whose level is not zero. Or qgroup will be
594 * screwed up since it assumes subvolume qgroup's level to be 0.
596 if (btrfs_qgroup_level(objectid
)) {
601 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
603 * The same as the snapshot creation, please see the comment
604 * of create_snapshot().
606 ret
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
, 8, false);
610 trans
= btrfs_start_transaction(root
, 0);
612 ret
= PTR_ERR(trans
);
613 btrfs_subvolume_release_metadata(fs_info
, &block_rsv
);
616 trans
->block_rsv
= &block_rsv
;
617 trans
->bytes_reserved
= block_rsv
.size
;
619 ret
= btrfs_qgroup_inherit(trans
, 0, objectid
, inherit
);
623 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, objectid
, NULL
, 0, 0, 0);
629 btrfs_mark_buffer_dirty(leaf
);
631 inode_item
= &root_item
->inode
;
632 btrfs_set_stack_inode_generation(inode_item
, 1);
633 btrfs_set_stack_inode_size(inode_item
, 3);
634 btrfs_set_stack_inode_nlink(inode_item
, 1);
635 btrfs_set_stack_inode_nbytes(inode_item
,
637 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
639 btrfs_set_root_flags(root_item
, 0);
640 btrfs_set_root_limit(root_item
, 0);
641 btrfs_set_stack_inode_flags(inode_item
, BTRFS_INODE_ROOT_ITEM_INIT
);
643 btrfs_set_root_bytenr(root_item
, leaf
->start
);
644 btrfs_set_root_generation(root_item
, trans
->transid
);
645 btrfs_set_root_level(root_item
, 0);
646 btrfs_set_root_refs(root_item
, 1);
647 btrfs_set_root_used(root_item
, leaf
->len
);
648 btrfs_set_root_last_snapshot(root_item
, 0);
650 btrfs_set_root_generation_v2(root_item
,
651 btrfs_root_generation(root_item
));
652 uuid_le_gen(&new_uuid
);
653 memcpy(root_item
->uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
654 btrfs_set_stack_timespec_sec(&root_item
->otime
, cur_time
.tv_sec
);
655 btrfs_set_stack_timespec_nsec(&root_item
->otime
, cur_time
.tv_nsec
);
656 root_item
->ctime
= root_item
->otime
;
657 btrfs_set_root_ctransid(root_item
, trans
->transid
);
658 btrfs_set_root_otransid(root_item
, trans
->transid
);
660 btrfs_tree_unlock(leaf
);
661 free_extent_buffer(leaf
);
664 btrfs_set_root_dirid(root_item
, new_dirid
);
666 key
.objectid
= objectid
;
668 key
.type
= BTRFS_ROOT_ITEM_KEY
;
669 ret
= btrfs_insert_root(trans
, fs_info
->tree_root
, &key
,
674 key
.offset
= (u64
)-1;
675 new_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
676 if (IS_ERR(new_root
)) {
677 ret
= PTR_ERR(new_root
);
678 btrfs_abort_transaction(trans
, ret
);
682 btrfs_record_root_in_trans(trans
, new_root
);
684 ret
= btrfs_create_subvol_root(trans
, new_root
, root
, new_dirid
);
686 /* We potentially lose an unused inode item here */
687 btrfs_abort_transaction(trans
, ret
);
691 mutex_lock(&new_root
->objectid_mutex
);
692 new_root
->highest_objectid
= new_dirid
;
693 mutex_unlock(&new_root
->objectid_mutex
);
696 * insert the directory item
698 ret
= btrfs_set_inode_index(BTRFS_I(dir
), &index
);
700 btrfs_abort_transaction(trans
, ret
);
704 ret
= btrfs_insert_dir_item(trans
, name
, namelen
, BTRFS_I(dir
), &key
,
705 BTRFS_FT_DIR
, index
);
707 btrfs_abort_transaction(trans
, ret
);
711 btrfs_i_size_write(BTRFS_I(dir
), dir
->i_size
+ namelen
* 2);
712 ret
= btrfs_update_inode(trans
, root
, dir
);
715 ret
= btrfs_add_root_ref(trans
, objectid
, root
->root_key
.objectid
,
716 btrfs_ino(BTRFS_I(dir
)), index
, name
, namelen
);
719 ret
= btrfs_uuid_tree_add(trans
, root_item
->uuid
,
720 BTRFS_UUID_KEY_SUBVOL
, objectid
);
722 btrfs_abort_transaction(trans
, ret
);
726 trans
->block_rsv
= NULL
;
727 trans
->bytes_reserved
= 0;
728 btrfs_subvolume_release_metadata(fs_info
, &block_rsv
);
731 *async_transid
= trans
->transid
;
732 err
= btrfs_commit_transaction_async(trans
, 1);
734 err
= btrfs_commit_transaction(trans
);
736 err
= btrfs_commit_transaction(trans
);
742 inode
= btrfs_lookup_dentry(dir
, dentry
);
744 return PTR_ERR(inode
);
745 d_instantiate(dentry
, inode
);
754 static int create_snapshot(struct btrfs_root
*root
, struct inode
*dir
,
755 struct dentry
*dentry
,
756 u64
*async_transid
, bool readonly
,
757 struct btrfs_qgroup_inherit
*inherit
)
759 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
761 struct btrfs_pending_snapshot
*pending_snapshot
;
762 struct btrfs_trans_handle
*trans
;
764 bool snapshot_force_cow
= false;
766 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
769 if (atomic_read(&root
->nr_swapfiles
)) {
771 "cannot snapshot subvolume with active swapfile");
775 pending_snapshot
= kzalloc(sizeof(*pending_snapshot
), GFP_KERNEL
);
776 if (!pending_snapshot
)
779 pending_snapshot
->root_item
= kzalloc(sizeof(struct btrfs_root_item
),
781 pending_snapshot
->path
= btrfs_alloc_path();
782 if (!pending_snapshot
->root_item
|| !pending_snapshot
->path
) {
788 * Force new buffered writes to reserve space even when NOCOW is
789 * possible. This is to avoid later writeback (running dealloc) to
790 * fallback to COW mode and unexpectedly fail with ENOSPC.
792 atomic_inc(&root
->will_be_snapshotted
);
793 smp_mb__after_atomic();
794 /* wait for no snapshot writes */
795 wait_event(root
->subv_writers
->wait
,
796 percpu_counter_sum(&root
->subv_writers
->counter
) == 0);
798 ret
= btrfs_start_delalloc_snapshot(root
);
803 * All previous writes have started writeback in NOCOW mode, so now
804 * we force future writes to fallback to COW mode during snapshot
807 atomic_inc(&root
->snapshot_force_cow
);
808 snapshot_force_cow
= true;
810 btrfs_wait_ordered_extents(root
, U64_MAX
, 0, (u64
)-1);
812 btrfs_init_block_rsv(&pending_snapshot
->block_rsv
,
813 BTRFS_BLOCK_RSV_TEMP
);
815 * 1 - parent dir inode
818 * 2 - root ref/backref
819 * 1 - root of snapshot
822 ret
= btrfs_subvolume_reserve_metadata(BTRFS_I(dir
)->root
,
823 &pending_snapshot
->block_rsv
, 8,
828 pending_snapshot
->dentry
= dentry
;
829 pending_snapshot
->root
= root
;
830 pending_snapshot
->readonly
= readonly
;
831 pending_snapshot
->dir
= dir
;
832 pending_snapshot
->inherit
= inherit
;
834 trans
= btrfs_start_transaction(root
, 0);
836 ret
= PTR_ERR(trans
);
840 spin_lock(&fs_info
->trans_lock
);
841 list_add(&pending_snapshot
->list
,
842 &trans
->transaction
->pending_snapshots
);
843 spin_unlock(&fs_info
->trans_lock
);
845 *async_transid
= trans
->transid
;
846 ret
= btrfs_commit_transaction_async(trans
, 1);
848 ret
= btrfs_commit_transaction(trans
);
850 ret
= btrfs_commit_transaction(trans
);
855 ret
= pending_snapshot
->error
;
859 ret
= btrfs_orphan_cleanup(pending_snapshot
->snap
);
863 inode
= btrfs_lookup_dentry(d_inode(dentry
->d_parent
), dentry
);
865 ret
= PTR_ERR(inode
);
869 d_instantiate(dentry
, inode
);
872 btrfs_subvolume_release_metadata(fs_info
, &pending_snapshot
->block_rsv
);
874 if (snapshot_force_cow
)
875 atomic_dec(&root
->snapshot_force_cow
);
876 if (atomic_dec_and_test(&root
->will_be_snapshotted
))
877 wake_up_var(&root
->will_be_snapshotted
);
879 kfree(pending_snapshot
->root_item
);
880 btrfs_free_path(pending_snapshot
->path
);
881 kfree(pending_snapshot
);
886 /* copy of may_delete in fs/namei.c()
887 * Check whether we can remove a link victim from directory dir, check
888 * whether the type of victim is right.
889 * 1. We can't do it if dir is read-only (done in permission())
890 * 2. We should have write and exec permissions on dir
891 * 3. We can't remove anything from append-only dir
892 * 4. We can't do anything with immutable dir (done in permission())
893 * 5. If the sticky bit on dir is set we should either
894 * a. be owner of dir, or
895 * b. be owner of victim, or
896 * c. have CAP_FOWNER capability
897 * 6. If the victim is append-only or immutable we can't do anything with
898 * links pointing to it.
899 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
900 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
901 * 9. We can't remove a root or mountpoint.
902 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
903 * nfs_async_unlink().
906 static int btrfs_may_delete(struct inode
*dir
, struct dentry
*victim
, int isdir
)
910 if (d_really_is_negative(victim
))
913 BUG_ON(d_inode(victim
->d_parent
) != dir
);
914 audit_inode_child(dir
, victim
, AUDIT_TYPE_CHILD_DELETE
);
916 error
= inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
921 if (check_sticky(dir
, d_inode(victim
)) || IS_APPEND(d_inode(victim
)) ||
922 IS_IMMUTABLE(d_inode(victim
)) || IS_SWAPFILE(d_inode(victim
)))
925 if (!d_is_dir(victim
))
929 } else if (d_is_dir(victim
))
933 if (victim
->d_flags
& DCACHE_NFSFS_RENAMED
)
938 /* copy of may_create in fs/namei.c() */
939 static inline int btrfs_may_create(struct inode
*dir
, struct dentry
*child
)
941 if (d_really_is_positive(child
))
945 return inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
949 * Create a new subvolume below @parent. This is largely modeled after
950 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
951 * inside this filesystem so it's quite a bit simpler.
953 static noinline
int btrfs_mksubvol(const struct path
*parent
,
954 const char *name
, int namelen
,
955 struct btrfs_root
*snap_src
,
956 u64
*async_transid
, bool readonly
,
957 struct btrfs_qgroup_inherit
*inherit
)
959 struct inode
*dir
= d_inode(parent
->dentry
);
960 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
961 struct dentry
*dentry
;
964 error
= down_write_killable_nested(&dir
->i_rwsem
, I_MUTEX_PARENT
);
968 dentry
= lookup_one_len(name
, parent
->dentry
, namelen
);
969 error
= PTR_ERR(dentry
);
973 error
= btrfs_may_create(dir
, dentry
);
978 * even if this name doesn't exist, we may get hash collisions.
979 * check for them now when we can safely fail
981 error
= btrfs_check_dir_item_collision(BTRFS_I(dir
)->root
,
987 down_read(&fs_info
->subvol_sem
);
989 if (btrfs_root_refs(&BTRFS_I(dir
)->root
->root_item
) == 0)
993 error
= create_snapshot(snap_src
, dir
, dentry
,
994 async_transid
, readonly
, inherit
);
996 error
= create_subvol(dir
, dentry
, name
, namelen
,
997 async_transid
, inherit
);
1000 fsnotify_mkdir(dir
, dentry
);
1002 up_read(&fs_info
->subvol_sem
);
1011 * When we're defragging a range, we don't want to kick it off again
1012 * if it is really just waiting for delalloc to send it down.
1013 * If we find a nice big extent or delalloc range for the bytes in the
1014 * file you want to defrag, we return 0 to let you know to skip this
1017 static int check_defrag_in_cache(struct inode
*inode
, u64 offset
, u32 thresh
)
1019 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1020 struct extent_map
*em
= NULL
;
1021 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
1024 read_lock(&em_tree
->lock
);
1025 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_SIZE
);
1026 read_unlock(&em_tree
->lock
);
1029 end
= extent_map_end(em
);
1030 free_extent_map(em
);
1031 if (end
- offset
> thresh
)
1034 /* if we already have a nice delalloc here, just stop */
1036 end
= count_range_bits(io_tree
, &offset
, offset
+ thresh
,
1037 thresh
, EXTENT_DELALLOC
, 1);
1044 * helper function to walk through a file and find extents
1045 * newer than a specific transid, and smaller than thresh.
1047 * This is used by the defragging code to find new and small
1050 static int find_new_extents(struct btrfs_root
*root
,
1051 struct inode
*inode
, u64 newer_than
,
1052 u64
*off
, u32 thresh
)
1054 struct btrfs_path
*path
;
1055 struct btrfs_key min_key
;
1056 struct extent_buffer
*leaf
;
1057 struct btrfs_file_extent_item
*extent
;
1060 u64 ino
= btrfs_ino(BTRFS_I(inode
));
1062 path
= btrfs_alloc_path();
1066 min_key
.objectid
= ino
;
1067 min_key
.type
= BTRFS_EXTENT_DATA_KEY
;
1068 min_key
.offset
= *off
;
1071 ret
= btrfs_search_forward(root
, &min_key
, path
, newer_than
);
1075 if (min_key
.objectid
!= ino
)
1077 if (min_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
1080 leaf
= path
->nodes
[0];
1081 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1082 struct btrfs_file_extent_item
);
1084 type
= btrfs_file_extent_type(leaf
, extent
);
1085 if (type
== BTRFS_FILE_EXTENT_REG
&&
1086 btrfs_file_extent_num_bytes(leaf
, extent
) < thresh
&&
1087 check_defrag_in_cache(inode
, min_key
.offset
, thresh
)) {
1088 *off
= min_key
.offset
;
1089 btrfs_free_path(path
);
1094 if (path
->slots
[0] < btrfs_header_nritems(leaf
)) {
1095 btrfs_item_key_to_cpu(leaf
, &min_key
, path
->slots
[0]);
1099 if (min_key
.offset
== (u64
)-1)
1103 btrfs_release_path(path
);
1106 btrfs_free_path(path
);
1110 static struct extent_map
*defrag_lookup_extent(struct inode
*inode
, u64 start
)
1112 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
1113 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
1114 struct extent_map
*em
;
1115 u64 len
= PAGE_SIZE
;
1118 * hopefully we have this extent in the tree already, try without
1119 * the full extent lock
1121 read_lock(&em_tree
->lock
);
1122 em
= lookup_extent_mapping(em_tree
, start
, len
);
1123 read_unlock(&em_tree
->lock
);
1126 struct extent_state
*cached
= NULL
;
1127 u64 end
= start
+ len
- 1;
1129 /* get the big lock and read metadata off disk */
1130 lock_extent_bits(io_tree
, start
, end
, &cached
);
1131 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, start
, len
, 0);
1132 unlock_extent_cached(io_tree
, start
, end
, &cached
);
1141 static bool defrag_check_next_extent(struct inode
*inode
, struct extent_map
*em
)
1143 struct extent_map
*next
;
1146 /* this is the last extent */
1147 if (em
->start
+ em
->len
>= i_size_read(inode
))
1150 next
= defrag_lookup_extent(inode
, em
->start
+ em
->len
);
1151 if (!next
|| next
->block_start
>= EXTENT_MAP_LAST_BYTE
)
1153 else if ((em
->block_start
+ em
->block_len
== next
->block_start
) &&
1154 (em
->block_len
> SZ_128K
&& next
->block_len
> SZ_128K
))
1157 free_extent_map(next
);
1161 static int should_defrag_range(struct inode
*inode
, u64 start
, u32 thresh
,
1162 u64
*last_len
, u64
*skip
, u64
*defrag_end
,
1165 struct extent_map
*em
;
1167 bool next_mergeable
= true;
1168 bool prev_mergeable
= true;
1171 * make sure that once we start defragging an extent, we keep on
1174 if (start
< *defrag_end
)
1179 em
= defrag_lookup_extent(inode
, start
);
1183 /* this will cover holes, and inline extents */
1184 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
1190 prev_mergeable
= false;
1192 next_mergeable
= defrag_check_next_extent(inode
, em
);
1194 * we hit a real extent, if it is big or the next extent is not a
1195 * real extent, don't bother defragging it
1197 if (!compress
&& (*last_len
== 0 || *last_len
>= thresh
) &&
1198 (em
->len
>= thresh
|| (!next_mergeable
&& !prev_mergeable
)))
1202 * last_len ends up being a counter of how many bytes we've defragged.
1203 * every time we choose not to defrag an extent, we reset *last_len
1204 * so that the next tiny extent will force a defrag.
1206 * The end result of this is that tiny extents before a single big
1207 * extent will force at least part of that big extent to be defragged.
1210 *defrag_end
= extent_map_end(em
);
1213 *skip
= extent_map_end(em
);
1217 free_extent_map(em
);
1222 * it doesn't do much good to defrag one or two pages
1223 * at a time. This pulls in a nice chunk of pages
1224 * to COW and defrag.
1226 * It also makes sure the delalloc code has enough
1227 * dirty data to avoid making new small extents as part
1230 * It's a good idea to start RA on this range
1231 * before calling this.
1233 static int cluster_pages_for_defrag(struct inode
*inode
,
1234 struct page
**pages
,
1235 unsigned long start_index
,
1236 unsigned long num_pages
)
1238 unsigned long file_end
;
1239 u64 isize
= i_size_read(inode
);
1246 struct btrfs_ordered_extent
*ordered
;
1247 struct extent_state
*cached_state
= NULL
;
1248 struct extent_io_tree
*tree
;
1249 struct extent_changeset
*data_reserved
= NULL
;
1250 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
1252 file_end
= (isize
- 1) >> PAGE_SHIFT
;
1253 if (!isize
|| start_index
> file_end
)
1256 page_cnt
= min_t(u64
, (u64
)num_pages
, (u64
)file_end
- start_index
+ 1);
1258 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
,
1259 start_index
<< PAGE_SHIFT
,
1260 page_cnt
<< PAGE_SHIFT
);
1264 tree
= &BTRFS_I(inode
)->io_tree
;
1266 /* step one, lock all the pages */
1267 for (i
= 0; i
< page_cnt
; i
++) {
1270 page
= find_or_create_page(inode
->i_mapping
,
1271 start_index
+ i
, mask
);
1275 page_start
= page_offset(page
);
1276 page_end
= page_start
+ PAGE_SIZE
- 1;
1278 lock_extent_bits(tree
, page_start
, page_end
,
1280 ordered
= btrfs_lookup_ordered_extent(inode
,
1282 unlock_extent_cached(tree
, page_start
, page_end
,
1288 btrfs_start_ordered_extent(inode
, ordered
, 1);
1289 btrfs_put_ordered_extent(ordered
);
1292 * we unlocked the page above, so we need check if
1293 * it was released or not.
1295 if (page
->mapping
!= inode
->i_mapping
) {
1302 if (!PageUptodate(page
)) {
1303 btrfs_readpage(NULL
, page
);
1305 if (!PageUptodate(page
)) {
1313 if (page
->mapping
!= inode
->i_mapping
) {
1325 if (!(inode
->i_sb
->s_flags
& SB_ACTIVE
))
1329 * so now we have a nice long stream of locked
1330 * and up to date pages, lets wait on them
1332 for (i
= 0; i
< i_done
; i
++)
1333 wait_on_page_writeback(pages
[i
]);
1335 page_start
= page_offset(pages
[0]);
1336 page_end
= page_offset(pages
[i_done
- 1]) + PAGE_SIZE
;
1338 lock_extent_bits(&BTRFS_I(inode
)->io_tree
,
1339 page_start
, page_end
- 1, &cached_state
);
1340 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
,
1341 page_end
- 1, EXTENT_DIRTY
| EXTENT_DELALLOC
|
1342 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 0, 0,
1345 if (i_done
!= page_cnt
) {
1346 spin_lock(&BTRFS_I(inode
)->lock
);
1347 btrfs_mod_outstanding_extents(BTRFS_I(inode
), 1);
1348 spin_unlock(&BTRFS_I(inode
)->lock
);
1349 btrfs_delalloc_release_space(inode
, data_reserved
,
1350 start_index
<< PAGE_SHIFT
,
1351 (page_cnt
- i_done
) << PAGE_SHIFT
, true);
1355 set_extent_defrag(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
- 1,
1358 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1359 page_start
, page_end
- 1, &cached_state
);
1361 for (i
= 0; i
< i_done
; i
++) {
1362 clear_page_dirty_for_io(pages
[i
]);
1363 ClearPageChecked(pages
[i
]);
1364 set_page_extent_mapped(pages
[i
]);
1365 set_page_dirty(pages
[i
]);
1366 unlock_page(pages
[i
]);
1369 btrfs_delalloc_release_extents(BTRFS_I(inode
), page_cnt
<< PAGE_SHIFT
,
1371 extent_changeset_free(data_reserved
);
1374 for (i
= 0; i
< i_done
; i
++) {
1375 unlock_page(pages
[i
]);
1378 btrfs_delalloc_release_space(inode
, data_reserved
,
1379 start_index
<< PAGE_SHIFT
,
1380 page_cnt
<< PAGE_SHIFT
, true);
1381 btrfs_delalloc_release_extents(BTRFS_I(inode
), page_cnt
<< PAGE_SHIFT
,
1383 extent_changeset_free(data_reserved
);
1388 int btrfs_defrag_file(struct inode
*inode
, struct file
*file
,
1389 struct btrfs_ioctl_defrag_range_args
*range
,
1390 u64 newer_than
, unsigned long max_to_defrag
)
1392 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1393 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1394 struct file_ra_state
*ra
= NULL
;
1395 unsigned long last_index
;
1396 u64 isize
= i_size_read(inode
);
1400 u64 newer_off
= range
->start
;
1402 unsigned long ra_index
= 0;
1404 int defrag_count
= 0;
1405 int compress_type
= BTRFS_COMPRESS_ZLIB
;
1406 u32 extent_thresh
= range
->extent_thresh
;
1407 unsigned long max_cluster
= SZ_256K
>> PAGE_SHIFT
;
1408 unsigned long cluster
= max_cluster
;
1409 u64 new_align
= ~((u64
)SZ_128K
- 1);
1410 struct page
**pages
= NULL
;
1411 bool do_compress
= range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
;
1416 if (range
->start
>= isize
)
1420 if (range
->compress_type
> BTRFS_COMPRESS_TYPES
)
1422 if (range
->compress_type
)
1423 compress_type
= range
->compress_type
;
1426 if (extent_thresh
== 0)
1427 extent_thresh
= SZ_256K
;
1430 * If we were not given a file, allocate a readahead context. As
1431 * readahead is just an optimization, defrag will work without it so
1432 * we don't error out.
1435 ra
= kzalloc(sizeof(*ra
), GFP_KERNEL
);
1437 file_ra_state_init(ra
, inode
->i_mapping
);
1442 pages
= kmalloc_array(max_cluster
, sizeof(struct page
*), GFP_KERNEL
);
1448 /* find the last page to defrag */
1449 if (range
->start
+ range
->len
> range
->start
) {
1450 last_index
= min_t(u64
, isize
- 1,
1451 range
->start
+ range
->len
- 1) >> PAGE_SHIFT
;
1453 last_index
= (isize
- 1) >> PAGE_SHIFT
;
1457 ret
= find_new_extents(root
, inode
, newer_than
,
1458 &newer_off
, SZ_64K
);
1460 range
->start
= newer_off
;
1462 * we always align our defrag to help keep
1463 * the extents in the file evenly spaced
1465 i
= (newer_off
& new_align
) >> PAGE_SHIFT
;
1469 i
= range
->start
>> PAGE_SHIFT
;
1472 max_to_defrag
= last_index
- i
+ 1;
1475 * make writeback starts from i, so the defrag range can be
1476 * written sequentially.
1478 if (i
< inode
->i_mapping
->writeback_index
)
1479 inode
->i_mapping
->writeback_index
= i
;
1481 while (i
<= last_index
&& defrag_count
< max_to_defrag
&&
1482 (i
< DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
))) {
1484 * make sure we stop running if someone unmounts
1487 if (!(inode
->i_sb
->s_flags
& SB_ACTIVE
))
1490 if (btrfs_defrag_cancelled(fs_info
)) {
1491 btrfs_debug(fs_info
, "defrag_file cancelled");
1496 if (!should_defrag_range(inode
, (u64
)i
<< PAGE_SHIFT
,
1497 extent_thresh
, &last_len
, &skip
,
1498 &defrag_end
, do_compress
)){
1501 * the should_defrag function tells us how much to skip
1502 * bump our counter by the suggested amount
1504 next
= DIV_ROUND_UP(skip
, PAGE_SIZE
);
1505 i
= max(i
+ 1, next
);
1510 cluster
= (PAGE_ALIGN(defrag_end
) >>
1512 cluster
= min(cluster
, max_cluster
);
1514 cluster
= max_cluster
;
1517 if (i
+ cluster
> ra_index
) {
1518 ra_index
= max(i
, ra_index
);
1520 page_cache_sync_readahead(inode
->i_mapping
, ra
,
1521 file
, ra_index
, cluster
);
1522 ra_index
+= cluster
;
1526 if (IS_SWAPFILE(inode
)) {
1530 BTRFS_I(inode
)->defrag_compress
= compress_type
;
1531 ret
= cluster_pages_for_defrag(inode
, pages
, i
, cluster
);
1534 inode_unlock(inode
);
1538 defrag_count
+= ret
;
1539 balance_dirty_pages_ratelimited(inode
->i_mapping
);
1540 inode_unlock(inode
);
1543 if (newer_off
== (u64
)-1)
1549 newer_off
= max(newer_off
+ 1,
1550 (u64
)i
<< PAGE_SHIFT
);
1552 ret
= find_new_extents(root
, inode
, newer_than
,
1553 &newer_off
, SZ_64K
);
1555 range
->start
= newer_off
;
1556 i
= (newer_off
& new_align
) >> PAGE_SHIFT
;
1563 last_len
+= ret
<< PAGE_SHIFT
;
1571 if ((range
->flags
& BTRFS_DEFRAG_RANGE_START_IO
)) {
1572 filemap_flush(inode
->i_mapping
);
1573 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1574 &BTRFS_I(inode
)->runtime_flags
))
1575 filemap_flush(inode
->i_mapping
);
1578 if (range
->compress_type
== BTRFS_COMPRESS_LZO
) {
1579 btrfs_set_fs_incompat(fs_info
, COMPRESS_LZO
);
1580 } else if (range
->compress_type
== BTRFS_COMPRESS_ZSTD
) {
1581 btrfs_set_fs_incompat(fs_info
, COMPRESS_ZSTD
);
1589 BTRFS_I(inode
)->defrag_compress
= BTRFS_COMPRESS_NONE
;
1590 inode_unlock(inode
);
1598 static noinline
int btrfs_ioctl_resize(struct file
*file
,
1601 struct inode
*inode
= file_inode(file
);
1602 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1606 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1607 struct btrfs_ioctl_vol_args
*vol_args
;
1608 struct btrfs_trans_handle
*trans
;
1609 struct btrfs_device
*device
= NULL
;
1612 char *devstr
= NULL
;
1616 if (!capable(CAP_SYS_ADMIN
))
1619 ret
= mnt_want_write_file(file
);
1623 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
)) {
1624 mnt_drop_write_file(file
);
1625 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
1628 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1629 if (IS_ERR(vol_args
)) {
1630 ret
= PTR_ERR(vol_args
);
1634 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1636 sizestr
= vol_args
->name
;
1637 devstr
= strchr(sizestr
, ':');
1639 sizestr
= devstr
+ 1;
1641 devstr
= vol_args
->name
;
1642 ret
= kstrtoull(devstr
, 10, &devid
);
1649 btrfs_info(fs_info
, "resizing devid %llu", devid
);
1652 device
= btrfs_find_device(fs_info
->fs_devices
, devid
, NULL
, NULL
, true);
1654 btrfs_info(fs_info
, "resizer unable to find device %llu",
1660 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
1662 "resizer unable to apply on readonly device %llu",
1668 if (!strcmp(sizestr
, "max"))
1669 new_size
= device
->bdev
->bd_inode
->i_size
;
1671 if (sizestr
[0] == '-') {
1674 } else if (sizestr
[0] == '+') {
1678 new_size
= memparse(sizestr
, &retptr
);
1679 if (*retptr
!= '\0' || new_size
== 0) {
1685 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
1690 old_size
= btrfs_device_get_total_bytes(device
);
1693 if (new_size
> old_size
) {
1697 new_size
= old_size
- new_size
;
1698 } else if (mod
> 0) {
1699 if (new_size
> ULLONG_MAX
- old_size
) {
1703 new_size
= old_size
+ new_size
;
1706 if (new_size
< SZ_256M
) {
1710 if (new_size
> device
->bdev
->bd_inode
->i_size
) {
1715 new_size
= round_down(new_size
, fs_info
->sectorsize
);
1717 btrfs_info_in_rcu(fs_info
, "new size for %s is %llu",
1718 rcu_str_deref(device
->name
), new_size
);
1720 if (new_size
> old_size
) {
1721 trans
= btrfs_start_transaction(root
, 0);
1722 if (IS_ERR(trans
)) {
1723 ret
= PTR_ERR(trans
);
1726 ret
= btrfs_grow_device(trans
, device
, new_size
);
1727 btrfs_commit_transaction(trans
);
1728 } else if (new_size
< old_size
) {
1729 ret
= btrfs_shrink_device(device
, new_size
);
1730 } /* equal, nothing need to do */
1735 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
1736 mnt_drop_write_file(file
);
1740 static noinline
int btrfs_ioctl_snap_create_transid(struct file
*file
,
1741 const char *name
, unsigned long fd
, int subvol
,
1742 u64
*transid
, bool readonly
,
1743 struct btrfs_qgroup_inherit
*inherit
)
1748 if (!S_ISDIR(file_inode(file
)->i_mode
))
1751 ret
= mnt_want_write_file(file
);
1755 namelen
= strlen(name
);
1756 if (strchr(name
, '/')) {
1758 goto out_drop_write
;
1761 if (name
[0] == '.' &&
1762 (namelen
== 1 || (name
[1] == '.' && namelen
== 2))) {
1764 goto out_drop_write
;
1768 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1769 NULL
, transid
, readonly
, inherit
);
1771 struct fd src
= fdget(fd
);
1772 struct inode
*src_inode
;
1775 goto out_drop_write
;
1778 src_inode
= file_inode(src
.file
);
1779 if (src_inode
->i_sb
!= file_inode(file
)->i_sb
) {
1780 btrfs_info(BTRFS_I(file_inode(file
))->root
->fs_info
,
1781 "Snapshot src from another FS");
1783 } else if (!inode_owner_or_capable(src_inode
)) {
1785 * Subvolume creation is not restricted, but snapshots
1786 * are limited to own subvolumes only
1790 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1791 BTRFS_I(src_inode
)->root
,
1792 transid
, readonly
, inherit
);
1797 mnt_drop_write_file(file
);
1802 static noinline
int btrfs_ioctl_snap_create(struct file
*file
,
1803 void __user
*arg
, int subvol
)
1805 struct btrfs_ioctl_vol_args
*vol_args
;
1808 if (!S_ISDIR(file_inode(file
)->i_mode
))
1811 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1812 if (IS_ERR(vol_args
))
1813 return PTR_ERR(vol_args
);
1814 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1816 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1817 vol_args
->fd
, subvol
,
1824 static noinline
int btrfs_ioctl_snap_create_v2(struct file
*file
,
1825 void __user
*arg
, int subvol
)
1827 struct btrfs_ioctl_vol_args_v2
*vol_args
;
1831 bool readonly
= false;
1832 struct btrfs_qgroup_inherit
*inherit
= NULL
;
1834 if (!S_ISDIR(file_inode(file
)->i_mode
))
1837 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1838 if (IS_ERR(vol_args
))
1839 return PTR_ERR(vol_args
);
1840 vol_args
->name
[BTRFS_SUBVOL_NAME_MAX
] = '\0';
1842 if (vol_args
->flags
&
1843 ~(BTRFS_SUBVOL_CREATE_ASYNC
| BTRFS_SUBVOL_RDONLY
|
1844 BTRFS_SUBVOL_QGROUP_INHERIT
)) {
1849 if (vol_args
->flags
& BTRFS_SUBVOL_CREATE_ASYNC
)
1851 if (vol_args
->flags
& BTRFS_SUBVOL_RDONLY
)
1853 if (vol_args
->flags
& BTRFS_SUBVOL_QGROUP_INHERIT
) {
1854 if (vol_args
->size
> PAGE_SIZE
) {
1858 inherit
= memdup_user(vol_args
->qgroup_inherit
, vol_args
->size
);
1859 if (IS_ERR(inherit
)) {
1860 ret
= PTR_ERR(inherit
);
1865 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1866 vol_args
->fd
, subvol
, ptr
,
1871 if (ptr
&& copy_to_user(arg
+
1872 offsetof(struct btrfs_ioctl_vol_args_v2
,
1884 static noinline
int btrfs_ioctl_subvol_getflags(struct file
*file
,
1887 struct inode
*inode
= file_inode(file
);
1888 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1889 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1893 if (btrfs_ino(BTRFS_I(inode
)) != BTRFS_FIRST_FREE_OBJECTID
)
1896 down_read(&fs_info
->subvol_sem
);
1897 if (btrfs_root_readonly(root
))
1898 flags
|= BTRFS_SUBVOL_RDONLY
;
1899 up_read(&fs_info
->subvol_sem
);
1901 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
1907 static noinline
int btrfs_ioctl_subvol_setflags(struct file
*file
,
1910 struct inode
*inode
= file_inode(file
);
1911 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1912 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1913 struct btrfs_trans_handle
*trans
;
1918 if (!inode_owner_or_capable(inode
))
1921 ret
= mnt_want_write_file(file
);
1925 if (btrfs_ino(BTRFS_I(inode
)) != BTRFS_FIRST_FREE_OBJECTID
) {
1927 goto out_drop_write
;
1930 if (copy_from_user(&flags
, arg
, sizeof(flags
))) {
1932 goto out_drop_write
;
1935 if (flags
& BTRFS_SUBVOL_CREATE_ASYNC
) {
1937 goto out_drop_write
;
1940 if (flags
& ~BTRFS_SUBVOL_RDONLY
) {
1942 goto out_drop_write
;
1945 down_write(&fs_info
->subvol_sem
);
1948 if (!!(flags
& BTRFS_SUBVOL_RDONLY
) == btrfs_root_readonly(root
))
1951 root_flags
= btrfs_root_flags(&root
->root_item
);
1952 if (flags
& BTRFS_SUBVOL_RDONLY
) {
1953 btrfs_set_root_flags(&root
->root_item
,
1954 root_flags
| BTRFS_ROOT_SUBVOL_RDONLY
);
1957 * Block RO -> RW transition if this subvolume is involved in
1960 spin_lock(&root
->root_item_lock
);
1961 if (root
->send_in_progress
== 0) {
1962 btrfs_set_root_flags(&root
->root_item
,
1963 root_flags
& ~BTRFS_ROOT_SUBVOL_RDONLY
);
1964 spin_unlock(&root
->root_item_lock
);
1966 spin_unlock(&root
->root_item_lock
);
1968 "Attempt to set subvolume %llu read-write during send",
1969 root
->root_key
.objectid
);
1975 trans
= btrfs_start_transaction(root
, 1);
1976 if (IS_ERR(trans
)) {
1977 ret
= PTR_ERR(trans
);
1981 ret
= btrfs_update_root(trans
, fs_info
->tree_root
,
1982 &root
->root_key
, &root
->root_item
);
1984 btrfs_end_transaction(trans
);
1988 ret
= btrfs_commit_transaction(trans
);
1992 btrfs_set_root_flags(&root
->root_item
, root_flags
);
1994 up_write(&fs_info
->subvol_sem
);
1996 mnt_drop_write_file(file
);
2001 static noinline
int key_in_sk(struct btrfs_key
*key
,
2002 struct btrfs_ioctl_search_key
*sk
)
2004 struct btrfs_key test
;
2007 test
.objectid
= sk
->min_objectid
;
2008 test
.type
= sk
->min_type
;
2009 test
.offset
= sk
->min_offset
;
2011 ret
= btrfs_comp_cpu_keys(key
, &test
);
2015 test
.objectid
= sk
->max_objectid
;
2016 test
.type
= sk
->max_type
;
2017 test
.offset
= sk
->max_offset
;
2019 ret
= btrfs_comp_cpu_keys(key
, &test
);
2025 static noinline
int copy_to_sk(struct btrfs_path
*path
,
2026 struct btrfs_key
*key
,
2027 struct btrfs_ioctl_search_key
*sk
,
2030 unsigned long *sk_offset
,
2034 struct extent_buffer
*leaf
;
2035 struct btrfs_ioctl_search_header sh
;
2036 struct btrfs_key test
;
2037 unsigned long item_off
;
2038 unsigned long item_len
;
2044 leaf
= path
->nodes
[0];
2045 slot
= path
->slots
[0];
2046 nritems
= btrfs_header_nritems(leaf
);
2048 if (btrfs_header_generation(leaf
) > sk
->max_transid
) {
2052 found_transid
= btrfs_header_generation(leaf
);
2054 for (i
= slot
; i
< nritems
; i
++) {
2055 item_off
= btrfs_item_ptr_offset(leaf
, i
);
2056 item_len
= btrfs_item_size_nr(leaf
, i
);
2058 btrfs_item_key_to_cpu(leaf
, key
, i
);
2059 if (!key_in_sk(key
, sk
))
2062 if (sizeof(sh
) + item_len
> *buf_size
) {
2069 * return one empty item back for v1, which does not
2073 *buf_size
= sizeof(sh
) + item_len
;
2078 if (sizeof(sh
) + item_len
+ *sk_offset
> *buf_size
) {
2083 sh
.objectid
= key
->objectid
;
2084 sh
.offset
= key
->offset
;
2085 sh
.type
= key
->type
;
2087 sh
.transid
= found_transid
;
2089 /* copy search result header */
2090 if (copy_to_user(ubuf
+ *sk_offset
, &sh
, sizeof(sh
))) {
2095 *sk_offset
+= sizeof(sh
);
2098 char __user
*up
= ubuf
+ *sk_offset
;
2100 if (read_extent_buffer_to_user(leaf
, up
,
2101 item_off
, item_len
)) {
2106 *sk_offset
+= item_len
;
2110 if (ret
) /* -EOVERFLOW from above */
2113 if (*num_found
>= sk
->nr_items
) {
2120 test
.objectid
= sk
->max_objectid
;
2121 test
.type
= sk
->max_type
;
2122 test
.offset
= sk
->max_offset
;
2123 if (btrfs_comp_cpu_keys(key
, &test
) >= 0)
2125 else if (key
->offset
< (u64
)-1)
2127 else if (key
->type
< (u8
)-1) {
2130 } else if (key
->objectid
< (u64
)-1) {
2138 * 0: all items from this leaf copied, continue with next
2139 * 1: * more items can be copied, but unused buffer is too small
2140 * * all items were found
2141 * Either way, it will stops the loop which iterates to the next
2143 * -EOVERFLOW: item was to large for buffer
2144 * -EFAULT: could not copy extent buffer back to userspace
2149 static noinline
int search_ioctl(struct inode
*inode
,
2150 struct btrfs_ioctl_search_key
*sk
,
2154 struct btrfs_fs_info
*info
= btrfs_sb(inode
->i_sb
);
2155 struct btrfs_root
*root
;
2156 struct btrfs_key key
;
2157 struct btrfs_path
*path
;
2160 unsigned long sk_offset
= 0;
2162 if (*buf_size
< sizeof(struct btrfs_ioctl_search_header
)) {
2163 *buf_size
= sizeof(struct btrfs_ioctl_search_header
);
2167 path
= btrfs_alloc_path();
2171 if (sk
->tree_id
== 0) {
2172 /* search the root of the inode that was passed */
2173 root
= BTRFS_I(inode
)->root
;
2175 key
.objectid
= sk
->tree_id
;
2176 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2177 key
.offset
= (u64
)-1;
2178 root
= btrfs_read_fs_root_no_name(info
, &key
);
2180 btrfs_free_path(path
);
2181 return PTR_ERR(root
);
2185 key
.objectid
= sk
->min_objectid
;
2186 key
.type
= sk
->min_type
;
2187 key
.offset
= sk
->min_offset
;
2190 ret
= btrfs_search_forward(root
, &key
, path
, sk
->min_transid
);
2196 ret
= copy_to_sk(path
, &key
, sk
, buf_size
, ubuf
,
2197 &sk_offset
, &num_found
);
2198 btrfs_release_path(path
);
2206 sk
->nr_items
= num_found
;
2207 btrfs_free_path(path
);
2211 static noinline
int btrfs_ioctl_tree_search(struct file
*file
,
2214 struct btrfs_ioctl_search_args __user
*uargs
;
2215 struct btrfs_ioctl_search_key sk
;
2216 struct inode
*inode
;
2220 if (!capable(CAP_SYS_ADMIN
))
2223 uargs
= (struct btrfs_ioctl_search_args __user
*)argp
;
2225 if (copy_from_user(&sk
, &uargs
->key
, sizeof(sk
)))
2228 buf_size
= sizeof(uargs
->buf
);
2230 inode
= file_inode(file
);
2231 ret
= search_ioctl(inode
, &sk
, &buf_size
, uargs
->buf
);
2234 * In the origin implementation an overflow is handled by returning a
2235 * search header with a len of zero, so reset ret.
2237 if (ret
== -EOVERFLOW
)
2240 if (ret
== 0 && copy_to_user(&uargs
->key
, &sk
, sizeof(sk
)))
2245 static noinline
int btrfs_ioctl_tree_search_v2(struct file
*file
,
2248 struct btrfs_ioctl_search_args_v2 __user
*uarg
;
2249 struct btrfs_ioctl_search_args_v2 args
;
2250 struct inode
*inode
;
2253 const size_t buf_limit
= SZ_16M
;
2255 if (!capable(CAP_SYS_ADMIN
))
2258 /* copy search header and buffer size */
2259 uarg
= (struct btrfs_ioctl_search_args_v2 __user
*)argp
;
2260 if (copy_from_user(&args
, uarg
, sizeof(args
)))
2263 buf_size
= args
.buf_size
;
2265 /* limit result size to 16MB */
2266 if (buf_size
> buf_limit
)
2267 buf_size
= buf_limit
;
2269 inode
= file_inode(file
);
2270 ret
= search_ioctl(inode
, &args
.key
, &buf_size
,
2271 (char __user
*)(&uarg
->buf
[0]));
2272 if (ret
== 0 && copy_to_user(&uarg
->key
, &args
.key
, sizeof(args
.key
)))
2274 else if (ret
== -EOVERFLOW
&&
2275 copy_to_user(&uarg
->buf_size
, &buf_size
, sizeof(buf_size
)))
2282 * Search INODE_REFs to identify path name of 'dirid' directory
2283 * in a 'tree_id' tree. and sets path name to 'name'.
2285 static noinline
int btrfs_search_path_in_tree(struct btrfs_fs_info
*info
,
2286 u64 tree_id
, u64 dirid
, char *name
)
2288 struct btrfs_root
*root
;
2289 struct btrfs_key key
;
2295 struct btrfs_inode_ref
*iref
;
2296 struct extent_buffer
*l
;
2297 struct btrfs_path
*path
;
2299 if (dirid
== BTRFS_FIRST_FREE_OBJECTID
) {
2304 path
= btrfs_alloc_path();
2308 ptr
= &name
[BTRFS_INO_LOOKUP_PATH_MAX
- 1];
2310 key
.objectid
= tree_id
;
2311 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2312 key
.offset
= (u64
)-1;
2313 root
= btrfs_read_fs_root_no_name(info
, &key
);
2315 ret
= PTR_ERR(root
);
2319 key
.objectid
= dirid
;
2320 key
.type
= BTRFS_INODE_REF_KEY
;
2321 key
.offset
= (u64
)-1;
2324 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2328 ret
= btrfs_previous_item(root
, path
, dirid
,
2329 BTRFS_INODE_REF_KEY
);
2339 slot
= path
->slots
[0];
2340 btrfs_item_key_to_cpu(l
, &key
, slot
);
2342 iref
= btrfs_item_ptr(l
, slot
, struct btrfs_inode_ref
);
2343 len
= btrfs_inode_ref_name_len(l
, iref
);
2345 total_len
+= len
+ 1;
2347 ret
= -ENAMETOOLONG
;
2352 read_extent_buffer(l
, ptr
, (unsigned long)(iref
+ 1), len
);
2354 if (key
.offset
== BTRFS_FIRST_FREE_OBJECTID
)
2357 btrfs_release_path(path
);
2358 key
.objectid
= key
.offset
;
2359 key
.offset
= (u64
)-1;
2360 dirid
= key
.objectid
;
2362 memmove(name
, ptr
, total_len
);
2363 name
[total_len
] = '\0';
2366 btrfs_free_path(path
);
2370 static int btrfs_search_path_in_tree_user(struct inode
*inode
,
2371 struct btrfs_ioctl_ino_lookup_user_args
*args
)
2373 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2374 struct super_block
*sb
= inode
->i_sb
;
2375 struct btrfs_key upper_limit
= BTRFS_I(inode
)->location
;
2376 u64 treeid
= BTRFS_I(inode
)->root
->root_key
.objectid
;
2377 u64 dirid
= args
->dirid
;
2378 unsigned long item_off
;
2379 unsigned long item_len
;
2380 struct btrfs_inode_ref
*iref
;
2381 struct btrfs_root_ref
*rref
;
2382 struct btrfs_root
*root
;
2383 struct btrfs_path
*path
;
2384 struct btrfs_key key
, key2
;
2385 struct extent_buffer
*leaf
;
2386 struct inode
*temp_inode
;
2393 path
= btrfs_alloc_path();
2398 * If the bottom subvolume does not exist directly under upper_limit,
2399 * construct the path in from the bottom up.
2401 if (dirid
!= upper_limit
.objectid
) {
2402 ptr
= &args
->path
[BTRFS_INO_LOOKUP_USER_PATH_MAX
- 1];
2404 key
.objectid
= treeid
;
2405 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2406 key
.offset
= (u64
)-1;
2407 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2409 ret
= PTR_ERR(root
);
2413 key
.objectid
= dirid
;
2414 key
.type
= BTRFS_INODE_REF_KEY
;
2415 key
.offset
= (u64
)-1;
2417 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2420 } else if (ret
> 0) {
2421 ret
= btrfs_previous_item(root
, path
, dirid
,
2422 BTRFS_INODE_REF_KEY
);
2425 } else if (ret
> 0) {
2431 leaf
= path
->nodes
[0];
2432 slot
= path
->slots
[0];
2433 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2435 iref
= btrfs_item_ptr(leaf
, slot
, struct btrfs_inode_ref
);
2436 len
= btrfs_inode_ref_name_len(leaf
, iref
);
2438 total_len
+= len
+ 1;
2439 if (ptr
< args
->path
) {
2440 ret
= -ENAMETOOLONG
;
2445 read_extent_buffer(leaf
, ptr
,
2446 (unsigned long)(iref
+ 1), len
);
2448 /* Check the read+exec permission of this directory */
2449 ret
= btrfs_previous_item(root
, path
, dirid
,
2450 BTRFS_INODE_ITEM_KEY
);
2453 } else if (ret
> 0) {
2458 leaf
= path
->nodes
[0];
2459 slot
= path
->slots
[0];
2460 btrfs_item_key_to_cpu(leaf
, &key2
, slot
);
2461 if (key2
.objectid
!= dirid
) {
2466 temp_inode
= btrfs_iget(sb
, &key2
, root
, NULL
);
2467 if (IS_ERR(temp_inode
)) {
2468 ret
= PTR_ERR(temp_inode
);
2471 ret
= inode_permission(temp_inode
, MAY_READ
| MAY_EXEC
);
2478 if (key
.offset
== upper_limit
.objectid
)
2480 if (key
.objectid
== BTRFS_FIRST_FREE_OBJECTID
) {
2485 btrfs_release_path(path
);
2486 key
.objectid
= key
.offset
;
2487 key
.offset
= (u64
)-1;
2488 dirid
= key
.objectid
;
2491 memmove(args
->path
, ptr
, total_len
);
2492 args
->path
[total_len
] = '\0';
2493 btrfs_release_path(path
);
2496 /* Get the bottom subvolume's name from ROOT_REF */
2497 root
= fs_info
->tree_root
;
2498 key
.objectid
= treeid
;
2499 key
.type
= BTRFS_ROOT_REF_KEY
;
2500 key
.offset
= args
->treeid
;
2501 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2504 } else if (ret
> 0) {
2509 leaf
= path
->nodes
[0];
2510 slot
= path
->slots
[0];
2511 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2513 item_off
= btrfs_item_ptr_offset(leaf
, slot
);
2514 item_len
= btrfs_item_size_nr(leaf
, slot
);
2515 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2516 rref
= btrfs_item_ptr(leaf
, slot
, struct btrfs_root_ref
);
2517 if (args
->dirid
!= btrfs_root_ref_dirid(leaf
, rref
)) {
2522 /* Copy subvolume's name */
2523 item_off
+= sizeof(struct btrfs_root_ref
);
2524 item_len
-= sizeof(struct btrfs_root_ref
);
2525 read_extent_buffer(leaf
, args
->name
, item_off
, item_len
);
2526 args
->name
[item_len
] = 0;
2529 btrfs_free_path(path
);
2533 static noinline
int btrfs_ioctl_ino_lookup(struct file
*file
,
2536 struct btrfs_ioctl_ino_lookup_args
*args
;
2537 struct inode
*inode
;
2540 args
= memdup_user(argp
, sizeof(*args
));
2542 return PTR_ERR(args
);
2544 inode
= file_inode(file
);
2547 * Unprivileged query to obtain the containing subvolume root id. The
2548 * path is reset so it's consistent with btrfs_search_path_in_tree.
2550 if (args
->treeid
== 0)
2551 args
->treeid
= BTRFS_I(inode
)->root
->root_key
.objectid
;
2553 if (args
->objectid
== BTRFS_FIRST_FREE_OBJECTID
) {
2558 if (!capable(CAP_SYS_ADMIN
)) {
2563 ret
= btrfs_search_path_in_tree(BTRFS_I(inode
)->root
->fs_info
,
2564 args
->treeid
, args
->objectid
,
2568 if (ret
== 0 && copy_to_user(argp
, args
, sizeof(*args
)))
2576 * Version of ino_lookup ioctl (unprivileged)
2578 * The main differences from ino_lookup ioctl are:
2580 * 1. Read + Exec permission will be checked using inode_permission() during
2581 * path construction. -EACCES will be returned in case of failure.
2582 * 2. Path construction will be stopped at the inode number which corresponds
2583 * to the fd with which this ioctl is called. If constructed path does not
2584 * exist under fd's inode, -EACCES will be returned.
2585 * 3. The name of bottom subvolume is also searched and filled.
2587 static int btrfs_ioctl_ino_lookup_user(struct file
*file
, void __user
*argp
)
2589 struct btrfs_ioctl_ino_lookup_user_args
*args
;
2590 struct inode
*inode
;
2593 args
= memdup_user(argp
, sizeof(*args
));
2595 return PTR_ERR(args
);
2597 inode
= file_inode(file
);
2599 if (args
->dirid
== BTRFS_FIRST_FREE_OBJECTID
&&
2600 BTRFS_I(inode
)->location
.objectid
!= BTRFS_FIRST_FREE_OBJECTID
) {
2602 * The subvolume does not exist under fd with which this is
2609 ret
= btrfs_search_path_in_tree_user(inode
, args
);
2611 if (ret
== 0 && copy_to_user(argp
, args
, sizeof(*args
)))
2618 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2619 static int btrfs_ioctl_get_subvol_info(struct file
*file
, void __user
*argp
)
2621 struct btrfs_ioctl_get_subvol_info_args
*subvol_info
;
2622 struct btrfs_fs_info
*fs_info
;
2623 struct btrfs_root
*root
;
2624 struct btrfs_path
*path
;
2625 struct btrfs_key key
;
2626 struct btrfs_root_item
*root_item
;
2627 struct btrfs_root_ref
*rref
;
2628 struct extent_buffer
*leaf
;
2629 unsigned long item_off
;
2630 unsigned long item_len
;
2631 struct inode
*inode
;
2635 path
= btrfs_alloc_path();
2639 subvol_info
= kzalloc(sizeof(*subvol_info
), GFP_KERNEL
);
2641 btrfs_free_path(path
);
2645 inode
= file_inode(file
);
2646 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2648 /* Get root_item of inode's subvolume */
2649 key
.objectid
= BTRFS_I(inode
)->root
->root_key
.objectid
;
2650 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2651 key
.offset
= (u64
)-1;
2652 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2654 ret
= PTR_ERR(root
);
2657 root_item
= &root
->root_item
;
2659 subvol_info
->treeid
= key
.objectid
;
2661 subvol_info
->generation
= btrfs_root_generation(root_item
);
2662 subvol_info
->flags
= btrfs_root_flags(root_item
);
2664 memcpy(subvol_info
->uuid
, root_item
->uuid
, BTRFS_UUID_SIZE
);
2665 memcpy(subvol_info
->parent_uuid
, root_item
->parent_uuid
,
2667 memcpy(subvol_info
->received_uuid
, root_item
->received_uuid
,
2670 subvol_info
->ctransid
= btrfs_root_ctransid(root_item
);
2671 subvol_info
->ctime
.sec
= btrfs_stack_timespec_sec(&root_item
->ctime
);
2672 subvol_info
->ctime
.nsec
= btrfs_stack_timespec_nsec(&root_item
->ctime
);
2674 subvol_info
->otransid
= btrfs_root_otransid(root_item
);
2675 subvol_info
->otime
.sec
= btrfs_stack_timespec_sec(&root_item
->otime
);
2676 subvol_info
->otime
.nsec
= btrfs_stack_timespec_nsec(&root_item
->otime
);
2678 subvol_info
->stransid
= btrfs_root_stransid(root_item
);
2679 subvol_info
->stime
.sec
= btrfs_stack_timespec_sec(&root_item
->stime
);
2680 subvol_info
->stime
.nsec
= btrfs_stack_timespec_nsec(&root_item
->stime
);
2682 subvol_info
->rtransid
= btrfs_root_rtransid(root_item
);
2683 subvol_info
->rtime
.sec
= btrfs_stack_timespec_sec(&root_item
->rtime
);
2684 subvol_info
->rtime
.nsec
= btrfs_stack_timespec_nsec(&root_item
->rtime
);
2686 if (key
.objectid
!= BTRFS_FS_TREE_OBJECTID
) {
2687 /* Search root tree for ROOT_BACKREF of this subvolume */
2688 root
= fs_info
->tree_root
;
2690 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
2692 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2695 } else if (path
->slots
[0] >=
2696 btrfs_header_nritems(path
->nodes
[0])) {
2697 ret
= btrfs_next_leaf(root
, path
);
2700 } else if (ret
> 0) {
2706 leaf
= path
->nodes
[0];
2707 slot
= path
->slots
[0];
2708 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2709 if (key
.objectid
== subvol_info
->treeid
&&
2710 key
.type
== BTRFS_ROOT_BACKREF_KEY
) {
2711 subvol_info
->parent_id
= key
.offset
;
2713 rref
= btrfs_item_ptr(leaf
, slot
, struct btrfs_root_ref
);
2714 subvol_info
->dirid
= btrfs_root_ref_dirid(leaf
, rref
);
2716 item_off
= btrfs_item_ptr_offset(leaf
, slot
)
2717 + sizeof(struct btrfs_root_ref
);
2718 item_len
= btrfs_item_size_nr(leaf
, slot
)
2719 - sizeof(struct btrfs_root_ref
);
2720 read_extent_buffer(leaf
, subvol_info
->name
,
2721 item_off
, item_len
);
2728 if (copy_to_user(argp
, subvol_info
, sizeof(*subvol_info
)))
2732 btrfs_free_path(path
);
2733 kzfree(subvol_info
);
2738 * Return ROOT_REF information of the subvolume containing this inode
2739 * except the subvolume name.
2741 static int btrfs_ioctl_get_subvol_rootref(struct file
*file
, void __user
*argp
)
2743 struct btrfs_ioctl_get_subvol_rootref_args
*rootrefs
;
2744 struct btrfs_root_ref
*rref
;
2745 struct btrfs_root
*root
;
2746 struct btrfs_path
*path
;
2747 struct btrfs_key key
;
2748 struct extent_buffer
*leaf
;
2749 struct inode
*inode
;
2755 path
= btrfs_alloc_path();
2759 rootrefs
= memdup_user(argp
, sizeof(*rootrefs
));
2760 if (IS_ERR(rootrefs
)) {
2761 btrfs_free_path(path
);
2762 return PTR_ERR(rootrefs
);
2765 inode
= file_inode(file
);
2766 root
= BTRFS_I(inode
)->root
->fs_info
->tree_root
;
2767 objectid
= BTRFS_I(inode
)->root
->root_key
.objectid
;
2769 key
.objectid
= objectid
;
2770 key
.type
= BTRFS_ROOT_REF_KEY
;
2771 key
.offset
= rootrefs
->min_treeid
;
2774 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2777 } else if (path
->slots
[0] >=
2778 btrfs_header_nritems(path
->nodes
[0])) {
2779 ret
= btrfs_next_leaf(root
, path
);
2782 } else if (ret
> 0) {
2788 leaf
= path
->nodes
[0];
2789 slot
= path
->slots
[0];
2791 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2792 if (key
.objectid
!= objectid
|| key
.type
!= BTRFS_ROOT_REF_KEY
) {
2797 if (found
== BTRFS_MAX_ROOTREF_BUFFER_NUM
) {
2802 rref
= btrfs_item_ptr(leaf
, slot
, struct btrfs_root_ref
);
2803 rootrefs
->rootref
[found
].treeid
= key
.offset
;
2804 rootrefs
->rootref
[found
].dirid
=
2805 btrfs_root_ref_dirid(leaf
, rref
);
2808 ret
= btrfs_next_item(root
, path
);
2811 } else if (ret
> 0) {
2818 if (!ret
|| ret
== -EOVERFLOW
) {
2819 rootrefs
->num_items
= found
;
2820 /* update min_treeid for next search */
2822 rootrefs
->min_treeid
=
2823 rootrefs
->rootref
[found
- 1].treeid
+ 1;
2824 if (copy_to_user(argp
, rootrefs
, sizeof(*rootrefs
)))
2829 btrfs_free_path(path
);
2834 static noinline
int btrfs_ioctl_snap_destroy(struct file
*file
,
2837 struct dentry
*parent
= file
->f_path
.dentry
;
2838 struct btrfs_fs_info
*fs_info
= btrfs_sb(parent
->d_sb
);
2839 struct dentry
*dentry
;
2840 struct inode
*dir
= d_inode(parent
);
2841 struct inode
*inode
;
2842 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2843 struct btrfs_root
*dest
= NULL
;
2844 struct btrfs_ioctl_vol_args
*vol_args
;
2848 if (!S_ISDIR(dir
->i_mode
))
2851 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2852 if (IS_ERR(vol_args
))
2853 return PTR_ERR(vol_args
);
2855 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2856 namelen
= strlen(vol_args
->name
);
2857 if (strchr(vol_args
->name
, '/') ||
2858 strncmp(vol_args
->name
, "..", namelen
) == 0) {
2863 err
= mnt_want_write_file(file
);
2868 err
= down_write_killable_nested(&dir
->i_rwsem
, I_MUTEX_PARENT
);
2870 goto out_drop_write
;
2871 dentry
= lookup_one_len(vol_args
->name
, parent
, namelen
);
2872 if (IS_ERR(dentry
)) {
2873 err
= PTR_ERR(dentry
);
2874 goto out_unlock_dir
;
2877 if (d_really_is_negative(dentry
)) {
2882 inode
= d_inode(dentry
);
2883 dest
= BTRFS_I(inode
)->root
;
2884 if (!capable(CAP_SYS_ADMIN
)) {
2886 * Regular user. Only allow this with a special mount
2887 * option, when the user has write+exec access to the
2888 * subvol root, and when rmdir(2) would have been
2891 * Note that this is _not_ check that the subvol is
2892 * empty or doesn't contain data that we wouldn't
2893 * otherwise be able to delete.
2895 * Users who want to delete empty subvols should try
2899 if (!btrfs_test_opt(fs_info
, USER_SUBVOL_RM_ALLOWED
))
2903 * Do not allow deletion if the parent dir is the same
2904 * as the dir to be deleted. That means the ioctl
2905 * must be called on the dentry referencing the root
2906 * of the subvol, not a random directory contained
2913 err
= inode_permission(inode
, MAY_WRITE
| MAY_EXEC
);
2918 /* check if subvolume may be deleted by a user */
2919 err
= btrfs_may_delete(dir
, dentry
, 1);
2923 if (btrfs_ino(BTRFS_I(inode
)) != BTRFS_FIRST_FREE_OBJECTID
) {
2929 err
= btrfs_delete_subvolume(dir
, dentry
);
2930 inode_unlock(inode
);
2939 mnt_drop_write_file(file
);
2945 static int btrfs_ioctl_defrag(struct file
*file
, void __user
*argp
)
2947 struct inode
*inode
= file_inode(file
);
2948 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2949 struct btrfs_ioctl_defrag_range_args
*range
;
2952 ret
= mnt_want_write_file(file
);
2956 if (btrfs_root_readonly(root
)) {
2961 switch (inode
->i_mode
& S_IFMT
) {
2963 if (!capable(CAP_SYS_ADMIN
)) {
2967 ret
= btrfs_defrag_root(root
);
2971 * Note that this does not check the file descriptor for write
2972 * access. This prevents defragmenting executables that are
2973 * running and allows defrag on files open in read-only mode.
2975 if (!capable(CAP_SYS_ADMIN
) &&
2976 inode_permission(inode
, MAY_WRITE
)) {
2981 range
= kzalloc(sizeof(*range
), GFP_KERNEL
);
2988 if (copy_from_user(range
, argp
,
2994 /* compression requires us to start the IO */
2995 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
2996 range
->flags
|= BTRFS_DEFRAG_RANGE_START_IO
;
2997 range
->extent_thresh
= (u32
)-1;
3000 /* the rest are all set to zero by kzalloc */
3001 range
->len
= (u64
)-1;
3003 ret
= btrfs_defrag_file(file_inode(file
), file
,
3004 range
, BTRFS_OLDEST_GENERATION
, 0);
3013 mnt_drop_write_file(file
);
3017 static long btrfs_ioctl_add_dev(struct btrfs_fs_info
*fs_info
, void __user
*arg
)
3019 struct btrfs_ioctl_vol_args
*vol_args
;
3022 if (!capable(CAP_SYS_ADMIN
))
3025 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
))
3026 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
3028 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
3029 if (IS_ERR(vol_args
)) {
3030 ret
= PTR_ERR(vol_args
);
3034 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
3035 ret
= btrfs_init_new_device(fs_info
, vol_args
->name
);
3038 btrfs_info(fs_info
, "disk added %s", vol_args
->name
);
3042 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
3046 static long btrfs_ioctl_rm_dev_v2(struct file
*file
, void __user
*arg
)
3048 struct inode
*inode
= file_inode(file
);
3049 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3050 struct btrfs_ioctl_vol_args_v2
*vol_args
;
3053 if (!capable(CAP_SYS_ADMIN
))
3056 ret
= mnt_want_write_file(file
);
3060 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
3061 if (IS_ERR(vol_args
)) {
3062 ret
= PTR_ERR(vol_args
);
3066 /* Check for compatibility reject unknown flags */
3067 if (vol_args
->flags
& ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED
) {
3072 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
)) {
3073 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
3077 if (vol_args
->flags
& BTRFS_DEVICE_SPEC_BY_ID
) {
3078 ret
= btrfs_rm_device(fs_info
, NULL
, vol_args
->devid
);
3080 vol_args
->name
[BTRFS_SUBVOL_NAME_MAX
] = '\0';
3081 ret
= btrfs_rm_device(fs_info
, vol_args
->name
, 0);
3083 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
3086 if (vol_args
->flags
& BTRFS_DEVICE_SPEC_BY_ID
)
3087 btrfs_info(fs_info
, "device deleted: id %llu",
3090 btrfs_info(fs_info
, "device deleted: %s",
3096 mnt_drop_write_file(file
);
3100 static long btrfs_ioctl_rm_dev(struct file
*file
, void __user
*arg
)
3102 struct inode
*inode
= file_inode(file
);
3103 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3104 struct btrfs_ioctl_vol_args
*vol_args
;
3107 if (!capable(CAP_SYS_ADMIN
))
3110 ret
= mnt_want_write_file(file
);
3114 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
)) {
3115 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
3116 goto out_drop_write
;
3119 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
3120 if (IS_ERR(vol_args
)) {
3121 ret
= PTR_ERR(vol_args
);
3125 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
3126 ret
= btrfs_rm_device(fs_info
, vol_args
->name
, 0);
3129 btrfs_info(fs_info
, "disk deleted %s", vol_args
->name
);
3132 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
3134 mnt_drop_write_file(file
);
3139 static long btrfs_ioctl_fs_info(struct btrfs_fs_info
*fs_info
,
3142 struct btrfs_ioctl_fs_info_args
*fi_args
;
3143 struct btrfs_device
*device
;
3144 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
3147 fi_args
= kzalloc(sizeof(*fi_args
), GFP_KERNEL
);
3152 fi_args
->num_devices
= fs_devices
->num_devices
;
3154 list_for_each_entry_rcu(device
, &fs_devices
->devices
, dev_list
) {
3155 if (device
->devid
> fi_args
->max_id
)
3156 fi_args
->max_id
= device
->devid
;
3160 memcpy(&fi_args
->fsid
, fs_devices
->fsid
, sizeof(fi_args
->fsid
));
3161 fi_args
->nodesize
= fs_info
->nodesize
;
3162 fi_args
->sectorsize
= fs_info
->sectorsize
;
3163 fi_args
->clone_alignment
= fs_info
->sectorsize
;
3165 if (copy_to_user(arg
, fi_args
, sizeof(*fi_args
)))
3172 static long btrfs_ioctl_dev_info(struct btrfs_fs_info
*fs_info
,
3175 struct btrfs_ioctl_dev_info_args
*di_args
;
3176 struct btrfs_device
*dev
;
3178 char *s_uuid
= NULL
;
3180 di_args
= memdup_user(arg
, sizeof(*di_args
));
3181 if (IS_ERR(di_args
))
3182 return PTR_ERR(di_args
);
3184 if (!btrfs_is_empty_uuid(di_args
->uuid
))
3185 s_uuid
= di_args
->uuid
;
3188 dev
= btrfs_find_device(fs_info
->fs_devices
, di_args
->devid
, s_uuid
,
3196 di_args
->devid
= dev
->devid
;
3197 di_args
->bytes_used
= btrfs_device_get_bytes_used(dev
);
3198 di_args
->total_bytes
= btrfs_device_get_total_bytes(dev
);
3199 memcpy(di_args
->uuid
, dev
->uuid
, sizeof(di_args
->uuid
));
3201 strncpy(di_args
->path
, rcu_str_deref(dev
->name
),
3202 sizeof(di_args
->path
) - 1);
3203 di_args
->path
[sizeof(di_args
->path
) - 1] = 0;
3205 di_args
->path
[0] = '\0';
3210 if (ret
== 0 && copy_to_user(arg
, di_args
, sizeof(*di_args
)))
3217 static void btrfs_double_extent_unlock(struct inode
*inode1
, u64 loff1
,
3218 struct inode
*inode2
, u64 loff2
, u64 len
)
3220 unlock_extent(&BTRFS_I(inode1
)->io_tree
, loff1
, loff1
+ len
- 1);
3221 unlock_extent(&BTRFS_I(inode2
)->io_tree
, loff2
, loff2
+ len
- 1);
3224 static void btrfs_double_extent_lock(struct inode
*inode1
, u64 loff1
,
3225 struct inode
*inode2
, u64 loff2
, u64 len
)
3227 if (inode1
< inode2
) {
3228 swap(inode1
, inode2
);
3230 } else if (inode1
== inode2
&& loff2
< loff1
) {
3233 lock_extent(&BTRFS_I(inode1
)->io_tree
, loff1
, loff1
+ len
- 1);
3234 lock_extent(&BTRFS_I(inode2
)->io_tree
, loff2
, loff2
+ len
- 1);
3237 static int btrfs_extent_same_range(struct inode
*src
, u64 loff
, u64 len
,
3238 struct inode
*dst
, u64 dst_loff
)
3243 * Lock destination range to serialize with concurrent readpages() and
3244 * source range to serialize with relocation.
3246 btrfs_double_extent_lock(src
, loff
, dst
, dst_loff
, len
);
3247 ret
= btrfs_clone(src
, dst
, loff
, len
, len
, dst_loff
, 1);
3248 btrfs_double_extent_unlock(src
, loff
, dst
, dst_loff
, len
);
3253 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3255 static int btrfs_extent_same(struct inode
*src
, u64 loff
, u64 olen
,
3256 struct inode
*dst
, u64 dst_loff
)
3259 u64 i
, tail_len
, chunk_count
;
3260 struct btrfs_root
*root_dst
= BTRFS_I(dst
)->root
;
3262 spin_lock(&root_dst
->root_item_lock
);
3263 if (root_dst
->send_in_progress
) {
3264 btrfs_warn_rl(root_dst
->fs_info
,
3265 "cannot deduplicate to root %llu while send operations are using it (%d in progress)",
3266 root_dst
->root_key
.objectid
,
3267 root_dst
->send_in_progress
);
3268 spin_unlock(&root_dst
->root_item_lock
);
3271 root_dst
->dedupe_in_progress
++;
3272 spin_unlock(&root_dst
->root_item_lock
);
3274 tail_len
= olen
% BTRFS_MAX_DEDUPE_LEN
;
3275 chunk_count
= div_u64(olen
, BTRFS_MAX_DEDUPE_LEN
);
3277 for (i
= 0; i
< chunk_count
; i
++) {
3278 ret
= btrfs_extent_same_range(src
, loff
, BTRFS_MAX_DEDUPE_LEN
,
3283 loff
+= BTRFS_MAX_DEDUPE_LEN
;
3284 dst_loff
+= BTRFS_MAX_DEDUPE_LEN
;
3288 ret
= btrfs_extent_same_range(src
, loff
, tail_len
, dst
,
3291 spin_lock(&root_dst
->root_item_lock
);
3292 root_dst
->dedupe_in_progress
--;
3293 spin_unlock(&root_dst
->root_item_lock
);
3298 static int clone_finish_inode_update(struct btrfs_trans_handle
*trans
,
3299 struct inode
*inode
,
3305 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3308 inode_inc_iversion(inode
);
3309 if (!no_time_update
)
3310 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
3312 * We round up to the block size at eof when determining which
3313 * extents to clone above, but shouldn't round up the file size.
3315 if (endoff
> destoff
+ olen
)
3316 endoff
= destoff
+ olen
;
3317 if (endoff
> inode
->i_size
)
3318 btrfs_i_size_write(BTRFS_I(inode
), endoff
);
3320 ret
= btrfs_update_inode(trans
, root
, inode
);
3322 btrfs_abort_transaction(trans
, ret
);
3323 btrfs_end_transaction(trans
);
3326 ret
= btrfs_end_transaction(trans
);
3331 static void clone_update_extent_map(struct btrfs_inode
*inode
,
3332 const struct btrfs_trans_handle
*trans
,
3333 const struct btrfs_path
*path
,
3334 const u64 hole_offset
,
3337 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
3338 struct extent_map
*em
;
3341 em
= alloc_extent_map();
3343 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &inode
->runtime_flags
);
3348 struct btrfs_file_extent_item
*fi
;
3350 fi
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3351 struct btrfs_file_extent_item
);
3352 btrfs_extent_item_to_extent_map(inode
, path
, fi
, false, em
);
3353 em
->generation
= -1;
3354 if (btrfs_file_extent_type(path
->nodes
[0], fi
) ==
3355 BTRFS_FILE_EXTENT_INLINE
)
3356 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3357 &inode
->runtime_flags
);
3359 em
->start
= hole_offset
;
3361 em
->ram_bytes
= em
->len
;
3362 em
->orig_start
= hole_offset
;
3363 em
->block_start
= EXTENT_MAP_HOLE
;
3365 em
->orig_block_len
= 0;
3366 em
->compress_type
= BTRFS_COMPRESS_NONE
;
3367 em
->generation
= trans
->transid
;
3371 write_lock(&em_tree
->lock
);
3372 ret
= add_extent_mapping(em_tree
, em
, 1);
3373 write_unlock(&em_tree
->lock
);
3374 if (ret
!= -EEXIST
) {
3375 free_extent_map(em
);
3378 btrfs_drop_extent_cache(inode
, em
->start
,
3379 em
->start
+ em
->len
- 1, 0);
3383 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &inode
->runtime_flags
);
3387 * Make sure we do not end up inserting an inline extent into a file that has
3388 * already other (non-inline) extents. If a file has an inline extent it can
3389 * not have any other extents and the (single) inline extent must start at the
3390 * file offset 0. Failing to respect these rules will lead to file corruption,
3391 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3393 * We can have extents that have been already written to disk or we can have
3394 * dirty ranges still in delalloc, in which case the extent maps and items are
3395 * created only when we run delalloc, and the delalloc ranges might fall outside
3396 * the range we are currently locking in the inode's io tree. So we check the
3397 * inode's i_size because of that (i_size updates are done while holding the
3398 * i_mutex, which we are holding here).
3399 * We also check to see if the inode has a size not greater than "datal" but has
3400 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3401 * protected against such concurrent fallocate calls by the i_mutex).
3403 * If the file has no extents but a size greater than datal, do not allow the
3404 * copy because we would need turn the inline extent into a non-inline one (even
3405 * with NO_HOLES enabled). If we find our destination inode only has one inline
3406 * extent, just overwrite it with the source inline extent if its size is less
3407 * than the source extent's size, or we could copy the source inline extent's
3408 * data into the destination inode's inline extent if the later is greater then
3411 static int clone_copy_inline_extent(struct inode
*dst
,
3412 struct btrfs_trans_handle
*trans
,
3413 struct btrfs_path
*path
,
3414 struct btrfs_key
*new_key
,
3415 const u64 drop_start
,
3421 struct btrfs_fs_info
*fs_info
= btrfs_sb(dst
->i_sb
);
3422 struct btrfs_root
*root
= BTRFS_I(dst
)->root
;
3423 const u64 aligned_end
= ALIGN(new_key
->offset
+ datal
,
3424 fs_info
->sectorsize
);
3426 struct btrfs_key key
;
3428 if (new_key
->offset
> 0)
3431 key
.objectid
= btrfs_ino(BTRFS_I(dst
));
3432 key
.type
= BTRFS_EXTENT_DATA_KEY
;
3434 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3437 } else if (ret
> 0) {
3438 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
3439 ret
= btrfs_next_leaf(root
, path
);
3443 goto copy_inline_extent
;
3445 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
3446 if (key
.objectid
== btrfs_ino(BTRFS_I(dst
)) &&
3447 key
.type
== BTRFS_EXTENT_DATA_KEY
) {
3448 ASSERT(key
.offset
> 0);
3451 } else if (i_size_read(dst
) <= datal
) {
3452 struct btrfs_file_extent_item
*ei
;
3456 * If the file size is <= datal, make sure there are no other
3457 * extents following (can happen do to an fallocate call with
3458 * the flag FALLOC_FL_KEEP_SIZE).
3460 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3461 struct btrfs_file_extent_item
);
3463 * If it's an inline extent, it can not have other extents
3466 if (btrfs_file_extent_type(path
->nodes
[0], ei
) ==
3467 BTRFS_FILE_EXTENT_INLINE
)
3468 goto copy_inline_extent
;
3470 ext_len
= btrfs_file_extent_num_bytes(path
->nodes
[0], ei
);
3471 if (ext_len
> aligned_end
)
3474 ret
= btrfs_next_item(root
, path
);
3477 } else if (ret
== 0) {
3478 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
3480 if (key
.objectid
== btrfs_ino(BTRFS_I(dst
)) &&
3481 key
.type
== BTRFS_EXTENT_DATA_KEY
)
3488 * We have no extent items, or we have an extent at offset 0 which may
3489 * or may not be inlined. All these cases are dealt the same way.
3491 if (i_size_read(dst
) > datal
) {
3493 * If the destination inode has an inline extent...
3494 * This would require copying the data from the source inline
3495 * extent into the beginning of the destination's inline extent.
3496 * But this is really complex, both extents can be compressed
3497 * or just one of them, which would require decompressing and
3498 * re-compressing data (which could increase the new compressed
3499 * size, not allowing the compressed data to fit anymore in an
3501 * So just don't support this case for now (it should be rare,
3502 * we are not really saving space when cloning inline extents).
3507 btrfs_release_path(path
);
3508 ret
= btrfs_drop_extents(trans
, root
, dst
, drop_start
, aligned_end
, 1);
3511 ret
= btrfs_insert_empty_item(trans
, root
, path
, new_key
, size
);
3516 const u32 start
= btrfs_file_extent_calc_inline_size(0);
3518 memmove(inline_data
+ start
, inline_data
+ start
+ skip
, datal
);
3521 write_extent_buffer(path
->nodes
[0], inline_data
,
3522 btrfs_item_ptr_offset(path
->nodes
[0],
3525 inode_add_bytes(dst
, datal
);
3531 * btrfs_clone() - clone a range from inode file to another
3533 * @src: Inode to clone from
3534 * @inode: Inode to clone to
3535 * @off: Offset within source to start clone from
3536 * @olen: Original length, passed by user, of range to clone
3537 * @olen_aligned: Block-aligned value of olen
3538 * @destoff: Offset within @inode to start clone
3539 * @no_time_update: Whether to update mtime/ctime on the target inode
3541 static int btrfs_clone(struct inode
*src
, struct inode
*inode
,
3542 const u64 off
, const u64 olen
, const u64 olen_aligned
,
3543 const u64 destoff
, int no_time_update
)
3545 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3546 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3547 struct btrfs_path
*path
= NULL
;
3548 struct extent_buffer
*leaf
;
3549 struct btrfs_trans_handle
*trans
;
3551 struct btrfs_key key
;
3555 const u64 len
= olen_aligned
;
3556 u64 last_dest_end
= destoff
;
3559 buf
= kvmalloc(fs_info
->nodesize
, GFP_KERNEL
);
3563 path
= btrfs_alloc_path();
3569 path
->reada
= READA_FORWARD
;
3571 key
.objectid
= btrfs_ino(BTRFS_I(src
));
3572 key
.type
= BTRFS_EXTENT_DATA_KEY
;
3576 u64 next_key_min_offset
= key
.offset
+ 1;
3579 * note the key will change type as we walk through the
3582 path
->leave_spinning
= 1;
3583 ret
= btrfs_search_slot(NULL
, BTRFS_I(src
)->root
, &key
, path
,
3588 * First search, if no extent item that starts at offset off was
3589 * found but the previous item is an extent item, it's possible
3590 * it might overlap our target range, therefore process it.
3592 if (key
.offset
== off
&& ret
> 0 && path
->slots
[0] > 0) {
3593 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
3594 path
->slots
[0] - 1);
3595 if (key
.type
== BTRFS_EXTENT_DATA_KEY
)
3599 nritems
= btrfs_header_nritems(path
->nodes
[0]);
3601 if (path
->slots
[0] >= nritems
) {
3602 ret
= btrfs_next_leaf(BTRFS_I(src
)->root
, path
);
3607 nritems
= btrfs_header_nritems(path
->nodes
[0]);
3609 leaf
= path
->nodes
[0];
3610 slot
= path
->slots
[0];
3612 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
3613 if (key
.type
> BTRFS_EXTENT_DATA_KEY
||
3614 key
.objectid
!= btrfs_ino(BTRFS_I(src
)))
3617 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
3618 struct btrfs_file_extent_item
*extent
;
3621 struct btrfs_key new_key
;
3622 u64 disko
= 0, diskl
= 0;
3623 u64 datao
= 0, datal
= 0;
3627 extent
= btrfs_item_ptr(leaf
, slot
,
3628 struct btrfs_file_extent_item
);
3629 comp
= btrfs_file_extent_compression(leaf
, extent
);
3630 type
= btrfs_file_extent_type(leaf
, extent
);
3631 if (type
== BTRFS_FILE_EXTENT_REG
||
3632 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
3633 disko
= btrfs_file_extent_disk_bytenr(leaf
,
3635 diskl
= btrfs_file_extent_disk_num_bytes(leaf
,
3637 datao
= btrfs_file_extent_offset(leaf
, extent
);
3638 datal
= btrfs_file_extent_num_bytes(leaf
,
3640 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
3641 /* take upper bound, may be compressed */
3642 datal
= btrfs_file_extent_ram_bytes(leaf
,
3647 * The first search might have left us at an extent
3648 * item that ends before our target range's start, can
3649 * happen if we have holes and NO_HOLES feature enabled.
3651 if (key
.offset
+ datal
<= off
) {
3654 } else if (key
.offset
>= off
+ len
) {
3657 next_key_min_offset
= key
.offset
+ datal
;
3658 size
= btrfs_item_size_nr(leaf
, slot
);
3659 read_extent_buffer(leaf
, buf
,
3660 btrfs_item_ptr_offset(leaf
, slot
),
3663 btrfs_release_path(path
);
3664 path
->leave_spinning
= 0;
3666 memcpy(&new_key
, &key
, sizeof(new_key
));
3667 new_key
.objectid
= btrfs_ino(BTRFS_I(inode
));
3668 if (off
<= key
.offset
)
3669 new_key
.offset
= key
.offset
+ destoff
- off
;
3671 new_key
.offset
= destoff
;
3674 * Deal with a hole that doesn't have an extent item
3675 * that represents it (NO_HOLES feature enabled).
3676 * This hole is either in the middle of the cloning
3677 * range or at the beginning (fully overlaps it or
3678 * partially overlaps it).
3680 if (new_key
.offset
!= last_dest_end
)
3681 drop_start
= last_dest_end
;
3683 drop_start
= new_key
.offset
;
3686 * 1 - adjusting old extent (we may have to split it)
3687 * 1 - add new extent
3690 trans
= btrfs_start_transaction(root
, 3);
3691 if (IS_ERR(trans
)) {
3692 ret
= PTR_ERR(trans
);
3696 if (type
== BTRFS_FILE_EXTENT_REG
||
3697 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
3699 * a | --- range to clone ---| b
3700 * | ------------- extent ------------- |
3703 /* subtract range b */
3704 if (key
.offset
+ datal
> off
+ len
)
3705 datal
= off
+ len
- key
.offset
;
3707 /* subtract range a */
3708 if (off
> key
.offset
) {
3709 datao
+= off
- key
.offset
;
3710 datal
-= off
- key
.offset
;
3713 ret
= btrfs_drop_extents(trans
, root
, inode
,
3715 new_key
.offset
+ datal
,
3718 if (ret
!= -EOPNOTSUPP
)
3719 btrfs_abort_transaction(trans
,
3721 btrfs_end_transaction(trans
);
3725 ret
= btrfs_insert_empty_item(trans
, root
, path
,
3728 btrfs_abort_transaction(trans
, ret
);
3729 btrfs_end_transaction(trans
);
3733 leaf
= path
->nodes
[0];
3734 slot
= path
->slots
[0];
3735 write_extent_buffer(leaf
, buf
,
3736 btrfs_item_ptr_offset(leaf
, slot
),
3739 extent
= btrfs_item_ptr(leaf
, slot
,
3740 struct btrfs_file_extent_item
);
3742 /* disko == 0 means it's a hole */
3746 btrfs_set_file_extent_offset(leaf
, extent
,
3748 btrfs_set_file_extent_num_bytes(leaf
, extent
,
3752 struct btrfs_ref ref
= { 0 };
3753 inode_add_bytes(inode
, datal
);
3754 btrfs_init_generic_ref(&ref
,
3755 BTRFS_ADD_DELAYED_REF
, disko
,
3757 btrfs_init_data_ref(&ref
,
3758 root
->root_key
.objectid
,
3759 btrfs_ino(BTRFS_I(inode
)),
3760 new_key
.offset
- datao
);
3761 ret
= btrfs_inc_extent_ref(trans
, &ref
);
3763 btrfs_abort_transaction(trans
,
3765 btrfs_end_transaction(trans
);
3770 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
3774 if (off
> key
.offset
) {
3775 skip
= off
- key
.offset
;
3776 new_key
.offset
+= skip
;
3779 if (key
.offset
+ datal
> off
+ len
)
3780 trim
= key
.offset
+ datal
- (off
+ len
);
3782 if (comp
&& (skip
|| trim
)) {
3784 btrfs_end_transaction(trans
);
3787 size
-= skip
+ trim
;
3788 datal
-= skip
+ trim
;
3790 ret
= clone_copy_inline_extent(inode
,
3797 if (ret
!= -EOPNOTSUPP
)
3798 btrfs_abort_transaction(trans
,
3800 btrfs_end_transaction(trans
);
3803 leaf
= path
->nodes
[0];
3804 slot
= path
->slots
[0];
3807 /* If we have an implicit hole (NO_HOLES feature). */
3808 if (drop_start
< new_key
.offset
)
3809 clone_update_extent_map(BTRFS_I(inode
), trans
,
3811 new_key
.offset
- drop_start
);
3813 clone_update_extent_map(BTRFS_I(inode
), trans
,
3816 btrfs_mark_buffer_dirty(leaf
);
3817 btrfs_release_path(path
);
3819 last_dest_end
= ALIGN(new_key
.offset
+ datal
,
3820 fs_info
->sectorsize
);
3821 ret
= clone_finish_inode_update(trans
, inode
,
3827 if (new_key
.offset
+ datal
>= destoff
+ len
)
3830 btrfs_release_path(path
);
3831 key
.offset
= next_key_min_offset
;
3833 if (fatal_signal_pending(current
)) {
3840 if (last_dest_end
< destoff
+ len
) {
3842 * We have an implicit hole (NO_HOLES feature is enabled) that
3843 * fully or partially overlaps our cloning range at its end.
3845 btrfs_release_path(path
);
3848 * 1 - remove extent(s)
3851 trans
= btrfs_start_transaction(root
, 2);
3852 if (IS_ERR(trans
)) {
3853 ret
= PTR_ERR(trans
);
3856 ret
= btrfs_drop_extents(trans
, root
, inode
,
3857 last_dest_end
, destoff
+ len
, 1);
3859 if (ret
!= -EOPNOTSUPP
)
3860 btrfs_abort_transaction(trans
, ret
);
3861 btrfs_end_transaction(trans
);
3864 clone_update_extent_map(BTRFS_I(inode
), trans
, NULL
,
3866 destoff
+ len
- last_dest_end
);
3867 ret
= clone_finish_inode_update(trans
, inode
, destoff
+ len
,
3868 destoff
, olen
, no_time_update
);
3872 btrfs_free_path(path
);
3877 static noinline
int btrfs_clone_files(struct file
*file
, struct file
*file_src
,
3878 u64 off
, u64 olen
, u64 destoff
)
3880 struct inode
*inode
= file_inode(file
);
3881 struct inode
*src
= file_inode(file_src
);
3882 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3885 u64 bs
= fs_info
->sb
->s_blocksize
;
3889 * - split compressed inline extents. annoying: we need to
3890 * decompress into destination's address_space (the file offset
3891 * may change, so source mapping won't do), then recompress (or
3892 * otherwise reinsert) a subrange.
3894 * - split destination inode's inline extents. The inline extents can
3895 * be either compressed or non-compressed.
3899 * VFS's generic_remap_file_range_prep() protects us from cloning the
3900 * eof block into the middle of a file, which would result in corruption
3901 * if the file size is not blocksize aligned. So we don't need to check
3902 * for that case here.
3904 if (off
+ len
== src
->i_size
)
3905 len
= ALIGN(src
->i_size
, bs
) - off
;
3907 if (destoff
> inode
->i_size
) {
3908 const u64 wb_start
= ALIGN_DOWN(inode
->i_size
, bs
);
3910 ret
= btrfs_cont_expand(inode
, inode
->i_size
, destoff
);
3914 * We may have truncated the last block if the inode's size is
3915 * not sector size aligned, so we need to wait for writeback to
3916 * complete before proceeding further, otherwise we can race
3917 * with cloning and attempt to increment a reference to an
3918 * extent that no longer exists (writeback completed right after
3919 * we found the previous extent covering eof and before we
3920 * attempted to increment its reference count).
3922 ret
= btrfs_wait_ordered_range(inode
, wb_start
,
3923 destoff
- wb_start
);
3929 * Lock destination range to serialize with concurrent readpages() and
3930 * source range to serialize with relocation.
3932 btrfs_double_extent_lock(src
, off
, inode
, destoff
, len
);
3933 ret
= btrfs_clone(src
, inode
, off
, olen
, len
, destoff
, 0);
3934 btrfs_double_extent_unlock(src
, off
, inode
, destoff
, len
);
3936 * Truncate page cache pages so that future reads will see the cloned
3937 * data immediately and not the previous data.
3939 truncate_inode_pages_range(&inode
->i_data
,
3940 round_down(destoff
, PAGE_SIZE
),
3941 round_up(destoff
+ len
, PAGE_SIZE
) - 1);
3946 static int btrfs_remap_file_range_prep(struct file
*file_in
, loff_t pos_in
,
3947 struct file
*file_out
, loff_t pos_out
,
3948 loff_t
*len
, unsigned int remap_flags
)
3950 struct inode
*inode_in
= file_inode(file_in
);
3951 struct inode
*inode_out
= file_inode(file_out
);
3952 u64 bs
= BTRFS_I(inode_out
)->root
->fs_info
->sb
->s_blocksize
;
3953 bool same_inode
= inode_out
== inode_in
;
3957 if (!(remap_flags
& REMAP_FILE_DEDUP
)) {
3958 struct btrfs_root
*root_out
= BTRFS_I(inode_out
)->root
;
3960 if (btrfs_root_readonly(root_out
))
3963 if (file_in
->f_path
.mnt
!= file_out
->f_path
.mnt
||
3964 inode_in
->i_sb
!= inode_out
->i_sb
)
3968 /* don't make the dst file partly checksummed */
3969 if ((BTRFS_I(inode_in
)->flags
& BTRFS_INODE_NODATASUM
) !=
3970 (BTRFS_I(inode_out
)->flags
& BTRFS_INODE_NODATASUM
)) {
3975 * Now that the inodes are locked, we need to start writeback ourselves
3976 * and can not rely on the writeback from the VFS's generic helper
3977 * generic_remap_file_range_prep() because:
3979 * 1) For compression we must call filemap_fdatawrite_range() range
3980 * twice (btrfs_fdatawrite_range() does it for us), and the generic
3981 * helper only calls it once;
3983 * 2) filemap_fdatawrite_range(), called by the generic helper only
3984 * waits for the writeback to complete, i.e. for IO to be done, and
3985 * not for the ordered extents to complete. We need to wait for them
3986 * to complete so that new file extent items are in the fs tree.
3988 if (*len
== 0 && !(remap_flags
& REMAP_FILE_DEDUP
))
3989 wb_len
= ALIGN(inode_in
->i_size
, bs
) - ALIGN_DOWN(pos_in
, bs
);
3991 wb_len
= ALIGN(*len
, bs
);
3994 * Since we don't lock ranges, wait for ongoing lockless dio writes (as
3995 * any in progress could create its ordered extents after we wait for
3996 * existing ordered extents below).
3998 inode_dio_wait(inode_in
);
4000 inode_dio_wait(inode_out
);
4003 * Workaround to make sure NOCOW buffered write reach disk as NOCOW.
4005 * Btrfs' back references do not have a block level granularity, they
4006 * work at the whole extent level.
4007 * NOCOW buffered write without data space reserved may not be able
4008 * to fall back to CoW due to lack of data space, thus could cause
4011 * Here we take a shortcut by flushing the whole inode, so that all
4012 * nocow write should reach disk as nocow before we increase the
4013 * reference of the extent. We could do better by only flushing NOCOW
4014 * data, but that needs extra accounting.
4016 * Also we don't need to check ASYNC_EXTENT, as async extent will be
4017 * CoWed anyway, not affecting nocow part.
4019 ret
= filemap_flush(inode_in
->i_mapping
);
4023 ret
= btrfs_wait_ordered_range(inode_in
, ALIGN_DOWN(pos_in
, bs
),
4027 ret
= btrfs_wait_ordered_range(inode_out
, ALIGN_DOWN(pos_out
, bs
),
4032 return generic_remap_file_range_prep(file_in
, pos_in
, file_out
, pos_out
,
4036 loff_t
btrfs_remap_file_range(struct file
*src_file
, loff_t off
,
4037 struct file
*dst_file
, loff_t destoff
, loff_t len
,
4038 unsigned int remap_flags
)
4040 struct inode
*src_inode
= file_inode(src_file
);
4041 struct inode
*dst_inode
= file_inode(dst_file
);
4042 bool same_inode
= dst_inode
== src_inode
;
4045 if (remap_flags
& ~(REMAP_FILE_DEDUP
| REMAP_FILE_ADVISORY
))
4049 inode_lock(src_inode
);
4051 lock_two_nondirectories(src_inode
, dst_inode
);
4053 ret
= btrfs_remap_file_range_prep(src_file
, off
, dst_file
, destoff
,
4055 if (ret
< 0 || len
== 0)
4058 if (remap_flags
& REMAP_FILE_DEDUP
)
4059 ret
= btrfs_extent_same(src_inode
, off
, len
, dst_inode
, destoff
);
4061 ret
= btrfs_clone_files(dst_file
, src_file
, off
, len
, destoff
);
4065 inode_unlock(src_inode
);
4067 unlock_two_nondirectories(src_inode
, dst_inode
);
4069 return ret
< 0 ? ret
: len
;
4072 static long btrfs_ioctl_default_subvol(struct file
*file
, void __user
*argp
)
4074 struct inode
*inode
= file_inode(file
);
4075 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4076 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4077 struct btrfs_root
*new_root
;
4078 struct btrfs_dir_item
*di
;
4079 struct btrfs_trans_handle
*trans
;
4080 struct btrfs_path
*path
;
4081 struct btrfs_key location
;
4082 struct btrfs_disk_key disk_key
;
4087 if (!capable(CAP_SYS_ADMIN
))
4090 ret
= mnt_want_write_file(file
);
4094 if (copy_from_user(&objectid
, argp
, sizeof(objectid
))) {
4100 objectid
= BTRFS_FS_TREE_OBJECTID
;
4102 location
.objectid
= objectid
;
4103 location
.type
= BTRFS_ROOT_ITEM_KEY
;
4104 location
.offset
= (u64
)-1;
4106 new_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
4107 if (IS_ERR(new_root
)) {
4108 ret
= PTR_ERR(new_root
);
4111 if (!is_fstree(new_root
->root_key
.objectid
)) {
4116 path
= btrfs_alloc_path();
4121 path
->leave_spinning
= 1;
4123 trans
= btrfs_start_transaction(root
, 1);
4124 if (IS_ERR(trans
)) {
4125 btrfs_free_path(path
);
4126 ret
= PTR_ERR(trans
);
4130 dir_id
= btrfs_super_root_dir(fs_info
->super_copy
);
4131 di
= btrfs_lookup_dir_item(trans
, fs_info
->tree_root
, path
,
4132 dir_id
, "default", 7, 1);
4133 if (IS_ERR_OR_NULL(di
)) {
4134 btrfs_free_path(path
);
4135 btrfs_end_transaction(trans
);
4137 "Umm, you don't have the default diritem, this isn't going to work");
4142 btrfs_cpu_key_to_disk(&disk_key
, &new_root
->root_key
);
4143 btrfs_set_dir_item_key(path
->nodes
[0], di
, &disk_key
);
4144 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4145 btrfs_free_path(path
);
4147 btrfs_set_fs_incompat(fs_info
, DEFAULT_SUBVOL
);
4148 btrfs_end_transaction(trans
);
4150 mnt_drop_write_file(file
);
4154 static void get_block_group_info(struct list_head
*groups_list
,
4155 struct btrfs_ioctl_space_info
*space
)
4157 struct btrfs_block_group_cache
*block_group
;
4159 space
->total_bytes
= 0;
4160 space
->used_bytes
= 0;
4162 list_for_each_entry(block_group
, groups_list
, list
) {
4163 space
->flags
= block_group
->flags
;
4164 space
->total_bytes
+= block_group
->key
.offset
;
4165 space
->used_bytes
+=
4166 btrfs_block_group_used(&block_group
->item
);
4170 static long btrfs_ioctl_space_info(struct btrfs_fs_info
*fs_info
,
4173 struct btrfs_ioctl_space_args space_args
;
4174 struct btrfs_ioctl_space_info space
;
4175 struct btrfs_ioctl_space_info
*dest
;
4176 struct btrfs_ioctl_space_info
*dest_orig
;
4177 struct btrfs_ioctl_space_info __user
*user_dest
;
4178 struct btrfs_space_info
*info
;
4179 static const u64 types
[] = {
4180 BTRFS_BLOCK_GROUP_DATA
,
4181 BTRFS_BLOCK_GROUP_SYSTEM
,
4182 BTRFS_BLOCK_GROUP_METADATA
,
4183 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
4191 if (copy_from_user(&space_args
,
4192 (struct btrfs_ioctl_space_args __user
*)arg
,
4193 sizeof(space_args
)))
4196 for (i
= 0; i
< num_types
; i
++) {
4197 struct btrfs_space_info
*tmp
;
4201 list_for_each_entry_rcu(tmp
, &fs_info
->space_info
,
4203 if (tmp
->flags
== types
[i
]) {
4213 down_read(&info
->groups_sem
);
4214 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
4215 if (!list_empty(&info
->block_groups
[c
]))
4218 up_read(&info
->groups_sem
);
4222 * Global block reserve, exported as a space_info
4226 /* space_slots == 0 means they are asking for a count */
4227 if (space_args
.space_slots
== 0) {
4228 space_args
.total_spaces
= slot_count
;
4232 slot_count
= min_t(u64
, space_args
.space_slots
, slot_count
);
4234 alloc_size
= sizeof(*dest
) * slot_count
;
4236 /* we generally have at most 6 or so space infos, one for each raid
4237 * level. So, a whole page should be more than enough for everyone
4239 if (alloc_size
> PAGE_SIZE
)
4242 space_args
.total_spaces
= 0;
4243 dest
= kmalloc(alloc_size
, GFP_KERNEL
);
4248 /* now we have a buffer to copy into */
4249 for (i
= 0; i
< num_types
; i
++) {
4250 struct btrfs_space_info
*tmp
;
4257 list_for_each_entry_rcu(tmp
, &fs_info
->space_info
,
4259 if (tmp
->flags
== types
[i
]) {
4268 down_read(&info
->groups_sem
);
4269 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
4270 if (!list_empty(&info
->block_groups
[c
])) {
4271 get_block_group_info(&info
->block_groups
[c
],
4273 memcpy(dest
, &space
, sizeof(space
));
4275 space_args
.total_spaces
++;
4281 up_read(&info
->groups_sem
);
4285 * Add global block reserve
4288 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
4290 spin_lock(&block_rsv
->lock
);
4291 space
.total_bytes
= block_rsv
->size
;
4292 space
.used_bytes
= block_rsv
->size
- block_rsv
->reserved
;
4293 spin_unlock(&block_rsv
->lock
);
4294 space
.flags
= BTRFS_SPACE_INFO_GLOBAL_RSV
;
4295 memcpy(dest
, &space
, sizeof(space
));
4296 space_args
.total_spaces
++;
4299 user_dest
= (struct btrfs_ioctl_space_info __user
*)
4300 (arg
+ sizeof(struct btrfs_ioctl_space_args
));
4302 if (copy_to_user(user_dest
, dest_orig
, alloc_size
))
4307 if (ret
== 0 && copy_to_user(arg
, &space_args
, sizeof(space_args
)))
4313 static noinline
long btrfs_ioctl_start_sync(struct btrfs_root
*root
,
4316 struct btrfs_trans_handle
*trans
;
4320 trans
= btrfs_attach_transaction_barrier(root
);
4321 if (IS_ERR(trans
)) {
4322 if (PTR_ERR(trans
) != -ENOENT
)
4323 return PTR_ERR(trans
);
4325 /* No running transaction, don't bother */
4326 transid
= root
->fs_info
->last_trans_committed
;
4329 transid
= trans
->transid
;
4330 ret
= btrfs_commit_transaction_async(trans
, 0);
4332 btrfs_end_transaction(trans
);
4337 if (copy_to_user(argp
, &transid
, sizeof(transid
)))
4342 static noinline
long btrfs_ioctl_wait_sync(struct btrfs_fs_info
*fs_info
,
4348 if (copy_from_user(&transid
, argp
, sizeof(transid
)))
4351 transid
= 0; /* current trans */
4353 return btrfs_wait_for_commit(fs_info
, transid
);
4356 static long btrfs_ioctl_scrub(struct file
*file
, void __user
*arg
)
4358 struct btrfs_fs_info
*fs_info
= btrfs_sb(file_inode(file
)->i_sb
);
4359 struct btrfs_ioctl_scrub_args
*sa
;
4362 if (!capable(CAP_SYS_ADMIN
))
4365 sa
= memdup_user(arg
, sizeof(*sa
));
4369 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
)) {
4370 ret
= mnt_want_write_file(file
);
4375 ret
= btrfs_scrub_dev(fs_info
, sa
->devid
, sa
->start
, sa
->end
,
4376 &sa
->progress
, sa
->flags
& BTRFS_SCRUB_READONLY
,
4379 if (ret
== 0 && copy_to_user(arg
, sa
, sizeof(*sa
)))
4382 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
))
4383 mnt_drop_write_file(file
);
4389 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info
*fs_info
)
4391 if (!capable(CAP_SYS_ADMIN
))
4394 return btrfs_scrub_cancel(fs_info
);
4397 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info
*fs_info
,
4400 struct btrfs_ioctl_scrub_args
*sa
;
4403 if (!capable(CAP_SYS_ADMIN
))
4406 sa
= memdup_user(arg
, sizeof(*sa
));
4410 ret
= btrfs_scrub_progress(fs_info
, sa
->devid
, &sa
->progress
);
4412 if (ret
== 0 && copy_to_user(arg
, sa
, sizeof(*sa
)))
4419 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info
*fs_info
,
4422 struct btrfs_ioctl_get_dev_stats
*sa
;
4425 sa
= memdup_user(arg
, sizeof(*sa
));
4429 if ((sa
->flags
& BTRFS_DEV_STATS_RESET
) && !capable(CAP_SYS_ADMIN
)) {
4434 ret
= btrfs_get_dev_stats(fs_info
, sa
);
4436 if (ret
== 0 && copy_to_user(arg
, sa
, sizeof(*sa
)))
4443 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info
*fs_info
,
4446 struct btrfs_ioctl_dev_replace_args
*p
;
4449 if (!capable(CAP_SYS_ADMIN
))
4452 p
= memdup_user(arg
, sizeof(*p
));
4457 case BTRFS_IOCTL_DEV_REPLACE_CMD_START
:
4458 if (sb_rdonly(fs_info
->sb
)) {
4462 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
)) {
4463 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
4465 ret
= btrfs_dev_replace_by_ioctl(fs_info
, p
);
4466 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
4469 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS
:
4470 btrfs_dev_replace_status(fs_info
, p
);
4473 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL
:
4474 p
->result
= btrfs_dev_replace_cancel(fs_info
);
4482 if ((ret
== 0 || ret
== -ECANCELED
) && copy_to_user(arg
, p
, sizeof(*p
)))
4489 static long btrfs_ioctl_ino_to_path(struct btrfs_root
*root
, void __user
*arg
)
4495 struct btrfs_ioctl_ino_path_args
*ipa
= NULL
;
4496 struct inode_fs_paths
*ipath
= NULL
;
4497 struct btrfs_path
*path
;
4499 if (!capable(CAP_DAC_READ_SEARCH
))
4502 path
= btrfs_alloc_path();
4508 ipa
= memdup_user(arg
, sizeof(*ipa
));
4515 size
= min_t(u32
, ipa
->size
, 4096);
4516 ipath
= init_ipath(size
, root
, path
);
4517 if (IS_ERR(ipath
)) {
4518 ret
= PTR_ERR(ipath
);
4523 ret
= paths_from_inode(ipa
->inum
, ipath
);
4527 for (i
= 0; i
< ipath
->fspath
->elem_cnt
; ++i
) {
4528 rel_ptr
= ipath
->fspath
->val
[i
] -
4529 (u64
)(unsigned long)ipath
->fspath
->val
;
4530 ipath
->fspath
->val
[i
] = rel_ptr
;
4533 ret
= copy_to_user((void __user
*)(unsigned long)ipa
->fspath
,
4534 ipath
->fspath
, size
);
4541 btrfs_free_path(path
);
4548 static int build_ino_list(u64 inum
, u64 offset
, u64 root
, void *ctx
)
4550 struct btrfs_data_container
*inodes
= ctx
;
4551 const size_t c
= 3 * sizeof(u64
);
4553 if (inodes
->bytes_left
>= c
) {
4554 inodes
->bytes_left
-= c
;
4555 inodes
->val
[inodes
->elem_cnt
] = inum
;
4556 inodes
->val
[inodes
->elem_cnt
+ 1] = offset
;
4557 inodes
->val
[inodes
->elem_cnt
+ 2] = root
;
4558 inodes
->elem_cnt
+= 3;
4560 inodes
->bytes_missing
+= c
- inodes
->bytes_left
;
4561 inodes
->bytes_left
= 0;
4562 inodes
->elem_missed
+= 3;
4568 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info
*fs_info
,
4569 void __user
*arg
, int version
)
4573 struct btrfs_ioctl_logical_ino_args
*loi
;
4574 struct btrfs_data_container
*inodes
= NULL
;
4575 struct btrfs_path
*path
= NULL
;
4578 if (!capable(CAP_SYS_ADMIN
))
4581 loi
= memdup_user(arg
, sizeof(*loi
));
4583 return PTR_ERR(loi
);
4586 ignore_offset
= false;
4587 size
= min_t(u32
, loi
->size
, SZ_64K
);
4589 /* All reserved bits must be 0 for now */
4590 if (memchr_inv(loi
->reserved
, 0, sizeof(loi
->reserved
))) {
4594 /* Only accept flags we have defined so far */
4595 if (loi
->flags
& ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET
)) {
4599 ignore_offset
= loi
->flags
& BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET
;
4600 size
= min_t(u32
, loi
->size
, SZ_16M
);
4603 path
= btrfs_alloc_path();
4609 inodes
= init_data_container(size
);
4610 if (IS_ERR(inodes
)) {
4611 ret
= PTR_ERR(inodes
);
4616 ret
= iterate_inodes_from_logical(loi
->logical
, fs_info
, path
,
4617 build_ino_list
, inodes
, ignore_offset
);
4623 ret
= copy_to_user((void __user
*)(unsigned long)loi
->inodes
, inodes
,
4629 btrfs_free_path(path
);
4637 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info
*fs_info
,
4638 struct btrfs_ioctl_balance_args
*bargs
)
4640 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
4642 bargs
->flags
= bctl
->flags
;
4644 if (test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
))
4645 bargs
->state
|= BTRFS_BALANCE_STATE_RUNNING
;
4646 if (atomic_read(&fs_info
->balance_pause_req
))
4647 bargs
->state
|= BTRFS_BALANCE_STATE_PAUSE_REQ
;
4648 if (atomic_read(&fs_info
->balance_cancel_req
))
4649 bargs
->state
|= BTRFS_BALANCE_STATE_CANCEL_REQ
;
4651 memcpy(&bargs
->data
, &bctl
->data
, sizeof(bargs
->data
));
4652 memcpy(&bargs
->meta
, &bctl
->meta
, sizeof(bargs
->meta
));
4653 memcpy(&bargs
->sys
, &bctl
->sys
, sizeof(bargs
->sys
));
4655 spin_lock(&fs_info
->balance_lock
);
4656 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
4657 spin_unlock(&fs_info
->balance_lock
);
4660 static long btrfs_ioctl_balance(struct file
*file
, void __user
*arg
)
4662 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4663 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4664 struct btrfs_ioctl_balance_args
*bargs
;
4665 struct btrfs_balance_control
*bctl
;
4666 bool need_unlock
; /* for mut. excl. ops lock */
4669 if (!capable(CAP_SYS_ADMIN
))
4672 ret
= mnt_want_write_file(file
);
4677 if (!test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
)) {
4678 mutex_lock(&fs_info
->balance_mutex
);
4684 * mut. excl. ops lock is locked. Three possibilities:
4685 * (1) some other op is running
4686 * (2) balance is running
4687 * (3) balance is paused -- special case (think resume)
4689 mutex_lock(&fs_info
->balance_mutex
);
4690 if (fs_info
->balance_ctl
) {
4691 /* this is either (2) or (3) */
4692 if (!test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
)) {
4693 mutex_unlock(&fs_info
->balance_mutex
);
4695 * Lock released to allow other waiters to continue,
4696 * we'll reexamine the status again.
4698 mutex_lock(&fs_info
->balance_mutex
);
4700 if (fs_info
->balance_ctl
&&
4701 !test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
)) {
4703 need_unlock
= false;
4707 mutex_unlock(&fs_info
->balance_mutex
);
4711 mutex_unlock(&fs_info
->balance_mutex
);
4717 mutex_unlock(&fs_info
->balance_mutex
);
4718 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
4723 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
));
4726 bargs
= memdup_user(arg
, sizeof(*bargs
));
4727 if (IS_ERR(bargs
)) {
4728 ret
= PTR_ERR(bargs
);
4732 if (bargs
->flags
& BTRFS_BALANCE_RESUME
) {
4733 if (!fs_info
->balance_ctl
) {
4738 bctl
= fs_info
->balance_ctl
;
4739 spin_lock(&fs_info
->balance_lock
);
4740 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
4741 spin_unlock(&fs_info
->balance_lock
);
4749 if (fs_info
->balance_ctl
) {
4754 bctl
= kzalloc(sizeof(*bctl
), GFP_KERNEL
);
4761 memcpy(&bctl
->data
, &bargs
->data
, sizeof(bctl
->data
));
4762 memcpy(&bctl
->meta
, &bargs
->meta
, sizeof(bctl
->meta
));
4763 memcpy(&bctl
->sys
, &bargs
->sys
, sizeof(bctl
->sys
));
4765 bctl
->flags
= bargs
->flags
;
4767 /* balance everything - no filters */
4768 bctl
->flags
|= BTRFS_BALANCE_TYPE_MASK
;
4771 if (bctl
->flags
& ~(BTRFS_BALANCE_ARGS_MASK
| BTRFS_BALANCE_TYPE_MASK
)) {
4778 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to
4779 * btrfs_balance. bctl is freed in reset_balance_state, or, if
4780 * restriper was paused all the way until unmount, in free_fs_info.
4781 * The flag should be cleared after reset_balance_state.
4783 need_unlock
= false;
4785 ret
= btrfs_balance(fs_info
, bctl
, bargs
);
4788 if ((ret
== 0 || ret
== -ECANCELED
) && arg
) {
4789 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
4798 mutex_unlock(&fs_info
->balance_mutex
);
4800 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
4802 mnt_drop_write_file(file
);
4806 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info
*fs_info
, int cmd
)
4808 if (!capable(CAP_SYS_ADMIN
))
4812 case BTRFS_BALANCE_CTL_PAUSE
:
4813 return btrfs_pause_balance(fs_info
);
4814 case BTRFS_BALANCE_CTL_CANCEL
:
4815 return btrfs_cancel_balance(fs_info
);
4821 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info
*fs_info
,
4824 struct btrfs_ioctl_balance_args
*bargs
;
4827 if (!capable(CAP_SYS_ADMIN
))
4830 mutex_lock(&fs_info
->balance_mutex
);
4831 if (!fs_info
->balance_ctl
) {
4836 bargs
= kzalloc(sizeof(*bargs
), GFP_KERNEL
);
4842 btrfs_update_ioctl_balance_args(fs_info
, bargs
);
4844 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
4849 mutex_unlock(&fs_info
->balance_mutex
);
4853 static long btrfs_ioctl_quota_ctl(struct file
*file
, void __user
*arg
)
4855 struct inode
*inode
= file_inode(file
);
4856 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4857 struct btrfs_ioctl_quota_ctl_args
*sa
;
4860 if (!capable(CAP_SYS_ADMIN
))
4863 ret
= mnt_want_write_file(file
);
4867 sa
= memdup_user(arg
, sizeof(*sa
));
4873 down_write(&fs_info
->subvol_sem
);
4876 case BTRFS_QUOTA_CTL_ENABLE
:
4877 ret
= btrfs_quota_enable(fs_info
);
4879 case BTRFS_QUOTA_CTL_DISABLE
:
4880 ret
= btrfs_quota_disable(fs_info
);
4888 up_write(&fs_info
->subvol_sem
);
4890 mnt_drop_write_file(file
);
4894 static long btrfs_ioctl_qgroup_assign(struct file
*file
, void __user
*arg
)
4896 struct inode
*inode
= file_inode(file
);
4897 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4898 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4899 struct btrfs_ioctl_qgroup_assign_args
*sa
;
4900 struct btrfs_trans_handle
*trans
;
4904 if (!capable(CAP_SYS_ADMIN
))
4907 ret
= mnt_want_write_file(file
);
4911 sa
= memdup_user(arg
, sizeof(*sa
));
4917 trans
= btrfs_join_transaction(root
);
4918 if (IS_ERR(trans
)) {
4919 ret
= PTR_ERR(trans
);
4924 ret
= btrfs_add_qgroup_relation(trans
, sa
->src
, sa
->dst
);
4926 ret
= btrfs_del_qgroup_relation(trans
, sa
->src
, sa
->dst
);
4929 /* update qgroup status and info */
4930 err
= btrfs_run_qgroups(trans
);
4932 btrfs_handle_fs_error(fs_info
, err
,
4933 "failed to update qgroup status and info");
4934 err
= btrfs_end_transaction(trans
);
4941 mnt_drop_write_file(file
);
4945 static long btrfs_ioctl_qgroup_create(struct file
*file
, void __user
*arg
)
4947 struct inode
*inode
= file_inode(file
);
4948 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4949 struct btrfs_ioctl_qgroup_create_args
*sa
;
4950 struct btrfs_trans_handle
*trans
;
4954 if (!capable(CAP_SYS_ADMIN
))
4957 ret
= mnt_want_write_file(file
);
4961 sa
= memdup_user(arg
, sizeof(*sa
));
4967 if (!sa
->qgroupid
) {
4972 trans
= btrfs_join_transaction(root
);
4973 if (IS_ERR(trans
)) {
4974 ret
= PTR_ERR(trans
);
4979 ret
= btrfs_create_qgroup(trans
, sa
->qgroupid
);
4981 ret
= btrfs_remove_qgroup(trans
, sa
->qgroupid
);
4984 err
= btrfs_end_transaction(trans
);
4991 mnt_drop_write_file(file
);
4995 static long btrfs_ioctl_qgroup_limit(struct file
*file
, void __user
*arg
)
4997 struct inode
*inode
= file_inode(file
);
4998 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4999 struct btrfs_ioctl_qgroup_limit_args
*sa
;
5000 struct btrfs_trans_handle
*trans
;
5005 if (!capable(CAP_SYS_ADMIN
))
5008 ret
= mnt_want_write_file(file
);
5012 sa
= memdup_user(arg
, sizeof(*sa
));
5018 trans
= btrfs_join_transaction(root
);
5019 if (IS_ERR(trans
)) {
5020 ret
= PTR_ERR(trans
);
5024 qgroupid
= sa
->qgroupid
;
5026 /* take the current subvol as qgroup */
5027 qgroupid
= root
->root_key
.objectid
;
5030 ret
= btrfs_limit_qgroup(trans
, qgroupid
, &sa
->lim
);
5032 err
= btrfs_end_transaction(trans
);
5039 mnt_drop_write_file(file
);
5043 static long btrfs_ioctl_quota_rescan(struct file
*file
, void __user
*arg
)
5045 struct inode
*inode
= file_inode(file
);
5046 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5047 struct btrfs_ioctl_quota_rescan_args
*qsa
;
5050 if (!capable(CAP_SYS_ADMIN
))
5053 ret
= mnt_want_write_file(file
);
5057 qsa
= memdup_user(arg
, sizeof(*qsa
));
5068 ret
= btrfs_qgroup_rescan(fs_info
);
5073 mnt_drop_write_file(file
);
5077 static long btrfs_ioctl_quota_rescan_status(struct file
*file
, void __user
*arg
)
5079 struct inode
*inode
= file_inode(file
);
5080 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5081 struct btrfs_ioctl_quota_rescan_args
*qsa
;
5084 if (!capable(CAP_SYS_ADMIN
))
5087 qsa
= kzalloc(sizeof(*qsa
), GFP_KERNEL
);
5091 if (fs_info
->qgroup_flags
& BTRFS_QGROUP_STATUS_FLAG_RESCAN
) {
5093 qsa
->progress
= fs_info
->qgroup_rescan_progress
.objectid
;
5096 if (copy_to_user(arg
, qsa
, sizeof(*qsa
)))
5103 static long btrfs_ioctl_quota_rescan_wait(struct file
*file
, void __user
*arg
)
5105 struct inode
*inode
= file_inode(file
);
5106 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5108 if (!capable(CAP_SYS_ADMIN
))
5111 return btrfs_qgroup_wait_for_completion(fs_info
, true);
5114 static long _btrfs_ioctl_set_received_subvol(struct file
*file
,
5115 struct btrfs_ioctl_received_subvol_args
*sa
)
5117 struct inode
*inode
= file_inode(file
);
5118 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5119 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5120 struct btrfs_root_item
*root_item
= &root
->root_item
;
5121 struct btrfs_trans_handle
*trans
;
5122 struct timespec64 ct
= current_time(inode
);
5124 int received_uuid_changed
;
5126 if (!inode_owner_or_capable(inode
))
5129 ret
= mnt_want_write_file(file
);
5133 down_write(&fs_info
->subvol_sem
);
5135 if (btrfs_ino(BTRFS_I(inode
)) != BTRFS_FIRST_FREE_OBJECTID
) {
5140 if (btrfs_root_readonly(root
)) {
5147 * 2 - uuid items (received uuid + subvol uuid)
5149 trans
= btrfs_start_transaction(root
, 3);
5150 if (IS_ERR(trans
)) {
5151 ret
= PTR_ERR(trans
);
5156 sa
->rtransid
= trans
->transid
;
5157 sa
->rtime
.sec
= ct
.tv_sec
;
5158 sa
->rtime
.nsec
= ct
.tv_nsec
;
5160 received_uuid_changed
= memcmp(root_item
->received_uuid
, sa
->uuid
,
5162 if (received_uuid_changed
&&
5163 !btrfs_is_empty_uuid(root_item
->received_uuid
)) {
5164 ret
= btrfs_uuid_tree_remove(trans
, root_item
->received_uuid
,
5165 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
5166 root
->root_key
.objectid
);
5167 if (ret
&& ret
!= -ENOENT
) {
5168 btrfs_abort_transaction(trans
, ret
);
5169 btrfs_end_transaction(trans
);
5173 memcpy(root_item
->received_uuid
, sa
->uuid
, BTRFS_UUID_SIZE
);
5174 btrfs_set_root_stransid(root_item
, sa
->stransid
);
5175 btrfs_set_root_rtransid(root_item
, sa
->rtransid
);
5176 btrfs_set_stack_timespec_sec(&root_item
->stime
, sa
->stime
.sec
);
5177 btrfs_set_stack_timespec_nsec(&root_item
->stime
, sa
->stime
.nsec
);
5178 btrfs_set_stack_timespec_sec(&root_item
->rtime
, sa
->rtime
.sec
);
5179 btrfs_set_stack_timespec_nsec(&root_item
->rtime
, sa
->rtime
.nsec
);
5181 ret
= btrfs_update_root(trans
, fs_info
->tree_root
,
5182 &root
->root_key
, &root
->root_item
);
5184 btrfs_end_transaction(trans
);
5187 if (received_uuid_changed
&& !btrfs_is_empty_uuid(sa
->uuid
)) {
5188 ret
= btrfs_uuid_tree_add(trans
, sa
->uuid
,
5189 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
5190 root
->root_key
.objectid
);
5191 if (ret
< 0 && ret
!= -EEXIST
) {
5192 btrfs_abort_transaction(trans
, ret
);
5193 btrfs_end_transaction(trans
);
5197 ret
= btrfs_commit_transaction(trans
);
5199 up_write(&fs_info
->subvol_sem
);
5200 mnt_drop_write_file(file
);
5205 static long btrfs_ioctl_set_received_subvol_32(struct file
*file
,
5208 struct btrfs_ioctl_received_subvol_args_32
*args32
= NULL
;
5209 struct btrfs_ioctl_received_subvol_args
*args64
= NULL
;
5212 args32
= memdup_user(arg
, sizeof(*args32
));
5214 return PTR_ERR(args32
);
5216 args64
= kmalloc(sizeof(*args64
), GFP_KERNEL
);
5222 memcpy(args64
->uuid
, args32
->uuid
, BTRFS_UUID_SIZE
);
5223 args64
->stransid
= args32
->stransid
;
5224 args64
->rtransid
= args32
->rtransid
;
5225 args64
->stime
.sec
= args32
->stime
.sec
;
5226 args64
->stime
.nsec
= args32
->stime
.nsec
;
5227 args64
->rtime
.sec
= args32
->rtime
.sec
;
5228 args64
->rtime
.nsec
= args32
->rtime
.nsec
;
5229 args64
->flags
= args32
->flags
;
5231 ret
= _btrfs_ioctl_set_received_subvol(file
, args64
);
5235 memcpy(args32
->uuid
, args64
->uuid
, BTRFS_UUID_SIZE
);
5236 args32
->stransid
= args64
->stransid
;
5237 args32
->rtransid
= args64
->rtransid
;
5238 args32
->stime
.sec
= args64
->stime
.sec
;
5239 args32
->stime
.nsec
= args64
->stime
.nsec
;
5240 args32
->rtime
.sec
= args64
->rtime
.sec
;
5241 args32
->rtime
.nsec
= args64
->rtime
.nsec
;
5242 args32
->flags
= args64
->flags
;
5244 ret
= copy_to_user(arg
, args32
, sizeof(*args32
));
5255 static long btrfs_ioctl_set_received_subvol(struct file
*file
,
5258 struct btrfs_ioctl_received_subvol_args
*sa
= NULL
;
5261 sa
= memdup_user(arg
, sizeof(*sa
));
5265 ret
= _btrfs_ioctl_set_received_subvol(file
, sa
);
5270 ret
= copy_to_user(arg
, sa
, sizeof(*sa
));
5279 static int btrfs_ioctl_get_fslabel(struct file
*file
, void __user
*arg
)
5281 struct inode
*inode
= file_inode(file
);
5282 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5285 char label
[BTRFS_LABEL_SIZE
];
5287 spin_lock(&fs_info
->super_lock
);
5288 memcpy(label
, fs_info
->super_copy
->label
, BTRFS_LABEL_SIZE
);
5289 spin_unlock(&fs_info
->super_lock
);
5291 len
= strnlen(label
, BTRFS_LABEL_SIZE
);
5293 if (len
== BTRFS_LABEL_SIZE
) {
5295 "label is too long, return the first %zu bytes",
5299 ret
= copy_to_user(arg
, label
, len
);
5301 return ret
? -EFAULT
: 0;
5304 static int btrfs_ioctl_set_fslabel(struct file
*file
, void __user
*arg
)
5306 struct inode
*inode
= file_inode(file
);
5307 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5308 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5309 struct btrfs_super_block
*super_block
= fs_info
->super_copy
;
5310 struct btrfs_trans_handle
*trans
;
5311 char label
[BTRFS_LABEL_SIZE
];
5314 if (!capable(CAP_SYS_ADMIN
))
5317 if (copy_from_user(label
, arg
, sizeof(label
)))
5320 if (strnlen(label
, BTRFS_LABEL_SIZE
) == BTRFS_LABEL_SIZE
) {
5322 "unable to set label with more than %d bytes",
5323 BTRFS_LABEL_SIZE
- 1);
5327 ret
= mnt_want_write_file(file
);
5331 trans
= btrfs_start_transaction(root
, 0);
5332 if (IS_ERR(trans
)) {
5333 ret
= PTR_ERR(trans
);
5337 spin_lock(&fs_info
->super_lock
);
5338 strcpy(super_block
->label
, label
);
5339 spin_unlock(&fs_info
->super_lock
);
5340 ret
= btrfs_commit_transaction(trans
);
5343 mnt_drop_write_file(file
);
5347 #define INIT_FEATURE_FLAGS(suffix) \
5348 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5349 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5350 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5352 int btrfs_ioctl_get_supported_features(void __user
*arg
)
5354 static const struct btrfs_ioctl_feature_flags features
[3] = {
5355 INIT_FEATURE_FLAGS(SUPP
),
5356 INIT_FEATURE_FLAGS(SAFE_SET
),
5357 INIT_FEATURE_FLAGS(SAFE_CLEAR
)
5360 if (copy_to_user(arg
, &features
, sizeof(features
)))
5366 static int btrfs_ioctl_get_features(struct file
*file
, void __user
*arg
)
5368 struct inode
*inode
= file_inode(file
);
5369 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5370 struct btrfs_super_block
*super_block
= fs_info
->super_copy
;
5371 struct btrfs_ioctl_feature_flags features
;
5373 features
.compat_flags
= btrfs_super_compat_flags(super_block
);
5374 features
.compat_ro_flags
= btrfs_super_compat_ro_flags(super_block
);
5375 features
.incompat_flags
= btrfs_super_incompat_flags(super_block
);
5377 if (copy_to_user(arg
, &features
, sizeof(features
)))
5383 static int check_feature_bits(struct btrfs_fs_info
*fs_info
,
5384 enum btrfs_feature_set set
,
5385 u64 change_mask
, u64 flags
, u64 supported_flags
,
5386 u64 safe_set
, u64 safe_clear
)
5388 const char *type
= btrfs_feature_set_names
[set
];
5390 u64 disallowed
, unsupported
;
5391 u64 set_mask
= flags
& change_mask
;
5392 u64 clear_mask
= ~flags
& change_mask
;
5394 unsupported
= set_mask
& ~supported_flags
;
5396 names
= btrfs_printable_features(set
, unsupported
);
5399 "this kernel does not support the %s feature bit%s",
5400 names
, strchr(names
, ',') ? "s" : "");
5404 "this kernel does not support %s bits 0x%llx",
5409 disallowed
= set_mask
& ~safe_set
;
5411 names
= btrfs_printable_features(set
, disallowed
);
5414 "can't set the %s feature bit%s while mounted",
5415 names
, strchr(names
, ',') ? "s" : "");
5419 "can't set %s bits 0x%llx while mounted",
5424 disallowed
= clear_mask
& ~safe_clear
;
5426 names
= btrfs_printable_features(set
, disallowed
);
5429 "can't clear the %s feature bit%s while mounted",
5430 names
, strchr(names
, ',') ? "s" : "");
5434 "can't clear %s bits 0x%llx while mounted",
5442 #define check_feature(fs_info, change_mask, flags, mask_base) \
5443 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
5444 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5445 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5446 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5448 static int btrfs_ioctl_set_features(struct file
*file
, void __user
*arg
)
5450 struct inode
*inode
= file_inode(file
);
5451 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5452 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5453 struct btrfs_super_block
*super_block
= fs_info
->super_copy
;
5454 struct btrfs_ioctl_feature_flags flags
[2];
5455 struct btrfs_trans_handle
*trans
;
5459 if (!capable(CAP_SYS_ADMIN
))
5462 if (copy_from_user(flags
, arg
, sizeof(flags
)))
5466 if (!flags
[0].compat_flags
&& !flags
[0].compat_ro_flags
&&
5467 !flags
[0].incompat_flags
)
5470 ret
= check_feature(fs_info
, flags
[0].compat_flags
,
5471 flags
[1].compat_flags
, COMPAT
);
5475 ret
= check_feature(fs_info
, flags
[0].compat_ro_flags
,
5476 flags
[1].compat_ro_flags
, COMPAT_RO
);
5480 ret
= check_feature(fs_info
, flags
[0].incompat_flags
,
5481 flags
[1].incompat_flags
, INCOMPAT
);
5485 ret
= mnt_want_write_file(file
);
5489 trans
= btrfs_start_transaction(root
, 0);
5490 if (IS_ERR(trans
)) {
5491 ret
= PTR_ERR(trans
);
5492 goto out_drop_write
;
5495 spin_lock(&fs_info
->super_lock
);
5496 newflags
= btrfs_super_compat_flags(super_block
);
5497 newflags
|= flags
[0].compat_flags
& flags
[1].compat_flags
;
5498 newflags
&= ~(flags
[0].compat_flags
& ~flags
[1].compat_flags
);
5499 btrfs_set_super_compat_flags(super_block
, newflags
);
5501 newflags
= btrfs_super_compat_ro_flags(super_block
);
5502 newflags
|= flags
[0].compat_ro_flags
& flags
[1].compat_ro_flags
;
5503 newflags
&= ~(flags
[0].compat_ro_flags
& ~flags
[1].compat_ro_flags
);
5504 btrfs_set_super_compat_ro_flags(super_block
, newflags
);
5506 newflags
= btrfs_super_incompat_flags(super_block
);
5507 newflags
|= flags
[0].incompat_flags
& flags
[1].incompat_flags
;
5508 newflags
&= ~(flags
[0].incompat_flags
& ~flags
[1].incompat_flags
);
5509 btrfs_set_super_incompat_flags(super_block
, newflags
);
5510 spin_unlock(&fs_info
->super_lock
);
5512 ret
= btrfs_commit_transaction(trans
);
5514 mnt_drop_write_file(file
);
5519 static int _btrfs_ioctl_send(struct file
*file
, void __user
*argp
, bool compat
)
5521 struct btrfs_ioctl_send_args
*arg
;
5525 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5526 struct btrfs_ioctl_send_args_32 args32
;
5528 ret
= copy_from_user(&args32
, argp
, sizeof(args32
));
5531 arg
= kzalloc(sizeof(*arg
), GFP_KERNEL
);
5534 arg
->send_fd
= args32
.send_fd
;
5535 arg
->clone_sources_count
= args32
.clone_sources_count
;
5536 arg
->clone_sources
= compat_ptr(args32
.clone_sources
);
5537 arg
->parent_root
= args32
.parent_root
;
5538 arg
->flags
= args32
.flags
;
5539 memcpy(arg
->reserved
, args32
.reserved
,
5540 sizeof(args32
.reserved
));
5545 arg
= memdup_user(argp
, sizeof(*arg
));
5547 return PTR_ERR(arg
);
5549 ret
= btrfs_ioctl_send(file
, arg
);
5554 long btrfs_ioctl(struct file
*file
, unsigned int
5555 cmd
, unsigned long arg
)
5557 struct inode
*inode
= file_inode(file
);
5558 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5559 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5560 void __user
*argp
= (void __user
*)arg
;
5563 case FS_IOC_GETFLAGS
:
5564 return btrfs_ioctl_getflags(file
, argp
);
5565 case FS_IOC_SETFLAGS
:
5566 return btrfs_ioctl_setflags(file
, argp
);
5567 case FS_IOC_GETVERSION
:
5568 return btrfs_ioctl_getversion(file
, argp
);
5570 return btrfs_ioctl_fitrim(file
, argp
);
5571 case BTRFS_IOC_SNAP_CREATE
:
5572 return btrfs_ioctl_snap_create(file
, argp
, 0);
5573 case BTRFS_IOC_SNAP_CREATE_V2
:
5574 return btrfs_ioctl_snap_create_v2(file
, argp
, 0);
5575 case BTRFS_IOC_SUBVOL_CREATE
:
5576 return btrfs_ioctl_snap_create(file
, argp
, 1);
5577 case BTRFS_IOC_SUBVOL_CREATE_V2
:
5578 return btrfs_ioctl_snap_create_v2(file
, argp
, 1);
5579 case BTRFS_IOC_SNAP_DESTROY
:
5580 return btrfs_ioctl_snap_destroy(file
, argp
);
5581 case BTRFS_IOC_SUBVOL_GETFLAGS
:
5582 return btrfs_ioctl_subvol_getflags(file
, argp
);
5583 case BTRFS_IOC_SUBVOL_SETFLAGS
:
5584 return btrfs_ioctl_subvol_setflags(file
, argp
);
5585 case BTRFS_IOC_DEFAULT_SUBVOL
:
5586 return btrfs_ioctl_default_subvol(file
, argp
);
5587 case BTRFS_IOC_DEFRAG
:
5588 return btrfs_ioctl_defrag(file
, NULL
);
5589 case BTRFS_IOC_DEFRAG_RANGE
:
5590 return btrfs_ioctl_defrag(file
, argp
);
5591 case BTRFS_IOC_RESIZE
:
5592 return btrfs_ioctl_resize(file
, argp
);
5593 case BTRFS_IOC_ADD_DEV
:
5594 return btrfs_ioctl_add_dev(fs_info
, argp
);
5595 case BTRFS_IOC_RM_DEV
:
5596 return btrfs_ioctl_rm_dev(file
, argp
);
5597 case BTRFS_IOC_RM_DEV_V2
:
5598 return btrfs_ioctl_rm_dev_v2(file
, argp
);
5599 case BTRFS_IOC_FS_INFO
:
5600 return btrfs_ioctl_fs_info(fs_info
, argp
);
5601 case BTRFS_IOC_DEV_INFO
:
5602 return btrfs_ioctl_dev_info(fs_info
, argp
);
5603 case BTRFS_IOC_BALANCE
:
5604 return btrfs_ioctl_balance(file
, NULL
);
5605 case BTRFS_IOC_TREE_SEARCH
:
5606 return btrfs_ioctl_tree_search(file
, argp
);
5607 case BTRFS_IOC_TREE_SEARCH_V2
:
5608 return btrfs_ioctl_tree_search_v2(file
, argp
);
5609 case BTRFS_IOC_INO_LOOKUP
:
5610 return btrfs_ioctl_ino_lookup(file
, argp
);
5611 case BTRFS_IOC_INO_PATHS
:
5612 return btrfs_ioctl_ino_to_path(root
, argp
);
5613 case BTRFS_IOC_LOGICAL_INO
:
5614 return btrfs_ioctl_logical_to_ino(fs_info
, argp
, 1);
5615 case BTRFS_IOC_LOGICAL_INO_V2
:
5616 return btrfs_ioctl_logical_to_ino(fs_info
, argp
, 2);
5617 case BTRFS_IOC_SPACE_INFO
:
5618 return btrfs_ioctl_space_info(fs_info
, argp
);
5619 case BTRFS_IOC_SYNC
: {
5622 ret
= btrfs_start_delalloc_roots(fs_info
, -1);
5625 ret
= btrfs_sync_fs(inode
->i_sb
, 1);
5627 * The transaction thread may want to do more work,
5628 * namely it pokes the cleaner kthread that will start
5629 * processing uncleaned subvols.
5631 wake_up_process(fs_info
->transaction_kthread
);
5634 case BTRFS_IOC_START_SYNC
:
5635 return btrfs_ioctl_start_sync(root
, argp
);
5636 case BTRFS_IOC_WAIT_SYNC
:
5637 return btrfs_ioctl_wait_sync(fs_info
, argp
);
5638 case BTRFS_IOC_SCRUB
:
5639 return btrfs_ioctl_scrub(file
, argp
);
5640 case BTRFS_IOC_SCRUB_CANCEL
:
5641 return btrfs_ioctl_scrub_cancel(fs_info
);
5642 case BTRFS_IOC_SCRUB_PROGRESS
:
5643 return btrfs_ioctl_scrub_progress(fs_info
, argp
);
5644 case BTRFS_IOC_BALANCE_V2
:
5645 return btrfs_ioctl_balance(file
, argp
);
5646 case BTRFS_IOC_BALANCE_CTL
:
5647 return btrfs_ioctl_balance_ctl(fs_info
, arg
);
5648 case BTRFS_IOC_BALANCE_PROGRESS
:
5649 return btrfs_ioctl_balance_progress(fs_info
, argp
);
5650 case BTRFS_IOC_SET_RECEIVED_SUBVOL
:
5651 return btrfs_ioctl_set_received_subvol(file
, argp
);
5653 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32
:
5654 return btrfs_ioctl_set_received_subvol_32(file
, argp
);
5656 case BTRFS_IOC_SEND
:
5657 return _btrfs_ioctl_send(file
, argp
, false);
5658 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5659 case BTRFS_IOC_SEND_32
:
5660 return _btrfs_ioctl_send(file
, argp
, true);
5662 case BTRFS_IOC_GET_DEV_STATS
:
5663 return btrfs_ioctl_get_dev_stats(fs_info
, argp
);
5664 case BTRFS_IOC_QUOTA_CTL
:
5665 return btrfs_ioctl_quota_ctl(file
, argp
);
5666 case BTRFS_IOC_QGROUP_ASSIGN
:
5667 return btrfs_ioctl_qgroup_assign(file
, argp
);
5668 case BTRFS_IOC_QGROUP_CREATE
:
5669 return btrfs_ioctl_qgroup_create(file
, argp
);
5670 case BTRFS_IOC_QGROUP_LIMIT
:
5671 return btrfs_ioctl_qgroup_limit(file
, argp
);
5672 case BTRFS_IOC_QUOTA_RESCAN
:
5673 return btrfs_ioctl_quota_rescan(file
, argp
);
5674 case BTRFS_IOC_QUOTA_RESCAN_STATUS
:
5675 return btrfs_ioctl_quota_rescan_status(file
, argp
);
5676 case BTRFS_IOC_QUOTA_RESCAN_WAIT
:
5677 return btrfs_ioctl_quota_rescan_wait(file
, argp
);
5678 case BTRFS_IOC_DEV_REPLACE
:
5679 return btrfs_ioctl_dev_replace(fs_info
, argp
);
5680 case BTRFS_IOC_GET_FSLABEL
:
5681 return btrfs_ioctl_get_fslabel(file
, argp
);
5682 case BTRFS_IOC_SET_FSLABEL
:
5683 return btrfs_ioctl_set_fslabel(file
, argp
);
5684 case BTRFS_IOC_GET_SUPPORTED_FEATURES
:
5685 return btrfs_ioctl_get_supported_features(argp
);
5686 case BTRFS_IOC_GET_FEATURES
:
5687 return btrfs_ioctl_get_features(file
, argp
);
5688 case BTRFS_IOC_SET_FEATURES
:
5689 return btrfs_ioctl_set_features(file
, argp
);
5690 case FS_IOC_FSGETXATTR
:
5691 return btrfs_ioctl_fsgetxattr(file
, argp
);
5692 case FS_IOC_FSSETXATTR
:
5693 return btrfs_ioctl_fssetxattr(file
, argp
);
5694 case BTRFS_IOC_GET_SUBVOL_INFO
:
5695 return btrfs_ioctl_get_subvol_info(file
, argp
);
5696 case BTRFS_IOC_GET_SUBVOL_ROOTREF
:
5697 return btrfs_ioctl_get_subvol_rootref(file
, argp
);
5698 case BTRFS_IOC_INO_LOOKUP_USER
:
5699 return btrfs_ioctl_ino_lookup_user(file
, argp
);
5705 #ifdef CONFIG_COMPAT
5706 long btrfs_compat_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
5709 * These all access 32-bit values anyway so no further
5710 * handling is necessary.
5713 case FS_IOC32_GETFLAGS
:
5714 cmd
= FS_IOC_GETFLAGS
;
5716 case FS_IOC32_SETFLAGS
:
5717 cmd
= FS_IOC_SETFLAGS
;
5719 case FS_IOC32_GETVERSION
:
5720 cmd
= FS_IOC_GETVERSION
;
5724 return btrfs_ioctl(file
, cmd
, (unsigned long) compat_ptr(arg
));