1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/cleancache.h>
27 #include <linux/ratelimit.h>
28 #include <linux/crc32c.h>
29 #include <linux/btrfs.h>
30 #include "delayed-inode.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
40 #include "compression.h"
41 #include "rcu-string.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
45 #include "tests/btrfs-tests.h"
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/btrfs.h>
51 static const struct super_operations btrfs_super_ops
;
54 * Types for mounting the default subvolume and a subvolume explicitly
55 * requested by subvol=/path. That way the callchain is straightforward and we
56 * don't have to play tricks with the mount options and recursive calls to
59 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
61 static struct file_system_type btrfs_fs_type
;
62 static struct file_system_type btrfs_root_fs_type
;
64 static int btrfs_remount(struct super_block
*sb
, int *flags
, char *data
);
66 const char *btrfs_decode_error(int errno
)
68 char *errstr
= "unknown";
72 errstr
= "IO failure";
75 errstr
= "Out of memory";
78 errstr
= "Readonly filesystem";
81 errstr
= "Object already exists";
84 errstr
= "No space left";
87 errstr
= "No such entry";
95 * __btrfs_handle_fs_error decodes expected errors from the caller and
96 * invokes the appropriate error response.
99 void __btrfs_handle_fs_error(struct btrfs_fs_info
*fs_info
, const char *function
,
100 unsigned int line
, int errno
, const char *fmt
, ...)
102 struct super_block
*sb
= fs_info
->sb
;
108 * Special case: if the error is EROFS, and we're already
109 * under SB_RDONLY, then it is safe here.
111 if (errno
== -EROFS
&& sb_rdonly(sb
))
115 errstr
= btrfs_decode_error(errno
);
117 struct va_format vaf
;
124 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
125 sb
->s_id
, function
, line
, errno
, errstr
, &vaf
);
128 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
129 sb
->s_id
, function
, line
, errno
, errstr
);
134 * Today we only save the error info to memory. Long term we'll
135 * also send it down to the disk
137 set_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
);
139 /* Don't go through full error handling during mount */
140 if (!(sb
->s_flags
& SB_BORN
))
146 /* btrfs handle error by forcing the filesystem readonly */
147 sb
->s_flags
|= SB_RDONLY
;
148 btrfs_info(fs_info
, "forced readonly");
150 * Note that a running device replace operation is not canceled here
151 * although there is no way to update the progress. It would add the
152 * risk of a deadlock, therefore the canceling is omitted. The only
153 * penalty is that some I/O remains active until the procedure
154 * completes. The next time when the filesystem is mounted writable
155 * again, the device replace operation continues.
160 static const char * const logtypes
[] = {
173 * Use one ratelimit state per log level so that a flood of less important
174 * messages doesn't cause more important ones to be dropped.
176 static struct ratelimit_state printk_limits
[] = {
177 RATELIMIT_STATE_INIT(printk_limits
[0], DEFAULT_RATELIMIT_INTERVAL
, 100),
178 RATELIMIT_STATE_INIT(printk_limits
[1], DEFAULT_RATELIMIT_INTERVAL
, 100),
179 RATELIMIT_STATE_INIT(printk_limits
[2], DEFAULT_RATELIMIT_INTERVAL
, 100),
180 RATELIMIT_STATE_INIT(printk_limits
[3], DEFAULT_RATELIMIT_INTERVAL
, 100),
181 RATELIMIT_STATE_INIT(printk_limits
[4], DEFAULT_RATELIMIT_INTERVAL
, 100),
182 RATELIMIT_STATE_INIT(printk_limits
[5], DEFAULT_RATELIMIT_INTERVAL
, 100),
183 RATELIMIT_STATE_INIT(printk_limits
[6], DEFAULT_RATELIMIT_INTERVAL
, 100),
184 RATELIMIT_STATE_INIT(printk_limits
[7], DEFAULT_RATELIMIT_INTERVAL
, 100),
187 void btrfs_printk(const struct btrfs_fs_info
*fs_info
, const char *fmt
, ...)
189 char lvl
[PRINTK_MAX_SINGLE_HEADER_LEN
+ 1] = "\0";
190 struct va_format vaf
;
193 const char *type
= logtypes
[4];
194 struct ratelimit_state
*ratelimit
= &printk_limits
[4];
198 while ((kern_level
= printk_get_level(fmt
)) != 0) {
199 size_t size
= printk_skip_level(fmt
) - fmt
;
201 if (kern_level
>= '0' && kern_level
<= '7') {
202 memcpy(lvl
, fmt
, size
);
204 type
= logtypes
[kern_level
- '0'];
205 ratelimit
= &printk_limits
[kern_level
- '0'];
213 if (__ratelimit(ratelimit
))
214 printk("%sBTRFS %s (device %s): %pV\n", lvl
, type
,
215 fs_info
? fs_info
->sb
->s_id
: "<unknown>", &vaf
);
222 * We only mark the transaction aborted and then set the file system read-only.
223 * This will prevent new transactions from starting or trying to join this
226 * This means that error recovery at the call site is limited to freeing
227 * any local memory allocations and passing the error code up without
228 * further cleanup. The transaction should complete as it normally would
229 * in the call path but will return -EIO.
231 * We'll complete the cleanup in btrfs_end_transaction and
232 * btrfs_commit_transaction.
235 void __btrfs_abort_transaction(struct btrfs_trans_handle
*trans
,
236 const char *function
,
237 unsigned int line
, int errno
)
239 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
241 trans
->aborted
= errno
;
242 /* Nothing used. The other threads that have joined this
243 * transaction may be able to continue. */
244 if (!trans
->dirty
&& list_empty(&trans
->new_bgs
)) {
247 errstr
= btrfs_decode_error(errno
);
249 "%s:%d: Aborting unused transaction(%s).",
250 function
, line
, errstr
);
253 WRITE_ONCE(trans
->transaction
->aborted
, errno
);
254 /* Wake up anybody who may be waiting on this transaction */
255 wake_up(&fs_info
->transaction_wait
);
256 wake_up(&fs_info
->transaction_blocked_wait
);
257 __btrfs_handle_fs_error(fs_info
, function
, line
, errno
, NULL
);
260 * __btrfs_panic decodes unexpected, fatal errors from the caller,
261 * issues an alert, and either panics or BUGs, depending on mount options.
264 void __btrfs_panic(struct btrfs_fs_info
*fs_info
, const char *function
,
265 unsigned int line
, int errno
, const char *fmt
, ...)
267 char *s_id
= "<unknown>";
269 struct va_format vaf
= { .fmt
= fmt
};
273 s_id
= fs_info
->sb
->s_id
;
278 errstr
= btrfs_decode_error(errno
);
279 if (fs_info
&& (btrfs_test_opt(fs_info
, PANIC_ON_FATAL_ERROR
)))
280 panic(KERN_CRIT
"BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
281 s_id
, function
, line
, &vaf
, errno
, errstr
);
283 btrfs_crit(fs_info
, "panic in %s:%d: %pV (errno=%d %s)",
284 function
, line
, &vaf
, errno
, errstr
);
286 /* Caller calls BUG() */
289 static void btrfs_put_super(struct super_block
*sb
)
291 close_ctree(btrfs_sb(sb
));
300 Opt_compress_force_type
,
305 Opt_flushoncommit
, Opt_noflushoncommit
,
306 Opt_inode_cache
, Opt_noinode_cache
,
308 Opt_barrier
, Opt_nobarrier
,
309 Opt_datacow
, Opt_nodatacow
,
310 Opt_datasum
, Opt_nodatasum
,
311 Opt_defrag
, Opt_nodefrag
,
312 Opt_discard
, Opt_nodiscard
,
316 Opt_rescan_uuid_tree
,
318 Opt_space_cache
, Opt_no_space_cache
,
319 Opt_space_cache_version
,
321 Opt_ssd_spread
, Opt_nossd_spread
,
326 Opt_treelog
, Opt_notreelog
,
328 Opt_user_subvol_rm_allowed
,
330 /* Deprecated options */
335 /* Debugging options */
337 Opt_check_integrity_including_extent_data
,
338 Opt_check_integrity_print_mask
,
339 Opt_enospc_debug
, Opt_noenospc_debug
,
340 #ifdef CONFIG_BTRFS_DEBUG
341 Opt_fragment_data
, Opt_fragment_metadata
, Opt_fragment_all
,
343 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
349 static const match_table_t tokens
= {
351 {Opt_noacl
, "noacl"},
352 {Opt_clear_cache
, "clear_cache"},
353 {Opt_commit_interval
, "commit=%u"},
354 {Opt_compress
, "compress"},
355 {Opt_compress_type
, "compress=%s"},
356 {Opt_compress_force
, "compress-force"},
357 {Opt_compress_force_type
, "compress-force=%s"},
358 {Opt_degraded
, "degraded"},
359 {Opt_device
, "device=%s"},
360 {Opt_fatal_errors
, "fatal_errors=%s"},
361 {Opt_flushoncommit
, "flushoncommit"},
362 {Opt_noflushoncommit
, "noflushoncommit"},
363 {Opt_inode_cache
, "inode_cache"},
364 {Opt_noinode_cache
, "noinode_cache"},
365 {Opt_max_inline
, "max_inline=%s"},
366 {Opt_barrier
, "barrier"},
367 {Opt_nobarrier
, "nobarrier"},
368 {Opt_datacow
, "datacow"},
369 {Opt_nodatacow
, "nodatacow"},
370 {Opt_datasum
, "datasum"},
371 {Opt_nodatasum
, "nodatasum"},
372 {Opt_defrag
, "autodefrag"},
373 {Opt_nodefrag
, "noautodefrag"},
374 {Opt_discard
, "discard"},
375 {Opt_nodiscard
, "nodiscard"},
376 {Opt_nologreplay
, "nologreplay"},
377 {Opt_norecovery
, "norecovery"},
378 {Opt_ratio
, "metadata_ratio=%u"},
379 {Opt_rescan_uuid_tree
, "rescan_uuid_tree"},
380 {Opt_skip_balance
, "skip_balance"},
381 {Opt_space_cache
, "space_cache"},
382 {Opt_no_space_cache
, "nospace_cache"},
383 {Opt_space_cache_version
, "space_cache=%s"},
385 {Opt_nossd
, "nossd"},
386 {Opt_ssd_spread
, "ssd_spread"},
387 {Opt_nossd_spread
, "nossd_spread"},
388 {Opt_subvol
, "subvol=%s"},
389 {Opt_subvol_empty
, "subvol="},
390 {Opt_subvolid
, "subvolid=%s"},
391 {Opt_thread_pool
, "thread_pool=%u"},
392 {Opt_treelog
, "treelog"},
393 {Opt_notreelog
, "notreelog"},
394 {Opt_usebackuproot
, "usebackuproot"},
395 {Opt_user_subvol_rm_allowed
, "user_subvol_rm_allowed"},
397 /* Deprecated options */
398 {Opt_alloc_start
, "alloc_start=%s"},
399 {Opt_recovery
, "recovery"},
400 {Opt_subvolrootid
, "subvolrootid=%d"},
402 /* Debugging options */
403 {Opt_check_integrity
, "check_int"},
404 {Opt_check_integrity_including_extent_data
, "check_int_data"},
405 {Opt_check_integrity_print_mask
, "check_int_print_mask=%u"},
406 {Opt_enospc_debug
, "enospc_debug"},
407 {Opt_noenospc_debug
, "noenospc_debug"},
408 #ifdef CONFIG_BTRFS_DEBUG
409 {Opt_fragment_data
, "fragment=data"},
410 {Opt_fragment_metadata
, "fragment=metadata"},
411 {Opt_fragment_all
, "fragment=all"},
413 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
414 {Opt_ref_verify
, "ref_verify"},
420 * Regular mount options parser. Everything that is needed only when
421 * reading in a new superblock is parsed here.
422 * XXX JDM: This needs to be cleaned up for remount.
424 int btrfs_parse_options(struct btrfs_fs_info
*info
, char *options
,
425 unsigned long new_flags
)
427 substring_t args
[MAX_OPT_ARGS
];
433 bool compress_force
= false;
434 enum btrfs_compression_type saved_compress_type
;
435 bool saved_compress_force
;
438 cache_gen
= btrfs_super_cache_generation(info
->super_copy
);
439 if (btrfs_fs_compat_ro(info
, FREE_SPACE_TREE
))
440 btrfs_set_opt(info
->mount_opt
, FREE_SPACE_TREE
);
442 btrfs_set_opt(info
->mount_opt
, SPACE_CACHE
);
445 * Even the options are empty, we still need to do extra check
451 while ((p
= strsep(&options
, ",")) != NULL
) {
456 token
= match_token(p
, tokens
, args
);
459 btrfs_info(info
, "allowing degraded mounts");
460 btrfs_set_opt(info
->mount_opt
, DEGRADED
);
463 case Opt_subvol_empty
:
465 case Opt_subvolrootid
:
468 * These are parsed by btrfs_parse_subvol_options or
469 * btrfs_parse_device_options and can be ignored here.
473 btrfs_set_and_info(info
, NODATASUM
,
474 "setting nodatasum");
477 if (btrfs_test_opt(info
, NODATASUM
)) {
478 if (btrfs_test_opt(info
, NODATACOW
))
480 "setting datasum, datacow enabled");
482 btrfs_info(info
, "setting datasum");
484 btrfs_clear_opt(info
->mount_opt
, NODATACOW
);
485 btrfs_clear_opt(info
->mount_opt
, NODATASUM
);
488 if (!btrfs_test_opt(info
, NODATACOW
)) {
489 if (!btrfs_test_opt(info
, COMPRESS
) ||
490 !btrfs_test_opt(info
, FORCE_COMPRESS
)) {
492 "setting nodatacow, compression disabled");
494 btrfs_info(info
, "setting nodatacow");
497 btrfs_clear_opt(info
->mount_opt
, COMPRESS
);
498 btrfs_clear_opt(info
->mount_opt
, FORCE_COMPRESS
);
499 btrfs_set_opt(info
->mount_opt
, NODATACOW
);
500 btrfs_set_opt(info
->mount_opt
, NODATASUM
);
503 btrfs_clear_and_info(info
, NODATACOW
,
506 case Opt_compress_force
:
507 case Opt_compress_force_type
:
508 compress_force
= true;
511 case Opt_compress_type
:
512 saved_compress_type
= btrfs_test_opt(info
,
514 info
->compress_type
: BTRFS_COMPRESS_NONE
;
515 saved_compress_force
=
516 btrfs_test_opt(info
, FORCE_COMPRESS
);
517 if (token
== Opt_compress
||
518 token
== Opt_compress_force
||
519 strncmp(args
[0].from
, "zlib", 4) == 0) {
520 compress_type
= "zlib";
522 info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
523 info
->compress_level
= BTRFS_ZLIB_DEFAULT_LEVEL
;
525 * args[0] contains uninitialized data since
526 * for these tokens we don't expect any
529 if (token
!= Opt_compress
&&
530 token
!= Opt_compress_force
)
531 info
->compress_level
=
532 btrfs_compress_str2level(
535 btrfs_set_opt(info
->mount_opt
, COMPRESS
);
536 btrfs_clear_opt(info
->mount_opt
, NODATACOW
);
537 btrfs_clear_opt(info
->mount_opt
, NODATASUM
);
539 } else if (strncmp(args
[0].from
, "lzo", 3) == 0) {
540 compress_type
= "lzo";
541 info
->compress_type
= BTRFS_COMPRESS_LZO
;
542 btrfs_set_opt(info
->mount_opt
, COMPRESS
);
543 btrfs_clear_opt(info
->mount_opt
, NODATACOW
);
544 btrfs_clear_opt(info
->mount_opt
, NODATASUM
);
545 btrfs_set_fs_incompat(info
, COMPRESS_LZO
);
547 } else if (strncmp(args
[0].from
, "zstd", 4) == 0) {
548 compress_type
= "zstd";
549 info
->compress_type
= BTRFS_COMPRESS_ZSTD
;
550 info
->compress_level
=
551 btrfs_compress_str2level(
554 btrfs_set_opt(info
->mount_opt
, COMPRESS
);
555 btrfs_clear_opt(info
->mount_opt
, NODATACOW
);
556 btrfs_clear_opt(info
->mount_opt
, NODATASUM
);
557 btrfs_set_fs_incompat(info
, COMPRESS_ZSTD
);
559 } else if (strncmp(args
[0].from
, "no", 2) == 0) {
560 compress_type
= "no";
561 btrfs_clear_opt(info
->mount_opt
, COMPRESS
);
562 btrfs_clear_opt(info
->mount_opt
, FORCE_COMPRESS
);
563 compress_force
= false;
570 if (compress_force
) {
571 btrfs_set_opt(info
->mount_opt
, FORCE_COMPRESS
);
574 * If we remount from compress-force=xxx to
575 * compress=xxx, we need clear FORCE_COMPRESS
576 * flag, otherwise, there is no way for users
577 * to disable forcible compression separately.
579 btrfs_clear_opt(info
->mount_opt
, FORCE_COMPRESS
);
581 if ((btrfs_test_opt(info
, COMPRESS
) &&
582 (info
->compress_type
!= saved_compress_type
||
583 compress_force
!= saved_compress_force
)) ||
584 (!btrfs_test_opt(info
, COMPRESS
) &&
586 btrfs_info(info
, "%s %s compression, level %d",
587 (compress_force
) ? "force" : "use",
588 compress_type
, info
->compress_level
);
590 compress_force
= false;
593 btrfs_set_and_info(info
, SSD
,
594 "enabling ssd optimizations");
595 btrfs_clear_opt(info
->mount_opt
, NOSSD
);
598 btrfs_set_and_info(info
, SSD
,
599 "enabling ssd optimizations");
600 btrfs_set_and_info(info
, SSD_SPREAD
,
601 "using spread ssd allocation scheme");
602 btrfs_clear_opt(info
->mount_opt
, NOSSD
);
605 btrfs_set_opt(info
->mount_opt
, NOSSD
);
606 btrfs_clear_and_info(info
, SSD
,
607 "not using ssd optimizations");
609 case Opt_nossd_spread
:
610 btrfs_clear_and_info(info
, SSD_SPREAD
,
611 "not using spread ssd allocation scheme");
614 btrfs_clear_and_info(info
, NOBARRIER
,
615 "turning on barriers");
618 btrfs_set_and_info(info
, NOBARRIER
,
619 "turning off barriers");
621 case Opt_thread_pool
:
622 ret
= match_int(&args
[0], &intarg
);
625 } else if (intarg
== 0) {
629 info
->thread_pool_size
= intarg
;
632 num
= match_strdup(&args
[0]);
634 info
->max_inline
= memparse(num
, NULL
);
637 if (info
->max_inline
) {
638 info
->max_inline
= min_t(u64
,
642 btrfs_info(info
, "max_inline at %llu",
649 case Opt_alloc_start
:
651 "option alloc_start is obsolete, ignored");
654 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
655 info
->sb
->s_flags
|= SB_POSIXACL
;
658 btrfs_err(info
, "support for ACL not compiled in!");
663 info
->sb
->s_flags
&= ~SB_POSIXACL
;
666 btrfs_set_and_info(info
, NOTREELOG
,
667 "disabling tree log");
670 btrfs_clear_and_info(info
, NOTREELOG
,
671 "enabling tree log");
674 case Opt_nologreplay
:
675 btrfs_set_and_info(info
, NOLOGREPLAY
,
676 "disabling log replay at mount time");
678 case Opt_flushoncommit
:
679 btrfs_set_and_info(info
, FLUSHONCOMMIT
,
680 "turning on flush-on-commit");
682 case Opt_noflushoncommit
:
683 btrfs_clear_and_info(info
, FLUSHONCOMMIT
,
684 "turning off flush-on-commit");
687 ret
= match_int(&args
[0], &intarg
);
690 info
->metadata_ratio
= intarg
;
691 btrfs_info(info
, "metadata ratio %u",
692 info
->metadata_ratio
);
695 btrfs_set_and_info(info
, DISCARD
,
696 "turning on discard");
699 btrfs_clear_and_info(info
, DISCARD
,
700 "turning off discard");
702 case Opt_space_cache
:
703 case Opt_space_cache_version
:
704 if (token
== Opt_space_cache
||
705 strcmp(args
[0].from
, "v1") == 0) {
706 btrfs_clear_opt(info
->mount_opt
,
708 btrfs_set_and_info(info
, SPACE_CACHE
,
709 "enabling disk space caching");
710 } else if (strcmp(args
[0].from
, "v2") == 0) {
711 btrfs_clear_opt(info
->mount_opt
,
713 btrfs_set_and_info(info
, FREE_SPACE_TREE
,
714 "enabling free space tree");
720 case Opt_rescan_uuid_tree
:
721 btrfs_set_opt(info
->mount_opt
, RESCAN_UUID_TREE
);
723 case Opt_no_space_cache
:
724 if (btrfs_test_opt(info
, SPACE_CACHE
)) {
725 btrfs_clear_and_info(info
, SPACE_CACHE
,
726 "disabling disk space caching");
728 if (btrfs_test_opt(info
, FREE_SPACE_TREE
)) {
729 btrfs_clear_and_info(info
, FREE_SPACE_TREE
,
730 "disabling free space tree");
733 case Opt_inode_cache
:
734 btrfs_set_pending_and_info(info
, INODE_MAP_CACHE
,
735 "enabling inode map caching");
737 case Opt_noinode_cache
:
738 btrfs_clear_pending_and_info(info
, INODE_MAP_CACHE
,
739 "disabling inode map caching");
741 case Opt_clear_cache
:
742 btrfs_set_and_info(info
, CLEAR_CACHE
,
743 "force clearing of disk cache");
745 case Opt_user_subvol_rm_allowed
:
746 btrfs_set_opt(info
->mount_opt
, USER_SUBVOL_RM_ALLOWED
);
748 case Opt_enospc_debug
:
749 btrfs_set_opt(info
->mount_opt
, ENOSPC_DEBUG
);
751 case Opt_noenospc_debug
:
752 btrfs_clear_opt(info
->mount_opt
, ENOSPC_DEBUG
);
755 btrfs_set_and_info(info
, AUTO_DEFRAG
,
756 "enabling auto defrag");
759 btrfs_clear_and_info(info
, AUTO_DEFRAG
,
760 "disabling auto defrag");
764 "'recovery' is deprecated, use 'usebackuproot' instead");
766 case Opt_usebackuproot
:
768 "trying to use backup root at mount time");
769 btrfs_set_opt(info
->mount_opt
, USEBACKUPROOT
);
771 case Opt_skip_balance
:
772 btrfs_set_opt(info
->mount_opt
, SKIP_BALANCE
);
774 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
775 case Opt_check_integrity_including_extent_data
:
777 "enabling check integrity including extent data");
778 btrfs_set_opt(info
->mount_opt
,
779 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
);
780 btrfs_set_opt(info
->mount_opt
, CHECK_INTEGRITY
);
782 case Opt_check_integrity
:
783 btrfs_info(info
, "enabling check integrity");
784 btrfs_set_opt(info
->mount_opt
, CHECK_INTEGRITY
);
786 case Opt_check_integrity_print_mask
:
787 ret
= match_int(&args
[0], &intarg
);
790 info
->check_integrity_print_mask
= intarg
;
791 btrfs_info(info
, "check_integrity_print_mask 0x%x",
792 info
->check_integrity_print_mask
);
795 case Opt_check_integrity_including_extent_data
:
796 case Opt_check_integrity
:
797 case Opt_check_integrity_print_mask
:
799 "support for check_integrity* not compiled in!");
803 case Opt_fatal_errors
:
804 if (strcmp(args
[0].from
, "panic") == 0)
805 btrfs_set_opt(info
->mount_opt
,
806 PANIC_ON_FATAL_ERROR
);
807 else if (strcmp(args
[0].from
, "bug") == 0)
808 btrfs_clear_opt(info
->mount_opt
,
809 PANIC_ON_FATAL_ERROR
);
815 case Opt_commit_interval
:
817 ret
= match_int(&args
[0], &intarg
);
822 "using default commit interval %us",
823 BTRFS_DEFAULT_COMMIT_INTERVAL
);
824 intarg
= BTRFS_DEFAULT_COMMIT_INTERVAL
;
825 } else if (intarg
> 300) {
826 btrfs_warn(info
, "excessive commit interval %d",
829 info
->commit_interval
= intarg
;
831 #ifdef CONFIG_BTRFS_DEBUG
832 case Opt_fragment_all
:
833 btrfs_info(info
, "fragmenting all space");
834 btrfs_set_opt(info
->mount_opt
, FRAGMENT_DATA
);
835 btrfs_set_opt(info
->mount_opt
, FRAGMENT_METADATA
);
837 case Opt_fragment_metadata
:
838 btrfs_info(info
, "fragmenting metadata");
839 btrfs_set_opt(info
->mount_opt
,
842 case Opt_fragment_data
:
843 btrfs_info(info
, "fragmenting data");
844 btrfs_set_opt(info
->mount_opt
, FRAGMENT_DATA
);
847 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
849 btrfs_info(info
, "doing ref verification");
850 btrfs_set_opt(info
->mount_opt
, REF_VERIFY
);
854 btrfs_info(info
, "unrecognized mount option '%s'", p
);
863 * Extra check for current option against current flag
865 if (btrfs_test_opt(info
, NOLOGREPLAY
) && !(new_flags
& SB_RDONLY
)) {
867 "nologreplay must be used with ro mount option");
871 if (btrfs_fs_compat_ro(info
, FREE_SPACE_TREE
) &&
872 !btrfs_test_opt(info
, FREE_SPACE_TREE
) &&
873 !btrfs_test_opt(info
, CLEAR_CACHE
)) {
874 btrfs_err(info
, "cannot disable free space tree");
878 if (!ret
&& btrfs_test_opt(info
, SPACE_CACHE
))
879 btrfs_info(info
, "disk space caching is enabled");
880 if (!ret
&& btrfs_test_opt(info
, FREE_SPACE_TREE
))
881 btrfs_info(info
, "using free space tree");
886 * Parse mount options that are required early in the mount process.
888 * All other options will be parsed on much later in the mount process and
889 * only when we need to allocate a new super block.
891 static int btrfs_parse_device_options(const char *options
, fmode_t flags
,
894 substring_t args
[MAX_OPT_ARGS
];
895 char *device_name
, *opts
, *orig
, *p
;
896 struct btrfs_device
*device
= NULL
;
899 lockdep_assert_held(&uuid_mutex
);
905 * strsep changes the string, duplicate it because btrfs_parse_options
908 opts
= kstrdup(options
, GFP_KERNEL
);
913 while ((p
= strsep(&opts
, ",")) != NULL
) {
919 token
= match_token(p
, tokens
, args
);
920 if (token
== Opt_device
) {
921 device_name
= match_strdup(&args
[0]);
926 device
= btrfs_scan_one_device(device_name
, flags
,
929 if (IS_ERR(device
)) {
930 error
= PTR_ERR(device
);
942 * Parse mount options that are related to subvolume id
944 * The value is later passed to mount_subvol()
946 static int btrfs_parse_subvol_options(const char *options
, char **subvol_name
,
947 u64
*subvol_objectid
)
949 substring_t args
[MAX_OPT_ARGS
];
950 char *opts
, *orig
, *p
;
958 * strsep changes the string, duplicate it because
959 * btrfs_parse_device_options gets called later
961 opts
= kstrdup(options
, GFP_KERNEL
);
966 while ((p
= strsep(&opts
, ",")) != NULL
) {
971 token
= match_token(p
, tokens
, args
);
975 *subvol_name
= match_strdup(&args
[0]);
982 error
= match_u64(&args
[0], &subvolid
);
986 /* we want the original fs_tree */
988 subvolid
= BTRFS_FS_TREE_OBJECTID
;
990 *subvol_objectid
= subvolid
;
992 case Opt_subvolrootid
:
993 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
1005 static char *get_subvol_name_from_objectid(struct btrfs_fs_info
*fs_info
,
1006 u64 subvol_objectid
)
1008 struct btrfs_root
*root
= fs_info
->tree_root
;
1009 struct btrfs_root
*fs_root
;
1010 struct btrfs_root_ref
*root_ref
;
1011 struct btrfs_inode_ref
*inode_ref
;
1012 struct btrfs_key key
;
1013 struct btrfs_path
*path
= NULL
;
1014 char *name
= NULL
, *ptr
;
1019 path
= btrfs_alloc_path();
1024 path
->leave_spinning
= 1;
1026 name
= kmalloc(PATH_MAX
, GFP_KERNEL
);
1031 ptr
= name
+ PATH_MAX
- 1;
1035 * Walk up the subvolume trees in the tree of tree roots by root
1036 * backrefs until we hit the top-level subvolume.
1038 while (subvol_objectid
!= BTRFS_FS_TREE_OBJECTID
) {
1039 key
.objectid
= subvol_objectid
;
1040 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
1041 key
.offset
= (u64
)-1;
1043 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1046 } else if (ret
> 0) {
1047 ret
= btrfs_previous_item(root
, path
, subvol_objectid
,
1048 BTRFS_ROOT_BACKREF_KEY
);
1051 } else if (ret
> 0) {
1057 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1058 subvol_objectid
= key
.offset
;
1060 root_ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1061 struct btrfs_root_ref
);
1062 len
= btrfs_root_ref_name_len(path
->nodes
[0], root_ref
);
1065 ret
= -ENAMETOOLONG
;
1068 read_extent_buffer(path
->nodes
[0], ptr
+ 1,
1069 (unsigned long)(root_ref
+ 1), len
);
1071 dirid
= btrfs_root_ref_dirid(path
->nodes
[0], root_ref
);
1072 btrfs_release_path(path
);
1074 key
.objectid
= subvol_objectid
;
1075 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1076 key
.offset
= (u64
)-1;
1077 fs_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
1078 if (IS_ERR(fs_root
)) {
1079 ret
= PTR_ERR(fs_root
);
1084 * Walk up the filesystem tree by inode refs until we hit the
1087 while (dirid
!= BTRFS_FIRST_FREE_OBJECTID
) {
1088 key
.objectid
= dirid
;
1089 key
.type
= BTRFS_INODE_REF_KEY
;
1090 key
.offset
= (u64
)-1;
1092 ret
= btrfs_search_slot(NULL
, fs_root
, &key
, path
, 0, 0);
1095 } else if (ret
> 0) {
1096 ret
= btrfs_previous_item(fs_root
, path
, dirid
,
1097 BTRFS_INODE_REF_KEY
);
1100 } else if (ret
> 0) {
1106 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1109 inode_ref
= btrfs_item_ptr(path
->nodes
[0],
1111 struct btrfs_inode_ref
);
1112 len
= btrfs_inode_ref_name_len(path
->nodes
[0],
1116 ret
= -ENAMETOOLONG
;
1119 read_extent_buffer(path
->nodes
[0], ptr
+ 1,
1120 (unsigned long)(inode_ref
+ 1), len
);
1122 btrfs_release_path(path
);
1126 btrfs_free_path(path
);
1127 if (ptr
== name
+ PATH_MAX
- 1) {
1131 memmove(name
, ptr
, name
+ PATH_MAX
- ptr
);
1136 btrfs_free_path(path
);
1138 return ERR_PTR(ret
);
1141 static int get_default_subvol_objectid(struct btrfs_fs_info
*fs_info
, u64
*objectid
)
1143 struct btrfs_root
*root
= fs_info
->tree_root
;
1144 struct btrfs_dir_item
*di
;
1145 struct btrfs_path
*path
;
1146 struct btrfs_key location
;
1149 path
= btrfs_alloc_path();
1152 path
->leave_spinning
= 1;
1155 * Find the "default" dir item which points to the root item that we
1156 * will mount by default if we haven't been given a specific subvolume
1159 dir_id
= btrfs_super_root_dir(fs_info
->super_copy
);
1160 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dir_id
, "default", 7, 0);
1162 btrfs_free_path(path
);
1167 * Ok the default dir item isn't there. This is weird since
1168 * it's always been there, but don't freak out, just try and
1169 * mount the top-level subvolume.
1171 btrfs_free_path(path
);
1172 *objectid
= BTRFS_FS_TREE_OBJECTID
;
1176 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
1177 btrfs_free_path(path
);
1178 *objectid
= location
.objectid
;
1182 static int btrfs_fill_super(struct super_block
*sb
,
1183 struct btrfs_fs_devices
*fs_devices
,
1186 struct inode
*inode
;
1187 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
1188 struct btrfs_key key
;
1191 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
1192 sb
->s_magic
= BTRFS_SUPER_MAGIC
;
1193 sb
->s_op
= &btrfs_super_ops
;
1194 sb
->s_d_op
= &btrfs_dentry_operations
;
1195 sb
->s_export_op
= &btrfs_export_ops
;
1196 sb
->s_xattr
= btrfs_xattr_handlers
;
1197 sb
->s_time_gran
= 1;
1198 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1199 sb
->s_flags
|= SB_POSIXACL
;
1201 sb
->s_flags
|= SB_I_VERSION
;
1202 sb
->s_iflags
|= SB_I_CGROUPWB
;
1204 err
= super_setup_bdi(sb
);
1206 btrfs_err(fs_info
, "super_setup_bdi failed");
1210 err
= open_ctree(sb
, fs_devices
, (char *)data
);
1212 btrfs_err(fs_info
, "open_ctree failed");
1216 key
.objectid
= BTRFS_FIRST_FREE_OBJECTID
;
1217 key
.type
= BTRFS_INODE_ITEM_KEY
;
1219 inode
= btrfs_iget(sb
, &key
, fs_info
->fs_root
, NULL
);
1220 if (IS_ERR(inode
)) {
1221 err
= PTR_ERR(inode
);
1225 sb
->s_root
= d_make_root(inode
);
1231 cleancache_init_fs(sb
);
1232 sb
->s_flags
|= SB_ACTIVE
;
1236 close_ctree(fs_info
);
1240 int btrfs_sync_fs(struct super_block
*sb
, int wait
)
1242 struct btrfs_trans_handle
*trans
;
1243 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
1244 struct btrfs_root
*root
= fs_info
->tree_root
;
1246 trace_btrfs_sync_fs(fs_info
, wait
);
1249 filemap_flush(fs_info
->btree_inode
->i_mapping
);
1253 btrfs_wait_ordered_roots(fs_info
, U64_MAX
, 0, (u64
)-1);
1255 trans
= btrfs_attach_transaction_barrier(root
);
1256 if (IS_ERR(trans
)) {
1257 /* no transaction, don't bother */
1258 if (PTR_ERR(trans
) == -ENOENT
) {
1260 * Exit unless we have some pending changes
1261 * that need to go through commit
1263 if (fs_info
->pending_changes
== 0)
1266 * A non-blocking test if the fs is frozen. We must not
1267 * start a new transaction here otherwise a deadlock
1268 * happens. The pending operations are delayed to the
1269 * next commit after thawing.
1271 if (sb_start_write_trylock(sb
))
1275 trans
= btrfs_start_transaction(root
, 0);
1278 return PTR_ERR(trans
);
1280 return btrfs_commit_transaction(trans
);
1283 static int btrfs_show_options(struct seq_file
*seq
, struct dentry
*dentry
)
1285 struct btrfs_fs_info
*info
= btrfs_sb(dentry
->d_sb
);
1286 const char *compress_type
;
1288 if (btrfs_test_opt(info
, DEGRADED
))
1289 seq_puts(seq
, ",degraded");
1290 if (btrfs_test_opt(info
, NODATASUM
))
1291 seq_puts(seq
, ",nodatasum");
1292 if (btrfs_test_opt(info
, NODATACOW
))
1293 seq_puts(seq
, ",nodatacow");
1294 if (btrfs_test_opt(info
, NOBARRIER
))
1295 seq_puts(seq
, ",nobarrier");
1296 if (info
->max_inline
!= BTRFS_DEFAULT_MAX_INLINE
)
1297 seq_printf(seq
, ",max_inline=%llu", info
->max_inline
);
1298 if (info
->thread_pool_size
!= min_t(unsigned long,
1299 num_online_cpus() + 2, 8))
1300 seq_printf(seq
, ",thread_pool=%u", info
->thread_pool_size
);
1301 if (btrfs_test_opt(info
, COMPRESS
)) {
1302 compress_type
= btrfs_compress_type2str(info
->compress_type
);
1303 if (btrfs_test_opt(info
, FORCE_COMPRESS
))
1304 seq_printf(seq
, ",compress-force=%s", compress_type
);
1306 seq_printf(seq
, ",compress=%s", compress_type
);
1307 if (info
->compress_level
)
1308 seq_printf(seq
, ":%d", info
->compress_level
);
1310 if (btrfs_test_opt(info
, NOSSD
))
1311 seq_puts(seq
, ",nossd");
1312 if (btrfs_test_opt(info
, SSD_SPREAD
))
1313 seq_puts(seq
, ",ssd_spread");
1314 else if (btrfs_test_opt(info
, SSD
))
1315 seq_puts(seq
, ",ssd");
1316 if (btrfs_test_opt(info
, NOTREELOG
))
1317 seq_puts(seq
, ",notreelog");
1318 if (btrfs_test_opt(info
, NOLOGREPLAY
))
1319 seq_puts(seq
, ",nologreplay");
1320 if (btrfs_test_opt(info
, FLUSHONCOMMIT
))
1321 seq_puts(seq
, ",flushoncommit");
1322 if (btrfs_test_opt(info
, DISCARD
))
1323 seq_puts(seq
, ",discard");
1324 if (!(info
->sb
->s_flags
& SB_POSIXACL
))
1325 seq_puts(seq
, ",noacl");
1326 if (btrfs_test_opt(info
, SPACE_CACHE
))
1327 seq_puts(seq
, ",space_cache");
1328 else if (btrfs_test_opt(info
, FREE_SPACE_TREE
))
1329 seq_puts(seq
, ",space_cache=v2");
1331 seq_puts(seq
, ",nospace_cache");
1332 if (btrfs_test_opt(info
, RESCAN_UUID_TREE
))
1333 seq_puts(seq
, ",rescan_uuid_tree");
1334 if (btrfs_test_opt(info
, CLEAR_CACHE
))
1335 seq_puts(seq
, ",clear_cache");
1336 if (btrfs_test_opt(info
, USER_SUBVOL_RM_ALLOWED
))
1337 seq_puts(seq
, ",user_subvol_rm_allowed");
1338 if (btrfs_test_opt(info
, ENOSPC_DEBUG
))
1339 seq_puts(seq
, ",enospc_debug");
1340 if (btrfs_test_opt(info
, AUTO_DEFRAG
))
1341 seq_puts(seq
, ",autodefrag");
1342 if (btrfs_test_opt(info
, INODE_MAP_CACHE
))
1343 seq_puts(seq
, ",inode_cache");
1344 if (btrfs_test_opt(info
, SKIP_BALANCE
))
1345 seq_puts(seq
, ",skip_balance");
1346 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1347 if (btrfs_test_opt(info
, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
))
1348 seq_puts(seq
, ",check_int_data");
1349 else if (btrfs_test_opt(info
, CHECK_INTEGRITY
))
1350 seq_puts(seq
, ",check_int");
1351 if (info
->check_integrity_print_mask
)
1352 seq_printf(seq
, ",check_int_print_mask=%d",
1353 info
->check_integrity_print_mask
);
1355 if (info
->metadata_ratio
)
1356 seq_printf(seq
, ",metadata_ratio=%u", info
->metadata_ratio
);
1357 if (btrfs_test_opt(info
, PANIC_ON_FATAL_ERROR
))
1358 seq_puts(seq
, ",fatal_errors=panic");
1359 if (info
->commit_interval
!= BTRFS_DEFAULT_COMMIT_INTERVAL
)
1360 seq_printf(seq
, ",commit=%u", info
->commit_interval
);
1361 #ifdef CONFIG_BTRFS_DEBUG
1362 if (btrfs_test_opt(info
, FRAGMENT_DATA
))
1363 seq_puts(seq
, ",fragment=data");
1364 if (btrfs_test_opt(info
, FRAGMENT_METADATA
))
1365 seq_puts(seq
, ",fragment=metadata");
1367 if (btrfs_test_opt(info
, REF_VERIFY
))
1368 seq_puts(seq
, ",ref_verify");
1369 seq_printf(seq
, ",subvolid=%llu",
1370 BTRFS_I(d_inode(dentry
))->root
->root_key
.objectid
);
1371 seq_puts(seq
, ",subvol=");
1372 seq_dentry(seq
, dentry
, " \t\n\\");
1376 static int btrfs_test_super(struct super_block
*s
, void *data
)
1378 struct btrfs_fs_info
*p
= data
;
1379 struct btrfs_fs_info
*fs_info
= btrfs_sb(s
);
1381 return fs_info
->fs_devices
== p
->fs_devices
;
1384 static int btrfs_set_super(struct super_block
*s
, void *data
)
1386 int err
= set_anon_super(s
, data
);
1388 s
->s_fs_info
= data
;
1393 * subvolumes are identified by ino 256
1395 static inline int is_subvolume_inode(struct inode
*inode
)
1397 if (inode
&& inode
->i_ino
== BTRFS_FIRST_FREE_OBJECTID
)
1402 static struct dentry
*mount_subvol(const char *subvol_name
, u64 subvol_objectid
,
1403 struct vfsmount
*mnt
)
1405 struct dentry
*root
;
1409 if (!subvol_objectid
) {
1410 ret
= get_default_subvol_objectid(btrfs_sb(mnt
->mnt_sb
),
1413 root
= ERR_PTR(ret
);
1417 subvol_name
= get_subvol_name_from_objectid(btrfs_sb(mnt
->mnt_sb
),
1419 if (IS_ERR(subvol_name
)) {
1420 root
= ERR_CAST(subvol_name
);
1427 root
= mount_subtree(mnt
, subvol_name
);
1428 /* mount_subtree() drops our reference on the vfsmount. */
1431 if (!IS_ERR(root
)) {
1432 struct super_block
*s
= root
->d_sb
;
1433 struct btrfs_fs_info
*fs_info
= btrfs_sb(s
);
1434 struct inode
*root_inode
= d_inode(root
);
1435 u64 root_objectid
= BTRFS_I(root_inode
)->root
->root_key
.objectid
;
1438 if (!is_subvolume_inode(root_inode
)) {
1439 btrfs_err(fs_info
, "'%s' is not a valid subvolume",
1443 if (subvol_objectid
&& root_objectid
!= subvol_objectid
) {
1445 * This will also catch a race condition where a
1446 * subvolume which was passed by ID is renamed and
1447 * another subvolume is renamed over the old location.
1450 "subvol '%s' does not match subvolid %llu",
1451 subvol_name
, subvol_objectid
);
1456 root
= ERR_PTR(ret
);
1457 deactivate_locked_super(s
);
1468 * Find a superblock for the given device / mount point.
1470 * Note: This is based on mount_bdev from fs/super.c with a few additions
1471 * for multiple device setup. Make sure to keep it in sync.
1473 static struct dentry
*btrfs_mount_root(struct file_system_type
*fs_type
,
1474 int flags
, const char *device_name
, void *data
)
1476 struct block_device
*bdev
= NULL
;
1477 struct super_block
*s
;
1478 struct btrfs_device
*device
= NULL
;
1479 struct btrfs_fs_devices
*fs_devices
= NULL
;
1480 struct btrfs_fs_info
*fs_info
= NULL
;
1481 void *new_sec_opts
= NULL
;
1482 fmode_t mode
= FMODE_READ
;
1485 if (!(flags
& SB_RDONLY
))
1486 mode
|= FMODE_WRITE
;
1489 error
= security_sb_eat_lsm_opts(data
, &new_sec_opts
);
1491 return ERR_PTR(error
);
1495 * Setup a dummy root and fs_info for test/set super. This is because
1496 * we don't actually fill this stuff out until open_ctree, but we need
1497 * it for searching for existing supers, so this lets us do that and
1498 * then open_ctree will properly initialize everything later.
1500 fs_info
= kvzalloc(sizeof(struct btrfs_fs_info
), GFP_KERNEL
);
1503 goto error_sec_opts
;
1506 fs_info
->super_copy
= kzalloc(BTRFS_SUPER_INFO_SIZE
, GFP_KERNEL
);
1507 fs_info
->super_for_commit
= kzalloc(BTRFS_SUPER_INFO_SIZE
, GFP_KERNEL
);
1508 if (!fs_info
->super_copy
|| !fs_info
->super_for_commit
) {
1513 mutex_lock(&uuid_mutex
);
1514 error
= btrfs_parse_device_options(data
, mode
, fs_type
);
1516 mutex_unlock(&uuid_mutex
);
1520 device
= btrfs_scan_one_device(device_name
, mode
, fs_type
);
1521 if (IS_ERR(device
)) {
1522 mutex_unlock(&uuid_mutex
);
1523 error
= PTR_ERR(device
);
1527 fs_devices
= device
->fs_devices
;
1528 fs_info
->fs_devices
= fs_devices
;
1530 error
= btrfs_open_devices(fs_devices
, mode
, fs_type
);
1531 mutex_unlock(&uuid_mutex
);
1535 if (!(flags
& SB_RDONLY
) && fs_devices
->rw_devices
== 0) {
1537 goto error_close_devices
;
1540 bdev
= fs_devices
->latest_bdev
;
1541 s
= sget(fs_type
, btrfs_test_super
, btrfs_set_super
, flags
| SB_NOSEC
,
1545 goto error_close_devices
;
1549 btrfs_close_devices(fs_devices
);
1550 free_fs_info(fs_info
);
1551 if ((flags
^ s
->s_flags
) & SB_RDONLY
)
1554 snprintf(s
->s_id
, sizeof(s
->s_id
), "%pg", bdev
);
1555 btrfs_sb(s
)->bdev_holder
= fs_type
;
1556 if (!strstr(crc32c_impl(), "generic"))
1557 set_bit(BTRFS_FS_CSUM_IMPL_FAST
, &fs_info
->flags
);
1558 error
= btrfs_fill_super(s
, fs_devices
, data
);
1561 error
= security_sb_set_mnt_opts(s
, new_sec_opts
, 0, NULL
);
1562 security_free_mnt_opts(&new_sec_opts
);
1564 deactivate_locked_super(s
);
1565 return ERR_PTR(error
);
1568 return dget(s
->s_root
);
1570 error_close_devices
:
1571 btrfs_close_devices(fs_devices
);
1573 free_fs_info(fs_info
);
1575 security_free_mnt_opts(&new_sec_opts
);
1576 return ERR_PTR(error
);
1580 * Mount function which is called by VFS layer.
1582 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1583 * which needs vfsmount* of device's root (/). This means device's root has to
1584 * be mounted internally in any case.
1587 * 1. Parse subvol id related options for later use in mount_subvol().
1589 * 2. Mount device's root (/) by calling vfs_kern_mount().
1591 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1592 * first place. In order to avoid calling btrfs_mount() again, we use
1593 * different file_system_type which is not registered to VFS by
1594 * register_filesystem() (btrfs_root_fs_type). As a result,
1595 * btrfs_mount_root() is called. The return value will be used by
1596 * mount_subtree() in mount_subvol().
1598 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is
1599 * "btrfs subvolume set-default", mount_subvol() is called always.
1601 static struct dentry
*btrfs_mount(struct file_system_type
*fs_type
, int flags
,
1602 const char *device_name
, void *data
)
1604 struct vfsmount
*mnt_root
;
1605 struct dentry
*root
;
1606 char *subvol_name
= NULL
;
1607 u64 subvol_objectid
= 0;
1610 error
= btrfs_parse_subvol_options(data
, &subvol_name
,
1614 return ERR_PTR(error
);
1617 /* mount device's root (/) */
1618 mnt_root
= vfs_kern_mount(&btrfs_root_fs_type
, flags
, device_name
, data
);
1619 if (PTR_ERR_OR_ZERO(mnt_root
) == -EBUSY
) {
1620 if (flags
& SB_RDONLY
) {
1621 mnt_root
= vfs_kern_mount(&btrfs_root_fs_type
,
1622 flags
& ~SB_RDONLY
, device_name
, data
);
1624 mnt_root
= vfs_kern_mount(&btrfs_root_fs_type
,
1625 flags
| SB_RDONLY
, device_name
, data
);
1626 if (IS_ERR(mnt_root
)) {
1627 root
= ERR_CAST(mnt_root
);
1632 down_write(&mnt_root
->mnt_sb
->s_umount
);
1633 error
= btrfs_remount(mnt_root
->mnt_sb
, &flags
, NULL
);
1634 up_write(&mnt_root
->mnt_sb
->s_umount
);
1636 root
= ERR_PTR(error
);
1643 if (IS_ERR(mnt_root
)) {
1644 root
= ERR_CAST(mnt_root
);
1649 /* mount_subvol() will free subvol_name and mnt_root */
1650 root
= mount_subvol(subvol_name
, subvol_objectid
, mnt_root
);
1656 static void btrfs_resize_thread_pool(struct btrfs_fs_info
*fs_info
,
1657 u32 new_pool_size
, u32 old_pool_size
)
1659 if (new_pool_size
== old_pool_size
)
1662 fs_info
->thread_pool_size
= new_pool_size
;
1664 btrfs_info(fs_info
, "resize thread pool %d -> %d",
1665 old_pool_size
, new_pool_size
);
1667 btrfs_workqueue_set_max(fs_info
->workers
, new_pool_size
);
1668 btrfs_workqueue_set_max(fs_info
->delalloc_workers
, new_pool_size
);
1669 btrfs_workqueue_set_max(fs_info
->submit_workers
, new_pool_size
);
1670 btrfs_workqueue_set_max(fs_info
->caching_workers
, new_pool_size
);
1671 btrfs_workqueue_set_max(fs_info
->endio_workers
, new_pool_size
);
1672 btrfs_workqueue_set_max(fs_info
->endio_meta_workers
, new_pool_size
);
1673 btrfs_workqueue_set_max(fs_info
->endio_meta_write_workers
,
1675 btrfs_workqueue_set_max(fs_info
->endio_write_workers
, new_pool_size
);
1676 btrfs_workqueue_set_max(fs_info
->endio_freespace_worker
, new_pool_size
);
1677 btrfs_workqueue_set_max(fs_info
->delayed_workers
, new_pool_size
);
1678 btrfs_workqueue_set_max(fs_info
->readahead_workers
, new_pool_size
);
1679 btrfs_workqueue_set_max(fs_info
->scrub_wr_completion_workers
,
1683 static inline void btrfs_remount_prepare(struct btrfs_fs_info
*fs_info
)
1685 set_bit(BTRFS_FS_STATE_REMOUNTING
, &fs_info
->fs_state
);
1688 static inline void btrfs_remount_begin(struct btrfs_fs_info
*fs_info
,
1689 unsigned long old_opts
, int flags
)
1691 if (btrfs_raw_test_opt(old_opts
, AUTO_DEFRAG
) &&
1692 (!btrfs_raw_test_opt(fs_info
->mount_opt
, AUTO_DEFRAG
) ||
1693 (flags
& SB_RDONLY
))) {
1694 /* wait for any defraggers to finish */
1695 wait_event(fs_info
->transaction_wait
,
1696 (atomic_read(&fs_info
->defrag_running
) == 0));
1697 if (flags
& SB_RDONLY
)
1698 sync_filesystem(fs_info
->sb
);
1702 static inline void btrfs_remount_cleanup(struct btrfs_fs_info
*fs_info
,
1703 unsigned long old_opts
)
1706 * We need to cleanup all defragable inodes if the autodefragment is
1707 * close or the filesystem is read only.
1709 if (btrfs_raw_test_opt(old_opts
, AUTO_DEFRAG
) &&
1710 (!btrfs_raw_test_opt(fs_info
->mount_opt
, AUTO_DEFRAG
) || sb_rdonly(fs_info
->sb
))) {
1711 btrfs_cleanup_defrag_inodes(fs_info
);
1714 clear_bit(BTRFS_FS_STATE_REMOUNTING
, &fs_info
->fs_state
);
1717 static int btrfs_remount(struct super_block
*sb
, int *flags
, char *data
)
1719 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
1720 struct btrfs_root
*root
= fs_info
->tree_root
;
1721 unsigned old_flags
= sb
->s_flags
;
1722 unsigned long old_opts
= fs_info
->mount_opt
;
1723 unsigned long old_compress_type
= fs_info
->compress_type
;
1724 u64 old_max_inline
= fs_info
->max_inline
;
1725 u32 old_thread_pool_size
= fs_info
->thread_pool_size
;
1726 u32 old_metadata_ratio
= fs_info
->metadata_ratio
;
1729 sync_filesystem(sb
);
1730 btrfs_remount_prepare(fs_info
);
1733 void *new_sec_opts
= NULL
;
1735 ret
= security_sb_eat_lsm_opts(data
, &new_sec_opts
);
1737 ret
= security_sb_remount(sb
, new_sec_opts
);
1738 security_free_mnt_opts(&new_sec_opts
);
1743 ret
= btrfs_parse_options(fs_info
, data
, *flags
);
1747 btrfs_remount_begin(fs_info
, old_opts
, *flags
);
1748 btrfs_resize_thread_pool(fs_info
,
1749 fs_info
->thread_pool_size
, old_thread_pool_size
);
1751 if ((bool)(*flags
& SB_RDONLY
) == sb_rdonly(sb
))
1754 if (*flags
& SB_RDONLY
) {
1756 * this also happens on 'umount -rf' or on shutdown, when
1757 * the filesystem is busy.
1759 cancel_work_sync(&fs_info
->async_reclaim_work
);
1761 /* wait for the uuid_scan task to finish */
1762 down(&fs_info
->uuid_tree_rescan_sem
);
1763 /* avoid complains from lockdep et al. */
1764 up(&fs_info
->uuid_tree_rescan_sem
);
1766 sb
->s_flags
|= SB_RDONLY
;
1769 * Setting SB_RDONLY will put the cleaner thread to
1770 * sleep at the next loop if it's already active.
1771 * If it's already asleep, we'll leave unused block
1772 * groups on disk until we're mounted read-write again
1773 * unless we clean them up here.
1775 btrfs_delete_unused_bgs(fs_info
);
1777 btrfs_dev_replace_suspend_for_unmount(fs_info
);
1778 btrfs_scrub_cancel(fs_info
);
1779 btrfs_pause_balance(fs_info
);
1781 ret
= btrfs_commit_super(fs_info
);
1785 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
1787 "Remounting read-write after error is not allowed");
1791 if (fs_info
->fs_devices
->rw_devices
== 0) {
1796 if (!btrfs_check_rw_degradable(fs_info
, NULL
)) {
1798 "too many missing devices, writable remount is not allowed");
1803 if (btrfs_super_log_root(fs_info
->super_copy
) != 0) {
1808 ret
= btrfs_cleanup_fs_roots(fs_info
);
1812 /* recover relocation */
1813 mutex_lock(&fs_info
->cleaner_mutex
);
1814 ret
= btrfs_recover_relocation(root
);
1815 mutex_unlock(&fs_info
->cleaner_mutex
);
1819 ret
= btrfs_resume_balance_async(fs_info
);
1823 ret
= btrfs_resume_dev_replace_async(fs_info
);
1825 btrfs_warn(fs_info
, "failed to resume dev_replace");
1829 btrfs_qgroup_rescan_resume(fs_info
);
1831 if (!fs_info
->uuid_root
) {
1832 btrfs_info(fs_info
, "creating UUID tree");
1833 ret
= btrfs_create_uuid_tree(fs_info
);
1836 "failed to create the UUID tree %d",
1841 sb
->s_flags
&= ~SB_RDONLY
;
1843 set_bit(BTRFS_FS_OPEN
, &fs_info
->flags
);
1846 wake_up_process(fs_info
->transaction_kthread
);
1847 btrfs_remount_cleanup(fs_info
, old_opts
);
1851 /* We've hit an error - don't reset SB_RDONLY */
1853 old_flags
|= SB_RDONLY
;
1854 sb
->s_flags
= old_flags
;
1855 fs_info
->mount_opt
= old_opts
;
1856 fs_info
->compress_type
= old_compress_type
;
1857 fs_info
->max_inline
= old_max_inline
;
1858 btrfs_resize_thread_pool(fs_info
,
1859 old_thread_pool_size
, fs_info
->thread_pool_size
);
1860 fs_info
->metadata_ratio
= old_metadata_ratio
;
1861 btrfs_remount_cleanup(fs_info
, old_opts
);
1865 /* Used to sort the devices by max_avail(descending sort) */
1866 static inline int btrfs_cmp_device_free_bytes(const void *dev_info1
,
1867 const void *dev_info2
)
1869 if (((struct btrfs_device_info
*)dev_info1
)->max_avail
>
1870 ((struct btrfs_device_info
*)dev_info2
)->max_avail
)
1872 else if (((struct btrfs_device_info
*)dev_info1
)->max_avail
<
1873 ((struct btrfs_device_info
*)dev_info2
)->max_avail
)
1880 * sort the devices by max_avail, in which max free extent size of each device
1881 * is stored.(Descending Sort)
1883 static inline void btrfs_descending_sort_devices(
1884 struct btrfs_device_info
*devices
,
1887 sort(devices
, nr_devices
, sizeof(struct btrfs_device_info
),
1888 btrfs_cmp_device_free_bytes
, NULL
);
1892 * The helper to calc the free space on the devices that can be used to store
1895 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info
*fs_info
,
1898 struct btrfs_device_info
*devices_info
;
1899 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
1900 struct btrfs_device
*device
;
1904 u64 min_stripe_size
;
1905 int min_stripes
= 1, num_stripes
= 1;
1906 int i
= 0, nr_devices
;
1909 * We aren't under the device list lock, so this is racy-ish, but good
1910 * enough for our purposes.
1912 nr_devices
= fs_info
->fs_devices
->open_devices
;
1915 nr_devices
= fs_info
->fs_devices
->open_devices
;
1923 devices_info
= kmalloc_array(nr_devices
, sizeof(*devices_info
),
1928 /* calc min stripe number for data space allocation */
1929 type
= btrfs_data_alloc_profile(fs_info
);
1930 if (type
& BTRFS_BLOCK_GROUP_RAID0
) {
1932 num_stripes
= nr_devices
;
1933 } else if (type
& BTRFS_BLOCK_GROUP_RAID1
) {
1936 } else if (type
& BTRFS_BLOCK_GROUP_RAID10
) {
1941 if (type
& BTRFS_BLOCK_GROUP_DUP
)
1942 min_stripe_size
= 2 * BTRFS_STRIPE_LEN
;
1944 min_stripe_size
= BTRFS_STRIPE_LEN
;
1947 list_for_each_entry_rcu(device
, &fs_devices
->devices
, dev_list
) {
1948 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
1949 &device
->dev_state
) ||
1951 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
1954 if (i
>= nr_devices
)
1957 avail_space
= device
->total_bytes
- device
->bytes_used
;
1959 /* align with stripe_len */
1960 avail_space
= div_u64(avail_space
, BTRFS_STRIPE_LEN
);
1961 avail_space
*= BTRFS_STRIPE_LEN
;
1964 * In order to avoid overwriting the superblock on the drive,
1965 * btrfs starts at an offset of at least 1MB when doing chunk
1971 * we can use the free space in [0, skip_space - 1], subtract
1972 * it from the total.
1974 if (avail_space
&& avail_space
>= skip_space
)
1975 avail_space
-= skip_space
;
1979 if (avail_space
< min_stripe_size
)
1982 devices_info
[i
].dev
= device
;
1983 devices_info
[i
].max_avail
= avail_space
;
1991 btrfs_descending_sort_devices(devices_info
, nr_devices
);
1995 while (nr_devices
>= min_stripes
) {
1996 if (num_stripes
> nr_devices
)
1997 num_stripes
= nr_devices
;
1999 if (devices_info
[i
].max_avail
>= min_stripe_size
) {
2003 avail_space
+= devices_info
[i
].max_avail
* num_stripes
;
2004 alloc_size
= devices_info
[i
].max_avail
;
2005 for (j
= i
+ 1 - num_stripes
; j
<= i
; j
++)
2006 devices_info
[j
].max_avail
-= alloc_size
;
2012 kfree(devices_info
);
2013 *free_bytes
= avail_space
;
2018 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2020 * If there's a redundant raid level at DATA block groups, use the respective
2021 * multiplier to scale the sizes.
2023 * Unused device space usage is based on simulating the chunk allocator
2024 * algorithm that respects the device sizes and order of allocations. This is
2025 * a close approximation of the actual use but there are other factors that may
2026 * change the result (like a new metadata chunk).
2028 * If metadata is exhausted, f_bavail will be 0.
2030 static int btrfs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2032 struct btrfs_fs_info
*fs_info
= btrfs_sb(dentry
->d_sb
);
2033 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2034 struct list_head
*head
= &fs_info
->space_info
;
2035 struct btrfs_space_info
*found
;
2037 u64 total_free_data
= 0;
2038 u64 total_free_meta
= 0;
2039 int bits
= dentry
->d_sb
->s_blocksize_bits
;
2040 __be32
*fsid
= (__be32
*)fs_info
->fs_devices
->fsid
;
2041 unsigned factor
= 1;
2042 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
2048 list_for_each_entry_rcu(found
, head
, list
) {
2049 if (found
->flags
& BTRFS_BLOCK_GROUP_DATA
) {
2052 total_free_data
+= found
->disk_total
- found
->disk_used
;
2054 btrfs_account_ro_block_groups_free_space(found
);
2056 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
2057 if (!list_empty(&found
->block_groups
[i
]))
2058 factor
= btrfs_bg_type_to_factor(
2059 btrfs_raid_array
[i
].bg_flag
);
2064 * Metadata in mixed block goup profiles are accounted in data
2066 if (!mixed
&& found
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
2067 if (found
->flags
& BTRFS_BLOCK_GROUP_DATA
)
2070 total_free_meta
+= found
->disk_total
-
2074 total_used
+= found
->disk_used
;
2079 buf
->f_blocks
= div_u64(btrfs_super_total_bytes(disk_super
), factor
);
2080 buf
->f_blocks
>>= bits
;
2081 buf
->f_bfree
= buf
->f_blocks
- (div_u64(total_used
, factor
) >> bits
);
2083 /* Account global block reserve as used, it's in logical size already */
2084 spin_lock(&block_rsv
->lock
);
2085 /* Mixed block groups accounting is not byte-accurate, avoid overflow */
2086 if (buf
->f_bfree
>= block_rsv
->size
>> bits
)
2087 buf
->f_bfree
-= block_rsv
->size
>> bits
;
2090 spin_unlock(&block_rsv
->lock
);
2092 buf
->f_bavail
= div_u64(total_free_data
, factor
);
2093 ret
= btrfs_calc_avail_data_space(fs_info
, &total_free_data
);
2096 buf
->f_bavail
+= div_u64(total_free_data
, factor
);
2097 buf
->f_bavail
= buf
->f_bavail
>> bits
;
2100 * We calculate the remaining metadata space minus global reserve. If
2101 * this is (supposedly) smaller than zero, there's no space. But this
2102 * does not hold in practice, the exhausted state happens where's still
2103 * some positive delta. So we apply some guesswork and compare the
2104 * delta to a 4M threshold. (Practically observed delta was ~2M.)
2106 * We probably cannot calculate the exact threshold value because this
2107 * depends on the internal reservations requested by various
2108 * operations, so some operations that consume a few metadata will
2109 * succeed even if the Avail is zero. But this is better than the other
2114 if (!mixed
&& total_free_meta
- thresh
< block_rsv
->size
)
2117 buf
->f_type
= BTRFS_SUPER_MAGIC
;
2118 buf
->f_bsize
= dentry
->d_sb
->s_blocksize
;
2119 buf
->f_namelen
= BTRFS_NAME_LEN
;
2121 /* We treat it as constant endianness (it doesn't matter _which_)
2122 because we want the fsid to come out the same whether mounted
2123 on a big-endian or little-endian host */
2124 buf
->f_fsid
.val
[0] = be32_to_cpu(fsid
[0]) ^ be32_to_cpu(fsid
[2]);
2125 buf
->f_fsid
.val
[1] = be32_to_cpu(fsid
[1]) ^ be32_to_cpu(fsid
[3]);
2126 /* Mask in the root object ID too, to disambiguate subvols */
2127 buf
->f_fsid
.val
[0] ^=
2128 BTRFS_I(d_inode(dentry
))->root
->root_key
.objectid
>> 32;
2129 buf
->f_fsid
.val
[1] ^=
2130 BTRFS_I(d_inode(dentry
))->root
->root_key
.objectid
;
2135 static void btrfs_kill_super(struct super_block
*sb
)
2137 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2138 kill_anon_super(sb
);
2139 free_fs_info(fs_info
);
2142 static struct file_system_type btrfs_fs_type
= {
2143 .owner
= THIS_MODULE
,
2145 .mount
= btrfs_mount
,
2146 .kill_sb
= btrfs_kill_super
,
2147 .fs_flags
= FS_REQUIRES_DEV
| FS_BINARY_MOUNTDATA
,
2150 static struct file_system_type btrfs_root_fs_type
= {
2151 .owner
= THIS_MODULE
,
2153 .mount
= btrfs_mount_root
,
2154 .kill_sb
= btrfs_kill_super
,
2155 .fs_flags
= FS_REQUIRES_DEV
| FS_BINARY_MOUNTDATA
,
2158 MODULE_ALIAS_FS("btrfs");
2160 static int btrfs_control_open(struct inode
*inode
, struct file
*file
)
2163 * The control file's private_data is used to hold the
2164 * transaction when it is started and is used to keep
2165 * track of whether a transaction is already in progress.
2167 file
->private_data
= NULL
;
2172 * used by btrfsctl to scan devices when no FS is mounted
2174 static long btrfs_control_ioctl(struct file
*file
, unsigned int cmd
,
2177 struct btrfs_ioctl_vol_args
*vol
;
2178 struct btrfs_device
*device
= NULL
;
2181 if (!capable(CAP_SYS_ADMIN
))
2184 vol
= memdup_user((void __user
*)arg
, sizeof(*vol
));
2186 return PTR_ERR(vol
);
2187 vol
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2190 case BTRFS_IOC_SCAN_DEV
:
2191 mutex_lock(&uuid_mutex
);
2192 device
= btrfs_scan_one_device(vol
->name
, FMODE_READ
,
2193 &btrfs_root_fs_type
);
2194 ret
= PTR_ERR_OR_ZERO(device
);
2195 mutex_unlock(&uuid_mutex
);
2197 case BTRFS_IOC_FORGET_DEV
:
2198 ret
= btrfs_forget_devices(vol
->name
);
2200 case BTRFS_IOC_DEVICES_READY
:
2201 mutex_lock(&uuid_mutex
);
2202 device
= btrfs_scan_one_device(vol
->name
, FMODE_READ
,
2203 &btrfs_root_fs_type
);
2204 if (IS_ERR(device
)) {
2205 mutex_unlock(&uuid_mutex
);
2206 ret
= PTR_ERR(device
);
2209 ret
= !(device
->fs_devices
->num_devices
==
2210 device
->fs_devices
->total_devices
);
2211 mutex_unlock(&uuid_mutex
);
2213 case BTRFS_IOC_GET_SUPPORTED_FEATURES
:
2214 ret
= btrfs_ioctl_get_supported_features((void __user
*)arg
);
2222 static int btrfs_freeze(struct super_block
*sb
)
2224 struct btrfs_trans_handle
*trans
;
2225 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2226 struct btrfs_root
*root
= fs_info
->tree_root
;
2228 set_bit(BTRFS_FS_FROZEN
, &fs_info
->flags
);
2230 * We don't need a barrier here, we'll wait for any transaction that
2231 * could be in progress on other threads (and do delayed iputs that
2232 * we want to avoid on a frozen filesystem), or do the commit
2235 trans
= btrfs_attach_transaction_barrier(root
);
2236 if (IS_ERR(trans
)) {
2237 /* no transaction, don't bother */
2238 if (PTR_ERR(trans
) == -ENOENT
)
2240 return PTR_ERR(trans
);
2242 return btrfs_commit_transaction(trans
);
2245 static int btrfs_unfreeze(struct super_block
*sb
)
2247 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2249 clear_bit(BTRFS_FS_FROZEN
, &fs_info
->flags
);
2253 static int btrfs_show_devname(struct seq_file
*m
, struct dentry
*root
)
2255 struct btrfs_fs_info
*fs_info
= btrfs_sb(root
->d_sb
);
2256 struct btrfs_fs_devices
*cur_devices
;
2257 struct btrfs_device
*dev
, *first_dev
= NULL
;
2258 struct list_head
*head
;
2261 * Lightweight locking of the devices. We should not need
2262 * device_list_mutex here as we only read the device data and the list
2263 * is protected by RCU. Even if a device is deleted during the list
2264 * traversals, we'll get valid data, the freeing callback will wait at
2265 * least until the rcu_read_unlock.
2268 cur_devices
= fs_info
->fs_devices
;
2269 while (cur_devices
) {
2270 head
= &cur_devices
->devices
;
2271 list_for_each_entry_rcu(dev
, head
, dev_list
) {
2272 if (test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
))
2276 if (!first_dev
|| dev
->devid
< first_dev
->devid
)
2279 cur_devices
= cur_devices
->seed
;
2283 seq_escape(m
, rcu_str_deref(first_dev
->name
), " \t\n\\");
2290 static const struct super_operations btrfs_super_ops
= {
2291 .drop_inode
= btrfs_drop_inode
,
2292 .evict_inode
= btrfs_evict_inode
,
2293 .put_super
= btrfs_put_super
,
2294 .sync_fs
= btrfs_sync_fs
,
2295 .show_options
= btrfs_show_options
,
2296 .show_devname
= btrfs_show_devname
,
2297 .alloc_inode
= btrfs_alloc_inode
,
2298 .destroy_inode
= btrfs_destroy_inode
,
2299 .free_inode
= btrfs_free_inode
,
2300 .statfs
= btrfs_statfs
,
2301 .remount_fs
= btrfs_remount
,
2302 .freeze_fs
= btrfs_freeze
,
2303 .unfreeze_fs
= btrfs_unfreeze
,
2306 static const struct file_operations btrfs_ctl_fops
= {
2307 .open
= btrfs_control_open
,
2308 .unlocked_ioctl
= btrfs_control_ioctl
,
2309 .compat_ioctl
= btrfs_control_ioctl
,
2310 .owner
= THIS_MODULE
,
2311 .llseek
= noop_llseek
,
2314 static struct miscdevice btrfs_misc
= {
2315 .minor
= BTRFS_MINOR
,
2316 .name
= "btrfs-control",
2317 .fops
= &btrfs_ctl_fops
2320 MODULE_ALIAS_MISCDEV(BTRFS_MINOR
);
2321 MODULE_ALIAS("devname:btrfs-control");
2323 static int __init
btrfs_interface_init(void)
2325 return misc_register(&btrfs_misc
);
2328 static __cold
void btrfs_interface_exit(void)
2330 misc_deregister(&btrfs_misc
);
2333 static void __init
btrfs_print_mod_info(void)
2335 static const char options
[] = ""
2336 #ifdef CONFIG_BTRFS_DEBUG
2339 #ifdef CONFIG_BTRFS_ASSERT
2342 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2343 ", integrity-checker=on"
2345 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2349 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options
);
2352 static int __init
init_btrfs_fs(void)
2358 err
= btrfs_init_sysfs();
2362 btrfs_init_compress();
2364 err
= btrfs_init_cachep();
2368 err
= extent_io_init();
2372 err
= extent_map_init();
2374 goto free_extent_io
;
2376 err
= ordered_data_init();
2378 goto free_extent_map
;
2380 err
= btrfs_delayed_inode_init();
2382 goto free_ordered_data
;
2384 err
= btrfs_auto_defrag_init();
2386 goto free_delayed_inode
;
2388 err
= btrfs_delayed_ref_init();
2390 goto free_auto_defrag
;
2392 err
= btrfs_prelim_ref_init();
2394 goto free_delayed_ref
;
2396 err
= btrfs_end_io_wq_init();
2398 goto free_prelim_ref
;
2400 err
= btrfs_interface_init();
2402 goto free_end_io_wq
;
2404 btrfs_init_lockdep();
2406 btrfs_print_mod_info();
2408 err
= btrfs_run_sanity_tests();
2410 goto unregister_ioctl
;
2412 err
= register_filesystem(&btrfs_fs_type
);
2414 goto unregister_ioctl
;
2419 btrfs_interface_exit();
2421 btrfs_end_io_wq_exit();
2423 btrfs_prelim_ref_exit();
2425 btrfs_delayed_ref_exit();
2427 btrfs_auto_defrag_exit();
2429 btrfs_delayed_inode_exit();
2431 ordered_data_exit();
2437 btrfs_destroy_cachep();
2439 btrfs_exit_compress();
2445 static void __exit
exit_btrfs_fs(void)
2447 btrfs_destroy_cachep();
2448 btrfs_delayed_ref_exit();
2449 btrfs_auto_defrag_exit();
2450 btrfs_delayed_inode_exit();
2451 btrfs_prelim_ref_exit();
2452 ordered_data_exit();
2455 btrfs_interface_exit();
2456 btrfs_end_io_wq_exit();
2457 unregister_filesystem(&btrfs_fs_type
);
2459 btrfs_cleanup_fs_uuids();
2460 btrfs_exit_compress();
2463 late_initcall(init_btrfs_fs
);
2464 module_exit(exit_btrfs_fs
)
2466 MODULE_LICENSE("GPL");
2467 MODULE_SOFTDEP("pre: crc32c");