block: Fix a NULL pointer dereference in generic_make_request()
[linux/fpc-iii.git] / block / blk-core.c
blob682bc561b77b85199e6b70986aeef1a0d73578fd
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
42 #include "blk.h"
43 #include "blk-mq.h"
44 #include "blk-mq-sched.h"
45 #include "blk-rq-qos.h"
47 #ifdef CONFIG_DEBUG_FS
48 struct dentry *blk_debugfs_root;
49 #endif
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
57 DEFINE_IDA(blk_queue_ida);
60 * For the allocated request tables
62 struct kmem_cache *request_cachep;
65 * For queue allocation
67 struct kmem_cache *blk_requestq_cachep;
70 * Controlling structure to kblockd
72 static struct workqueue_struct *kblockd_workqueue;
74 /**
75 * blk_queue_flag_set - atomically set a queue flag
76 * @flag: flag to be set
77 * @q: request queue
79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81 unsigned long flags;
83 spin_lock_irqsave(q->queue_lock, flags);
84 queue_flag_set(flag, q);
85 spin_unlock_irqrestore(q->queue_lock, flags);
87 EXPORT_SYMBOL(blk_queue_flag_set);
89 /**
90 * blk_queue_flag_clear - atomically clear a queue flag
91 * @flag: flag to be cleared
92 * @q: request queue
94 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
96 unsigned long flags;
98 spin_lock_irqsave(q->queue_lock, flags);
99 queue_flag_clear(flag, q);
100 spin_unlock_irqrestore(q->queue_lock, flags);
102 EXPORT_SYMBOL(blk_queue_flag_clear);
105 * blk_queue_flag_test_and_set - atomically test and set a queue flag
106 * @flag: flag to be set
107 * @q: request queue
109 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
110 * the flag was already set.
112 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
114 unsigned long flags;
115 bool res;
117 spin_lock_irqsave(q->queue_lock, flags);
118 res = queue_flag_test_and_set(flag, q);
119 spin_unlock_irqrestore(q->queue_lock, flags);
121 return res;
123 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
126 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
127 * @flag: flag to be cleared
128 * @q: request queue
130 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
131 * the flag was set.
133 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
135 unsigned long flags;
136 bool res;
138 spin_lock_irqsave(q->queue_lock, flags);
139 res = queue_flag_test_and_clear(flag, q);
140 spin_unlock_irqrestore(q->queue_lock, flags);
142 return res;
144 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);
146 static void blk_clear_congested(struct request_list *rl, int sync)
148 #ifdef CONFIG_CGROUP_WRITEBACK
149 clear_wb_congested(rl->blkg->wb_congested, sync);
150 #else
152 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
153 * flip its congestion state for events on other blkcgs.
155 if (rl == &rl->q->root_rl)
156 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
157 #endif
160 static void blk_set_congested(struct request_list *rl, int sync)
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 set_wb_congested(rl->blkg->wb_congested, sync);
164 #else
165 /* see blk_clear_congested() */
166 if (rl == &rl->q->root_rl)
167 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
168 #endif
171 void blk_queue_congestion_threshold(struct request_queue *q)
173 int nr;
175 nr = q->nr_requests - (q->nr_requests / 8) + 1;
176 if (nr > q->nr_requests)
177 nr = q->nr_requests;
178 q->nr_congestion_on = nr;
180 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
181 if (nr < 1)
182 nr = 1;
183 q->nr_congestion_off = nr;
186 void blk_rq_init(struct request_queue *q, struct request *rq)
188 memset(rq, 0, sizeof(*rq));
190 INIT_LIST_HEAD(&rq->queuelist);
191 INIT_LIST_HEAD(&rq->timeout_list);
192 rq->cpu = -1;
193 rq->q = q;
194 rq->__sector = (sector_t) -1;
195 INIT_HLIST_NODE(&rq->hash);
196 RB_CLEAR_NODE(&rq->rb_node);
197 rq->tag = -1;
198 rq->internal_tag = -1;
199 rq->start_time_ns = ktime_get_ns();
200 rq->part = NULL;
202 EXPORT_SYMBOL(blk_rq_init);
204 static const struct {
205 int errno;
206 const char *name;
207 } blk_errors[] = {
208 [BLK_STS_OK] = { 0, "" },
209 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
210 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
211 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
212 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
213 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
214 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
215 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
216 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
217 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
218 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
219 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
221 /* device mapper special case, should not leak out: */
222 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
224 /* everything else not covered above: */
225 [BLK_STS_IOERR] = { -EIO, "I/O" },
228 blk_status_t errno_to_blk_status(int errno)
230 int i;
232 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
233 if (blk_errors[i].errno == errno)
234 return (__force blk_status_t)i;
237 return BLK_STS_IOERR;
239 EXPORT_SYMBOL_GPL(errno_to_blk_status);
241 int blk_status_to_errno(blk_status_t status)
243 int idx = (__force int)status;
245 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
246 return -EIO;
247 return blk_errors[idx].errno;
249 EXPORT_SYMBOL_GPL(blk_status_to_errno);
251 static void print_req_error(struct request *req, blk_status_t status)
253 int idx = (__force int)status;
255 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
256 return;
258 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
259 __func__, blk_errors[idx].name, req->rq_disk ?
260 req->rq_disk->disk_name : "?",
261 (unsigned long long)blk_rq_pos(req));
264 static void req_bio_endio(struct request *rq, struct bio *bio,
265 unsigned int nbytes, blk_status_t error)
267 if (error)
268 bio->bi_status = error;
270 if (unlikely(rq->rq_flags & RQF_QUIET))
271 bio_set_flag(bio, BIO_QUIET);
273 bio_advance(bio, nbytes);
275 /* don't actually finish bio if it's part of flush sequence */
276 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
277 bio_endio(bio);
280 void blk_dump_rq_flags(struct request *rq, char *msg)
282 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
283 rq->rq_disk ? rq->rq_disk->disk_name : "?",
284 (unsigned long long) rq->cmd_flags);
286 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
287 (unsigned long long)blk_rq_pos(rq),
288 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
289 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
290 rq->bio, rq->biotail, blk_rq_bytes(rq));
292 EXPORT_SYMBOL(blk_dump_rq_flags);
294 static void blk_delay_work(struct work_struct *work)
296 struct request_queue *q;
298 q = container_of(work, struct request_queue, delay_work.work);
299 spin_lock_irq(q->queue_lock);
300 __blk_run_queue(q);
301 spin_unlock_irq(q->queue_lock);
305 * blk_delay_queue - restart queueing after defined interval
306 * @q: The &struct request_queue in question
307 * @msecs: Delay in msecs
309 * Description:
310 * Sometimes queueing needs to be postponed for a little while, to allow
311 * resources to come back. This function will make sure that queueing is
312 * restarted around the specified time.
314 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
316 lockdep_assert_held(q->queue_lock);
317 WARN_ON_ONCE(q->mq_ops);
319 if (likely(!blk_queue_dead(q)))
320 queue_delayed_work(kblockd_workqueue, &q->delay_work,
321 msecs_to_jiffies(msecs));
323 EXPORT_SYMBOL(blk_delay_queue);
326 * blk_start_queue_async - asynchronously restart a previously stopped queue
327 * @q: The &struct request_queue in question
329 * Description:
330 * blk_start_queue_async() will clear the stop flag on the queue, and
331 * ensure that the request_fn for the queue is run from an async
332 * context.
334 void blk_start_queue_async(struct request_queue *q)
336 lockdep_assert_held(q->queue_lock);
337 WARN_ON_ONCE(q->mq_ops);
339 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
340 blk_run_queue_async(q);
342 EXPORT_SYMBOL(blk_start_queue_async);
345 * blk_start_queue - restart a previously stopped queue
346 * @q: The &struct request_queue in question
348 * Description:
349 * blk_start_queue() will clear the stop flag on the queue, and call
350 * the request_fn for the queue if it was in a stopped state when
351 * entered. Also see blk_stop_queue().
353 void blk_start_queue(struct request_queue *q)
355 lockdep_assert_held(q->queue_lock);
356 WARN_ON_ONCE(q->mq_ops);
358 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
359 __blk_run_queue(q);
361 EXPORT_SYMBOL(blk_start_queue);
364 * blk_stop_queue - stop a queue
365 * @q: The &struct request_queue in question
367 * Description:
368 * The Linux block layer assumes that a block driver will consume all
369 * entries on the request queue when the request_fn strategy is called.
370 * Often this will not happen, because of hardware limitations (queue
371 * depth settings). If a device driver gets a 'queue full' response,
372 * or if it simply chooses not to queue more I/O at one point, it can
373 * call this function to prevent the request_fn from being called until
374 * the driver has signalled it's ready to go again. This happens by calling
375 * blk_start_queue() to restart queue operations.
377 void blk_stop_queue(struct request_queue *q)
379 lockdep_assert_held(q->queue_lock);
380 WARN_ON_ONCE(q->mq_ops);
382 cancel_delayed_work(&q->delay_work);
383 queue_flag_set(QUEUE_FLAG_STOPPED, q);
385 EXPORT_SYMBOL(blk_stop_queue);
388 * blk_sync_queue - cancel any pending callbacks on a queue
389 * @q: the queue
391 * Description:
392 * The block layer may perform asynchronous callback activity
393 * on a queue, such as calling the unplug function after a timeout.
394 * A block device may call blk_sync_queue to ensure that any
395 * such activity is cancelled, thus allowing it to release resources
396 * that the callbacks might use. The caller must already have made sure
397 * that its ->make_request_fn will not re-add plugging prior to calling
398 * this function.
400 * This function does not cancel any asynchronous activity arising
401 * out of elevator or throttling code. That would require elevator_exit()
402 * and blkcg_exit_queue() to be called with queue lock initialized.
405 void blk_sync_queue(struct request_queue *q)
407 del_timer_sync(&q->timeout);
408 cancel_work_sync(&q->timeout_work);
410 if (q->mq_ops) {
411 struct blk_mq_hw_ctx *hctx;
412 int i;
414 queue_for_each_hw_ctx(q, hctx, i)
415 cancel_delayed_work_sync(&hctx->run_work);
416 } else {
417 cancel_delayed_work_sync(&q->delay_work);
420 EXPORT_SYMBOL(blk_sync_queue);
423 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
424 * @q: request queue pointer
426 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
427 * set and 1 if the flag was already set.
429 int blk_set_preempt_only(struct request_queue *q)
431 return blk_queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
433 EXPORT_SYMBOL_GPL(blk_set_preempt_only);
435 void blk_clear_preempt_only(struct request_queue *q)
437 blk_queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
438 wake_up_all(&q->mq_freeze_wq);
440 EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
443 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
444 * @q: The queue to run
446 * Description:
447 * Invoke request handling on a queue if there are any pending requests.
448 * May be used to restart request handling after a request has completed.
449 * This variant runs the queue whether or not the queue has been
450 * stopped. Must be called with the queue lock held and interrupts
451 * disabled. See also @blk_run_queue.
453 inline void __blk_run_queue_uncond(struct request_queue *q)
455 lockdep_assert_held(q->queue_lock);
456 WARN_ON_ONCE(q->mq_ops);
458 if (unlikely(blk_queue_dead(q)))
459 return;
462 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
463 * the queue lock internally. As a result multiple threads may be
464 * running such a request function concurrently. Keep track of the
465 * number of active request_fn invocations such that blk_drain_queue()
466 * can wait until all these request_fn calls have finished.
468 q->request_fn_active++;
469 q->request_fn(q);
470 q->request_fn_active--;
472 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
475 * __blk_run_queue - run a single device queue
476 * @q: The queue to run
478 * Description:
479 * See @blk_run_queue.
481 void __blk_run_queue(struct request_queue *q)
483 lockdep_assert_held(q->queue_lock);
484 WARN_ON_ONCE(q->mq_ops);
486 if (unlikely(blk_queue_stopped(q)))
487 return;
489 __blk_run_queue_uncond(q);
491 EXPORT_SYMBOL(__blk_run_queue);
494 * blk_run_queue_async - run a single device queue in workqueue context
495 * @q: The queue to run
497 * Description:
498 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
499 * of us.
501 * Note:
502 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
503 * has canceled q->delay_work, callers must hold the queue lock to avoid
504 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
506 void blk_run_queue_async(struct request_queue *q)
508 lockdep_assert_held(q->queue_lock);
509 WARN_ON_ONCE(q->mq_ops);
511 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
512 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
514 EXPORT_SYMBOL(blk_run_queue_async);
517 * blk_run_queue - run a single device queue
518 * @q: The queue to run
520 * Description:
521 * Invoke request handling on this queue, if it has pending work to do.
522 * May be used to restart queueing when a request has completed.
524 void blk_run_queue(struct request_queue *q)
526 unsigned long flags;
528 WARN_ON_ONCE(q->mq_ops);
530 spin_lock_irqsave(q->queue_lock, flags);
531 __blk_run_queue(q);
532 spin_unlock_irqrestore(q->queue_lock, flags);
534 EXPORT_SYMBOL(blk_run_queue);
536 void blk_put_queue(struct request_queue *q)
538 kobject_put(&q->kobj);
540 EXPORT_SYMBOL(blk_put_queue);
543 * __blk_drain_queue - drain requests from request_queue
544 * @q: queue to drain
545 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
547 * Drain requests from @q. If @drain_all is set, all requests are drained.
548 * If not, only ELVPRIV requests are drained. The caller is responsible
549 * for ensuring that no new requests which need to be drained are queued.
551 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
552 __releases(q->queue_lock)
553 __acquires(q->queue_lock)
555 int i;
557 lockdep_assert_held(q->queue_lock);
558 WARN_ON_ONCE(q->mq_ops);
560 while (true) {
561 bool drain = false;
564 * The caller might be trying to drain @q before its
565 * elevator is initialized.
567 if (q->elevator)
568 elv_drain_elevator(q);
570 blkcg_drain_queue(q);
573 * This function might be called on a queue which failed
574 * driver init after queue creation or is not yet fully
575 * active yet. Some drivers (e.g. fd and loop) get unhappy
576 * in such cases. Kick queue iff dispatch queue has
577 * something on it and @q has request_fn set.
579 if (!list_empty(&q->queue_head) && q->request_fn)
580 __blk_run_queue(q);
582 drain |= q->nr_rqs_elvpriv;
583 drain |= q->request_fn_active;
586 * Unfortunately, requests are queued at and tracked from
587 * multiple places and there's no single counter which can
588 * be drained. Check all the queues and counters.
590 if (drain_all) {
591 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
592 drain |= !list_empty(&q->queue_head);
593 for (i = 0; i < 2; i++) {
594 drain |= q->nr_rqs[i];
595 drain |= q->in_flight[i];
596 if (fq)
597 drain |= !list_empty(&fq->flush_queue[i]);
601 if (!drain)
602 break;
604 spin_unlock_irq(q->queue_lock);
606 msleep(10);
608 spin_lock_irq(q->queue_lock);
612 * With queue marked dead, any woken up waiter will fail the
613 * allocation path, so the wakeup chaining is lost and we're
614 * left with hung waiters. We need to wake up those waiters.
616 if (q->request_fn) {
617 struct request_list *rl;
619 blk_queue_for_each_rl(rl, q)
620 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
621 wake_up_all(&rl->wait[i]);
625 void blk_drain_queue(struct request_queue *q)
627 spin_lock_irq(q->queue_lock);
628 __blk_drain_queue(q, true);
629 spin_unlock_irq(q->queue_lock);
633 * blk_queue_bypass_start - enter queue bypass mode
634 * @q: queue of interest
636 * In bypass mode, only the dispatch FIFO queue of @q is used. This
637 * function makes @q enter bypass mode and drains all requests which were
638 * throttled or issued before. On return, it's guaranteed that no request
639 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
640 * inside queue or RCU read lock.
642 void blk_queue_bypass_start(struct request_queue *q)
644 WARN_ON_ONCE(q->mq_ops);
646 spin_lock_irq(q->queue_lock);
647 q->bypass_depth++;
648 queue_flag_set(QUEUE_FLAG_BYPASS, q);
649 spin_unlock_irq(q->queue_lock);
652 * Queues start drained. Skip actual draining till init is
653 * complete. This avoids lenghty delays during queue init which
654 * can happen many times during boot.
656 if (blk_queue_init_done(q)) {
657 spin_lock_irq(q->queue_lock);
658 __blk_drain_queue(q, false);
659 spin_unlock_irq(q->queue_lock);
661 /* ensure blk_queue_bypass() is %true inside RCU read lock */
662 synchronize_rcu();
665 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
668 * blk_queue_bypass_end - leave queue bypass mode
669 * @q: queue of interest
671 * Leave bypass mode and restore the normal queueing behavior.
673 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
674 * this function is called for both blk-sq and blk-mq queues.
676 void blk_queue_bypass_end(struct request_queue *q)
678 spin_lock_irq(q->queue_lock);
679 if (!--q->bypass_depth)
680 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
681 WARN_ON_ONCE(q->bypass_depth < 0);
682 spin_unlock_irq(q->queue_lock);
684 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
686 void blk_set_queue_dying(struct request_queue *q)
688 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
691 * When queue DYING flag is set, we need to block new req
692 * entering queue, so we call blk_freeze_queue_start() to
693 * prevent I/O from crossing blk_queue_enter().
695 blk_freeze_queue_start(q);
697 if (q->mq_ops)
698 blk_mq_wake_waiters(q);
699 else {
700 struct request_list *rl;
702 spin_lock_irq(q->queue_lock);
703 blk_queue_for_each_rl(rl, q) {
704 if (rl->rq_pool) {
705 wake_up_all(&rl->wait[BLK_RW_SYNC]);
706 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
709 spin_unlock_irq(q->queue_lock);
712 /* Make blk_queue_enter() reexamine the DYING flag. */
713 wake_up_all(&q->mq_freeze_wq);
715 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
717 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
718 void blk_exit_queue(struct request_queue *q)
721 * Since the I/O scheduler exit code may access cgroup information,
722 * perform I/O scheduler exit before disassociating from the block
723 * cgroup controller.
725 if (q->elevator) {
726 ioc_clear_queue(q);
727 elevator_exit(q, q->elevator);
728 q->elevator = NULL;
732 * Remove all references to @q from the block cgroup controller before
733 * restoring @q->queue_lock to avoid that restoring this pointer causes
734 * e.g. blkcg_print_blkgs() to crash.
736 blkcg_exit_queue(q);
739 * Since the cgroup code may dereference the @q->backing_dev_info
740 * pointer, only decrease its reference count after having removed the
741 * association with the block cgroup controller.
743 bdi_put(q->backing_dev_info);
747 * blk_cleanup_queue - shutdown a request queue
748 * @q: request queue to shutdown
750 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
751 * put it. All future requests will be failed immediately with -ENODEV.
753 void blk_cleanup_queue(struct request_queue *q)
755 spinlock_t *lock = q->queue_lock;
757 /* mark @q DYING, no new request or merges will be allowed afterwards */
758 mutex_lock(&q->sysfs_lock);
759 blk_set_queue_dying(q);
760 spin_lock_irq(lock);
763 * A dying queue is permanently in bypass mode till released. Note
764 * that, unlike blk_queue_bypass_start(), we aren't performing
765 * synchronize_rcu() after entering bypass mode to avoid the delay
766 * as some drivers create and destroy a lot of queues while
767 * probing. This is still safe because blk_release_queue() will be
768 * called only after the queue refcnt drops to zero and nothing,
769 * RCU or not, would be traversing the queue by then.
771 q->bypass_depth++;
772 queue_flag_set(QUEUE_FLAG_BYPASS, q);
774 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
775 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
776 queue_flag_set(QUEUE_FLAG_DYING, q);
777 spin_unlock_irq(lock);
778 mutex_unlock(&q->sysfs_lock);
781 * Drain all requests queued before DYING marking. Set DEAD flag to
782 * prevent that q->request_fn() gets invoked after draining finished.
784 blk_freeze_queue(q);
785 spin_lock_irq(lock);
786 queue_flag_set(QUEUE_FLAG_DEAD, q);
787 spin_unlock_irq(lock);
790 * make sure all in-progress dispatch are completed because
791 * blk_freeze_queue() can only complete all requests, and
792 * dispatch may still be in-progress since we dispatch requests
793 * from more than one contexts.
795 * We rely on driver to deal with the race in case that queue
796 * initialization isn't done.
798 if (q->mq_ops && blk_queue_init_done(q))
799 blk_mq_quiesce_queue(q);
801 /* for synchronous bio-based driver finish in-flight integrity i/o */
802 blk_flush_integrity();
804 /* @q won't process any more request, flush async actions */
805 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
806 blk_sync_queue(q);
809 * I/O scheduler exit is only safe after the sysfs scheduler attribute
810 * has been removed.
812 WARN_ON_ONCE(q->kobj.state_in_sysfs);
814 blk_exit_queue(q);
816 if (q->mq_ops)
817 blk_mq_free_queue(q);
818 percpu_ref_exit(&q->q_usage_counter);
820 spin_lock_irq(lock);
821 if (q->queue_lock != &q->__queue_lock)
822 q->queue_lock = &q->__queue_lock;
823 spin_unlock_irq(lock);
825 /* @q is and will stay empty, shutdown and put */
826 blk_put_queue(q);
828 EXPORT_SYMBOL(blk_cleanup_queue);
830 /* Allocate memory local to the request queue */
831 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
833 struct request_queue *q = data;
835 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
838 static void free_request_simple(void *element, void *data)
840 kmem_cache_free(request_cachep, element);
843 static void *alloc_request_size(gfp_t gfp_mask, void *data)
845 struct request_queue *q = data;
846 struct request *rq;
848 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
849 q->node);
850 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
851 kfree(rq);
852 rq = NULL;
854 return rq;
857 static void free_request_size(void *element, void *data)
859 struct request_queue *q = data;
861 if (q->exit_rq_fn)
862 q->exit_rq_fn(q, element);
863 kfree(element);
866 int blk_init_rl(struct request_list *rl, struct request_queue *q,
867 gfp_t gfp_mask)
869 if (unlikely(rl->rq_pool) || q->mq_ops)
870 return 0;
872 rl->q = q;
873 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
874 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
875 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
876 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
878 if (q->cmd_size) {
879 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
880 alloc_request_size, free_request_size,
881 q, gfp_mask, q->node);
882 } else {
883 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
884 alloc_request_simple, free_request_simple,
885 q, gfp_mask, q->node);
887 if (!rl->rq_pool)
888 return -ENOMEM;
890 if (rl != &q->root_rl)
891 WARN_ON_ONCE(!blk_get_queue(q));
893 return 0;
896 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
898 if (rl->rq_pool) {
899 mempool_destroy(rl->rq_pool);
900 if (rl != &q->root_rl)
901 blk_put_queue(q);
905 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
907 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
909 EXPORT_SYMBOL(blk_alloc_queue);
912 * blk_queue_enter() - try to increase q->q_usage_counter
913 * @q: request queue pointer
914 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
916 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
918 const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
920 while (true) {
921 bool success = false;
923 rcu_read_lock();
924 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
926 * The code that sets the PREEMPT_ONLY flag is
927 * responsible for ensuring that that flag is globally
928 * visible before the queue is unfrozen.
930 if (preempt || !blk_queue_preempt_only(q)) {
931 success = true;
932 } else {
933 percpu_ref_put(&q->q_usage_counter);
936 rcu_read_unlock();
938 if (success)
939 return 0;
941 if (flags & BLK_MQ_REQ_NOWAIT)
942 return -EBUSY;
945 * read pair of barrier in blk_freeze_queue_start(),
946 * we need to order reading __PERCPU_REF_DEAD flag of
947 * .q_usage_counter and reading .mq_freeze_depth or
948 * queue dying flag, otherwise the following wait may
949 * never return if the two reads are reordered.
951 smp_rmb();
953 wait_event(q->mq_freeze_wq,
954 (atomic_read(&q->mq_freeze_depth) == 0 &&
955 (preempt || !blk_queue_preempt_only(q))) ||
956 blk_queue_dying(q));
957 if (blk_queue_dying(q))
958 return -ENODEV;
962 void blk_queue_exit(struct request_queue *q)
964 percpu_ref_put(&q->q_usage_counter);
967 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
969 struct request_queue *q =
970 container_of(ref, struct request_queue, q_usage_counter);
972 wake_up_all(&q->mq_freeze_wq);
975 static void blk_rq_timed_out_timer(struct timer_list *t)
977 struct request_queue *q = from_timer(q, t, timeout);
979 kblockd_schedule_work(&q->timeout_work);
982 static void blk_timeout_work_dummy(struct work_struct *work)
987 * blk_alloc_queue_node - allocate a request queue
988 * @gfp_mask: memory allocation flags
989 * @node_id: NUMA node to allocate memory from
990 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
991 * serialize calls to the legacy .request_fn() callback. Ignored for
992 * blk-mq request queues.
994 * Note: pass the queue lock as the third argument to this function instead of
995 * setting the queue lock pointer explicitly to avoid triggering a sporadic
996 * crash in the blkcg code. This function namely calls blkcg_init_queue() and
997 * the queue lock pointer must be set before blkcg_init_queue() is called.
999 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
1000 spinlock_t *lock)
1002 struct request_queue *q;
1003 int ret;
1005 q = kmem_cache_alloc_node(blk_requestq_cachep,
1006 gfp_mask | __GFP_ZERO, node_id);
1007 if (!q)
1008 return NULL;
1010 INIT_LIST_HEAD(&q->queue_head);
1011 q->last_merge = NULL;
1012 q->end_sector = 0;
1013 q->boundary_rq = NULL;
1015 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
1016 if (q->id < 0)
1017 goto fail_q;
1019 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1020 if (ret)
1021 goto fail_id;
1023 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
1024 if (!q->backing_dev_info)
1025 goto fail_split;
1027 q->stats = blk_alloc_queue_stats();
1028 if (!q->stats)
1029 goto fail_stats;
1031 q->backing_dev_info->ra_pages =
1032 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
1033 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
1034 q->backing_dev_info->name = "block";
1035 q->node = node_id;
1037 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
1038 laptop_mode_timer_fn, 0);
1039 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
1040 INIT_WORK(&q->timeout_work, blk_timeout_work_dummy);
1041 INIT_LIST_HEAD(&q->timeout_list);
1042 INIT_LIST_HEAD(&q->icq_list);
1043 #ifdef CONFIG_BLK_CGROUP
1044 INIT_LIST_HEAD(&q->blkg_list);
1045 #endif
1046 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
1048 kobject_init(&q->kobj, &blk_queue_ktype);
1050 #ifdef CONFIG_BLK_DEV_IO_TRACE
1051 mutex_init(&q->blk_trace_mutex);
1052 #endif
1053 mutex_init(&q->sysfs_lock);
1054 spin_lock_init(&q->__queue_lock);
1056 if (!q->mq_ops)
1057 q->queue_lock = lock ? : &q->__queue_lock;
1060 * A queue starts its life with bypass turned on to avoid
1061 * unnecessary bypass on/off overhead and nasty surprises during
1062 * init. The initial bypass will be finished when the queue is
1063 * registered by blk_register_queue().
1065 q->bypass_depth = 1;
1066 queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);
1068 init_waitqueue_head(&q->mq_freeze_wq);
1071 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1072 * See blk_register_queue() for details.
1074 if (percpu_ref_init(&q->q_usage_counter,
1075 blk_queue_usage_counter_release,
1076 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1077 goto fail_bdi;
1079 if (blkcg_init_queue(q))
1080 goto fail_ref;
1082 return q;
1084 fail_ref:
1085 percpu_ref_exit(&q->q_usage_counter);
1086 fail_bdi:
1087 blk_free_queue_stats(q->stats);
1088 fail_stats:
1089 bdi_put(q->backing_dev_info);
1090 fail_split:
1091 bioset_exit(&q->bio_split);
1092 fail_id:
1093 ida_simple_remove(&blk_queue_ida, q->id);
1094 fail_q:
1095 kmem_cache_free(blk_requestq_cachep, q);
1096 return NULL;
1098 EXPORT_SYMBOL(blk_alloc_queue_node);
1101 * blk_init_queue - prepare a request queue for use with a block device
1102 * @rfn: The function to be called to process requests that have been
1103 * placed on the queue.
1104 * @lock: Request queue spin lock
1106 * Description:
1107 * If a block device wishes to use the standard request handling procedures,
1108 * which sorts requests and coalesces adjacent requests, then it must
1109 * call blk_init_queue(). The function @rfn will be called when there
1110 * are requests on the queue that need to be processed. If the device
1111 * supports plugging, then @rfn may not be called immediately when requests
1112 * are available on the queue, but may be called at some time later instead.
1113 * Plugged queues are generally unplugged when a buffer belonging to one
1114 * of the requests on the queue is needed, or due to memory pressure.
1116 * @rfn is not required, or even expected, to remove all requests off the
1117 * queue, but only as many as it can handle at a time. If it does leave
1118 * requests on the queue, it is responsible for arranging that the requests
1119 * get dealt with eventually.
1121 * The queue spin lock must be held while manipulating the requests on the
1122 * request queue; this lock will be taken also from interrupt context, so irq
1123 * disabling is needed for it.
1125 * Function returns a pointer to the initialized request queue, or %NULL if
1126 * it didn't succeed.
1128 * Note:
1129 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1130 * when the block device is deactivated (such as at module unload).
1133 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1135 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1137 EXPORT_SYMBOL(blk_init_queue);
1139 struct request_queue *
1140 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1142 struct request_queue *q;
1144 q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
1145 if (!q)
1146 return NULL;
1148 q->request_fn = rfn;
1149 if (blk_init_allocated_queue(q) < 0) {
1150 blk_cleanup_queue(q);
1151 return NULL;
1154 return q;
1156 EXPORT_SYMBOL(blk_init_queue_node);
1158 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1161 int blk_init_allocated_queue(struct request_queue *q)
1163 WARN_ON_ONCE(q->mq_ops);
1165 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
1166 if (!q->fq)
1167 return -ENOMEM;
1169 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1170 goto out_free_flush_queue;
1172 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1173 goto out_exit_flush_rq;
1175 INIT_WORK(&q->timeout_work, blk_timeout_work);
1176 q->queue_flags |= QUEUE_FLAG_DEFAULT;
1179 * This also sets hw/phys segments, boundary and size
1181 blk_queue_make_request(q, blk_queue_bio);
1183 q->sg_reserved_size = INT_MAX;
1185 if (elevator_init(q))
1186 goto out_exit_flush_rq;
1187 return 0;
1189 out_exit_flush_rq:
1190 if (q->exit_rq_fn)
1191 q->exit_rq_fn(q, q->fq->flush_rq);
1192 out_free_flush_queue:
1193 blk_free_flush_queue(q->fq);
1194 q->fq = NULL;
1195 return -ENOMEM;
1197 EXPORT_SYMBOL(blk_init_allocated_queue);
1199 bool blk_get_queue(struct request_queue *q)
1201 if (likely(!blk_queue_dying(q))) {
1202 __blk_get_queue(q);
1203 return true;
1206 return false;
1208 EXPORT_SYMBOL(blk_get_queue);
1210 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1212 if (rq->rq_flags & RQF_ELVPRIV) {
1213 elv_put_request(rl->q, rq);
1214 if (rq->elv.icq)
1215 put_io_context(rq->elv.icq->ioc);
1218 mempool_free(rq, rl->rq_pool);
1222 * ioc_batching returns true if the ioc is a valid batching request and
1223 * should be given priority access to a request.
1225 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1227 if (!ioc)
1228 return 0;
1231 * Make sure the process is able to allocate at least 1 request
1232 * even if the batch times out, otherwise we could theoretically
1233 * lose wakeups.
1235 return ioc->nr_batch_requests == q->nr_batching ||
1236 (ioc->nr_batch_requests > 0
1237 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1241 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1242 * will cause the process to be a "batcher" on all queues in the system. This
1243 * is the behaviour we want though - once it gets a wakeup it should be given
1244 * a nice run.
1246 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1248 if (!ioc || ioc_batching(q, ioc))
1249 return;
1251 ioc->nr_batch_requests = q->nr_batching;
1252 ioc->last_waited = jiffies;
1255 static void __freed_request(struct request_list *rl, int sync)
1257 struct request_queue *q = rl->q;
1259 if (rl->count[sync] < queue_congestion_off_threshold(q))
1260 blk_clear_congested(rl, sync);
1262 if (rl->count[sync] + 1 <= q->nr_requests) {
1263 if (waitqueue_active(&rl->wait[sync]))
1264 wake_up(&rl->wait[sync]);
1266 blk_clear_rl_full(rl, sync);
1271 * A request has just been released. Account for it, update the full and
1272 * congestion status, wake up any waiters. Called under q->queue_lock.
1274 static void freed_request(struct request_list *rl, bool sync,
1275 req_flags_t rq_flags)
1277 struct request_queue *q = rl->q;
1279 q->nr_rqs[sync]--;
1280 rl->count[sync]--;
1281 if (rq_flags & RQF_ELVPRIV)
1282 q->nr_rqs_elvpriv--;
1284 __freed_request(rl, sync);
1286 if (unlikely(rl->starved[sync ^ 1]))
1287 __freed_request(rl, sync ^ 1);
1290 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1292 struct request_list *rl;
1293 int on_thresh, off_thresh;
1295 WARN_ON_ONCE(q->mq_ops);
1297 spin_lock_irq(q->queue_lock);
1298 q->nr_requests = nr;
1299 blk_queue_congestion_threshold(q);
1300 on_thresh = queue_congestion_on_threshold(q);
1301 off_thresh = queue_congestion_off_threshold(q);
1303 blk_queue_for_each_rl(rl, q) {
1304 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1305 blk_set_congested(rl, BLK_RW_SYNC);
1306 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1307 blk_clear_congested(rl, BLK_RW_SYNC);
1309 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1310 blk_set_congested(rl, BLK_RW_ASYNC);
1311 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1312 blk_clear_congested(rl, BLK_RW_ASYNC);
1314 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1315 blk_set_rl_full(rl, BLK_RW_SYNC);
1316 } else {
1317 blk_clear_rl_full(rl, BLK_RW_SYNC);
1318 wake_up(&rl->wait[BLK_RW_SYNC]);
1321 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1322 blk_set_rl_full(rl, BLK_RW_ASYNC);
1323 } else {
1324 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1325 wake_up(&rl->wait[BLK_RW_ASYNC]);
1329 spin_unlock_irq(q->queue_lock);
1330 return 0;
1334 * __get_request - get a free request
1335 * @rl: request list to allocate from
1336 * @op: operation and flags
1337 * @bio: bio to allocate request for (can be %NULL)
1338 * @flags: BLQ_MQ_REQ_* flags
1339 * @gfp_mask: allocator flags
1341 * Get a free request from @q. This function may fail under memory
1342 * pressure or if @q is dead.
1344 * Must be called with @q->queue_lock held and,
1345 * Returns ERR_PTR on failure, with @q->queue_lock held.
1346 * Returns request pointer on success, with @q->queue_lock *not held*.
1348 static struct request *__get_request(struct request_list *rl, unsigned int op,
1349 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp_mask)
1351 struct request_queue *q = rl->q;
1352 struct request *rq;
1353 struct elevator_type *et = q->elevator->type;
1354 struct io_context *ioc = rq_ioc(bio);
1355 struct io_cq *icq = NULL;
1356 const bool is_sync = op_is_sync(op);
1357 int may_queue;
1358 req_flags_t rq_flags = RQF_ALLOCED;
1360 lockdep_assert_held(q->queue_lock);
1362 if (unlikely(blk_queue_dying(q)))
1363 return ERR_PTR(-ENODEV);
1365 may_queue = elv_may_queue(q, op);
1366 if (may_queue == ELV_MQUEUE_NO)
1367 goto rq_starved;
1369 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1370 if (rl->count[is_sync]+1 >= q->nr_requests) {
1372 * The queue will fill after this allocation, so set
1373 * it as full, and mark this process as "batching".
1374 * This process will be allowed to complete a batch of
1375 * requests, others will be blocked.
1377 if (!blk_rl_full(rl, is_sync)) {
1378 ioc_set_batching(q, ioc);
1379 blk_set_rl_full(rl, is_sync);
1380 } else {
1381 if (may_queue != ELV_MQUEUE_MUST
1382 && !ioc_batching(q, ioc)) {
1384 * The queue is full and the allocating
1385 * process is not a "batcher", and not
1386 * exempted by the IO scheduler
1388 return ERR_PTR(-ENOMEM);
1392 blk_set_congested(rl, is_sync);
1396 * Only allow batching queuers to allocate up to 50% over the defined
1397 * limit of requests, otherwise we could have thousands of requests
1398 * allocated with any setting of ->nr_requests
1400 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1401 return ERR_PTR(-ENOMEM);
1403 q->nr_rqs[is_sync]++;
1404 rl->count[is_sync]++;
1405 rl->starved[is_sync] = 0;
1408 * Decide whether the new request will be managed by elevator. If
1409 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1410 * prevent the current elevator from being destroyed until the new
1411 * request is freed. This guarantees icq's won't be destroyed and
1412 * makes creating new ones safe.
1414 * Flush requests do not use the elevator so skip initialization.
1415 * This allows a request to share the flush and elevator data.
1417 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1418 * it will be created after releasing queue_lock.
1420 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1421 rq_flags |= RQF_ELVPRIV;
1422 q->nr_rqs_elvpriv++;
1423 if (et->icq_cache && ioc)
1424 icq = ioc_lookup_icq(ioc, q);
1427 if (blk_queue_io_stat(q))
1428 rq_flags |= RQF_IO_STAT;
1429 spin_unlock_irq(q->queue_lock);
1431 /* allocate and init request */
1432 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1433 if (!rq)
1434 goto fail_alloc;
1436 blk_rq_init(q, rq);
1437 blk_rq_set_rl(rq, rl);
1438 rq->cmd_flags = op;
1439 rq->rq_flags = rq_flags;
1440 if (flags & BLK_MQ_REQ_PREEMPT)
1441 rq->rq_flags |= RQF_PREEMPT;
1443 /* init elvpriv */
1444 if (rq_flags & RQF_ELVPRIV) {
1445 if (unlikely(et->icq_cache && !icq)) {
1446 if (ioc)
1447 icq = ioc_create_icq(ioc, q, gfp_mask);
1448 if (!icq)
1449 goto fail_elvpriv;
1452 rq->elv.icq = icq;
1453 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1454 goto fail_elvpriv;
1456 /* @rq->elv.icq holds io_context until @rq is freed */
1457 if (icq)
1458 get_io_context(icq->ioc);
1460 out:
1462 * ioc may be NULL here, and ioc_batching will be false. That's
1463 * OK, if the queue is under the request limit then requests need
1464 * not count toward the nr_batch_requests limit. There will always
1465 * be some limit enforced by BLK_BATCH_TIME.
1467 if (ioc_batching(q, ioc))
1468 ioc->nr_batch_requests--;
1470 trace_block_getrq(q, bio, op);
1471 return rq;
1473 fail_elvpriv:
1475 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1476 * and may fail indefinitely under memory pressure and thus
1477 * shouldn't stall IO. Treat this request as !elvpriv. This will
1478 * disturb iosched and blkcg but weird is bettern than dead.
1480 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1481 __func__, dev_name(q->backing_dev_info->dev));
1483 rq->rq_flags &= ~RQF_ELVPRIV;
1484 rq->elv.icq = NULL;
1486 spin_lock_irq(q->queue_lock);
1487 q->nr_rqs_elvpriv--;
1488 spin_unlock_irq(q->queue_lock);
1489 goto out;
1491 fail_alloc:
1493 * Allocation failed presumably due to memory. Undo anything we
1494 * might have messed up.
1496 * Allocating task should really be put onto the front of the wait
1497 * queue, but this is pretty rare.
1499 spin_lock_irq(q->queue_lock);
1500 freed_request(rl, is_sync, rq_flags);
1503 * in the very unlikely event that allocation failed and no
1504 * requests for this direction was pending, mark us starved so that
1505 * freeing of a request in the other direction will notice
1506 * us. another possible fix would be to split the rq mempool into
1507 * READ and WRITE
1509 rq_starved:
1510 if (unlikely(rl->count[is_sync] == 0))
1511 rl->starved[is_sync] = 1;
1512 return ERR_PTR(-ENOMEM);
1516 * get_request - get a free request
1517 * @q: request_queue to allocate request from
1518 * @op: operation and flags
1519 * @bio: bio to allocate request for (can be %NULL)
1520 * @flags: BLK_MQ_REQ_* flags.
1521 * @gfp: allocator flags
1523 * Get a free request from @q. If %BLK_MQ_REQ_NOWAIT is set in @flags,
1524 * this function keeps retrying under memory pressure and fails iff @q is dead.
1526 * Must be called with @q->queue_lock held and,
1527 * Returns ERR_PTR on failure, with @q->queue_lock held.
1528 * Returns request pointer on success, with @q->queue_lock *not held*.
1530 static struct request *get_request(struct request_queue *q, unsigned int op,
1531 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp)
1533 const bool is_sync = op_is_sync(op);
1534 DEFINE_WAIT(wait);
1535 struct request_list *rl;
1536 struct request *rq;
1538 lockdep_assert_held(q->queue_lock);
1539 WARN_ON_ONCE(q->mq_ops);
1541 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1542 retry:
1543 rq = __get_request(rl, op, bio, flags, gfp);
1544 if (!IS_ERR(rq))
1545 return rq;
1547 if (op & REQ_NOWAIT) {
1548 blk_put_rl(rl);
1549 return ERR_PTR(-EAGAIN);
1552 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1553 blk_put_rl(rl);
1554 return rq;
1557 /* wait on @rl and retry */
1558 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1559 TASK_UNINTERRUPTIBLE);
1561 trace_block_sleeprq(q, bio, op);
1563 spin_unlock_irq(q->queue_lock);
1564 io_schedule();
1567 * After sleeping, we become a "batching" process and will be able
1568 * to allocate at least one request, and up to a big batch of them
1569 * for a small period time. See ioc_batching, ioc_set_batching
1571 ioc_set_batching(q, current->io_context);
1573 spin_lock_irq(q->queue_lock);
1574 finish_wait(&rl->wait[is_sync], &wait);
1576 goto retry;
1579 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1580 static struct request *blk_old_get_request(struct request_queue *q,
1581 unsigned int op, blk_mq_req_flags_t flags)
1583 struct request *rq;
1584 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : GFP_NOIO;
1585 int ret = 0;
1587 WARN_ON_ONCE(q->mq_ops);
1589 /* create ioc upfront */
1590 create_io_context(gfp_mask, q->node);
1592 ret = blk_queue_enter(q, flags);
1593 if (ret)
1594 return ERR_PTR(ret);
1595 spin_lock_irq(q->queue_lock);
1596 rq = get_request(q, op, NULL, flags, gfp_mask);
1597 if (IS_ERR(rq)) {
1598 spin_unlock_irq(q->queue_lock);
1599 blk_queue_exit(q);
1600 return rq;
1603 /* q->queue_lock is unlocked at this point */
1604 rq->__data_len = 0;
1605 rq->__sector = (sector_t) -1;
1606 rq->bio = rq->biotail = NULL;
1607 return rq;
1611 * blk_get_request - allocate a request
1612 * @q: request queue to allocate a request for
1613 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1614 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1616 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1617 blk_mq_req_flags_t flags)
1619 struct request *req;
1621 WARN_ON_ONCE(op & REQ_NOWAIT);
1622 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1624 if (q->mq_ops) {
1625 req = blk_mq_alloc_request(q, op, flags);
1626 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1627 q->mq_ops->initialize_rq_fn(req);
1628 } else {
1629 req = blk_old_get_request(q, op, flags);
1630 if (!IS_ERR(req) && q->initialize_rq_fn)
1631 q->initialize_rq_fn(req);
1634 return req;
1636 EXPORT_SYMBOL(blk_get_request);
1639 * blk_requeue_request - put a request back on queue
1640 * @q: request queue where request should be inserted
1641 * @rq: request to be inserted
1643 * Description:
1644 * Drivers often keep queueing requests until the hardware cannot accept
1645 * more, when that condition happens we need to put the request back
1646 * on the queue. Must be called with queue lock held.
1648 void blk_requeue_request(struct request_queue *q, struct request *rq)
1650 lockdep_assert_held(q->queue_lock);
1651 WARN_ON_ONCE(q->mq_ops);
1653 blk_delete_timer(rq);
1654 blk_clear_rq_complete(rq);
1655 trace_block_rq_requeue(q, rq);
1656 rq_qos_requeue(q, rq);
1658 if (rq->rq_flags & RQF_QUEUED)
1659 blk_queue_end_tag(q, rq);
1661 BUG_ON(blk_queued_rq(rq));
1663 elv_requeue_request(q, rq);
1665 EXPORT_SYMBOL(blk_requeue_request);
1667 static void add_acct_request(struct request_queue *q, struct request *rq,
1668 int where)
1670 blk_account_io_start(rq, true);
1671 __elv_add_request(q, rq, where);
1674 static void part_round_stats_single(struct request_queue *q, int cpu,
1675 struct hd_struct *part, unsigned long now,
1676 unsigned int inflight)
1678 if (inflight) {
1679 __part_stat_add(cpu, part, time_in_queue,
1680 inflight * (now - part->stamp));
1681 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1683 part->stamp = now;
1687 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1688 * @q: target block queue
1689 * @cpu: cpu number for stats access
1690 * @part: target partition
1692 * The average IO queue length and utilisation statistics are maintained
1693 * by observing the current state of the queue length and the amount of
1694 * time it has been in this state for.
1696 * Normally, that accounting is done on IO completion, but that can result
1697 * in more than a second's worth of IO being accounted for within any one
1698 * second, leading to >100% utilisation. To deal with that, we call this
1699 * function to do a round-off before returning the results when reading
1700 * /proc/diskstats. This accounts immediately for all queue usage up to
1701 * the current jiffies and restarts the counters again.
1703 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1705 struct hd_struct *part2 = NULL;
1706 unsigned long now = jiffies;
1707 unsigned int inflight[2];
1708 int stats = 0;
1710 if (part->stamp != now)
1711 stats |= 1;
1713 if (part->partno) {
1714 part2 = &part_to_disk(part)->part0;
1715 if (part2->stamp != now)
1716 stats |= 2;
1719 if (!stats)
1720 return;
1722 part_in_flight(q, part, inflight);
1724 if (stats & 2)
1725 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1726 if (stats & 1)
1727 part_round_stats_single(q, cpu, part, now, inflight[0]);
1729 EXPORT_SYMBOL_GPL(part_round_stats);
1731 #ifdef CONFIG_PM
1732 static void blk_pm_put_request(struct request *rq)
1734 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1735 pm_runtime_mark_last_busy(rq->q->dev);
1737 #else
1738 static inline void blk_pm_put_request(struct request *rq) {}
1739 #endif
1741 void __blk_put_request(struct request_queue *q, struct request *req)
1743 req_flags_t rq_flags = req->rq_flags;
1745 if (unlikely(!q))
1746 return;
1748 if (q->mq_ops) {
1749 blk_mq_free_request(req);
1750 return;
1753 lockdep_assert_held(q->queue_lock);
1755 blk_req_zone_write_unlock(req);
1756 blk_pm_put_request(req);
1758 elv_completed_request(q, req);
1760 /* this is a bio leak */
1761 WARN_ON(req->bio != NULL);
1763 rq_qos_done(q, req);
1766 * Request may not have originated from ll_rw_blk. if not,
1767 * it didn't come out of our reserved rq pools
1769 if (rq_flags & RQF_ALLOCED) {
1770 struct request_list *rl = blk_rq_rl(req);
1771 bool sync = op_is_sync(req->cmd_flags);
1773 BUG_ON(!list_empty(&req->queuelist));
1774 BUG_ON(ELV_ON_HASH(req));
1776 blk_free_request(rl, req);
1777 freed_request(rl, sync, rq_flags);
1778 blk_put_rl(rl);
1779 blk_queue_exit(q);
1782 EXPORT_SYMBOL_GPL(__blk_put_request);
1784 void blk_put_request(struct request *req)
1786 struct request_queue *q = req->q;
1788 if (q->mq_ops)
1789 blk_mq_free_request(req);
1790 else {
1791 unsigned long flags;
1793 spin_lock_irqsave(q->queue_lock, flags);
1794 __blk_put_request(q, req);
1795 spin_unlock_irqrestore(q->queue_lock, flags);
1798 EXPORT_SYMBOL(blk_put_request);
1800 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1801 struct bio *bio)
1803 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1805 if (!ll_back_merge_fn(q, req, bio))
1806 return false;
1808 trace_block_bio_backmerge(q, req, bio);
1810 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1811 blk_rq_set_mixed_merge(req);
1813 req->biotail->bi_next = bio;
1814 req->biotail = bio;
1815 req->__data_len += bio->bi_iter.bi_size;
1816 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1818 blk_account_io_start(req, false);
1819 return true;
1822 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1823 struct bio *bio)
1825 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1827 if (!ll_front_merge_fn(q, req, bio))
1828 return false;
1830 trace_block_bio_frontmerge(q, req, bio);
1832 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1833 blk_rq_set_mixed_merge(req);
1835 bio->bi_next = req->bio;
1836 req->bio = bio;
1838 req->__sector = bio->bi_iter.bi_sector;
1839 req->__data_len += bio->bi_iter.bi_size;
1840 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1842 blk_account_io_start(req, false);
1843 return true;
1846 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1847 struct bio *bio)
1849 unsigned short segments = blk_rq_nr_discard_segments(req);
1851 if (segments >= queue_max_discard_segments(q))
1852 goto no_merge;
1853 if (blk_rq_sectors(req) + bio_sectors(bio) >
1854 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1855 goto no_merge;
1857 req->biotail->bi_next = bio;
1858 req->biotail = bio;
1859 req->__data_len += bio->bi_iter.bi_size;
1860 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1861 req->nr_phys_segments = segments + 1;
1863 blk_account_io_start(req, false);
1864 return true;
1865 no_merge:
1866 req_set_nomerge(q, req);
1867 return false;
1871 * blk_attempt_plug_merge - try to merge with %current's plugged list
1872 * @q: request_queue new bio is being queued at
1873 * @bio: new bio being queued
1874 * @request_count: out parameter for number of traversed plugged requests
1875 * @same_queue_rq: pointer to &struct request that gets filled in when
1876 * another request associated with @q is found on the plug list
1877 * (optional, may be %NULL)
1879 * Determine whether @bio being queued on @q can be merged with a request
1880 * on %current's plugged list. Returns %true if merge was successful,
1881 * otherwise %false.
1883 * Plugging coalesces IOs from the same issuer for the same purpose without
1884 * going through @q->queue_lock. As such it's more of an issuing mechanism
1885 * than scheduling, and the request, while may have elvpriv data, is not
1886 * added on the elevator at this point. In addition, we don't have
1887 * reliable access to the elevator outside queue lock. Only check basic
1888 * merging parameters without querying the elevator.
1890 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1892 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1893 unsigned int *request_count,
1894 struct request **same_queue_rq)
1896 struct blk_plug *plug;
1897 struct request *rq;
1898 struct list_head *plug_list;
1900 plug = current->plug;
1901 if (!plug)
1902 return false;
1903 *request_count = 0;
1905 if (q->mq_ops)
1906 plug_list = &plug->mq_list;
1907 else
1908 plug_list = &plug->list;
1910 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1911 bool merged = false;
1913 if (rq->q == q) {
1914 (*request_count)++;
1916 * Only blk-mq multiple hardware queues case checks the
1917 * rq in the same queue, there should be only one such
1918 * rq in a queue
1920 if (same_queue_rq)
1921 *same_queue_rq = rq;
1924 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1925 continue;
1927 switch (blk_try_merge(rq, bio)) {
1928 case ELEVATOR_BACK_MERGE:
1929 merged = bio_attempt_back_merge(q, rq, bio);
1930 break;
1931 case ELEVATOR_FRONT_MERGE:
1932 merged = bio_attempt_front_merge(q, rq, bio);
1933 break;
1934 case ELEVATOR_DISCARD_MERGE:
1935 merged = bio_attempt_discard_merge(q, rq, bio);
1936 break;
1937 default:
1938 break;
1941 if (merged)
1942 return true;
1945 return false;
1948 unsigned int blk_plug_queued_count(struct request_queue *q)
1950 struct blk_plug *plug;
1951 struct request *rq;
1952 struct list_head *plug_list;
1953 unsigned int ret = 0;
1955 plug = current->plug;
1956 if (!plug)
1957 goto out;
1959 if (q->mq_ops)
1960 plug_list = &plug->mq_list;
1961 else
1962 plug_list = &plug->list;
1964 list_for_each_entry(rq, plug_list, queuelist) {
1965 if (rq->q == q)
1966 ret++;
1968 out:
1969 return ret;
1972 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1974 struct io_context *ioc = rq_ioc(bio);
1976 if (bio->bi_opf & REQ_RAHEAD)
1977 req->cmd_flags |= REQ_FAILFAST_MASK;
1979 req->__sector = bio->bi_iter.bi_sector;
1980 if (ioprio_valid(bio_prio(bio)))
1981 req->ioprio = bio_prio(bio);
1982 else if (ioc)
1983 req->ioprio = ioc->ioprio;
1984 else
1985 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1986 req->write_hint = bio->bi_write_hint;
1987 blk_rq_bio_prep(req->q, req, bio);
1989 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1991 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1993 struct blk_plug *plug;
1994 int where = ELEVATOR_INSERT_SORT;
1995 struct request *req, *free;
1996 unsigned int request_count = 0;
1999 * low level driver can indicate that it wants pages above a
2000 * certain limit bounced to low memory (ie for highmem, or even
2001 * ISA dma in theory)
2003 blk_queue_bounce(q, &bio);
2005 blk_queue_split(q, &bio);
2007 if (!bio_integrity_prep(bio))
2008 return BLK_QC_T_NONE;
2010 if (op_is_flush(bio->bi_opf)) {
2011 spin_lock_irq(q->queue_lock);
2012 where = ELEVATOR_INSERT_FLUSH;
2013 goto get_rq;
2017 * Check if we can merge with the plugged list before grabbing
2018 * any locks.
2020 if (!blk_queue_nomerges(q)) {
2021 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
2022 return BLK_QC_T_NONE;
2023 } else
2024 request_count = blk_plug_queued_count(q);
2026 spin_lock_irq(q->queue_lock);
2028 switch (elv_merge(q, &req, bio)) {
2029 case ELEVATOR_BACK_MERGE:
2030 if (!bio_attempt_back_merge(q, req, bio))
2031 break;
2032 elv_bio_merged(q, req, bio);
2033 free = attempt_back_merge(q, req);
2034 if (free)
2035 __blk_put_request(q, free);
2036 else
2037 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
2038 goto out_unlock;
2039 case ELEVATOR_FRONT_MERGE:
2040 if (!bio_attempt_front_merge(q, req, bio))
2041 break;
2042 elv_bio_merged(q, req, bio);
2043 free = attempt_front_merge(q, req);
2044 if (free)
2045 __blk_put_request(q, free);
2046 else
2047 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
2048 goto out_unlock;
2049 default:
2050 break;
2053 get_rq:
2054 rq_qos_throttle(q, bio, q->queue_lock);
2057 * Grab a free request. This is might sleep but can not fail.
2058 * Returns with the queue unlocked.
2060 blk_queue_enter_live(q);
2061 req = get_request(q, bio->bi_opf, bio, 0, GFP_NOIO);
2062 if (IS_ERR(req)) {
2063 blk_queue_exit(q);
2064 rq_qos_cleanup(q, bio);
2065 if (PTR_ERR(req) == -ENOMEM)
2066 bio->bi_status = BLK_STS_RESOURCE;
2067 else
2068 bio->bi_status = BLK_STS_IOERR;
2069 bio_endio(bio);
2070 goto out_unlock;
2073 rq_qos_track(q, req, bio);
2076 * After dropping the lock and possibly sleeping here, our request
2077 * may now be mergeable after it had proven unmergeable (above).
2078 * We don't worry about that case for efficiency. It won't happen
2079 * often, and the elevators are able to handle it.
2081 blk_init_request_from_bio(req, bio);
2083 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
2084 req->cpu = raw_smp_processor_id();
2086 plug = current->plug;
2087 if (plug) {
2089 * If this is the first request added after a plug, fire
2090 * of a plug trace.
2092 * @request_count may become stale because of schedule
2093 * out, so check plug list again.
2095 if (!request_count || list_empty(&plug->list))
2096 trace_block_plug(q);
2097 else {
2098 struct request *last = list_entry_rq(plug->list.prev);
2099 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2100 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2101 blk_flush_plug_list(plug, false);
2102 trace_block_plug(q);
2105 list_add_tail(&req->queuelist, &plug->list);
2106 blk_account_io_start(req, true);
2107 } else {
2108 spin_lock_irq(q->queue_lock);
2109 add_acct_request(q, req, where);
2110 __blk_run_queue(q);
2111 out_unlock:
2112 spin_unlock_irq(q->queue_lock);
2115 return BLK_QC_T_NONE;
2118 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
2120 char b[BDEVNAME_SIZE];
2122 printk(KERN_INFO "attempt to access beyond end of device\n");
2123 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2124 bio_devname(bio, b), bio->bi_opf,
2125 (unsigned long long)bio_end_sector(bio),
2126 (long long)maxsector);
2129 #ifdef CONFIG_FAIL_MAKE_REQUEST
2131 static DECLARE_FAULT_ATTR(fail_make_request);
2133 static int __init setup_fail_make_request(char *str)
2135 return setup_fault_attr(&fail_make_request, str);
2137 __setup("fail_make_request=", setup_fail_make_request);
2139 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2141 return part->make_it_fail && should_fail(&fail_make_request, bytes);
2144 static int __init fail_make_request_debugfs(void)
2146 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2147 NULL, &fail_make_request);
2149 return PTR_ERR_OR_ZERO(dir);
2152 late_initcall(fail_make_request_debugfs);
2154 #else /* CONFIG_FAIL_MAKE_REQUEST */
2156 static inline bool should_fail_request(struct hd_struct *part,
2157 unsigned int bytes)
2159 return false;
2162 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2164 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2166 const int op = bio_op(bio);
2168 if (part->policy && op_is_write(op)) {
2169 char b[BDEVNAME_SIZE];
2171 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
2172 return false;
2174 WARN_ONCE(1,
2175 "generic_make_request: Trying to write "
2176 "to read-only block-device %s (partno %d)\n",
2177 bio_devname(bio, b), part->partno);
2178 /* Older lvm-tools actually trigger this */
2179 return false;
2182 return false;
2185 static noinline int should_fail_bio(struct bio *bio)
2187 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2188 return -EIO;
2189 return 0;
2191 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2194 * Check whether this bio extends beyond the end of the device or partition.
2195 * This may well happen - the kernel calls bread() without checking the size of
2196 * the device, e.g., when mounting a file system.
2198 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
2200 unsigned int nr_sectors = bio_sectors(bio);
2202 if (nr_sectors && maxsector &&
2203 (nr_sectors > maxsector ||
2204 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
2205 handle_bad_sector(bio, maxsector);
2206 return -EIO;
2208 return 0;
2212 * Remap block n of partition p to block n+start(p) of the disk.
2214 static inline int blk_partition_remap(struct bio *bio)
2216 struct hd_struct *p;
2217 int ret = -EIO;
2219 rcu_read_lock();
2220 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2221 if (unlikely(!p))
2222 goto out;
2223 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2224 goto out;
2225 if (unlikely(bio_check_ro(bio, p)))
2226 goto out;
2229 * Zone reset does not include bi_size so bio_sectors() is always 0.
2230 * Include a test for the reset op code and perform the remap if needed.
2232 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
2233 if (bio_check_eod(bio, part_nr_sects_read(p)))
2234 goto out;
2235 bio->bi_iter.bi_sector += p->start_sect;
2236 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2237 bio->bi_iter.bi_sector - p->start_sect);
2239 bio->bi_partno = 0;
2240 ret = 0;
2241 out:
2242 rcu_read_unlock();
2243 return ret;
2246 static noinline_for_stack bool
2247 generic_make_request_checks(struct bio *bio)
2249 struct request_queue *q;
2250 int nr_sectors = bio_sectors(bio);
2251 blk_status_t status = BLK_STS_IOERR;
2252 char b[BDEVNAME_SIZE];
2254 might_sleep();
2256 q = bio->bi_disk->queue;
2257 if (unlikely(!q)) {
2258 printk(KERN_ERR
2259 "generic_make_request: Trying to access "
2260 "nonexistent block-device %s (%Lu)\n",
2261 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2262 goto end_io;
2266 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2267 * if queue is not a request based queue.
2269 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2270 goto not_supported;
2272 if (should_fail_bio(bio))
2273 goto end_io;
2275 if (bio->bi_partno) {
2276 if (unlikely(blk_partition_remap(bio)))
2277 goto end_io;
2278 } else {
2279 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2280 goto end_io;
2281 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
2282 goto end_io;
2286 * Filter flush bio's early so that make_request based
2287 * drivers without flush support don't have to worry
2288 * about them.
2290 if (op_is_flush(bio->bi_opf) &&
2291 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2292 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2293 if (!nr_sectors) {
2294 status = BLK_STS_OK;
2295 goto end_io;
2299 switch (bio_op(bio)) {
2300 case REQ_OP_DISCARD:
2301 if (!blk_queue_discard(q))
2302 goto not_supported;
2303 break;
2304 case REQ_OP_SECURE_ERASE:
2305 if (!blk_queue_secure_erase(q))
2306 goto not_supported;
2307 break;
2308 case REQ_OP_WRITE_SAME:
2309 if (!q->limits.max_write_same_sectors)
2310 goto not_supported;
2311 break;
2312 case REQ_OP_ZONE_REPORT:
2313 case REQ_OP_ZONE_RESET:
2314 if (!blk_queue_is_zoned(q))
2315 goto not_supported;
2316 break;
2317 case REQ_OP_WRITE_ZEROES:
2318 if (!q->limits.max_write_zeroes_sectors)
2319 goto not_supported;
2320 break;
2321 default:
2322 break;
2326 * Various block parts want %current->io_context and lazy ioc
2327 * allocation ends up trading a lot of pain for a small amount of
2328 * memory. Just allocate it upfront. This may fail and block
2329 * layer knows how to live with it.
2331 create_io_context(GFP_ATOMIC, q->node);
2333 if (!blkcg_bio_issue_check(q, bio))
2334 return false;
2336 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2337 trace_block_bio_queue(q, bio);
2338 /* Now that enqueuing has been traced, we need to trace
2339 * completion as well.
2341 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2343 return true;
2345 not_supported:
2346 status = BLK_STS_NOTSUPP;
2347 end_io:
2348 bio->bi_status = status;
2349 bio_endio(bio);
2350 return false;
2354 * generic_make_request - hand a buffer to its device driver for I/O
2355 * @bio: The bio describing the location in memory and on the device.
2357 * generic_make_request() is used to make I/O requests of block
2358 * devices. It is passed a &struct bio, which describes the I/O that needs
2359 * to be done.
2361 * generic_make_request() does not return any status. The
2362 * success/failure status of the request, along with notification of
2363 * completion, is delivered asynchronously through the bio->bi_end_io
2364 * function described (one day) else where.
2366 * The caller of generic_make_request must make sure that bi_io_vec
2367 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2368 * set to describe the device address, and the
2369 * bi_end_io and optionally bi_private are set to describe how
2370 * completion notification should be signaled.
2372 * generic_make_request and the drivers it calls may use bi_next if this
2373 * bio happens to be merged with someone else, and may resubmit the bio to
2374 * a lower device by calling into generic_make_request recursively, which
2375 * means the bio should NOT be touched after the call to ->make_request_fn.
2377 blk_qc_t generic_make_request(struct bio *bio)
2380 * bio_list_on_stack[0] contains bios submitted by the current
2381 * make_request_fn.
2382 * bio_list_on_stack[1] contains bios that were submitted before
2383 * the current make_request_fn, but that haven't been processed
2384 * yet.
2386 struct bio_list bio_list_on_stack[2];
2387 blk_mq_req_flags_t flags = 0;
2388 struct request_queue *q = bio->bi_disk->queue;
2389 blk_qc_t ret = BLK_QC_T_NONE;
2391 if (bio->bi_opf & REQ_NOWAIT)
2392 flags = BLK_MQ_REQ_NOWAIT;
2393 if (bio_flagged(bio, BIO_QUEUE_ENTERED))
2394 blk_queue_enter_live(q);
2395 else if (blk_queue_enter(q, flags) < 0) {
2396 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
2397 bio_wouldblock_error(bio);
2398 else
2399 bio_io_error(bio);
2400 return ret;
2403 if (!generic_make_request_checks(bio))
2404 goto out;
2407 * We only want one ->make_request_fn to be active at a time, else
2408 * stack usage with stacked devices could be a problem. So use
2409 * current->bio_list to keep a list of requests submited by a
2410 * make_request_fn function. current->bio_list is also used as a
2411 * flag to say if generic_make_request is currently active in this
2412 * task or not. If it is NULL, then no make_request is active. If
2413 * it is non-NULL, then a make_request is active, and new requests
2414 * should be added at the tail
2416 if (current->bio_list) {
2417 bio_list_add(&current->bio_list[0], bio);
2418 goto out;
2421 /* following loop may be a bit non-obvious, and so deserves some
2422 * explanation.
2423 * Before entering the loop, bio->bi_next is NULL (as all callers
2424 * ensure that) so we have a list with a single bio.
2425 * We pretend that we have just taken it off a longer list, so
2426 * we assign bio_list to a pointer to the bio_list_on_stack,
2427 * thus initialising the bio_list of new bios to be
2428 * added. ->make_request() may indeed add some more bios
2429 * through a recursive call to generic_make_request. If it
2430 * did, we find a non-NULL value in bio_list and re-enter the loop
2431 * from the top. In this case we really did just take the bio
2432 * of the top of the list (no pretending) and so remove it from
2433 * bio_list, and call into ->make_request() again.
2435 BUG_ON(bio->bi_next);
2436 bio_list_init(&bio_list_on_stack[0]);
2437 current->bio_list = bio_list_on_stack;
2438 do {
2439 bool enter_succeeded = true;
2441 if (unlikely(q != bio->bi_disk->queue)) {
2442 if (q)
2443 blk_queue_exit(q);
2444 q = bio->bi_disk->queue;
2445 flags = 0;
2446 if (bio->bi_opf & REQ_NOWAIT)
2447 flags = BLK_MQ_REQ_NOWAIT;
2448 if (blk_queue_enter(q, flags) < 0)
2449 enter_succeeded = false;
2452 if (enter_succeeded) {
2453 struct bio_list lower, same;
2455 /* Create a fresh bio_list for all subordinate requests */
2456 bio_list_on_stack[1] = bio_list_on_stack[0];
2457 bio_list_init(&bio_list_on_stack[0]);
2458 ret = q->make_request_fn(q, bio);
2460 /* sort new bios into those for a lower level
2461 * and those for the same level
2463 bio_list_init(&lower);
2464 bio_list_init(&same);
2465 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2466 if (q == bio->bi_disk->queue)
2467 bio_list_add(&same, bio);
2468 else
2469 bio_list_add(&lower, bio);
2470 /* now assemble so we handle the lowest level first */
2471 bio_list_merge(&bio_list_on_stack[0], &lower);
2472 bio_list_merge(&bio_list_on_stack[0], &same);
2473 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2474 } else {
2475 if (unlikely(!blk_queue_dying(q) &&
2476 (bio->bi_opf & REQ_NOWAIT)))
2477 bio_wouldblock_error(bio);
2478 else
2479 bio_io_error(bio);
2480 q = NULL;
2482 bio = bio_list_pop(&bio_list_on_stack[0]);
2483 } while (bio);
2484 current->bio_list = NULL; /* deactivate */
2486 out:
2487 if (q)
2488 blk_queue_exit(q);
2489 return ret;
2491 EXPORT_SYMBOL(generic_make_request);
2494 * direct_make_request - hand a buffer directly to its device driver for I/O
2495 * @bio: The bio describing the location in memory and on the device.
2497 * This function behaves like generic_make_request(), but does not protect
2498 * against recursion. Must only be used if the called driver is known
2499 * to not call generic_make_request (or direct_make_request) again from
2500 * its make_request function. (Calling direct_make_request again from
2501 * a workqueue is perfectly fine as that doesn't recurse).
2503 blk_qc_t direct_make_request(struct bio *bio)
2505 struct request_queue *q = bio->bi_disk->queue;
2506 bool nowait = bio->bi_opf & REQ_NOWAIT;
2507 blk_qc_t ret;
2509 if (!generic_make_request_checks(bio))
2510 return BLK_QC_T_NONE;
2512 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2513 if (nowait && !blk_queue_dying(q))
2514 bio->bi_status = BLK_STS_AGAIN;
2515 else
2516 bio->bi_status = BLK_STS_IOERR;
2517 bio_endio(bio);
2518 return BLK_QC_T_NONE;
2521 ret = q->make_request_fn(q, bio);
2522 blk_queue_exit(q);
2523 return ret;
2525 EXPORT_SYMBOL_GPL(direct_make_request);
2528 * submit_bio - submit a bio to the block device layer for I/O
2529 * @bio: The &struct bio which describes the I/O
2531 * submit_bio() is very similar in purpose to generic_make_request(), and
2532 * uses that function to do most of the work. Both are fairly rough
2533 * interfaces; @bio must be presetup and ready for I/O.
2536 blk_qc_t submit_bio(struct bio *bio)
2539 * If it's a regular read/write or a barrier with data attached,
2540 * go through the normal accounting stuff before submission.
2542 if (bio_has_data(bio)) {
2543 unsigned int count;
2545 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2546 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2547 else
2548 count = bio_sectors(bio);
2550 if (op_is_write(bio_op(bio))) {
2551 count_vm_events(PGPGOUT, count);
2552 } else {
2553 task_io_account_read(bio->bi_iter.bi_size);
2554 count_vm_events(PGPGIN, count);
2557 if (unlikely(block_dump)) {
2558 char b[BDEVNAME_SIZE];
2559 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2560 current->comm, task_pid_nr(current),
2561 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2562 (unsigned long long)bio->bi_iter.bi_sector,
2563 bio_devname(bio, b), count);
2567 return generic_make_request(bio);
2569 EXPORT_SYMBOL(submit_bio);
2571 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2573 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2574 return false;
2576 if (current->plug)
2577 blk_flush_plug_list(current->plug, false);
2578 return q->poll_fn(q, cookie);
2580 EXPORT_SYMBOL_GPL(blk_poll);
2583 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2584 * for new the queue limits
2585 * @q: the queue
2586 * @rq: the request being checked
2588 * Description:
2589 * @rq may have been made based on weaker limitations of upper-level queues
2590 * in request stacking drivers, and it may violate the limitation of @q.
2591 * Since the block layer and the underlying device driver trust @rq
2592 * after it is inserted to @q, it should be checked against @q before
2593 * the insertion using this generic function.
2595 * Request stacking drivers like request-based dm may change the queue
2596 * limits when retrying requests on other queues. Those requests need
2597 * to be checked against the new queue limits again during dispatch.
2599 static int blk_cloned_rq_check_limits(struct request_queue *q,
2600 struct request *rq)
2602 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2603 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2604 return -EIO;
2608 * queue's settings related to segment counting like q->bounce_pfn
2609 * may differ from that of other stacking queues.
2610 * Recalculate it to check the request correctly on this queue's
2611 * limitation.
2613 blk_recalc_rq_segments(rq);
2614 if (rq->nr_phys_segments > queue_max_segments(q)) {
2615 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2616 return -EIO;
2619 return 0;
2623 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2624 * @q: the queue to submit the request
2625 * @rq: the request being queued
2627 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2629 unsigned long flags;
2630 int where = ELEVATOR_INSERT_BACK;
2632 if (blk_cloned_rq_check_limits(q, rq))
2633 return BLK_STS_IOERR;
2635 if (rq->rq_disk &&
2636 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2637 return BLK_STS_IOERR;
2639 if (q->mq_ops) {
2640 if (blk_queue_io_stat(q))
2641 blk_account_io_start(rq, true);
2643 * Since we have a scheduler attached on the top device,
2644 * bypass a potential scheduler on the bottom device for
2645 * insert.
2647 return blk_mq_request_issue_directly(rq);
2650 spin_lock_irqsave(q->queue_lock, flags);
2651 if (unlikely(blk_queue_dying(q))) {
2652 spin_unlock_irqrestore(q->queue_lock, flags);
2653 return BLK_STS_IOERR;
2657 * Submitting request must be dequeued before calling this function
2658 * because it will be linked to another request_queue
2660 BUG_ON(blk_queued_rq(rq));
2662 if (op_is_flush(rq->cmd_flags))
2663 where = ELEVATOR_INSERT_FLUSH;
2665 add_acct_request(q, rq, where);
2666 if (where == ELEVATOR_INSERT_FLUSH)
2667 __blk_run_queue(q);
2668 spin_unlock_irqrestore(q->queue_lock, flags);
2670 return BLK_STS_OK;
2672 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2675 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2676 * @rq: request to examine
2678 * Description:
2679 * A request could be merge of IOs which require different failure
2680 * handling. This function determines the number of bytes which
2681 * can be failed from the beginning of the request without
2682 * crossing into area which need to be retried further.
2684 * Return:
2685 * The number of bytes to fail.
2687 unsigned int blk_rq_err_bytes(const struct request *rq)
2689 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2690 unsigned int bytes = 0;
2691 struct bio *bio;
2693 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2694 return blk_rq_bytes(rq);
2697 * Currently the only 'mixing' which can happen is between
2698 * different fastfail types. We can safely fail portions
2699 * which have all the failfast bits that the first one has -
2700 * the ones which are at least as eager to fail as the first
2701 * one.
2703 for (bio = rq->bio; bio; bio = bio->bi_next) {
2704 if ((bio->bi_opf & ff) != ff)
2705 break;
2706 bytes += bio->bi_iter.bi_size;
2709 /* this could lead to infinite loop */
2710 BUG_ON(blk_rq_bytes(rq) && !bytes);
2711 return bytes;
2713 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2715 void blk_account_io_completion(struct request *req, unsigned int bytes)
2717 if (blk_do_io_stat(req)) {
2718 const int sgrp = op_stat_group(req_op(req));
2719 struct hd_struct *part;
2720 int cpu;
2722 cpu = part_stat_lock();
2723 part = req->part;
2724 part_stat_add(cpu, part, sectors[sgrp], bytes >> 9);
2725 part_stat_unlock();
2729 void blk_account_io_done(struct request *req, u64 now)
2732 * Account IO completion. flush_rq isn't accounted as a
2733 * normal IO on queueing nor completion. Accounting the
2734 * containing request is enough.
2736 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2737 const int sgrp = op_stat_group(req_op(req));
2738 struct hd_struct *part;
2739 int cpu;
2741 cpu = part_stat_lock();
2742 part = req->part;
2744 part_stat_inc(cpu, part, ios[sgrp]);
2745 part_stat_add(cpu, part, nsecs[sgrp], now - req->start_time_ns);
2746 part_round_stats(req->q, cpu, part);
2747 part_dec_in_flight(req->q, part, rq_data_dir(req));
2749 hd_struct_put(part);
2750 part_stat_unlock();
2754 #ifdef CONFIG_PM
2756 * Don't process normal requests when queue is suspended
2757 * or in the process of suspending/resuming
2759 static bool blk_pm_allow_request(struct request *rq)
2761 switch (rq->q->rpm_status) {
2762 case RPM_RESUMING:
2763 case RPM_SUSPENDING:
2764 return rq->rq_flags & RQF_PM;
2765 case RPM_SUSPENDED:
2766 return false;
2767 default:
2768 return true;
2771 #else
2772 static bool blk_pm_allow_request(struct request *rq)
2774 return true;
2776 #endif
2778 void blk_account_io_start(struct request *rq, bool new_io)
2780 struct hd_struct *part;
2781 int rw = rq_data_dir(rq);
2782 int cpu;
2784 if (!blk_do_io_stat(rq))
2785 return;
2787 cpu = part_stat_lock();
2789 if (!new_io) {
2790 part = rq->part;
2791 part_stat_inc(cpu, part, merges[rw]);
2792 } else {
2793 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2794 if (!hd_struct_try_get(part)) {
2796 * The partition is already being removed,
2797 * the request will be accounted on the disk only
2799 * We take a reference on disk->part0 although that
2800 * partition will never be deleted, so we can treat
2801 * it as any other partition.
2803 part = &rq->rq_disk->part0;
2804 hd_struct_get(part);
2806 part_round_stats(rq->q, cpu, part);
2807 part_inc_in_flight(rq->q, part, rw);
2808 rq->part = part;
2811 part_stat_unlock();
2814 static struct request *elv_next_request(struct request_queue *q)
2816 struct request *rq;
2817 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2819 WARN_ON_ONCE(q->mq_ops);
2821 while (1) {
2822 list_for_each_entry(rq, &q->queue_head, queuelist) {
2823 if (blk_pm_allow_request(rq))
2824 return rq;
2826 if (rq->rq_flags & RQF_SOFTBARRIER)
2827 break;
2831 * Flush request is running and flush request isn't queueable
2832 * in the drive, we can hold the queue till flush request is
2833 * finished. Even we don't do this, driver can't dispatch next
2834 * requests and will requeue them. And this can improve
2835 * throughput too. For example, we have request flush1, write1,
2836 * flush 2. flush1 is dispatched, then queue is hold, write1
2837 * isn't inserted to queue. After flush1 is finished, flush2
2838 * will be dispatched. Since disk cache is already clean,
2839 * flush2 will be finished very soon, so looks like flush2 is
2840 * folded to flush1.
2841 * Since the queue is hold, a flag is set to indicate the queue
2842 * should be restarted later. Please see flush_end_io() for
2843 * details.
2845 if (fq->flush_pending_idx != fq->flush_running_idx &&
2846 !queue_flush_queueable(q)) {
2847 fq->flush_queue_delayed = 1;
2848 return NULL;
2850 if (unlikely(blk_queue_bypass(q)) ||
2851 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2852 return NULL;
2857 * blk_peek_request - peek at the top of a request queue
2858 * @q: request queue to peek at
2860 * Description:
2861 * Return the request at the top of @q. The returned request
2862 * should be started using blk_start_request() before LLD starts
2863 * processing it.
2865 * Return:
2866 * Pointer to the request at the top of @q if available. Null
2867 * otherwise.
2869 struct request *blk_peek_request(struct request_queue *q)
2871 struct request *rq;
2872 int ret;
2874 lockdep_assert_held(q->queue_lock);
2875 WARN_ON_ONCE(q->mq_ops);
2877 while ((rq = elv_next_request(q)) != NULL) {
2878 if (!(rq->rq_flags & RQF_STARTED)) {
2880 * This is the first time the device driver
2881 * sees this request (possibly after
2882 * requeueing). Notify IO scheduler.
2884 if (rq->rq_flags & RQF_SORTED)
2885 elv_activate_rq(q, rq);
2888 * just mark as started even if we don't start
2889 * it, a request that has been delayed should
2890 * not be passed by new incoming requests
2892 rq->rq_flags |= RQF_STARTED;
2893 trace_block_rq_issue(q, rq);
2896 if (!q->boundary_rq || q->boundary_rq == rq) {
2897 q->end_sector = rq_end_sector(rq);
2898 q->boundary_rq = NULL;
2901 if (rq->rq_flags & RQF_DONTPREP)
2902 break;
2904 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2906 * make sure space for the drain appears we
2907 * know we can do this because max_hw_segments
2908 * has been adjusted to be one fewer than the
2909 * device can handle
2911 rq->nr_phys_segments++;
2914 if (!q->prep_rq_fn)
2915 break;
2917 ret = q->prep_rq_fn(q, rq);
2918 if (ret == BLKPREP_OK) {
2919 break;
2920 } else if (ret == BLKPREP_DEFER) {
2922 * the request may have been (partially) prepped.
2923 * we need to keep this request in the front to
2924 * avoid resource deadlock. RQF_STARTED will
2925 * prevent other fs requests from passing this one.
2927 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2928 !(rq->rq_flags & RQF_DONTPREP)) {
2930 * remove the space for the drain we added
2931 * so that we don't add it again
2933 --rq->nr_phys_segments;
2936 rq = NULL;
2937 break;
2938 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2939 rq->rq_flags |= RQF_QUIET;
2941 * Mark this request as started so we don't trigger
2942 * any debug logic in the end I/O path.
2944 blk_start_request(rq);
2945 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2946 BLK_STS_TARGET : BLK_STS_IOERR);
2947 } else {
2948 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2949 break;
2953 return rq;
2955 EXPORT_SYMBOL(blk_peek_request);
2957 static void blk_dequeue_request(struct request *rq)
2959 struct request_queue *q = rq->q;
2961 BUG_ON(list_empty(&rq->queuelist));
2962 BUG_ON(ELV_ON_HASH(rq));
2964 list_del_init(&rq->queuelist);
2967 * the time frame between a request being removed from the lists
2968 * and to it is freed is accounted as io that is in progress at
2969 * the driver side.
2971 if (blk_account_rq(rq))
2972 q->in_flight[rq_is_sync(rq)]++;
2976 * blk_start_request - start request processing on the driver
2977 * @req: request to dequeue
2979 * Description:
2980 * Dequeue @req and start timeout timer on it. This hands off the
2981 * request to the driver.
2983 void blk_start_request(struct request *req)
2985 lockdep_assert_held(req->q->queue_lock);
2986 WARN_ON_ONCE(req->q->mq_ops);
2988 blk_dequeue_request(req);
2990 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2991 req->io_start_time_ns = ktime_get_ns();
2992 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2993 req->throtl_size = blk_rq_sectors(req);
2994 #endif
2995 req->rq_flags |= RQF_STATS;
2996 rq_qos_issue(req->q, req);
2999 BUG_ON(blk_rq_is_complete(req));
3000 blk_add_timer(req);
3002 EXPORT_SYMBOL(blk_start_request);
3005 * blk_fetch_request - fetch a request from a request queue
3006 * @q: request queue to fetch a request from
3008 * Description:
3009 * Return the request at the top of @q. The request is started on
3010 * return and LLD can start processing it immediately.
3012 * Return:
3013 * Pointer to the request at the top of @q if available. Null
3014 * otherwise.
3016 struct request *blk_fetch_request(struct request_queue *q)
3018 struct request *rq;
3020 lockdep_assert_held(q->queue_lock);
3021 WARN_ON_ONCE(q->mq_ops);
3023 rq = blk_peek_request(q);
3024 if (rq)
3025 blk_start_request(rq);
3026 return rq;
3028 EXPORT_SYMBOL(blk_fetch_request);
3031 * Steal bios from a request and add them to a bio list.
3032 * The request must not have been partially completed before.
3034 void blk_steal_bios(struct bio_list *list, struct request *rq)
3036 if (rq->bio) {
3037 if (list->tail)
3038 list->tail->bi_next = rq->bio;
3039 else
3040 list->head = rq->bio;
3041 list->tail = rq->biotail;
3043 rq->bio = NULL;
3044 rq->biotail = NULL;
3047 rq->__data_len = 0;
3049 EXPORT_SYMBOL_GPL(blk_steal_bios);
3052 * blk_update_request - Special helper function for request stacking drivers
3053 * @req: the request being processed
3054 * @error: block status code
3055 * @nr_bytes: number of bytes to complete @req
3057 * Description:
3058 * Ends I/O on a number of bytes attached to @req, but doesn't complete
3059 * the request structure even if @req doesn't have leftover.
3060 * If @req has leftover, sets it up for the next range of segments.
3062 * This special helper function is only for request stacking drivers
3063 * (e.g. request-based dm) so that they can handle partial completion.
3064 * Actual device drivers should use blk_end_request instead.
3066 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3067 * %false return from this function.
3069 * Note:
3070 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
3071 * blk_rq_bytes() and in blk_update_request().
3073 * Return:
3074 * %false - this request doesn't have any more data
3075 * %true - this request has more data
3077 bool blk_update_request(struct request *req, blk_status_t error,
3078 unsigned int nr_bytes)
3080 int total_bytes;
3082 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
3084 if (!req->bio)
3085 return false;
3087 if (unlikely(error && !blk_rq_is_passthrough(req) &&
3088 !(req->rq_flags & RQF_QUIET)))
3089 print_req_error(req, error);
3091 blk_account_io_completion(req, nr_bytes);
3093 total_bytes = 0;
3094 while (req->bio) {
3095 struct bio *bio = req->bio;
3096 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
3098 if (bio_bytes == bio->bi_iter.bi_size)
3099 req->bio = bio->bi_next;
3101 /* Completion has already been traced */
3102 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
3103 req_bio_endio(req, bio, bio_bytes, error);
3105 total_bytes += bio_bytes;
3106 nr_bytes -= bio_bytes;
3108 if (!nr_bytes)
3109 break;
3113 * completely done
3115 if (!req->bio) {
3117 * Reset counters so that the request stacking driver
3118 * can find how many bytes remain in the request
3119 * later.
3121 req->__data_len = 0;
3122 return false;
3125 req->__data_len -= total_bytes;
3127 /* update sector only for requests with clear definition of sector */
3128 if (!blk_rq_is_passthrough(req))
3129 req->__sector += total_bytes >> 9;
3131 /* mixed attributes always follow the first bio */
3132 if (req->rq_flags & RQF_MIXED_MERGE) {
3133 req->cmd_flags &= ~REQ_FAILFAST_MASK;
3134 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
3137 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3139 * If total number of sectors is less than the first segment
3140 * size, something has gone terribly wrong.
3142 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3143 blk_dump_rq_flags(req, "request botched");
3144 req->__data_len = blk_rq_cur_bytes(req);
3147 /* recalculate the number of segments */
3148 blk_recalc_rq_segments(req);
3151 return true;
3153 EXPORT_SYMBOL_GPL(blk_update_request);
3155 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3156 unsigned int nr_bytes,
3157 unsigned int bidi_bytes)
3159 if (blk_update_request(rq, error, nr_bytes))
3160 return true;
3162 /* Bidi request must be completed as a whole */
3163 if (unlikely(blk_bidi_rq(rq)) &&
3164 blk_update_request(rq->next_rq, error, bidi_bytes))
3165 return true;
3167 if (blk_queue_add_random(rq->q))
3168 add_disk_randomness(rq->rq_disk);
3170 return false;
3174 * blk_unprep_request - unprepare a request
3175 * @req: the request
3177 * This function makes a request ready for complete resubmission (or
3178 * completion). It happens only after all error handling is complete,
3179 * so represents the appropriate moment to deallocate any resources
3180 * that were allocated to the request in the prep_rq_fn. The queue
3181 * lock is held when calling this.
3183 void blk_unprep_request(struct request *req)
3185 struct request_queue *q = req->q;
3187 req->rq_flags &= ~RQF_DONTPREP;
3188 if (q->unprep_rq_fn)
3189 q->unprep_rq_fn(q, req);
3191 EXPORT_SYMBOL_GPL(blk_unprep_request);
3193 void blk_finish_request(struct request *req, blk_status_t error)
3195 struct request_queue *q = req->q;
3196 u64 now = ktime_get_ns();
3198 lockdep_assert_held(req->q->queue_lock);
3199 WARN_ON_ONCE(q->mq_ops);
3201 if (req->rq_flags & RQF_STATS)
3202 blk_stat_add(req, now);
3204 if (req->rq_flags & RQF_QUEUED)
3205 blk_queue_end_tag(q, req);
3207 BUG_ON(blk_queued_rq(req));
3209 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3210 laptop_io_completion(req->q->backing_dev_info);
3212 blk_delete_timer(req);
3214 if (req->rq_flags & RQF_DONTPREP)
3215 blk_unprep_request(req);
3217 blk_account_io_done(req, now);
3219 if (req->end_io) {
3220 rq_qos_done(q, req);
3221 req->end_io(req, error);
3222 } else {
3223 if (blk_bidi_rq(req))
3224 __blk_put_request(req->next_rq->q, req->next_rq);
3226 __blk_put_request(q, req);
3229 EXPORT_SYMBOL(blk_finish_request);
3232 * blk_end_bidi_request - Complete a bidi request
3233 * @rq: the request to complete
3234 * @error: block status code
3235 * @nr_bytes: number of bytes to complete @rq
3236 * @bidi_bytes: number of bytes to complete @rq->next_rq
3238 * Description:
3239 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3240 * Drivers that supports bidi can safely call this member for any
3241 * type of request, bidi or uni. In the later case @bidi_bytes is
3242 * just ignored.
3244 * Return:
3245 * %false - we are done with this request
3246 * %true - still buffers pending for this request
3248 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3249 unsigned int nr_bytes, unsigned int bidi_bytes)
3251 struct request_queue *q = rq->q;
3252 unsigned long flags;
3254 WARN_ON_ONCE(q->mq_ops);
3256 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3257 return true;
3259 spin_lock_irqsave(q->queue_lock, flags);
3260 blk_finish_request(rq, error);
3261 spin_unlock_irqrestore(q->queue_lock, flags);
3263 return false;
3267 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3268 * @rq: the request to complete
3269 * @error: block status code
3270 * @nr_bytes: number of bytes to complete @rq
3271 * @bidi_bytes: number of bytes to complete @rq->next_rq
3273 * Description:
3274 * Identical to blk_end_bidi_request() except that queue lock is
3275 * assumed to be locked on entry and remains so on return.
3277 * Return:
3278 * %false - we are done with this request
3279 * %true - still buffers pending for this request
3281 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3282 unsigned int nr_bytes, unsigned int bidi_bytes)
3284 lockdep_assert_held(rq->q->queue_lock);
3285 WARN_ON_ONCE(rq->q->mq_ops);
3287 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3288 return true;
3290 blk_finish_request(rq, error);
3292 return false;
3296 * blk_end_request - Helper function for drivers to complete the request.
3297 * @rq: the request being processed
3298 * @error: block status code
3299 * @nr_bytes: number of bytes to complete
3301 * Description:
3302 * Ends I/O on a number of bytes attached to @rq.
3303 * If @rq has leftover, sets it up for the next range of segments.
3305 * Return:
3306 * %false - we are done with this request
3307 * %true - still buffers pending for this request
3309 bool blk_end_request(struct request *rq, blk_status_t error,
3310 unsigned int nr_bytes)
3312 WARN_ON_ONCE(rq->q->mq_ops);
3313 return blk_end_bidi_request(rq, error, nr_bytes, 0);
3315 EXPORT_SYMBOL(blk_end_request);
3318 * blk_end_request_all - Helper function for drives to finish the request.
3319 * @rq: the request to finish
3320 * @error: block status code
3322 * Description:
3323 * Completely finish @rq.
3325 void blk_end_request_all(struct request *rq, blk_status_t error)
3327 bool pending;
3328 unsigned int bidi_bytes = 0;
3330 if (unlikely(blk_bidi_rq(rq)))
3331 bidi_bytes = blk_rq_bytes(rq->next_rq);
3333 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3334 BUG_ON(pending);
3336 EXPORT_SYMBOL(blk_end_request_all);
3339 * __blk_end_request - Helper function for drivers to complete the request.
3340 * @rq: the request being processed
3341 * @error: block status code
3342 * @nr_bytes: number of bytes to complete
3344 * Description:
3345 * Must be called with queue lock held unlike blk_end_request().
3347 * Return:
3348 * %false - we are done with this request
3349 * %true - still buffers pending for this request
3351 bool __blk_end_request(struct request *rq, blk_status_t error,
3352 unsigned int nr_bytes)
3354 lockdep_assert_held(rq->q->queue_lock);
3355 WARN_ON_ONCE(rq->q->mq_ops);
3357 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3359 EXPORT_SYMBOL(__blk_end_request);
3362 * __blk_end_request_all - Helper function for drives to finish the request.
3363 * @rq: the request to finish
3364 * @error: block status code
3366 * Description:
3367 * Completely finish @rq. Must be called with queue lock held.
3369 void __blk_end_request_all(struct request *rq, blk_status_t error)
3371 bool pending;
3372 unsigned int bidi_bytes = 0;
3374 lockdep_assert_held(rq->q->queue_lock);
3375 WARN_ON_ONCE(rq->q->mq_ops);
3377 if (unlikely(blk_bidi_rq(rq)))
3378 bidi_bytes = blk_rq_bytes(rq->next_rq);
3380 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3381 BUG_ON(pending);
3383 EXPORT_SYMBOL(__blk_end_request_all);
3386 * __blk_end_request_cur - Helper function to finish the current request chunk.
3387 * @rq: the request to finish the current chunk for
3388 * @error: block status code
3390 * Description:
3391 * Complete the current consecutively mapped chunk from @rq. Must
3392 * be called with queue lock held.
3394 * Return:
3395 * %false - we are done with this request
3396 * %true - still buffers pending for this request
3398 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3400 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3402 EXPORT_SYMBOL(__blk_end_request_cur);
3404 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3405 struct bio *bio)
3407 if (bio_has_data(bio))
3408 rq->nr_phys_segments = bio_phys_segments(q, bio);
3409 else if (bio_op(bio) == REQ_OP_DISCARD)
3410 rq->nr_phys_segments = 1;
3412 rq->__data_len = bio->bi_iter.bi_size;
3413 rq->bio = rq->biotail = bio;
3415 if (bio->bi_disk)
3416 rq->rq_disk = bio->bi_disk;
3419 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3421 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3422 * @rq: the request to be flushed
3424 * Description:
3425 * Flush all pages in @rq.
3427 void rq_flush_dcache_pages(struct request *rq)
3429 struct req_iterator iter;
3430 struct bio_vec bvec;
3432 rq_for_each_segment(bvec, rq, iter)
3433 flush_dcache_page(bvec.bv_page);
3435 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3436 #endif
3439 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3440 * @q : the queue of the device being checked
3442 * Description:
3443 * Check if underlying low-level drivers of a device are busy.
3444 * If the drivers want to export their busy state, they must set own
3445 * exporting function using blk_queue_lld_busy() first.
3447 * Basically, this function is used only by request stacking drivers
3448 * to stop dispatching requests to underlying devices when underlying
3449 * devices are busy. This behavior helps more I/O merging on the queue
3450 * of the request stacking driver and prevents I/O throughput regression
3451 * on burst I/O load.
3453 * Return:
3454 * 0 - Not busy (The request stacking driver should dispatch request)
3455 * 1 - Busy (The request stacking driver should stop dispatching request)
3457 int blk_lld_busy(struct request_queue *q)
3459 if (q->lld_busy_fn)
3460 return q->lld_busy_fn(q);
3462 return 0;
3464 EXPORT_SYMBOL_GPL(blk_lld_busy);
3467 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3468 * @rq: the clone request to be cleaned up
3470 * Description:
3471 * Free all bios in @rq for a cloned request.
3473 void blk_rq_unprep_clone(struct request *rq)
3475 struct bio *bio;
3477 while ((bio = rq->bio) != NULL) {
3478 rq->bio = bio->bi_next;
3480 bio_put(bio);
3483 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3486 * Copy attributes of the original request to the clone request.
3487 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3489 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3491 dst->cpu = src->cpu;
3492 dst->__sector = blk_rq_pos(src);
3493 dst->__data_len = blk_rq_bytes(src);
3494 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3495 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3496 dst->special_vec = src->special_vec;
3498 dst->nr_phys_segments = src->nr_phys_segments;
3499 dst->ioprio = src->ioprio;
3500 dst->extra_len = src->extra_len;
3504 * blk_rq_prep_clone - Helper function to setup clone request
3505 * @rq: the request to be setup
3506 * @rq_src: original request to be cloned
3507 * @bs: bio_set that bios for clone are allocated from
3508 * @gfp_mask: memory allocation mask for bio
3509 * @bio_ctr: setup function to be called for each clone bio.
3510 * Returns %0 for success, non %0 for failure.
3511 * @data: private data to be passed to @bio_ctr
3513 * Description:
3514 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3515 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3516 * are not copied, and copying such parts is the caller's responsibility.
3517 * Also, pages which the original bios are pointing to are not copied
3518 * and the cloned bios just point same pages.
3519 * So cloned bios must be completed before original bios, which means
3520 * the caller must complete @rq before @rq_src.
3522 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3523 struct bio_set *bs, gfp_t gfp_mask,
3524 int (*bio_ctr)(struct bio *, struct bio *, void *),
3525 void *data)
3527 struct bio *bio, *bio_src;
3529 if (!bs)
3530 bs = &fs_bio_set;
3532 __rq_for_each_bio(bio_src, rq_src) {
3533 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3534 if (!bio)
3535 goto free_and_out;
3537 if (bio_ctr && bio_ctr(bio, bio_src, data))
3538 goto free_and_out;
3540 if (rq->bio) {
3541 rq->biotail->bi_next = bio;
3542 rq->biotail = bio;
3543 } else
3544 rq->bio = rq->biotail = bio;
3547 __blk_rq_prep_clone(rq, rq_src);
3549 return 0;
3551 free_and_out:
3552 if (bio)
3553 bio_put(bio);
3554 blk_rq_unprep_clone(rq);
3556 return -ENOMEM;
3558 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3560 int kblockd_schedule_work(struct work_struct *work)
3562 return queue_work(kblockd_workqueue, work);
3564 EXPORT_SYMBOL(kblockd_schedule_work);
3566 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3568 return queue_work_on(cpu, kblockd_workqueue, work);
3570 EXPORT_SYMBOL(kblockd_schedule_work_on);
3572 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3573 unsigned long delay)
3575 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3577 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3580 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3581 * @plug: The &struct blk_plug that needs to be initialized
3583 * Description:
3584 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3585 * pending I/O should the task end up blocking between blk_start_plug() and
3586 * blk_finish_plug(). This is important from a performance perspective, but
3587 * also ensures that we don't deadlock. For instance, if the task is blocking
3588 * for a memory allocation, memory reclaim could end up wanting to free a
3589 * page belonging to that request that is currently residing in our private
3590 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3591 * this kind of deadlock.
3593 void blk_start_plug(struct blk_plug *plug)
3595 struct task_struct *tsk = current;
3598 * If this is a nested plug, don't actually assign it.
3600 if (tsk->plug)
3601 return;
3603 INIT_LIST_HEAD(&plug->list);
3604 INIT_LIST_HEAD(&plug->mq_list);
3605 INIT_LIST_HEAD(&plug->cb_list);
3607 * Store ordering should not be needed here, since a potential
3608 * preempt will imply a full memory barrier
3610 tsk->plug = plug;
3612 EXPORT_SYMBOL(blk_start_plug);
3614 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3616 struct request *rqa = container_of(a, struct request, queuelist);
3617 struct request *rqb = container_of(b, struct request, queuelist);
3619 return !(rqa->q < rqb->q ||
3620 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3624 * If 'from_schedule' is true, then postpone the dispatch of requests
3625 * until a safe kblockd context. We due this to avoid accidental big
3626 * additional stack usage in driver dispatch, in places where the originally
3627 * plugger did not intend it.
3629 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3630 bool from_schedule)
3631 __releases(q->queue_lock)
3633 lockdep_assert_held(q->queue_lock);
3635 trace_block_unplug(q, depth, !from_schedule);
3637 if (from_schedule)
3638 blk_run_queue_async(q);
3639 else
3640 __blk_run_queue(q);
3641 spin_unlock_irq(q->queue_lock);
3644 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3646 LIST_HEAD(callbacks);
3648 while (!list_empty(&plug->cb_list)) {
3649 list_splice_init(&plug->cb_list, &callbacks);
3651 while (!list_empty(&callbacks)) {
3652 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3653 struct blk_plug_cb,
3654 list);
3655 list_del(&cb->list);
3656 cb->callback(cb, from_schedule);
3661 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3662 int size)
3664 struct blk_plug *plug = current->plug;
3665 struct blk_plug_cb *cb;
3667 if (!plug)
3668 return NULL;
3670 list_for_each_entry(cb, &plug->cb_list, list)
3671 if (cb->callback == unplug && cb->data == data)
3672 return cb;
3674 /* Not currently on the callback list */
3675 BUG_ON(size < sizeof(*cb));
3676 cb = kzalloc(size, GFP_ATOMIC);
3677 if (cb) {
3678 cb->data = data;
3679 cb->callback = unplug;
3680 list_add(&cb->list, &plug->cb_list);
3682 return cb;
3684 EXPORT_SYMBOL(blk_check_plugged);
3686 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3688 struct request_queue *q;
3689 struct request *rq;
3690 LIST_HEAD(list);
3691 unsigned int depth;
3693 flush_plug_callbacks(plug, from_schedule);
3695 if (!list_empty(&plug->mq_list))
3696 blk_mq_flush_plug_list(plug, from_schedule);
3698 if (list_empty(&plug->list))
3699 return;
3701 list_splice_init(&plug->list, &list);
3703 list_sort(NULL, &list, plug_rq_cmp);
3705 q = NULL;
3706 depth = 0;
3708 while (!list_empty(&list)) {
3709 rq = list_entry_rq(list.next);
3710 list_del_init(&rq->queuelist);
3711 BUG_ON(!rq->q);
3712 if (rq->q != q) {
3714 * This drops the queue lock
3716 if (q)
3717 queue_unplugged(q, depth, from_schedule);
3718 q = rq->q;
3719 depth = 0;
3720 spin_lock_irq(q->queue_lock);
3724 * Short-circuit if @q is dead
3726 if (unlikely(blk_queue_dying(q))) {
3727 __blk_end_request_all(rq, BLK_STS_IOERR);
3728 continue;
3732 * rq is already accounted, so use raw insert
3734 if (op_is_flush(rq->cmd_flags))
3735 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3736 else
3737 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3739 depth++;
3743 * This drops the queue lock
3745 if (q)
3746 queue_unplugged(q, depth, from_schedule);
3749 void blk_finish_plug(struct blk_plug *plug)
3751 if (plug != current->plug)
3752 return;
3753 blk_flush_plug_list(plug, false);
3755 current->plug = NULL;
3757 EXPORT_SYMBOL(blk_finish_plug);
3759 #ifdef CONFIG_PM
3761 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3762 * @q: the queue of the device
3763 * @dev: the device the queue belongs to
3765 * Description:
3766 * Initialize runtime-PM-related fields for @q and start auto suspend for
3767 * @dev. Drivers that want to take advantage of request-based runtime PM
3768 * should call this function after @dev has been initialized, and its
3769 * request queue @q has been allocated, and runtime PM for it can not happen
3770 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3771 * cases, driver should call this function before any I/O has taken place.
3773 * This function takes care of setting up using auto suspend for the device,
3774 * the autosuspend delay is set to -1 to make runtime suspend impossible
3775 * until an updated value is either set by user or by driver. Drivers do
3776 * not need to touch other autosuspend settings.
3778 * The block layer runtime PM is request based, so only works for drivers
3779 * that use request as their IO unit instead of those directly use bio's.
3781 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3783 /* Don't enable runtime PM for blk-mq until it is ready */
3784 if (q->mq_ops) {
3785 pm_runtime_disable(dev);
3786 return;
3789 q->dev = dev;
3790 q->rpm_status = RPM_ACTIVE;
3791 pm_runtime_set_autosuspend_delay(q->dev, -1);
3792 pm_runtime_use_autosuspend(q->dev);
3794 EXPORT_SYMBOL(blk_pm_runtime_init);
3797 * blk_pre_runtime_suspend - Pre runtime suspend check
3798 * @q: the queue of the device
3800 * Description:
3801 * This function will check if runtime suspend is allowed for the device
3802 * by examining if there are any requests pending in the queue. If there
3803 * are requests pending, the device can not be runtime suspended; otherwise,
3804 * the queue's status will be updated to SUSPENDING and the driver can
3805 * proceed to suspend the device.
3807 * For the not allowed case, we mark last busy for the device so that
3808 * runtime PM core will try to autosuspend it some time later.
3810 * This function should be called near the start of the device's
3811 * runtime_suspend callback.
3813 * Return:
3814 * 0 - OK to runtime suspend the device
3815 * -EBUSY - Device should not be runtime suspended
3817 int blk_pre_runtime_suspend(struct request_queue *q)
3819 int ret = 0;
3821 if (!q->dev)
3822 return ret;
3824 spin_lock_irq(q->queue_lock);
3825 if (q->nr_pending) {
3826 ret = -EBUSY;
3827 pm_runtime_mark_last_busy(q->dev);
3828 } else {
3829 q->rpm_status = RPM_SUSPENDING;
3831 spin_unlock_irq(q->queue_lock);
3832 return ret;
3834 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3837 * blk_post_runtime_suspend - Post runtime suspend processing
3838 * @q: the queue of the device
3839 * @err: return value of the device's runtime_suspend function
3841 * Description:
3842 * Update the queue's runtime status according to the return value of the
3843 * device's runtime suspend function and mark last busy for the device so
3844 * that PM core will try to auto suspend the device at a later time.
3846 * This function should be called near the end of the device's
3847 * runtime_suspend callback.
3849 void blk_post_runtime_suspend(struct request_queue *q, int err)
3851 if (!q->dev)
3852 return;
3854 spin_lock_irq(q->queue_lock);
3855 if (!err) {
3856 q->rpm_status = RPM_SUSPENDED;
3857 } else {
3858 q->rpm_status = RPM_ACTIVE;
3859 pm_runtime_mark_last_busy(q->dev);
3861 spin_unlock_irq(q->queue_lock);
3863 EXPORT_SYMBOL(blk_post_runtime_suspend);
3866 * blk_pre_runtime_resume - Pre runtime resume processing
3867 * @q: the queue of the device
3869 * Description:
3870 * Update the queue's runtime status to RESUMING in preparation for the
3871 * runtime resume of the device.
3873 * This function should be called near the start of the device's
3874 * runtime_resume callback.
3876 void blk_pre_runtime_resume(struct request_queue *q)
3878 if (!q->dev)
3879 return;
3881 spin_lock_irq(q->queue_lock);
3882 q->rpm_status = RPM_RESUMING;
3883 spin_unlock_irq(q->queue_lock);
3885 EXPORT_SYMBOL(blk_pre_runtime_resume);
3888 * blk_post_runtime_resume - Post runtime resume processing
3889 * @q: the queue of the device
3890 * @err: return value of the device's runtime_resume function
3892 * Description:
3893 * Update the queue's runtime status according to the return value of the
3894 * device's runtime_resume function. If it is successfully resumed, process
3895 * the requests that are queued into the device's queue when it is resuming
3896 * and then mark last busy and initiate autosuspend for it.
3898 * This function should be called near the end of the device's
3899 * runtime_resume callback.
3901 void blk_post_runtime_resume(struct request_queue *q, int err)
3903 if (!q->dev)
3904 return;
3906 spin_lock_irq(q->queue_lock);
3907 if (!err) {
3908 q->rpm_status = RPM_ACTIVE;
3909 __blk_run_queue(q);
3910 pm_runtime_mark_last_busy(q->dev);
3911 pm_request_autosuspend(q->dev);
3912 } else {
3913 q->rpm_status = RPM_SUSPENDED;
3915 spin_unlock_irq(q->queue_lock);
3917 EXPORT_SYMBOL(blk_post_runtime_resume);
3920 * blk_set_runtime_active - Force runtime status of the queue to be active
3921 * @q: the queue of the device
3923 * If the device is left runtime suspended during system suspend the resume
3924 * hook typically resumes the device and corrects runtime status
3925 * accordingly. However, that does not affect the queue runtime PM status
3926 * which is still "suspended". This prevents processing requests from the
3927 * queue.
3929 * This function can be used in driver's resume hook to correct queue
3930 * runtime PM status and re-enable peeking requests from the queue. It
3931 * should be called before first request is added to the queue.
3933 void blk_set_runtime_active(struct request_queue *q)
3935 spin_lock_irq(q->queue_lock);
3936 q->rpm_status = RPM_ACTIVE;
3937 pm_runtime_mark_last_busy(q->dev);
3938 pm_request_autosuspend(q->dev);
3939 spin_unlock_irq(q->queue_lock);
3941 EXPORT_SYMBOL(blk_set_runtime_active);
3942 #endif
3944 int __init blk_dev_init(void)
3946 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3947 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3948 FIELD_SIZEOF(struct request, cmd_flags));
3949 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3950 FIELD_SIZEOF(struct bio, bi_opf));
3952 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3953 kblockd_workqueue = alloc_workqueue("kblockd",
3954 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3955 if (!kblockd_workqueue)
3956 panic("Failed to create kblockd\n");
3958 request_cachep = kmem_cache_create("blkdev_requests",
3959 sizeof(struct request), 0, SLAB_PANIC, NULL);
3961 blk_requestq_cachep = kmem_cache_create("request_queue",
3962 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3964 #ifdef CONFIG_DEBUG_FS
3965 blk_debugfs_root = debugfs_create_dir("block", NULL);
3966 #endif
3968 return 0;