2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/vmalloc.h>
24 #include "transaction.h"
25 #include "delayed-ref.h"
28 /* Just an arbitrary number so we can be sure this happened */
29 #define BACKREF_FOUND_SHARED 6
31 struct extent_inode_elem
{
34 struct extent_inode_elem
*next
;
37 static int check_extent_in_eb(struct btrfs_key
*key
, struct extent_buffer
*eb
,
38 struct btrfs_file_extent_item
*fi
,
40 struct extent_inode_elem
**eie
)
43 struct extent_inode_elem
*e
;
45 if (!btrfs_file_extent_compression(eb
, fi
) &&
46 !btrfs_file_extent_encryption(eb
, fi
) &&
47 !btrfs_file_extent_other_encoding(eb
, fi
)) {
51 data_offset
= btrfs_file_extent_offset(eb
, fi
);
52 data_len
= btrfs_file_extent_num_bytes(eb
, fi
);
54 if (extent_item_pos
< data_offset
||
55 extent_item_pos
>= data_offset
+ data_len
)
57 offset
= extent_item_pos
- data_offset
;
60 e
= kmalloc(sizeof(*e
), GFP_NOFS
);
65 e
->inum
= key
->objectid
;
66 e
->offset
= key
->offset
+ offset
;
72 static void free_inode_elem_list(struct extent_inode_elem
*eie
)
74 struct extent_inode_elem
*eie_next
;
76 for (; eie
; eie
= eie_next
) {
82 static int find_extent_in_eb(struct extent_buffer
*eb
, u64 wanted_disk_byte
,
84 struct extent_inode_elem
**eie
)
88 struct btrfs_file_extent_item
*fi
;
95 * from the shared data ref, we only have the leaf but we need
96 * the key. thus, we must look into all items and see that we
97 * find one (some) with a reference to our extent item.
99 nritems
= btrfs_header_nritems(eb
);
100 for (slot
= 0; slot
< nritems
; ++slot
) {
101 btrfs_item_key_to_cpu(eb
, &key
, slot
);
102 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
104 fi
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
105 extent_type
= btrfs_file_extent_type(eb
, fi
);
106 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
)
108 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
109 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
110 if (disk_byte
!= wanted_disk_byte
)
113 ret
= check_extent_in_eb(&key
, eb
, fi
, extent_item_pos
, eie
);
122 * this structure records all encountered refs on the way up to the root
124 struct __prelim_ref
{
125 struct list_head list
;
127 struct btrfs_key key_for_search
;
130 struct extent_inode_elem
*inode_list
;
132 u64 wanted_disk_byte
;
135 static struct kmem_cache
*btrfs_prelim_ref_cache
;
137 int __init
btrfs_prelim_ref_init(void)
139 btrfs_prelim_ref_cache
= kmem_cache_create("btrfs_prelim_ref",
140 sizeof(struct __prelim_ref
),
142 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
144 if (!btrfs_prelim_ref_cache
)
149 void btrfs_prelim_ref_exit(void)
151 if (btrfs_prelim_ref_cache
)
152 kmem_cache_destroy(btrfs_prelim_ref_cache
);
156 * the rules for all callers of this function are:
157 * - obtaining the parent is the goal
158 * - if you add a key, you must know that it is a correct key
159 * - if you cannot add the parent or a correct key, then we will look into the
160 * block later to set a correct key
164 * backref type | shared | indirect | shared | indirect
165 * information | tree | tree | data | data
166 * --------------------+--------+----------+--------+----------
167 * parent logical | y | - | - | -
168 * key to resolve | - | y | y | y
169 * tree block logical | - | - | - | -
170 * root for resolving | y | y | y | y
172 * - column 1: we've the parent -> done
173 * - column 2, 3, 4: we use the key to find the parent
175 * on disk refs (inline or keyed)
176 * ==============================
177 * backref type | shared | indirect | shared | indirect
178 * information | tree | tree | data | data
179 * --------------------+--------+----------+--------+----------
180 * parent logical | y | - | y | -
181 * key to resolve | - | - | - | y
182 * tree block logical | y | y | y | y
183 * root for resolving | - | y | y | y
185 * - column 1, 3: we've the parent -> done
186 * - column 2: we take the first key from the block to find the parent
187 * (see __add_missing_keys)
188 * - column 4: we use the key to find the parent
190 * additional information that's available but not required to find the parent
191 * block might help in merging entries to gain some speed.
194 static int __add_prelim_ref(struct list_head
*head
, u64 root_id
,
195 struct btrfs_key
*key
, int level
,
196 u64 parent
, u64 wanted_disk_byte
, int count
,
199 struct __prelim_ref
*ref
;
201 if (root_id
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
204 ref
= kmem_cache_alloc(btrfs_prelim_ref_cache
, gfp_mask
);
208 ref
->root_id
= root_id
;
210 ref
->key_for_search
= *key
;
212 memset(&ref
->key_for_search
, 0, sizeof(ref
->key_for_search
));
214 ref
->inode_list
= NULL
;
217 ref
->parent
= parent
;
218 ref
->wanted_disk_byte
= wanted_disk_byte
;
219 list_add_tail(&ref
->list
, head
);
224 static int add_all_parents(struct btrfs_root
*root
, struct btrfs_path
*path
,
225 struct ulist
*parents
, struct __prelim_ref
*ref
,
226 int level
, u64 time_seq
, const u64
*extent_item_pos
,
231 struct extent_buffer
*eb
;
232 struct btrfs_key key
;
233 struct btrfs_key
*key_for_search
= &ref
->key_for_search
;
234 struct btrfs_file_extent_item
*fi
;
235 struct extent_inode_elem
*eie
= NULL
, *old
= NULL
;
237 u64 wanted_disk_byte
= ref
->wanted_disk_byte
;
241 eb
= path
->nodes
[level
];
242 ret
= ulist_add(parents
, eb
->start
, 0, GFP_NOFS
);
249 * We normally enter this function with the path already pointing to
250 * the first item to check. But sometimes, we may enter it with
251 * slot==nritems. In that case, go to the next leaf before we continue.
253 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0]))
254 ret
= btrfs_next_old_leaf(root
, path
, time_seq
);
256 while (!ret
&& count
< total_refs
) {
258 slot
= path
->slots
[0];
260 btrfs_item_key_to_cpu(eb
, &key
, slot
);
262 if (key
.objectid
!= key_for_search
->objectid
||
263 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
266 fi
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
267 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
269 if (disk_byte
== wanted_disk_byte
) {
273 if (extent_item_pos
) {
274 ret
= check_extent_in_eb(&key
, eb
, fi
,
282 ret
= ulist_add_merge_ptr(parents
, eb
->start
,
283 eie
, (void **)&old
, GFP_NOFS
);
286 if (!ret
&& extent_item_pos
) {
294 ret
= btrfs_next_old_item(root
, path
, time_seq
);
300 free_inode_elem_list(eie
);
305 * resolve an indirect backref in the form (root_id, key, level)
306 * to a logical address
308 static int __resolve_indirect_ref(struct btrfs_fs_info
*fs_info
,
309 struct btrfs_path
*path
, u64 time_seq
,
310 struct __prelim_ref
*ref
,
311 struct ulist
*parents
,
312 const u64
*extent_item_pos
, u64 total_refs
)
314 struct btrfs_root
*root
;
315 struct btrfs_key root_key
;
316 struct extent_buffer
*eb
;
319 int level
= ref
->level
;
322 root_key
.objectid
= ref
->root_id
;
323 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
324 root_key
.offset
= (u64
)-1;
326 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
328 root
= btrfs_read_fs_root_no_name(fs_info
, &root_key
);
330 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
335 if (path
->search_commit_root
)
336 root_level
= btrfs_header_level(root
->commit_root
);
338 root_level
= btrfs_old_root_level(root
, time_seq
);
340 if (root_level
+ 1 == level
) {
341 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
345 path
->lowest_level
= level
;
346 ret
= btrfs_search_old_slot(root
, &ref
->key_for_search
, path
, time_seq
);
348 /* root node has been locked, we can release @subvol_srcu safely here */
349 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
351 pr_debug("search slot in root %llu (level %d, ref count %d) returned "
352 "%d for key (%llu %u %llu)\n",
353 ref
->root_id
, level
, ref
->count
, ret
,
354 ref
->key_for_search
.objectid
, ref
->key_for_search
.type
,
355 ref
->key_for_search
.offset
);
359 eb
= path
->nodes
[level
];
361 if (WARN_ON(!level
)) {
366 eb
= path
->nodes
[level
];
369 ret
= add_all_parents(root
, path
, parents
, ref
, level
, time_seq
,
370 extent_item_pos
, total_refs
);
372 path
->lowest_level
= 0;
373 btrfs_release_path(path
);
378 * resolve all indirect backrefs from the list
380 static int __resolve_indirect_refs(struct btrfs_fs_info
*fs_info
,
381 struct btrfs_path
*path
, u64 time_seq
,
382 struct list_head
*head
,
383 const u64
*extent_item_pos
, u64 total_refs
,
388 struct __prelim_ref
*ref
;
389 struct __prelim_ref
*ref_safe
;
390 struct __prelim_ref
*new_ref
;
391 struct ulist
*parents
;
392 struct ulist_node
*node
;
393 struct ulist_iterator uiter
;
395 parents
= ulist_alloc(GFP_NOFS
);
400 * _safe allows us to insert directly after the current item without
401 * iterating over the newly inserted items.
402 * we're also allowed to re-assign ref during iteration.
404 list_for_each_entry_safe(ref
, ref_safe
, head
, list
) {
405 if (ref
->parent
) /* already direct */
409 if (root_objectid
&& ref
->root_id
!= root_objectid
) {
410 ret
= BACKREF_FOUND_SHARED
;
413 err
= __resolve_indirect_ref(fs_info
, path
, time_seq
, ref
,
414 parents
, extent_item_pos
,
417 * we can only tolerate ENOENT,otherwise,we should catch error
418 * and return directly.
420 if (err
== -ENOENT
) {
427 /* we put the first parent into the ref at hand */
428 ULIST_ITER_INIT(&uiter
);
429 node
= ulist_next(parents
, &uiter
);
430 ref
->parent
= node
? node
->val
: 0;
431 ref
->inode_list
= node
?
432 (struct extent_inode_elem
*)(uintptr_t)node
->aux
: NULL
;
434 /* additional parents require new refs being added here */
435 while ((node
= ulist_next(parents
, &uiter
))) {
436 new_ref
= kmem_cache_alloc(btrfs_prelim_ref_cache
,
442 memcpy(new_ref
, ref
, sizeof(*ref
));
443 new_ref
->parent
= node
->val
;
444 new_ref
->inode_list
= (struct extent_inode_elem
*)
445 (uintptr_t)node
->aux
;
446 list_add(&new_ref
->list
, &ref
->list
);
448 ulist_reinit(parents
);
455 static inline int ref_for_same_block(struct __prelim_ref
*ref1
,
456 struct __prelim_ref
*ref2
)
458 if (ref1
->level
!= ref2
->level
)
460 if (ref1
->root_id
!= ref2
->root_id
)
462 if (ref1
->key_for_search
.type
!= ref2
->key_for_search
.type
)
464 if (ref1
->key_for_search
.objectid
!= ref2
->key_for_search
.objectid
)
466 if (ref1
->key_for_search
.offset
!= ref2
->key_for_search
.offset
)
468 if (ref1
->parent
!= ref2
->parent
)
475 * read tree blocks and add keys where required.
477 static int __add_missing_keys(struct btrfs_fs_info
*fs_info
,
478 struct list_head
*head
)
480 struct list_head
*pos
;
481 struct extent_buffer
*eb
;
483 list_for_each(pos
, head
) {
484 struct __prelim_ref
*ref
;
485 ref
= list_entry(pos
, struct __prelim_ref
, list
);
489 if (ref
->key_for_search
.type
)
491 BUG_ON(!ref
->wanted_disk_byte
);
492 eb
= read_tree_block(fs_info
->tree_root
, ref
->wanted_disk_byte
,
494 if (!eb
|| !extent_buffer_uptodate(eb
)) {
495 free_extent_buffer(eb
);
498 btrfs_tree_read_lock(eb
);
499 if (btrfs_header_level(eb
) == 0)
500 btrfs_item_key_to_cpu(eb
, &ref
->key_for_search
, 0);
502 btrfs_node_key_to_cpu(eb
, &ref
->key_for_search
, 0);
503 btrfs_tree_read_unlock(eb
);
504 free_extent_buffer(eb
);
510 * merge two lists of backrefs and adjust counts accordingly
512 * mode = 1: merge identical keys, if key is set
513 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
514 * additionally, we could even add a key range for the blocks we
515 * looked into to merge even more (-> replace unresolved refs by those
517 * mode = 2: merge identical parents
519 static void __merge_refs(struct list_head
*head
, int mode
)
521 struct list_head
*pos1
;
523 list_for_each(pos1
, head
) {
524 struct list_head
*n2
;
525 struct list_head
*pos2
;
526 struct __prelim_ref
*ref1
;
528 ref1
= list_entry(pos1
, struct __prelim_ref
, list
);
530 for (pos2
= pos1
->next
, n2
= pos2
->next
; pos2
!= head
;
531 pos2
= n2
, n2
= pos2
->next
) {
532 struct __prelim_ref
*ref2
;
533 struct __prelim_ref
*xchg
;
534 struct extent_inode_elem
*eie
;
536 ref2
= list_entry(pos2
, struct __prelim_ref
, list
);
539 if (!ref_for_same_block(ref1
, ref2
))
541 if (!ref1
->parent
&& ref2
->parent
) {
547 if (ref1
->parent
!= ref2
->parent
)
551 eie
= ref1
->inode_list
;
552 while (eie
&& eie
->next
)
555 eie
->next
= ref2
->inode_list
;
557 ref1
->inode_list
= ref2
->inode_list
;
558 ref1
->count
+= ref2
->count
;
560 list_del(&ref2
->list
);
561 kmem_cache_free(btrfs_prelim_ref_cache
, ref2
);
568 * add all currently queued delayed refs from this head whose seq nr is
569 * smaller or equal that seq to the list
571 static int __add_delayed_refs(struct btrfs_delayed_ref_head
*head
, u64 seq
,
572 struct list_head
*prefs
, u64
*total_refs
,
575 struct btrfs_delayed_extent_op
*extent_op
= head
->extent_op
;
576 struct rb_node
*n
= &head
->node
.rb_node
;
577 struct btrfs_key key
;
578 struct btrfs_key op_key
= {0};
582 if (extent_op
&& extent_op
->update_key
)
583 btrfs_disk_key_to_cpu(&op_key
, &extent_op
->key
);
585 spin_lock(&head
->lock
);
586 n
= rb_first(&head
->ref_root
);
588 struct btrfs_delayed_ref_node
*node
;
589 node
= rb_entry(n
, struct btrfs_delayed_ref_node
,
595 switch (node
->action
) {
596 case BTRFS_ADD_DELAYED_EXTENT
:
597 case BTRFS_UPDATE_DELAYED_HEAD
:
600 case BTRFS_ADD_DELAYED_REF
:
603 case BTRFS_DROP_DELAYED_REF
:
609 *total_refs
+= (node
->ref_mod
* sgn
);
610 switch (node
->type
) {
611 case BTRFS_TREE_BLOCK_REF_KEY
: {
612 struct btrfs_delayed_tree_ref
*ref
;
614 ref
= btrfs_delayed_node_to_tree_ref(node
);
615 ret
= __add_prelim_ref(prefs
, ref
->root
, &op_key
,
616 ref
->level
+ 1, 0, node
->bytenr
,
617 node
->ref_mod
* sgn
, GFP_ATOMIC
);
620 case BTRFS_SHARED_BLOCK_REF_KEY
: {
621 struct btrfs_delayed_tree_ref
*ref
;
623 ref
= btrfs_delayed_node_to_tree_ref(node
);
624 ret
= __add_prelim_ref(prefs
, ref
->root
, NULL
,
625 ref
->level
+ 1, ref
->parent
,
627 node
->ref_mod
* sgn
, GFP_ATOMIC
);
630 case BTRFS_EXTENT_DATA_REF_KEY
: {
631 struct btrfs_delayed_data_ref
*ref
;
632 ref
= btrfs_delayed_node_to_data_ref(node
);
634 key
.objectid
= ref
->objectid
;
635 key
.type
= BTRFS_EXTENT_DATA_KEY
;
636 key
.offset
= ref
->offset
;
639 * Found a inum that doesn't match our known inum, we
642 if (inum
&& ref
->objectid
!= inum
) {
643 ret
= BACKREF_FOUND_SHARED
;
647 ret
= __add_prelim_ref(prefs
, ref
->root
, &key
, 0, 0,
649 node
->ref_mod
* sgn
, GFP_ATOMIC
);
652 case BTRFS_SHARED_DATA_REF_KEY
: {
653 struct btrfs_delayed_data_ref
*ref
;
655 ref
= btrfs_delayed_node_to_data_ref(node
);
657 key
.objectid
= ref
->objectid
;
658 key
.type
= BTRFS_EXTENT_DATA_KEY
;
659 key
.offset
= ref
->offset
;
660 ret
= __add_prelim_ref(prefs
, ref
->root
, &key
, 0,
661 ref
->parent
, node
->bytenr
,
662 node
->ref_mod
* sgn
, GFP_ATOMIC
);
671 spin_unlock(&head
->lock
);
676 * add all inline backrefs for bytenr to the list
678 static int __add_inline_refs(struct btrfs_fs_info
*fs_info
,
679 struct btrfs_path
*path
, u64 bytenr
,
680 int *info_level
, struct list_head
*prefs
,
681 u64
*total_refs
, u64 inum
)
685 struct extent_buffer
*leaf
;
686 struct btrfs_key key
;
687 struct btrfs_key found_key
;
690 struct btrfs_extent_item
*ei
;
695 * enumerate all inline refs
697 leaf
= path
->nodes
[0];
698 slot
= path
->slots
[0];
700 item_size
= btrfs_item_size_nr(leaf
, slot
);
701 BUG_ON(item_size
< sizeof(*ei
));
703 ei
= btrfs_item_ptr(leaf
, slot
, struct btrfs_extent_item
);
704 flags
= btrfs_extent_flags(leaf
, ei
);
705 *total_refs
+= btrfs_extent_refs(leaf
, ei
);
706 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
708 ptr
= (unsigned long)(ei
+ 1);
709 end
= (unsigned long)ei
+ item_size
;
711 if (found_key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
712 flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
713 struct btrfs_tree_block_info
*info
;
715 info
= (struct btrfs_tree_block_info
*)ptr
;
716 *info_level
= btrfs_tree_block_level(leaf
, info
);
717 ptr
+= sizeof(struct btrfs_tree_block_info
);
719 } else if (found_key
.type
== BTRFS_METADATA_ITEM_KEY
) {
720 *info_level
= found_key
.offset
;
722 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_DATA
));
726 struct btrfs_extent_inline_ref
*iref
;
730 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
731 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
732 offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
735 case BTRFS_SHARED_BLOCK_REF_KEY
:
736 ret
= __add_prelim_ref(prefs
, 0, NULL
,
737 *info_level
+ 1, offset
,
738 bytenr
, 1, GFP_NOFS
);
740 case BTRFS_SHARED_DATA_REF_KEY
: {
741 struct btrfs_shared_data_ref
*sdref
;
744 sdref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
745 count
= btrfs_shared_data_ref_count(leaf
, sdref
);
746 ret
= __add_prelim_ref(prefs
, 0, NULL
, 0, offset
,
747 bytenr
, count
, GFP_NOFS
);
750 case BTRFS_TREE_BLOCK_REF_KEY
:
751 ret
= __add_prelim_ref(prefs
, offset
, NULL
,
753 bytenr
, 1, GFP_NOFS
);
755 case BTRFS_EXTENT_DATA_REF_KEY
: {
756 struct btrfs_extent_data_ref
*dref
;
760 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
761 count
= btrfs_extent_data_ref_count(leaf
, dref
);
762 key
.objectid
= btrfs_extent_data_ref_objectid(leaf
,
764 key
.type
= BTRFS_EXTENT_DATA_KEY
;
765 key
.offset
= btrfs_extent_data_ref_offset(leaf
, dref
);
767 if (inum
&& key
.objectid
!= inum
) {
768 ret
= BACKREF_FOUND_SHARED
;
772 root
= btrfs_extent_data_ref_root(leaf
, dref
);
773 ret
= __add_prelim_ref(prefs
, root
, &key
, 0, 0,
774 bytenr
, count
, GFP_NOFS
);
782 ptr
+= btrfs_extent_inline_ref_size(type
);
789 * add all non-inline backrefs for bytenr to the list
791 static int __add_keyed_refs(struct btrfs_fs_info
*fs_info
,
792 struct btrfs_path
*path
, u64 bytenr
,
793 int info_level
, struct list_head
*prefs
, u64 inum
)
795 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
798 struct extent_buffer
*leaf
;
799 struct btrfs_key key
;
802 ret
= btrfs_next_item(extent_root
, path
);
810 slot
= path
->slots
[0];
811 leaf
= path
->nodes
[0];
812 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
814 if (key
.objectid
!= bytenr
)
816 if (key
.type
< BTRFS_TREE_BLOCK_REF_KEY
)
818 if (key
.type
> BTRFS_SHARED_DATA_REF_KEY
)
822 case BTRFS_SHARED_BLOCK_REF_KEY
:
823 ret
= __add_prelim_ref(prefs
, 0, NULL
,
824 info_level
+ 1, key
.offset
,
825 bytenr
, 1, GFP_NOFS
);
827 case BTRFS_SHARED_DATA_REF_KEY
: {
828 struct btrfs_shared_data_ref
*sdref
;
831 sdref
= btrfs_item_ptr(leaf
, slot
,
832 struct btrfs_shared_data_ref
);
833 count
= btrfs_shared_data_ref_count(leaf
, sdref
);
834 ret
= __add_prelim_ref(prefs
, 0, NULL
, 0, key
.offset
,
835 bytenr
, count
, GFP_NOFS
);
838 case BTRFS_TREE_BLOCK_REF_KEY
:
839 ret
= __add_prelim_ref(prefs
, key
.offset
, NULL
,
841 bytenr
, 1, GFP_NOFS
);
843 case BTRFS_EXTENT_DATA_REF_KEY
: {
844 struct btrfs_extent_data_ref
*dref
;
848 dref
= btrfs_item_ptr(leaf
, slot
,
849 struct btrfs_extent_data_ref
);
850 count
= btrfs_extent_data_ref_count(leaf
, dref
);
851 key
.objectid
= btrfs_extent_data_ref_objectid(leaf
,
853 key
.type
= BTRFS_EXTENT_DATA_KEY
;
854 key
.offset
= btrfs_extent_data_ref_offset(leaf
, dref
);
856 if (inum
&& key
.objectid
!= inum
) {
857 ret
= BACKREF_FOUND_SHARED
;
861 root
= btrfs_extent_data_ref_root(leaf
, dref
);
862 ret
= __add_prelim_ref(prefs
, root
, &key
, 0, 0,
863 bytenr
, count
, GFP_NOFS
);
878 * this adds all existing backrefs (inline backrefs, backrefs and delayed
879 * refs) for the given bytenr to the refs list, merges duplicates and resolves
880 * indirect refs to their parent bytenr.
881 * When roots are found, they're added to the roots list
883 * FIXME some caching might speed things up
885 static int find_parent_nodes(struct btrfs_trans_handle
*trans
,
886 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
887 u64 time_seq
, struct ulist
*refs
,
888 struct ulist
*roots
, const u64
*extent_item_pos
,
889 u64 root_objectid
, u64 inum
)
891 struct btrfs_key key
;
892 struct btrfs_path
*path
;
893 struct btrfs_delayed_ref_root
*delayed_refs
= NULL
;
894 struct btrfs_delayed_ref_head
*head
;
897 struct list_head prefs_delayed
;
898 struct list_head prefs
;
899 struct __prelim_ref
*ref
;
900 struct extent_inode_elem
*eie
= NULL
;
903 INIT_LIST_HEAD(&prefs
);
904 INIT_LIST_HEAD(&prefs_delayed
);
906 key
.objectid
= bytenr
;
907 key
.offset
= (u64
)-1;
908 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
909 key
.type
= BTRFS_METADATA_ITEM_KEY
;
911 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
913 path
= btrfs_alloc_path();
917 path
->search_commit_root
= 1;
918 path
->skip_locking
= 1;
922 * grab both a lock on the path and a lock on the delayed ref head.
923 * We need both to get a consistent picture of how the refs look
924 * at a specified point in time
929 ret
= btrfs_search_slot(trans
, fs_info
->extent_root
, &key
, path
, 0, 0);
934 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
935 if (trans
&& likely(trans
->type
!= __TRANS_DUMMY
)) {
940 * look if there are updates for this ref queued and lock the
943 delayed_refs
= &trans
->transaction
->delayed_refs
;
944 spin_lock(&delayed_refs
->lock
);
945 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
947 if (!mutex_trylock(&head
->mutex
)) {
948 atomic_inc(&head
->node
.refs
);
949 spin_unlock(&delayed_refs
->lock
);
951 btrfs_release_path(path
);
954 * Mutex was contended, block until it's
955 * released and try again
957 mutex_lock(&head
->mutex
);
958 mutex_unlock(&head
->mutex
);
959 btrfs_put_delayed_ref(&head
->node
);
962 spin_unlock(&delayed_refs
->lock
);
963 ret
= __add_delayed_refs(head
, time_seq
,
964 &prefs_delayed
, &total_refs
,
966 mutex_unlock(&head
->mutex
);
970 spin_unlock(&delayed_refs
->lock
);
974 if (path
->slots
[0]) {
975 struct extent_buffer
*leaf
;
979 leaf
= path
->nodes
[0];
980 slot
= path
->slots
[0];
981 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
982 if (key
.objectid
== bytenr
&&
983 (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
984 key
.type
== BTRFS_METADATA_ITEM_KEY
)) {
985 ret
= __add_inline_refs(fs_info
, path
, bytenr
,
990 ret
= __add_keyed_refs(fs_info
, path
, bytenr
,
991 info_level
, &prefs
, inum
);
996 btrfs_release_path(path
);
998 list_splice_init(&prefs_delayed
, &prefs
);
1000 ret
= __add_missing_keys(fs_info
, &prefs
);
1004 __merge_refs(&prefs
, 1);
1006 ret
= __resolve_indirect_refs(fs_info
, path
, time_seq
, &prefs
,
1007 extent_item_pos
, total_refs
,
1012 __merge_refs(&prefs
, 2);
1014 while (!list_empty(&prefs
)) {
1015 ref
= list_first_entry(&prefs
, struct __prelim_ref
, list
);
1016 WARN_ON(ref
->count
< 0);
1017 if (roots
&& ref
->count
&& ref
->root_id
&& ref
->parent
== 0) {
1018 if (root_objectid
&& ref
->root_id
!= root_objectid
) {
1019 ret
= BACKREF_FOUND_SHARED
;
1023 /* no parent == root of tree */
1024 ret
= ulist_add(roots
, ref
->root_id
, 0, GFP_NOFS
);
1028 if (ref
->count
&& ref
->parent
) {
1029 if (extent_item_pos
&& !ref
->inode_list
&&
1031 struct extent_buffer
*eb
;
1033 eb
= read_tree_block(fs_info
->extent_root
,
1035 if (!eb
|| !extent_buffer_uptodate(eb
)) {
1036 free_extent_buffer(eb
);
1040 btrfs_tree_read_lock(eb
);
1041 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1042 ret
= find_extent_in_eb(eb
, bytenr
,
1043 *extent_item_pos
, &eie
);
1044 btrfs_tree_read_unlock_blocking(eb
);
1045 free_extent_buffer(eb
);
1048 ref
->inode_list
= eie
;
1050 ret
= ulist_add_merge_ptr(refs
, ref
->parent
,
1052 (void **)&eie
, GFP_NOFS
);
1055 if (!ret
&& extent_item_pos
) {
1057 * we've recorded that parent, so we must extend
1058 * its inode list here
1063 eie
->next
= ref
->inode_list
;
1067 list_del(&ref
->list
);
1068 kmem_cache_free(btrfs_prelim_ref_cache
, ref
);
1072 btrfs_free_path(path
);
1073 while (!list_empty(&prefs
)) {
1074 ref
= list_first_entry(&prefs
, struct __prelim_ref
, list
);
1075 list_del(&ref
->list
);
1076 kmem_cache_free(btrfs_prelim_ref_cache
, ref
);
1078 while (!list_empty(&prefs_delayed
)) {
1079 ref
= list_first_entry(&prefs_delayed
, struct __prelim_ref
,
1081 list_del(&ref
->list
);
1082 kmem_cache_free(btrfs_prelim_ref_cache
, ref
);
1085 free_inode_elem_list(eie
);
1089 static void free_leaf_list(struct ulist
*blocks
)
1091 struct ulist_node
*node
= NULL
;
1092 struct extent_inode_elem
*eie
;
1093 struct ulist_iterator uiter
;
1095 ULIST_ITER_INIT(&uiter
);
1096 while ((node
= ulist_next(blocks
, &uiter
))) {
1099 eie
= (struct extent_inode_elem
*)(uintptr_t)node
->aux
;
1100 free_inode_elem_list(eie
);
1108 * Finds all leafs with a reference to the specified combination of bytenr and
1109 * offset. key_list_head will point to a list of corresponding keys (caller must
1110 * free each list element). The leafs will be stored in the leafs ulist, which
1111 * must be freed with ulist_free.
1113 * returns 0 on success, <0 on error
1115 static int btrfs_find_all_leafs(struct btrfs_trans_handle
*trans
,
1116 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1117 u64 time_seq
, struct ulist
**leafs
,
1118 const u64
*extent_item_pos
)
1122 *leafs
= ulist_alloc(GFP_NOFS
);
1126 ret
= find_parent_nodes(trans
, fs_info
, bytenr
,
1127 time_seq
, *leafs
, NULL
, extent_item_pos
, 0, 0);
1128 if (ret
< 0 && ret
!= -ENOENT
) {
1129 free_leaf_list(*leafs
);
1137 * walk all backrefs for a given extent to find all roots that reference this
1138 * extent. Walking a backref means finding all extents that reference this
1139 * extent and in turn walk the backrefs of those, too. Naturally this is a
1140 * recursive process, but here it is implemented in an iterative fashion: We
1141 * find all referencing extents for the extent in question and put them on a
1142 * list. In turn, we find all referencing extents for those, further appending
1143 * to the list. The way we iterate the list allows adding more elements after
1144 * the current while iterating. The process stops when we reach the end of the
1145 * list. Found roots are added to the roots list.
1147 * returns 0 on success, < 0 on error.
1149 static int __btrfs_find_all_roots(struct btrfs_trans_handle
*trans
,
1150 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1151 u64 time_seq
, struct ulist
**roots
)
1154 struct ulist_node
*node
= NULL
;
1155 struct ulist_iterator uiter
;
1158 tmp
= ulist_alloc(GFP_NOFS
);
1161 *roots
= ulist_alloc(GFP_NOFS
);
1167 ULIST_ITER_INIT(&uiter
);
1169 ret
= find_parent_nodes(trans
, fs_info
, bytenr
,
1170 time_seq
, tmp
, *roots
, NULL
, 0, 0);
1171 if (ret
< 0 && ret
!= -ENOENT
) {
1176 node
= ulist_next(tmp
, &uiter
);
1187 int btrfs_find_all_roots(struct btrfs_trans_handle
*trans
,
1188 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1189 u64 time_seq
, struct ulist
**roots
)
1194 down_read(&fs_info
->commit_root_sem
);
1195 ret
= __btrfs_find_all_roots(trans
, fs_info
, bytenr
, time_seq
, roots
);
1197 up_read(&fs_info
->commit_root_sem
);
1201 int btrfs_check_shared(struct btrfs_trans_handle
*trans
,
1202 struct btrfs_fs_info
*fs_info
, u64 root_objectid
,
1203 u64 inum
, u64 bytenr
)
1205 struct ulist
*tmp
= NULL
;
1206 struct ulist
*roots
= NULL
;
1207 struct ulist_iterator uiter
;
1208 struct ulist_node
*node
;
1209 struct seq_list elem
= {};
1212 tmp
= ulist_alloc(GFP_NOFS
);
1213 roots
= ulist_alloc(GFP_NOFS
);
1214 if (!tmp
|| !roots
) {
1221 btrfs_get_tree_mod_seq(fs_info
, &elem
);
1223 down_read(&fs_info
->commit_root_sem
);
1224 ULIST_ITER_INIT(&uiter
);
1226 ret
= find_parent_nodes(trans
, fs_info
, bytenr
, elem
.seq
, tmp
,
1227 roots
, NULL
, root_objectid
, inum
);
1228 if (ret
== BACKREF_FOUND_SHARED
) {
1232 if (ret
< 0 && ret
!= -ENOENT
)
1234 node
= ulist_next(tmp
, &uiter
);
1241 btrfs_put_tree_mod_seq(fs_info
, &elem
);
1243 up_read(&fs_info
->commit_root_sem
);
1250 * this makes the path point to (inum INODE_ITEM ioff)
1252 int inode_item_info(u64 inum
, u64 ioff
, struct btrfs_root
*fs_root
,
1253 struct btrfs_path
*path
)
1255 struct btrfs_key key
;
1256 return btrfs_find_item(fs_root
, path
, inum
, ioff
,
1257 BTRFS_INODE_ITEM_KEY
, &key
);
1260 static int inode_ref_info(u64 inum
, u64 ioff
, struct btrfs_root
*fs_root
,
1261 struct btrfs_path
*path
,
1262 struct btrfs_key
*found_key
)
1264 return btrfs_find_item(fs_root
, path
, inum
, ioff
,
1265 BTRFS_INODE_REF_KEY
, found_key
);
1268 int btrfs_find_one_extref(struct btrfs_root
*root
, u64 inode_objectid
,
1269 u64 start_off
, struct btrfs_path
*path
,
1270 struct btrfs_inode_extref
**ret_extref
,
1274 struct btrfs_key key
;
1275 struct btrfs_key found_key
;
1276 struct btrfs_inode_extref
*extref
;
1277 struct extent_buffer
*leaf
;
1280 key
.objectid
= inode_objectid
;
1281 key
.type
= BTRFS_INODE_EXTREF_KEY
;
1282 key
.offset
= start_off
;
1284 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1289 leaf
= path
->nodes
[0];
1290 slot
= path
->slots
[0];
1291 if (slot
>= btrfs_header_nritems(leaf
)) {
1293 * If the item at offset is not found,
1294 * btrfs_search_slot will point us to the slot
1295 * where it should be inserted. In our case
1296 * that will be the slot directly before the
1297 * next INODE_REF_KEY_V2 item. In the case
1298 * that we're pointing to the last slot in a
1299 * leaf, we must move one leaf over.
1301 ret
= btrfs_next_leaf(root
, path
);
1310 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
1313 * Check that we're still looking at an extended ref key for
1314 * this particular objectid. If we have different
1315 * objectid or type then there are no more to be found
1316 * in the tree and we can exit.
1319 if (found_key
.objectid
!= inode_objectid
)
1321 if (found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)
1325 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1326 extref
= (struct btrfs_inode_extref
*)ptr
;
1327 *ret_extref
= extref
;
1329 *found_off
= found_key
.offset
;
1337 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1338 * Elements of the path are separated by '/' and the path is guaranteed to be
1339 * 0-terminated. the path is only given within the current file system.
1340 * Therefore, it never starts with a '/'. the caller is responsible to provide
1341 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1342 * the start point of the resulting string is returned. this pointer is within
1344 * in case the path buffer would overflow, the pointer is decremented further
1345 * as if output was written to the buffer, though no more output is actually
1346 * generated. that way, the caller can determine how much space would be
1347 * required for the path to fit into the buffer. in that case, the returned
1348 * value will be smaller than dest. callers must check this!
1350 char *btrfs_ref_to_path(struct btrfs_root
*fs_root
, struct btrfs_path
*path
,
1351 u32 name_len
, unsigned long name_off
,
1352 struct extent_buffer
*eb_in
, u64 parent
,
1353 char *dest
, u32 size
)
1358 s64 bytes_left
= ((s64
)size
) - 1;
1359 struct extent_buffer
*eb
= eb_in
;
1360 struct btrfs_key found_key
;
1361 int leave_spinning
= path
->leave_spinning
;
1362 struct btrfs_inode_ref
*iref
;
1364 if (bytes_left
>= 0)
1365 dest
[bytes_left
] = '\0';
1367 path
->leave_spinning
= 1;
1369 bytes_left
-= name_len
;
1370 if (bytes_left
>= 0)
1371 read_extent_buffer(eb
, dest
+ bytes_left
,
1372 name_off
, name_len
);
1374 if (!path
->skip_locking
)
1375 btrfs_tree_read_unlock_blocking(eb
);
1376 free_extent_buffer(eb
);
1378 ret
= inode_ref_info(parent
, 0, fs_root
, path
, &found_key
);
1384 next_inum
= found_key
.offset
;
1386 /* regular exit ahead */
1387 if (parent
== next_inum
)
1390 slot
= path
->slots
[0];
1391 eb
= path
->nodes
[0];
1392 /* make sure we can use eb after releasing the path */
1394 if (!path
->skip_locking
)
1395 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1396 path
->nodes
[0] = NULL
;
1399 btrfs_release_path(path
);
1400 iref
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_ref
);
1402 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
1403 name_off
= (unsigned long)(iref
+ 1);
1407 if (bytes_left
>= 0)
1408 dest
[bytes_left
] = '/';
1411 btrfs_release_path(path
);
1412 path
->leave_spinning
= leave_spinning
;
1415 return ERR_PTR(ret
);
1417 return dest
+ bytes_left
;
1421 * this makes the path point to (logical EXTENT_ITEM *)
1422 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1423 * tree blocks and <0 on error.
1425 int extent_from_logical(struct btrfs_fs_info
*fs_info
, u64 logical
,
1426 struct btrfs_path
*path
, struct btrfs_key
*found_key
,
1433 struct extent_buffer
*eb
;
1434 struct btrfs_extent_item
*ei
;
1435 struct btrfs_key key
;
1437 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
1438 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1440 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1441 key
.objectid
= logical
;
1442 key
.offset
= (u64
)-1;
1444 ret
= btrfs_search_slot(NULL
, fs_info
->extent_root
, &key
, path
, 0, 0);
1448 ret
= btrfs_previous_extent_item(fs_info
->extent_root
, path
, 0);
1454 btrfs_item_key_to_cpu(path
->nodes
[0], found_key
, path
->slots
[0]);
1455 if (found_key
->type
== BTRFS_METADATA_ITEM_KEY
)
1456 size
= fs_info
->extent_root
->nodesize
;
1457 else if (found_key
->type
== BTRFS_EXTENT_ITEM_KEY
)
1458 size
= found_key
->offset
;
1460 if (found_key
->objectid
> logical
||
1461 found_key
->objectid
+ size
<= logical
) {
1462 pr_debug("logical %llu is not within any extent\n", logical
);
1466 eb
= path
->nodes
[0];
1467 item_size
= btrfs_item_size_nr(eb
, path
->slots
[0]);
1468 BUG_ON(item_size
< sizeof(*ei
));
1470 ei
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_extent_item
);
1471 flags
= btrfs_extent_flags(eb
, ei
);
1473 pr_debug("logical %llu is at position %llu within the extent (%llu "
1474 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1475 logical
, logical
- found_key
->objectid
, found_key
->objectid
,
1476 found_key
->offset
, flags
, item_size
);
1478 WARN_ON(!flags_ret
);
1480 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1481 *flags_ret
= BTRFS_EXTENT_FLAG_TREE_BLOCK
;
1482 else if (flags
& BTRFS_EXTENT_FLAG_DATA
)
1483 *flags_ret
= BTRFS_EXTENT_FLAG_DATA
;
1493 * helper function to iterate extent inline refs. ptr must point to a 0 value
1494 * for the first call and may be modified. it is used to track state.
1495 * if more refs exist, 0 is returned and the next call to
1496 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1497 * next ref. after the last ref was processed, 1 is returned.
1498 * returns <0 on error
1500 static int __get_extent_inline_ref(unsigned long *ptr
, struct extent_buffer
*eb
,
1501 struct btrfs_key
*key
,
1502 struct btrfs_extent_item
*ei
, u32 item_size
,
1503 struct btrfs_extent_inline_ref
**out_eiref
,
1508 struct btrfs_tree_block_info
*info
;
1512 flags
= btrfs_extent_flags(eb
, ei
);
1513 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1514 if (key
->type
== BTRFS_METADATA_ITEM_KEY
) {
1515 /* a skinny metadata extent */
1517 (struct btrfs_extent_inline_ref
*)(ei
+ 1);
1519 WARN_ON(key
->type
!= BTRFS_EXTENT_ITEM_KEY
);
1520 info
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1522 (struct btrfs_extent_inline_ref
*)(info
+ 1);
1525 *out_eiref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
1527 *ptr
= (unsigned long)*out_eiref
;
1528 if ((unsigned long)(*ptr
) >= (unsigned long)ei
+ item_size
)
1532 end
= (unsigned long)ei
+ item_size
;
1533 *out_eiref
= (struct btrfs_extent_inline_ref
*)(*ptr
);
1534 *out_type
= btrfs_extent_inline_ref_type(eb
, *out_eiref
);
1536 *ptr
+= btrfs_extent_inline_ref_size(*out_type
);
1537 WARN_ON(*ptr
> end
);
1539 return 1; /* last */
1545 * reads the tree block backref for an extent. tree level and root are returned
1546 * through out_level and out_root. ptr must point to a 0 value for the first
1547 * call and may be modified (see __get_extent_inline_ref comment).
1548 * returns 0 if data was provided, 1 if there was no more data to provide or
1551 int tree_backref_for_extent(unsigned long *ptr
, struct extent_buffer
*eb
,
1552 struct btrfs_key
*key
, struct btrfs_extent_item
*ei
,
1553 u32 item_size
, u64
*out_root
, u8
*out_level
)
1557 struct btrfs_tree_block_info
*info
;
1558 struct btrfs_extent_inline_ref
*eiref
;
1560 if (*ptr
== (unsigned long)-1)
1564 ret
= __get_extent_inline_ref(ptr
, eb
, key
, ei
, item_size
,
1569 if (type
== BTRFS_TREE_BLOCK_REF_KEY
||
1570 type
== BTRFS_SHARED_BLOCK_REF_KEY
)
1577 /* we can treat both ref types equally here */
1578 info
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1579 *out_root
= btrfs_extent_inline_ref_offset(eb
, eiref
);
1580 *out_level
= btrfs_tree_block_level(eb
, info
);
1583 *ptr
= (unsigned long)-1;
1588 static int iterate_leaf_refs(struct extent_inode_elem
*inode_list
,
1589 u64 root
, u64 extent_item_objectid
,
1590 iterate_extent_inodes_t
*iterate
, void *ctx
)
1592 struct extent_inode_elem
*eie
;
1595 for (eie
= inode_list
; eie
; eie
= eie
->next
) {
1596 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1597 "root %llu\n", extent_item_objectid
,
1598 eie
->inum
, eie
->offset
, root
);
1599 ret
= iterate(eie
->inum
, eie
->offset
, root
, ctx
);
1601 pr_debug("stopping iteration for %llu due to ret=%d\n",
1602 extent_item_objectid
, ret
);
1611 * calls iterate() for every inode that references the extent identified by
1612 * the given parameters.
1613 * when the iterator function returns a non-zero value, iteration stops.
1615 int iterate_extent_inodes(struct btrfs_fs_info
*fs_info
,
1616 u64 extent_item_objectid
, u64 extent_item_pos
,
1617 int search_commit_root
,
1618 iterate_extent_inodes_t
*iterate
, void *ctx
)
1621 struct btrfs_trans_handle
*trans
= NULL
;
1622 struct ulist
*refs
= NULL
;
1623 struct ulist
*roots
= NULL
;
1624 struct ulist_node
*ref_node
= NULL
;
1625 struct ulist_node
*root_node
= NULL
;
1626 struct seq_list tree_mod_seq_elem
= {};
1627 struct ulist_iterator ref_uiter
;
1628 struct ulist_iterator root_uiter
;
1630 pr_debug("resolving all inodes for extent %llu\n",
1631 extent_item_objectid
);
1633 if (!search_commit_root
) {
1634 trans
= btrfs_join_transaction(fs_info
->extent_root
);
1636 return PTR_ERR(trans
);
1637 btrfs_get_tree_mod_seq(fs_info
, &tree_mod_seq_elem
);
1639 down_read(&fs_info
->commit_root_sem
);
1642 ret
= btrfs_find_all_leafs(trans
, fs_info
, extent_item_objectid
,
1643 tree_mod_seq_elem
.seq
, &refs
,
1648 ULIST_ITER_INIT(&ref_uiter
);
1649 while (!ret
&& (ref_node
= ulist_next(refs
, &ref_uiter
))) {
1650 ret
= __btrfs_find_all_roots(trans
, fs_info
, ref_node
->val
,
1651 tree_mod_seq_elem
.seq
, &roots
);
1654 ULIST_ITER_INIT(&root_uiter
);
1655 while (!ret
&& (root_node
= ulist_next(roots
, &root_uiter
))) {
1656 pr_debug("root %llu references leaf %llu, data list "
1657 "%#llx\n", root_node
->val
, ref_node
->val
,
1659 ret
= iterate_leaf_refs((struct extent_inode_elem
*)
1660 (uintptr_t)ref_node
->aux
,
1662 extent_item_objectid
,
1668 free_leaf_list(refs
);
1670 if (!search_commit_root
) {
1671 btrfs_put_tree_mod_seq(fs_info
, &tree_mod_seq_elem
);
1672 btrfs_end_transaction(trans
, fs_info
->extent_root
);
1674 up_read(&fs_info
->commit_root_sem
);
1680 int iterate_inodes_from_logical(u64 logical
, struct btrfs_fs_info
*fs_info
,
1681 struct btrfs_path
*path
,
1682 iterate_extent_inodes_t
*iterate
, void *ctx
)
1685 u64 extent_item_pos
;
1687 struct btrfs_key found_key
;
1688 int search_commit_root
= path
->search_commit_root
;
1690 ret
= extent_from_logical(fs_info
, logical
, path
, &found_key
, &flags
);
1691 btrfs_release_path(path
);
1694 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1697 extent_item_pos
= logical
- found_key
.objectid
;
1698 ret
= iterate_extent_inodes(fs_info
, found_key
.objectid
,
1699 extent_item_pos
, search_commit_root
,
1705 typedef int (iterate_irefs_t
)(u64 parent
, u32 name_len
, unsigned long name_off
,
1706 struct extent_buffer
*eb
, void *ctx
);
1708 static int iterate_inode_refs(u64 inum
, struct btrfs_root
*fs_root
,
1709 struct btrfs_path
*path
,
1710 iterate_irefs_t
*iterate
, void *ctx
)
1719 struct extent_buffer
*eb
;
1720 struct btrfs_item
*item
;
1721 struct btrfs_inode_ref
*iref
;
1722 struct btrfs_key found_key
;
1725 ret
= inode_ref_info(inum
, parent
? parent
+1 : 0, fs_root
, path
,
1730 ret
= found
? 0 : -ENOENT
;
1735 parent
= found_key
.offset
;
1736 slot
= path
->slots
[0];
1737 eb
= btrfs_clone_extent_buffer(path
->nodes
[0]);
1742 extent_buffer_get(eb
);
1743 btrfs_tree_read_lock(eb
);
1744 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1745 btrfs_release_path(path
);
1747 item
= btrfs_item_nr(slot
);
1748 iref
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_ref
);
1750 for (cur
= 0; cur
< btrfs_item_size(eb
, item
); cur
+= len
) {
1751 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
1752 /* path must be released before calling iterate()! */
1753 pr_debug("following ref at offset %u for inode %llu in "
1754 "tree %llu\n", cur
, found_key
.objectid
,
1756 ret
= iterate(parent
, name_len
,
1757 (unsigned long)(iref
+ 1), eb
, ctx
);
1760 len
= sizeof(*iref
) + name_len
;
1761 iref
= (struct btrfs_inode_ref
*)((char *)iref
+ len
);
1763 btrfs_tree_read_unlock_blocking(eb
);
1764 free_extent_buffer(eb
);
1767 btrfs_release_path(path
);
1772 static int iterate_inode_extrefs(u64 inum
, struct btrfs_root
*fs_root
,
1773 struct btrfs_path
*path
,
1774 iterate_irefs_t
*iterate
, void *ctx
)
1781 struct extent_buffer
*eb
;
1782 struct btrfs_inode_extref
*extref
;
1788 ret
= btrfs_find_one_extref(fs_root
, inum
, offset
, path
, &extref
,
1793 ret
= found
? 0 : -ENOENT
;
1798 slot
= path
->slots
[0];
1799 eb
= btrfs_clone_extent_buffer(path
->nodes
[0]);
1804 extent_buffer_get(eb
);
1806 btrfs_tree_read_lock(eb
);
1807 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1808 btrfs_release_path(path
);
1810 item_size
= btrfs_item_size_nr(eb
, slot
);
1811 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1814 while (cur_offset
< item_size
) {
1817 extref
= (struct btrfs_inode_extref
*)(ptr
+ cur_offset
);
1818 parent
= btrfs_inode_extref_parent(eb
, extref
);
1819 name_len
= btrfs_inode_extref_name_len(eb
, extref
);
1820 ret
= iterate(parent
, name_len
,
1821 (unsigned long)&extref
->name
, eb
, ctx
);
1825 cur_offset
+= btrfs_inode_extref_name_len(eb
, extref
);
1826 cur_offset
+= sizeof(*extref
);
1828 btrfs_tree_read_unlock_blocking(eb
);
1829 free_extent_buffer(eb
);
1834 btrfs_release_path(path
);
1839 static int iterate_irefs(u64 inum
, struct btrfs_root
*fs_root
,
1840 struct btrfs_path
*path
, iterate_irefs_t
*iterate
,
1846 ret
= iterate_inode_refs(inum
, fs_root
, path
, iterate
, ctx
);
1849 else if (ret
!= -ENOENT
)
1852 ret
= iterate_inode_extrefs(inum
, fs_root
, path
, iterate
, ctx
);
1853 if (ret
== -ENOENT
&& found_refs
)
1860 * returns 0 if the path could be dumped (probably truncated)
1861 * returns <0 in case of an error
1863 static int inode_to_path(u64 inum
, u32 name_len
, unsigned long name_off
,
1864 struct extent_buffer
*eb
, void *ctx
)
1866 struct inode_fs_paths
*ipath
= ctx
;
1869 int i
= ipath
->fspath
->elem_cnt
;
1870 const int s_ptr
= sizeof(char *);
1873 bytes_left
= ipath
->fspath
->bytes_left
> s_ptr
?
1874 ipath
->fspath
->bytes_left
- s_ptr
: 0;
1876 fspath_min
= (char *)ipath
->fspath
->val
+ (i
+ 1) * s_ptr
;
1877 fspath
= btrfs_ref_to_path(ipath
->fs_root
, ipath
->btrfs_path
, name_len
,
1878 name_off
, eb
, inum
, fspath_min
, bytes_left
);
1880 return PTR_ERR(fspath
);
1882 if (fspath
> fspath_min
) {
1883 ipath
->fspath
->val
[i
] = (u64
)(unsigned long)fspath
;
1884 ++ipath
->fspath
->elem_cnt
;
1885 ipath
->fspath
->bytes_left
= fspath
- fspath_min
;
1887 ++ipath
->fspath
->elem_missed
;
1888 ipath
->fspath
->bytes_missing
+= fspath_min
- fspath
;
1889 ipath
->fspath
->bytes_left
= 0;
1896 * this dumps all file system paths to the inode into the ipath struct, provided
1897 * is has been created large enough. each path is zero-terminated and accessed
1898 * from ipath->fspath->val[i].
1899 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1900 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1901 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1902 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1903 * have been needed to return all paths.
1905 int paths_from_inode(u64 inum
, struct inode_fs_paths
*ipath
)
1907 return iterate_irefs(inum
, ipath
->fs_root
, ipath
->btrfs_path
,
1908 inode_to_path
, ipath
);
1911 struct btrfs_data_container
*init_data_container(u32 total_bytes
)
1913 struct btrfs_data_container
*data
;
1916 alloc_bytes
= max_t(size_t, total_bytes
, sizeof(*data
));
1917 data
= vmalloc(alloc_bytes
);
1919 return ERR_PTR(-ENOMEM
);
1921 if (total_bytes
>= sizeof(*data
)) {
1922 data
->bytes_left
= total_bytes
- sizeof(*data
);
1923 data
->bytes_missing
= 0;
1925 data
->bytes_missing
= sizeof(*data
) - total_bytes
;
1926 data
->bytes_left
= 0;
1930 data
->elem_missed
= 0;
1936 * allocates space to return multiple file system paths for an inode.
1937 * total_bytes to allocate are passed, note that space usable for actual path
1938 * information will be total_bytes - sizeof(struct inode_fs_paths).
1939 * the returned pointer must be freed with free_ipath() in the end.
1941 struct inode_fs_paths
*init_ipath(s32 total_bytes
, struct btrfs_root
*fs_root
,
1942 struct btrfs_path
*path
)
1944 struct inode_fs_paths
*ifp
;
1945 struct btrfs_data_container
*fspath
;
1947 fspath
= init_data_container(total_bytes
);
1949 return (void *)fspath
;
1951 ifp
= kmalloc(sizeof(*ifp
), GFP_NOFS
);
1954 return ERR_PTR(-ENOMEM
);
1957 ifp
->btrfs_path
= path
;
1958 ifp
->fspath
= fspath
;
1959 ifp
->fs_root
= fs_root
;
1964 void free_ipath(struct inode_fs_paths
*ipath
)
1968 vfree(ipath
->fspath
);