Bluetooth: vhci: Fix race at creating hci device
[linux/fpc-iii.git] / fs / btrfs / backref.c
blob69e596b1f95bc423d85855d12dc76d802bd01e52
1 /*
2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/vmalloc.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "backref.h"
23 #include "ulist.h"
24 #include "transaction.h"
25 #include "delayed-ref.h"
26 #include "locking.h"
28 /* Just an arbitrary number so we can be sure this happened */
29 #define BACKREF_FOUND_SHARED 6
31 struct extent_inode_elem {
32 u64 inum;
33 u64 offset;
34 struct extent_inode_elem *next;
37 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
38 struct btrfs_file_extent_item *fi,
39 u64 extent_item_pos,
40 struct extent_inode_elem **eie)
42 u64 offset = 0;
43 struct extent_inode_elem *e;
45 if (!btrfs_file_extent_compression(eb, fi) &&
46 !btrfs_file_extent_encryption(eb, fi) &&
47 !btrfs_file_extent_other_encoding(eb, fi)) {
48 u64 data_offset;
49 u64 data_len;
51 data_offset = btrfs_file_extent_offset(eb, fi);
52 data_len = btrfs_file_extent_num_bytes(eb, fi);
54 if (extent_item_pos < data_offset ||
55 extent_item_pos >= data_offset + data_len)
56 return 1;
57 offset = extent_item_pos - data_offset;
60 e = kmalloc(sizeof(*e), GFP_NOFS);
61 if (!e)
62 return -ENOMEM;
64 e->next = *eie;
65 e->inum = key->objectid;
66 e->offset = key->offset + offset;
67 *eie = e;
69 return 0;
72 static void free_inode_elem_list(struct extent_inode_elem *eie)
74 struct extent_inode_elem *eie_next;
76 for (; eie; eie = eie_next) {
77 eie_next = eie->next;
78 kfree(eie);
82 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
83 u64 extent_item_pos,
84 struct extent_inode_elem **eie)
86 u64 disk_byte;
87 struct btrfs_key key;
88 struct btrfs_file_extent_item *fi;
89 int slot;
90 int nritems;
91 int extent_type;
92 int ret;
95 * from the shared data ref, we only have the leaf but we need
96 * the key. thus, we must look into all items and see that we
97 * find one (some) with a reference to our extent item.
99 nritems = btrfs_header_nritems(eb);
100 for (slot = 0; slot < nritems; ++slot) {
101 btrfs_item_key_to_cpu(eb, &key, slot);
102 if (key.type != BTRFS_EXTENT_DATA_KEY)
103 continue;
104 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
105 extent_type = btrfs_file_extent_type(eb, fi);
106 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
107 continue;
108 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
109 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
110 if (disk_byte != wanted_disk_byte)
111 continue;
113 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
114 if (ret < 0)
115 return ret;
118 return 0;
122 * this structure records all encountered refs on the way up to the root
124 struct __prelim_ref {
125 struct list_head list;
126 u64 root_id;
127 struct btrfs_key key_for_search;
128 int level;
129 int count;
130 struct extent_inode_elem *inode_list;
131 u64 parent;
132 u64 wanted_disk_byte;
135 static struct kmem_cache *btrfs_prelim_ref_cache;
137 int __init btrfs_prelim_ref_init(void)
139 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
140 sizeof(struct __prelim_ref),
142 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
143 NULL);
144 if (!btrfs_prelim_ref_cache)
145 return -ENOMEM;
146 return 0;
149 void btrfs_prelim_ref_exit(void)
151 if (btrfs_prelim_ref_cache)
152 kmem_cache_destroy(btrfs_prelim_ref_cache);
156 * the rules for all callers of this function are:
157 * - obtaining the parent is the goal
158 * - if you add a key, you must know that it is a correct key
159 * - if you cannot add the parent or a correct key, then we will look into the
160 * block later to set a correct key
162 * delayed refs
163 * ============
164 * backref type | shared | indirect | shared | indirect
165 * information | tree | tree | data | data
166 * --------------------+--------+----------+--------+----------
167 * parent logical | y | - | - | -
168 * key to resolve | - | y | y | y
169 * tree block logical | - | - | - | -
170 * root for resolving | y | y | y | y
172 * - column 1: we've the parent -> done
173 * - column 2, 3, 4: we use the key to find the parent
175 * on disk refs (inline or keyed)
176 * ==============================
177 * backref type | shared | indirect | shared | indirect
178 * information | tree | tree | data | data
179 * --------------------+--------+----------+--------+----------
180 * parent logical | y | - | y | -
181 * key to resolve | - | - | - | y
182 * tree block logical | y | y | y | y
183 * root for resolving | - | y | y | y
185 * - column 1, 3: we've the parent -> done
186 * - column 2: we take the first key from the block to find the parent
187 * (see __add_missing_keys)
188 * - column 4: we use the key to find the parent
190 * additional information that's available but not required to find the parent
191 * block might help in merging entries to gain some speed.
194 static int __add_prelim_ref(struct list_head *head, u64 root_id,
195 struct btrfs_key *key, int level,
196 u64 parent, u64 wanted_disk_byte, int count,
197 gfp_t gfp_mask)
199 struct __prelim_ref *ref;
201 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
202 return 0;
204 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
205 if (!ref)
206 return -ENOMEM;
208 ref->root_id = root_id;
209 if (key)
210 ref->key_for_search = *key;
211 else
212 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
214 ref->inode_list = NULL;
215 ref->level = level;
216 ref->count = count;
217 ref->parent = parent;
218 ref->wanted_disk_byte = wanted_disk_byte;
219 list_add_tail(&ref->list, head);
221 return 0;
224 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
225 struct ulist *parents, struct __prelim_ref *ref,
226 int level, u64 time_seq, const u64 *extent_item_pos,
227 u64 total_refs)
229 int ret = 0;
230 int slot;
231 struct extent_buffer *eb;
232 struct btrfs_key key;
233 struct btrfs_key *key_for_search = &ref->key_for_search;
234 struct btrfs_file_extent_item *fi;
235 struct extent_inode_elem *eie = NULL, *old = NULL;
236 u64 disk_byte;
237 u64 wanted_disk_byte = ref->wanted_disk_byte;
238 u64 count = 0;
240 if (level != 0) {
241 eb = path->nodes[level];
242 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
243 if (ret < 0)
244 return ret;
245 return 0;
249 * We normally enter this function with the path already pointing to
250 * the first item to check. But sometimes, we may enter it with
251 * slot==nritems. In that case, go to the next leaf before we continue.
253 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
254 ret = btrfs_next_old_leaf(root, path, time_seq);
256 while (!ret && count < total_refs) {
257 eb = path->nodes[0];
258 slot = path->slots[0];
260 btrfs_item_key_to_cpu(eb, &key, slot);
262 if (key.objectid != key_for_search->objectid ||
263 key.type != BTRFS_EXTENT_DATA_KEY)
264 break;
266 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
267 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
269 if (disk_byte == wanted_disk_byte) {
270 eie = NULL;
271 old = NULL;
272 count++;
273 if (extent_item_pos) {
274 ret = check_extent_in_eb(&key, eb, fi,
275 *extent_item_pos,
276 &eie);
277 if (ret < 0)
278 break;
280 if (ret > 0)
281 goto next;
282 ret = ulist_add_merge_ptr(parents, eb->start,
283 eie, (void **)&old, GFP_NOFS);
284 if (ret < 0)
285 break;
286 if (!ret && extent_item_pos) {
287 while (old->next)
288 old = old->next;
289 old->next = eie;
291 eie = NULL;
293 next:
294 ret = btrfs_next_old_item(root, path, time_seq);
297 if (ret > 0)
298 ret = 0;
299 else if (ret < 0)
300 free_inode_elem_list(eie);
301 return ret;
305 * resolve an indirect backref in the form (root_id, key, level)
306 * to a logical address
308 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
309 struct btrfs_path *path, u64 time_seq,
310 struct __prelim_ref *ref,
311 struct ulist *parents,
312 const u64 *extent_item_pos, u64 total_refs)
314 struct btrfs_root *root;
315 struct btrfs_key root_key;
316 struct extent_buffer *eb;
317 int ret = 0;
318 int root_level;
319 int level = ref->level;
320 int index;
322 root_key.objectid = ref->root_id;
323 root_key.type = BTRFS_ROOT_ITEM_KEY;
324 root_key.offset = (u64)-1;
326 index = srcu_read_lock(&fs_info->subvol_srcu);
328 root = btrfs_read_fs_root_no_name(fs_info, &root_key);
329 if (IS_ERR(root)) {
330 srcu_read_unlock(&fs_info->subvol_srcu, index);
331 ret = PTR_ERR(root);
332 goto out;
335 if (path->search_commit_root)
336 root_level = btrfs_header_level(root->commit_root);
337 else
338 root_level = btrfs_old_root_level(root, time_seq);
340 if (root_level + 1 == level) {
341 srcu_read_unlock(&fs_info->subvol_srcu, index);
342 goto out;
345 path->lowest_level = level;
346 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
348 /* root node has been locked, we can release @subvol_srcu safely here */
349 srcu_read_unlock(&fs_info->subvol_srcu, index);
351 pr_debug("search slot in root %llu (level %d, ref count %d) returned "
352 "%d for key (%llu %u %llu)\n",
353 ref->root_id, level, ref->count, ret,
354 ref->key_for_search.objectid, ref->key_for_search.type,
355 ref->key_for_search.offset);
356 if (ret < 0)
357 goto out;
359 eb = path->nodes[level];
360 while (!eb) {
361 if (WARN_ON(!level)) {
362 ret = 1;
363 goto out;
365 level--;
366 eb = path->nodes[level];
369 ret = add_all_parents(root, path, parents, ref, level, time_seq,
370 extent_item_pos, total_refs);
371 out:
372 path->lowest_level = 0;
373 btrfs_release_path(path);
374 return ret;
378 * resolve all indirect backrefs from the list
380 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
381 struct btrfs_path *path, u64 time_seq,
382 struct list_head *head,
383 const u64 *extent_item_pos, u64 total_refs,
384 u64 root_objectid)
386 int err;
387 int ret = 0;
388 struct __prelim_ref *ref;
389 struct __prelim_ref *ref_safe;
390 struct __prelim_ref *new_ref;
391 struct ulist *parents;
392 struct ulist_node *node;
393 struct ulist_iterator uiter;
395 parents = ulist_alloc(GFP_NOFS);
396 if (!parents)
397 return -ENOMEM;
400 * _safe allows us to insert directly after the current item without
401 * iterating over the newly inserted items.
402 * we're also allowed to re-assign ref during iteration.
404 list_for_each_entry_safe(ref, ref_safe, head, list) {
405 if (ref->parent) /* already direct */
406 continue;
407 if (ref->count == 0)
408 continue;
409 if (root_objectid && ref->root_id != root_objectid) {
410 ret = BACKREF_FOUND_SHARED;
411 goto out;
413 err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
414 parents, extent_item_pos,
415 total_refs);
417 * we can only tolerate ENOENT,otherwise,we should catch error
418 * and return directly.
420 if (err == -ENOENT) {
421 continue;
422 } else if (err) {
423 ret = err;
424 goto out;
427 /* we put the first parent into the ref at hand */
428 ULIST_ITER_INIT(&uiter);
429 node = ulist_next(parents, &uiter);
430 ref->parent = node ? node->val : 0;
431 ref->inode_list = node ?
432 (struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
434 /* additional parents require new refs being added here */
435 while ((node = ulist_next(parents, &uiter))) {
436 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
437 GFP_NOFS);
438 if (!new_ref) {
439 ret = -ENOMEM;
440 goto out;
442 memcpy(new_ref, ref, sizeof(*ref));
443 new_ref->parent = node->val;
444 new_ref->inode_list = (struct extent_inode_elem *)
445 (uintptr_t)node->aux;
446 list_add(&new_ref->list, &ref->list);
448 ulist_reinit(parents);
450 out:
451 ulist_free(parents);
452 return ret;
455 static inline int ref_for_same_block(struct __prelim_ref *ref1,
456 struct __prelim_ref *ref2)
458 if (ref1->level != ref2->level)
459 return 0;
460 if (ref1->root_id != ref2->root_id)
461 return 0;
462 if (ref1->key_for_search.type != ref2->key_for_search.type)
463 return 0;
464 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
465 return 0;
466 if (ref1->key_for_search.offset != ref2->key_for_search.offset)
467 return 0;
468 if (ref1->parent != ref2->parent)
469 return 0;
471 return 1;
475 * read tree blocks and add keys where required.
477 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
478 struct list_head *head)
480 struct list_head *pos;
481 struct extent_buffer *eb;
483 list_for_each(pos, head) {
484 struct __prelim_ref *ref;
485 ref = list_entry(pos, struct __prelim_ref, list);
487 if (ref->parent)
488 continue;
489 if (ref->key_for_search.type)
490 continue;
491 BUG_ON(!ref->wanted_disk_byte);
492 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
494 if (!eb || !extent_buffer_uptodate(eb)) {
495 free_extent_buffer(eb);
496 return -EIO;
498 btrfs_tree_read_lock(eb);
499 if (btrfs_header_level(eb) == 0)
500 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
501 else
502 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
503 btrfs_tree_read_unlock(eb);
504 free_extent_buffer(eb);
506 return 0;
510 * merge two lists of backrefs and adjust counts accordingly
512 * mode = 1: merge identical keys, if key is set
513 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
514 * additionally, we could even add a key range for the blocks we
515 * looked into to merge even more (-> replace unresolved refs by those
516 * having a parent).
517 * mode = 2: merge identical parents
519 static void __merge_refs(struct list_head *head, int mode)
521 struct list_head *pos1;
523 list_for_each(pos1, head) {
524 struct list_head *n2;
525 struct list_head *pos2;
526 struct __prelim_ref *ref1;
528 ref1 = list_entry(pos1, struct __prelim_ref, list);
530 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
531 pos2 = n2, n2 = pos2->next) {
532 struct __prelim_ref *ref2;
533 struct __prelim_ref *xchg;
534 struct extent_inode_elem *eie;
536 ref2 = list_entry(pos2, struct __prelim_ref, list);
538 if (mode == 1) {
539 if (!ref_for_same_block(ref1, ref2))
540 continue;
541 if (!ref1->parent && ref2->parent) {
542 xchg = ref1;
543 ref1 = ref2;
544 ref2 = xchg;
546 } else {
547 if (ref1->parent != ref2->parent)
548 continue;
551 eie = ref1->inode_list;
552 while (eie && eie->next)
553 eie = eie->next;
554 if (eie)
555 eie->next = ref2->inode_list;
556 else
557 ref1->inode_list = ref2->inode_list;
558 ref1->count += ref2->count;
560 list_del(&ref2->list);
561 kmem_cache_free(btrfs_prelim_ref_cache, ref2);
568 * add all currently queued delayed refs from this head whose seq nr is
569 * smaller or equal that seq to the list
571 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
572 struct list_head *prefs, u64 *total_refs,
573 u64 inum)
575 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
576 struct rb_node *n = &head->node.rb_node;
577 struct btrfs_key key;
578 struct btrfs_key op_key = {0};
579 int sgn;
580 int ret = 0;
582 if (extent_op && extent_op->update_key)
583 btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
585 spin_lock(&head->lock);
586 n = rb_first(&head->ref_root);
587 while (n) {
588 struct btrfs_delayed_ref_node *node;
589 node = rb_entry(n, struct btrfs_delayed_ref_node,
590 rb_node);
591 n = rb_next(n);
592 if (node->seq > seq)
593 continue;
595 switch (node->action) {
596 case BTRFS_ADD_DELAYED_EXTENT:
597 case BTRFS_UPDATE_DELAYED_HEAD:
598 WARN_ON(1);
599 continue;
600 case BTRFS_ADD_DELAYED_REF:
601 sgn = 1;
602 break;
603 case BTRFS_DROP_DELAYED_REF:
604 sgn = -1;
605 break;
606 default:
607 BUG_ON(1);
609 *total_refs += (node->ref_mod * sgn);
610 switch (node->type) {
611 case BTRFS_TREE_BLOCK_REF_KEY: {
612 struct btrfs_delayed_tree_ref *ref;
614 ref = btrfs_delayed_node_to_tree_ref(node);
615 ret = __add_prelim_ref(prefs, ref->root, &op_key,
616 ref->level + 1, 0, node->bytenr,
617 node->ref_mod * sgn, GFP_ATOMIC);
618 break;
620 case BTRFS_SHARED_BLOCK_REF_KEY: {
621 struct btrfs_delayed_tree_ref *ref;
623 ref = btrfs_delayed_node_to_tree_ref(node);
624 ret = __add_prelim_ref(prefs, ref->root, NULL,
625 ref->level + 1, ref->parent,
626 node->bytenr,
627 node->ref_mod * sgn, GFP_ATOMIC);
628 break;
630 case BTRFS_EXTENT_DATA_REF_KEY: {
631 struct btrfs_delayed_data_ref *ref;
632 ref = btrfs_delayed_node_to_data_ref(node);
634 key.objectid = ref->objectid;
635 key.type = BTRFS_EXTENT_DATA_KEY;
636 key.offset = ref->offset;
639 * Found a inum that doesn't match our known inum, we
640 * know it's shared.
642 if (inum && ref->objectid != inum) {
643 ret = BACKREF_FOUND_SHARED;
644 break;
647 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
648 node->bytenr,
649 node->ref_mod * sgn, GFP_ATOMIC);
650 break;
652 case BTRFS_SHARED_DATA_REF_KEY: {
653 struct btrfs_delayed_data_ref *ref;
655 ref = btrfs_delayed_node_to_data_ref(node);
657 key.objectid = ref->objectid;
658 key.type = BTRFS_EXTENT_DATA_KEY;
659 key.offset = ref->offset;
660 ret = __add_prelim_ref(prefs, ref->root, &key, 0,
661 ref->parent, node->bytenr,
662 node->ref_mod * sgn, GFP_ATOMIC);
663 break;
665 default:
666 WARN_ON(1);
668 if (ret)
669 break;
671 spin_unlock(&head->lock);
672 return ret;
676 * add all inline backrefs for bytenr to the list
678 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
679 struct btrfs_path *path, u64 bytenr,
680 int *info_level, struct list_head *prefs,
681 u64 *total_refs, u64 inum)
683 int ret = 0;
684 int slot;
685 struct extent_buffer *leaf;
686 struct btrfs_key key;
687 struct btrfs_key found_key;
688 unsigned long ptr;
689 unsigned long end;
690 struct btrfs_extent_item *ei;
691 u64 flags;
692 u64 item_size;
695 * enumerate all inline refs
697 leaf = path->nodes[0];
698 slot = path->slots[0];
700 item_size = btrfs_item_size_nr(leaf, slot);
701 BUG_ON(item_size < sizeof(*ei));
703 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
704 flags = btrfs_extent_flags(leaf, ei);
705 *total_refs += btrfs_extent_refs(leaf, ei);
706 btrfs_item_key_to_cpu(leaf, &found_key, slot);
708 ptr = (unsigned long)(ei + 1);
709 end = (unsigned long)ei + item_size;
711 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
712 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
713 struct btrfs_tree_block_info *info;
715 info = (struct btrfs_tree_block_info *)ptr;
716 *info_level = btrfs_tree_block_level(leaf, info);
717 ptr += sizeof(struct btrfs_tree_block_info);
718 BUG_ON(ptr > end);
719 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
720 *info_level = found_key.offset;
721 } else {
722 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
725 while (ptr < end) {
726 struct btrfs_extent_inline_ref *iref;
727 u64 offset;
728 int type;
730 iref = (struct btrfs_extent_inline_ref *)ptr;
731 type = btrfs_extent_inline_ref_type(leaf, iref);
732 offset = btrfs_extent_inline_ref_offset(leaf, iref);
734 switch (type) {
735 case BTRFS_SHARED_BLOCK_REF_KEY:
736 ret = __add_prelim_ref(prefs, 0, NULL,
737 *info_level + 1, offset,
738 bytenr, 1, GFP_NOFS);
739 break;
740 case BTRFS_SHARED_DATA_REF_KEY: {
741 struct btrfs_shared_data_ref *sdref;
742 int count;
744 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
745 count = btrfs_shared_data_ref_count(leaf, sdref);
746 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
747 bytenr, count, GFP_NOFS);
748 break;
750 case BTRFS_TREE_BLOCK_REF_KEY:
751 ret = __add_prelim_ref(prefs, offset, NULL,
752 *info_level + 1, 0,
753 bytenr, 1, GFP_NOFS);
754 break;
755 case BTRFS_EXTENT_DATA_REF_KEY: {
756 struct btrfs_extent_data_ref *dref;
757 int count;
758 u64 root;
760 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
761 count = btrfs_extent_data_ref_count(leaf, dref);
762 key.objectid = btrfs_extent_data_ref_objectid(leaf,
763 dref);
764 key.type = BTRFS_EXTENT_DATA_KEY;
765 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
767 if (inum && key.objectid != inum) {
768 ret = BACKREF_FOUND_SHARED;
769 break;
772 root = btrfs_extent_data_ref_root(leaf, dref);
773 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
774 bytenr, count, GFP_NOFS);
775 break;
777 default:
778 WARN_ON(1);
780 if (ret)
781 return ret;
782 ptr += btrfs_extent_inline_ref_size(type);
785 return 0;
789 * add all non-inline backrefs for bytenr to the list
791 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
792 struct btrfs_path *path, u64 bytenr,
793 int info_level, struct list_head *prefs, u64 inum)
795 struct btrfs_root *extent_root = fs_info->extent_root;
796 int ret;
797 int slot;
798 struct extent_buffer *leaf;
799 struct btrfs_key key;
801 while (1) {
802 ret = btrfs_next_item(extent_root, path);
803 if (ret < 0)
804 break;
805 if (ret) {
806 ret = 0;
807 break;
810 slot = path->slots[0];
811 leaf = path->nodes[0];
812 btrfs_item_key_to_cpu(leaf, &key, slot);
814 if (key.objectid != bytenr)
815 break;
816 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
817 continue;
818 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
819 break;
821 switch (key.type) {
822 case BTRFS_SHARED_BLOCK_REF_KEY:
823 ret = __add_prelim_ref(prefs, 0, NULL,
824 info_level + 1, key.offset,
825 bytenr, 1, GFP_NOFS);
826 break;
827 case BTRFS_SHARED_DATA_REF_KEY: {
828 struct btrfs_shared_data_ref *sdref;
829 int count;
831 sdref = btrfs_item_ptr(leaf, slot,
832 struct btrfs_shared_data_ref);
833 count = btrfs_shared_data_ref_count(leaf, sdref);
834 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
835 bytenr, count, GFP_NOFS);
836 break;
838 case BTRFS_TREE_BLOCK_REF_KEY:
839 ret = __add_prelim_ref(prefs, key.offset, NULL,
840 info_level + 1, 0,
841 bytenr, 1, GFP_NOFS);
842 break;
843 case BTRFS_EXTENT_DATA_REF_KEY: {
844 struct btrfs_extent_data_ref *dref;
845 int count;
846 u64 root;
848 dref = btrfs_item_ptr(leaf, slot,
849 struct btrfs_extent_data_ref);
850 count = btrfs_extent_data_ref_count(leaf, dref);
851 key.objectid = btrfs_extent_data_ref_objectid(leaf,
852 dref);
853 key.type = BTRFS_EXTENT_DATA_KEY;
854 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
856 if (inum && key.objectid != inum) {
857 ret = BACKREF_FOUND_SHARED;
858 break;
861 root = btrfs_extent_data_ref_root(leaf, dref);
862 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
863 bytenr, count, GFP_NOFS);
864 break;
866 default:
867 WARN_ON(1);
869 if (ret)
870 return ret;
874 return ret;
878 * this adds all existing backrefs (inline backrefs, backrefs and delayed
879 * refs) for the given bytenr to the refs list, merges duplicates and resolves
880 * indirect refs to their parent bytenr.
881 * When roots are found, they're added to the roots list
883 * FIXME some caching might speed things up
885 static int find_parent_nodes(struct btrfs_trans_handle *trans,
886 struct btrfs_fs_info *fs_info, u64 bytenr,
887 u64 time_seq, struct ulist *refs,
888 struct ulist *roots, const u64 *extent_item_pos,
889 u64 root_objectid, u64 inum)
891 struct btrfs_key key;
892 struct btrfs_path *path;
893 struct btrfs_delayed_ref_root *delayed_refs = NULL;
894 struct btrfs_delayed_ref_head *head;
895 int info_level = 0;
896 int ret;
897 struct list_head prefs_delayed;
898 struct list_head prefs;
899 struct __prelim_ref *ref;
900 struct extent_inode_elem *eie = NULL;
901 u64 total_refs = 0;
903 INIT_LIST_HEAD(&prefs);
904 INIT_LIST_HEAD(&prefs_delayed);
906 key.objectid = bytenr;
907 key.offset = (u64)-1;
908 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
909 key.type = BTRFS_METADATA_ITEM_KEY;
910 else
911 key.type = BTRFS_EXTENT_ITEM_KEY;
913 path = btrfs_alloc_path();
914 if (!path)
915 return -ENOMEM;
916 if (!trans) {
917 path->search_commit_root = 1;
918 path->skip_locking = 1;
922 * grab both a lock on the path and a lock on the delayed ref head.
923 * We need both to get a consistent picture of how the refs look
924 * at a specified point in time
926 again:
927 head = NULL;
929 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
930 if (ret < 0)
931 goto out;
932 BUG_ON(ret == 0);
934 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
935 if (trans && likely(trans->type != __TRANS_DUMMY)) {
936 #else
937 if (trans) {
938 #endif
940 * look if there are updates for this ref queued and lock the
941 * head
943 delayed_refs = &trans->transaction->delayed_refs;
944 spin_lock(&delayed_refs->lock);
945 head = btrfs_find_delayed_ref_head(trans, bytenr);
946 if (head) {
947 if (!mutex_trylock(&head->mutex)) {
948 atomic_inc(&head->node.refs);
949 spin_unlock(&delayed_refs->lock);
951 btrfs_release_path(path);
954 * Mutex was contended, block until it's
955 * released and try again
957 mutex_lock(&head->mutex);
958 mutex_unlock(&head->mutex);
959 btrfs_put_delayed_ref(&head->node);
960 goto again;
962 spin_unlock(&delayed_refs->lock);
963 ret = __add_delayed_refs(head, time_seq,
964 &prefs_delayed, &total_refs,
965 inum);
966 mutex_unlock(&head->mutex);
967 if (ret)
968 goto out;
969 } else {
970 spin_unlock(&delayed_refs->lock);
974 if (path->slots[0]) {
975 struct extent_buffer *leaf;
976 int slot;
978 path->slots[0]--;
979 leaf = path->nodes[0];
980 slot = path->slots[0];
981 btrfs_item_key_to_cpu(leaf, &key, slot);
982 if (key.objectid == bytenr &&
983 (key.type == BTRFS_EXTENT_ITEM_KEY ||
984 key.type == BTRFS_METADATA_ITEM_KEY)) {
985 ret = __add_inline_refs(fs_info, path, bytenr,
986 &info_level, &prefs,
987 &total_refs, inum);
988 if (ret)
989 goto out;
990 ret = __add_keyed_refs(fs_info, path, bytenr,
991 info_level, &prefs, inum);
992 if (ret)
993 goto out;
996 btrfs_release_path(path);
998 list_splice_init(&prefs_delayed, &prefs);
1000 ret = __add_missing_keys(fs_info, &prefs);
1001 if (ret)
1002 goto out;
1004 __merge_refs(&prefs, 1);
1006 ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
1007 extent_item_pos, total_refs,
1008 root_objectid);
1009 if (ret)
1010 goto out;
1012 __merge_refs(&prefs, 2);
1014 while (!list_empty(&prefs)) {
1015 ref = list_first_entry(&prefs, struct __prelim_ref, list);
1016 WARN_ON(ref->count < 0);
1017 if (roots && ref->count && ref->root_id && ref->parent == 0) {
1018 if (root_objectid && ref->root_id != root_objectid) {
1019 ret = BACKREF_FOUND_SHARED;
1020 goto out;
1023 /* no parent == root of tree */
1024 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1025 if (ret < 0)
1026 goto out;
1028 if (ref->count && ref->parent) {
1029 if (extent_item_pos && !ref->inode_list &&
1030 ref->level == 0) {
1031 struct extent_buffer *eb;
1033 eb = read_tree_block(fs_info->extent_root,
1034 ref->parent, 0);
1035 if (!eb || !extent_buffer_uptodate(eb)) {
1036 free_extent_buffer(eb);
1037 ret = -EIO;
1038 goto out;
1040 btrfs_tree_read_lock(eb);
1041 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1042 ret = find_extent_in_eb(eb, bytenr,
1043 *extent_item_pos, &eie);
1044 btrfs_tree_read_unlock_blocking(eb);
1045 free_extent_buffer(eb);
1046 if (ret < 0)
1047 goto out;
1048 ref->inode_list = eie;
1050 ret = ulist_add_merge_ptr(refs, ref->parent,
1051 ref->inode_list,
1052 (void **)&eie, GFP_NOFS);
1053 if (ret < 0)
1054 goto out;
1055 if (!ret && extent_item_pos) {
1057 * we've recorded that parent, so we must extend
1058 * its inode list here
1060 BUG_ON(!eie);
1061 while (eie->next)
1062 eie = eie->next;
1063 eie->next = ref->inode_list;
1065 eie = NULL;
1067 list_del(&ref->list);
1068 kmem_cache_free(btrfs_prelim_ref_cache, ref);
1071 out:
1072 btrfs_free_path(path);
1073 while (!list_empty(&prefs)) {
1074 ref = list_first_entry(&prefs, struct __prelim_ref, list);
1075 list_del(&ref->list);
1076 kmem_cache_free(btrfs_prelim_ref_cache, ref);
1078 while (!list_empty(&prefs_delayed)) {
1079 ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1080 list);
1081 list_del(&ref->list);
1082 kmem_cache_free(btrfs_prelim_ref_cache, ref);
1084 if (ret < 0)
1085 free_inode_elem_list(eie);
1086 return ret;
1089 static void free_leaf_list(struct ulist *blocks)
1091 struct ulist_node *node = NULL;
1092 struct extent_inode_elem *eie;
1093 struct ulist_iterator uiter;
1095 ULIST_ITER_INIT(&uiter);
1096 while ((node = ulist_next(blocks, &uiter))) {
1097 if (!node->aux)
1098 continue;
1099 eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1100 free_inode_elem_list(eie);
1101 node->aux = 0;
1104 ulist_free(blocks);
1108 * Finds all leafs with a reference to the specified combination of bytenr and
1109 * offset. key_list_head will point to a list of corresponding keys (caller must
1110 * free each list element). The leafs will be stored in the leafs ulist, which
1111 * must be freed with ulist_free.
1113 * returns 0 on success, <0 on error
1115 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1116 struct btrfs_fs_info *fs_info, u64 bytenr,
1117 u64 time_seq, struct ulist **leafs,
1118 const u64 *extent_item_pos)
1120 int ret;
1122 *leafs = ulist_alloc(GFP_NOFS);
1123 if (!*leafs)
1124 return -ENOMEM;
1126 ret = find_parent_nodes(trans, fs_info, bytenr,
1127 time_seq, *leafs, NULL, extent_item_pos, 0, 0);
1128 if (ret < 0 && ret != -ENOENT) {
1129 free_leaf_list(*leafs);
1130 return ret;
1133 return 0;
1137 * walk all backrefs for a given extent to find all roots that reference this
1138 * extent. Walking a backref means finding all extents that reference this
1139 * extent and in turn walk the backrefs of those, too. Naturally this is a
1140 * recursive process, but here it is implemented in an iterative fashion: We
1141 * find all referencing extents for the extent in question and put them on a
1142 * list. In turn, we find all referencing extents for those, further appending
1143 * to the list. The way we iterate the list allows adding more elements after
1144 * the current while iterating. The process stops when we reach the end of the
1145 * list. Found roots are added to the roots list.
1147 * returns 0 on success, < 0 on error.
1149 static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1150 struct btrfs_fs_info *fs_info, u64 bytenr,
1151 u64 time_seq, struct ulist **roots)
1153 struct ulist *tmp;
1154 struct ulist_node *node = NULL;
1155 struct ulist_iterator uiter;
1156 int ret;
1158 tmp = ulist_alloc(GFP_NOFS);
1159 if (!tmp)
1160 return -ENOMEM;
1161 *roots = ulist_alloc(GFP_NOFS);
1162 if (!*roots) {
1163 ulist_free(tmp);
1164 return -ENOMEM;
1167 ULIST_ITER_INIT(&uiter);
1168 while (1) {
1169 ret = find_parent_nodes(trans, fs_info, bytenr,
1170 time_seq, tmp, *roots, NULL, 0, 0);
1171 if (ret < 0 && ret != -ENOENT) {
1172 ulist_free(tmp);
1173 ulist_free(*roots);
1174 return ret;
1176 node = ulist_next(tmp, &uiter);
1177 if (!node)
1178 break;
1179 bytenr = node->val;
1180 cond_resched();
1183 ulist_free(tmp);
1184 return 0;
1187 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1188 struct btrfs_fs_info *fs_info, u64 bytenr,
1189 u64 time_seq, struct ulist **roots)
1191 int ret;
1193 if (!trans)
1194 down_read(&fs_info->commit_root_sem);
1195 ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
1196 if (!trans)
1197 up_read(&fs_info->commit_root_sem);
1198 return ret;
1201 int btrfs_check_shared(struct btrfs_trans_handle *trans,
1202 struct btrfs_fs_info *fs_info, u64 root_objectid,
1203 u64 inum, u64 bytenr)
1205 struct ulist *tmp = NULL;
1206 struct ulist *roots = NULL;
1207 struct ulist_iterator uiter;
1208 struct ulist_node *node;
1209 struct seq_list elem = {};
1210 int ret = 0;
1212 tmp = ulist_alloc(GFP_NOFS);
1213 roots = ulist_alloc(GFP_NOFS);
1214 if (!tmp || !roots) {
1215 ulist_free(tmp);
1216 ulist_free(roots);
1217 return -ENOMEM;
1220 if (trans)
1221 btrfs_get_tree_mod_seq(fs_info, &elem);
1222 else
1223 down_read(&fs_info->commit_root_sem);
1224 ULIST_ITER_INIT(&uiter);
1225 while (1) {
1226 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1227 roots, NULL, root_objectid, inum);
1228 if (ret == BACKREF_FOUND_SHARED) {
1229 ret = 1;
1230 break;
1232 if (ret < 0 && ret != -ENOENT)
1233 break;
1234 node = ulist_next(tmp, &uiter);
1235 if (!node)
1236 break;
1237 bytenr = node->val;
1238 cond_resched();
1240 if (trans)
1241 btrfs_put_tree_mod_seq(fs_info, &elem);
1242 else
1243 up_read(&fs_info->commit_root_sem);
1244 ulist_free(tmp);
1245 ulist_free(roots);
1246 return ret;
1250 * this makes the path point to (inum INODE_ITEM ioff)
1252 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1253 struct btrfs_path *path)
1255 struct btrfs_key key;
1256 return btrfs_find_item(fs_root, path, inum, ioff,
1257 BTRFS_INODE_ITEM_KEY, &key);
1260 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1261 struct btrfs_path *path,
1262 struct btrfs_key *found_key)
1264 return btrfs_find_item(fs_root, path, inum, ioff,
1265 BTRFS_INODE_REF_KEY, found_key);
1268 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1269 u64 start_off, struct btrfs_path *path,
1270 struct btrfs_inode_extref **ret_extref,
1271 u64 *found_off)
1273 int ret, slot;
1274 struct btrfs_key key;
1275 struct btrfs_key found_key;
1276 struct btrfs_inode_extref *extref;
1277 struct extent_buffer *leaf;
1278 unsigned long ptr;
1280 key.objectid = inode_objectid;
1281 key.type = BTRFS_INODE_EXTREF_KEY;
1282 key.offset = start_off;
1284 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1285 if (ret < 0)
1286 return ret;
1288 while (1) {
1289 leaf = path->nodes[0];
1290 slot = path->slots[0];
1291 if (slot >= btrfs_header_nritems(leaf)) {
1293 * If the item at offset is not found,
1294 * btrfs_search_slot will point us to the slot
1295 * where it should be inserted. In our case
1296 * that will be the slot directly before the
1297 * next INODE_REF_KEY_V2 item. In the case
1298 * that we're pointing to the last slot in a
1299 * leaf, we must move one leaf over.
1301 ret = btrfs_next_leaf(root, path);
1302 if (ret) {
1303 if (ret >= 1)
1304 ret = -ENOENT;
1305 break;
1307 continue;
1310 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1313 * Check that we're still looking at an extended ref key for
1314 * this particular objectid. If we have different
1315 * objectid or type then there are no more to be found
1316 * in the tree and we can exit.
1318 ret = -ENOENT;
1319 if (found_key.objectid != inode_objectid)
1320 break;
1321 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1322 break;
1324 ret = 0;
1325 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1326 extref = (struct btrfs_inode_extref *)ptr;
1327 *ret_extref = extref;
1328 if (found_off)
1329 *found_off = found_key.offset;
1330 break;
1333 return ret;
1337 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1338 * Elements of the path are separated by '/' and the path is guaranteed to be
1339 * 0-terminated. the path is only given within the current file system.
1340 * Therefore, it never starts with a '/'. the caller is responsible to provide
1341 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1342 * the start point of the resulting string is returned. this pointer is within
1343 * dest, normally.
1344 * in case the path buffer would overflow, the pointer is decremented further
1345 * as if output was written to the buffer, though no more output is actually
1346 * generated. that way, the caller can determine how much space would be
1347 * required for the path to fit into the buffer. in that case, the returned
1348 * value will be smaller than dest. callers must check this!
1350 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1351 u32 name_len, unsigned long name_off,
1352 struct extent_buffer *eb_in, u64 parent,
1353 char *dest, u32 size)
1355 int slot;
1356 u64 next_inum;
1357 int ret;
1358 s64 bytes_left = ((s64)size) - 1;
1359 struct extent_buffer *eb = eb_in;
1360 struct btrfs_key found_key;
1361 int leave_spinning = path->leave_spinning;
1362 struct btrfs_inode_ref *iref;
1364 if (bytes_left >= 0)
1365 dest[bytes_left] = '\0';
1367 path->leave_spinning = 1;
1368 while (1) {
1369 bytes_left -= name_len;
1370 if (bytes_left >= 0)
1371 read_extent_buffer(eb, dest + bytes_left,
1372 name_off, name_len);
1373 if (eb != eb_in) {
1374 if (!path->skip_locking)
1375 btrfs_tree_read_unlock_blocking(eb);
1376 free_extent_buffer(eb);
1378 ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1379 if (ret > 0)
1380 ret = -ENOENT;
1381 if (ret)
1382 break;
1384 next_inum = found_key.offset;
1386 /* regular exit ahead */
1387 if (parent == next_inum)
1388 break;
1390 slot = path->slots[0];
1391 eb = path->nodes[0];
1392 /* make sure we can use eb after releasing the path */
1393 if (eb != eb_in) {
1394 if (!path->skip_locking)
1395 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1396 path->nodes[0] = NULL;
1397 path->locks[0] = 0;
1399 btrfs_release_path(path);
1400 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1402 name_len = btrfs_inode_ref_name_len(eb, iref);
1403 name_off = (unsigned long)(iref + 1);
1405 parent = next_inum;
1406 --bytes_left;
1407 if (bytes_left >= 0)
1408 dest[bytes_left] = '/';
1411 btrfs_release_path(path);
1412 path->leave_spinning = leave_spinning;
1414 if (ret)
1415 return ERR_PTR(ret);
1417 return dest + bytes_left;
1421 * this makes the path point to (logical EXTENT_ITEM *)
1422 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1423 * tree blocks and <0 on error.
1425 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1426 struct btrfs_path *path, struct btrfs_key *found_key,
1427 u64 *flags_ret)
1429 int ret;
1430 u64 flags;
1431 u64 size = 0;
1432 u32 item_size;
1433 struct extent_buffer *eb;
1434 struct btrfs_extent_item *ei;
1435 struct btrfs_key key;
1437 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1438 key.type = BTRFS_METADATA_ITEM_KEY;
1439 else
1440 key.type = BTRFS_EXTENT_ITEM_KEY;
1441 key.objectid = logical;
1442 key.offset = (u64)-1;
1444 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1445 if (ret < 0)
1446 return ret;
1448 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1449 if (ret) {
1450 if (ret > 0)
1451 ret = -ENOENT;
1452 return ret;
1454 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1455 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1456 size = fs_info->extent_root->nodesize;
1457 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1458 size = found_key->offset;
1460 if (found_key->objectid > logical ||
1461 found_key->objectid + size <= logical) {
1462 pr_debug("logical %llu is not within any extent\n", logical);
1463 return -ENOENT;
1466 eb = path->nodes[0];
1467 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1468 BUG_ON(item_size < sizeof(*ei));
1470 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1471 flags = btrfs_extent_flags(eb, ei);
1473 pr_debug("logical %llu is at position %llu within the extent (%llu "
1474 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1475 logical, logical - found_key->objectid, found_key->objectid,
1476 found_key->offset, flags, item_size);
1478 WARN_ON(!flags_ret);
1479 if (flags_ret) {
1480 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1481 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1482 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1483 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1484 else
1485 BUG_ON(1);
1486 return 0;
1489 return -EIO;
1493 * helper function to iterate extent inline refs. ptr must point to a 0 value
1494 * for the first call and may be modified. it is used to track state.
1495 * if more refs exist, 0 is returned and the next call to
1496 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1497 * next ref. after the last ref was processed, 1 is returned.
1498 * returns <0 on error
1500 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1501 struct btrfs_key *key,
1502 struct btrfs_extent_item *ei, u32 item_size,
1503 struct btrfs_extent_inline_ref **out_eiref,
1504 int *out_type)
1506 unsigned long end;
1507 u64 flags;
1508 struct btrfs_tree_block_info *info;
1510 if (!*ptr) {
1511 /* first call */
1512 flags = btrfs_extent_flags(eb, ei);
1513 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1514 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1515 /* a skinny metadata extent */
1516 *out_eiref =
1517 (struct btrfs_extent_inline_ref *)(ei + 1);
1518 } else {
1519 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1520 info = (struct btrfs_tree_block_info *)(ei + 1);
1521 *out_eiref =
1522 (struct btrfs_extent_inline_ref *)(info + 1);
1524 } else {
1525 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1527 *ptr = (unsigned long)*out_eiref;
1528 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1529 return -ENOENT;
1532 end = (unsigned long)ei + item_size;
1533 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1534 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1536 *ptr += btrfs_extent_inline_ref_size(*out_type);
1537 WARN_ON(*ptr > end);
1538 if (*ptr == end)
1539 return 1; /* last */
1541 return 0;
1545 * reads the tree block backref for an extent. tree level and root are returned
1546 * through out_level and out_root. ptr must point to a 0 value for the first
1547 * call and may be modified (see __get_extent_inline_ref comment).
1548 * returns 0 if data was provided, 1 if there was no more data to provide or
1549 * <0 on error.
1551 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1552 struct btrfs_key *key, struct btrfs_extent_item *ei,
1553 u32 item_size, u64 *out_root, u8 *out_level)
1555 int ret;
1556 int type;
1557 struct btrfs_tree_block_info *info;
1558 struct btrfs_extent_inline_ref *eiref;
1560 if (*ptr == (unsigned long)-1)
1561 return 1;
1563 while (1) {
1564 ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
1565 &eiref, &type);
1566 if (ret < 0)
1567 return ret;
1569 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1570 type == BTRFS_SHARED_BLOCK_REF_KEY)
1571 break;
1573 if (ret == 1)
1574 return 1;
1577 /* we can treat both ref types equally here */
1578 info = (struct btrfs_tree_block_info *)(ei + 1);
1579 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1580 *out_level = btrfs_tree_block_level(eb, info);
1582 if (ret == 1)
1583 *ptr = (unsigned long)-1;
1585 return 0;
1588 static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1589 u64 root, u64 extent_item_objectid,
1590 iterate_extent_inodes_t *iterate, void *ctx)
1592 struct extent_inode_elem *eie;
1593 int ret = 0;
1595 for (eie = inode_list; eie; eie = eie->next) {
1596 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1597 "root %llu\n", extent_item_objectid,
1598 eie->inum, eie->offset, root);
1599 ret = iterate(eie->inum, eie->offset, root, ctx);
1600 if (ret) {
1601 pr_debug("stopping iteration for %llu due to ret=%d\n",
1602 extent_item_objectid, ret);
1603 break;
1607 return ret;
1611 * calls iterate() for every inode that references the extent identified by
1612 * the given parameters.
1613 * when the iterator function returns a non-zero value, iteration stops.
1615 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1616 u64 extent_item_objectid, u64 extent_item_pos,
1617 int search_commit_root,
1618 iterate_extent_inodes_t *iterate, void *ctx)
1620 int ret;
1621 struct btrfs_trans_handle *trans = NULL;
1622 struct ulist *refs = NULL;
1623 struct ulist *roots = NULL;
1624 struct ulist_node *ref_node = NULL;
1625 struct ulist_node *root_node = NULL;
1626 struct seq_list tree_mod_seq_elem = {};
1627 struct ulist_iterator ref_uiter;
1628 struct ulist_iterator root_uiter;
1630 pr_debug("resolving all inodes for extent %llu\n",
1631 extent_item_objectid);
1633 if (!search_commit_root) {
1634 trans = btrfs_join_transaction(fs_info->extent_root);
1635 if (IS_ERR(trans))
1636 return PTR_ERR(trans);
1637 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1638 } else {
1639 down_read(&fs_info->commit_root_sem);
1642 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1643 tree_mod_seq_elem.seq, &refs,
1644 &extent_item_pos);
1645 if (ret)
1646 goto out;
1648 ULIST_ITER_INIT(&ref_uiter);
1649 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1650 ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
1651 tree_mod_seq_elem.seq, &roots);
1652 if (ret)
1653 break;
1654 ULIST_ITER_INIT(&root_uiter);
1655 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1656 pr_debug("root %llu references leaf %llu, data list "
1657 "%#llx\n", root_node->val, ref_node->val,
1658 ref_node->aux);
1659 ret = iterate_leaf_refs((struct extent_inode_elem *)
1660 (uintptr_t)ref_node->aux,
1661 root_node->val,
1662 extent_item_objectid,
1663 iterate, ctx);
1665 ulist_free(roots);
1668 free_leaf_list(refs);
1669 out:
1670 if (!search_commit_root) {
1671 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1672 btrfs_end_transaction(trans, fs_info->extent_root);
1673 } else {
1674 up_read(&fs_info->commit_root_sem);
1677 return ret;
1680 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1681 struct btrfs_path *path,
1682 iterate_extent_inodes_t *iterate, void *ctx)
1684 int ret;
1685 u64 extent_item_pos;
1686 u64 flags = 0;
1687 struct btrfs_key found_key;
1688 int search_commit_root = path->search_commit_root;
1690 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1691 btrfs_release_path(path);
1692 if (ret < 0)
1693 return ret;
1694 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1695 return -EINVAL;
1697 extent_item_pos = logical - found_key.objectid;
1698 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1699 extent_item_pos, search_commit_root,
1700 iterate, ctx);
1702 return ret;
1705 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1706 struct extent_buffer *eb, void *ctx);
1708 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1709 struct btrfs_path *path,
1710 iterate_irefs_t *iterate, void *ctx)
1712 int ret = 0;
1713 int slot;
1714 u32 cur;
1715 u32 len;
1716 u32 name_len;
1717 u64 parent = 0;
1718 int found = 0;
1719 struct extent_buffer *eb;
1720 struct btrfs_item *item;
1721 struct btrfs_inode_ref *iref;
1722 struct btrfs_key found_key;
1724 while (!ret) {
1725 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1726 &found_key);
1727 if (ret < 0)
1728 break;
1729 if (ret) {
1730 ret = found ? 0 : -ENOENT;
1731 break;
1733 ++found;
1735 parent = found_key.offset;
1736 slot = path->slots[0];
1737 eb = btrfs_clone_extent_buffer(path->nodes[0]);
1738 if (!eb) {
1739 ret = -ENOMEM;
1740 break;
1742 extent_buffer_get(eb);
1743 btrfs_tree_read_lock(eb);
1744 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1745 btrfs_release_path(path);
1747 item = btrfs_item_nr(slot);
1748 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1750 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1751 name_len = btrfs_inode_ref_name_len(eb, iref);
1752 /* path must be released before calling iterate()! */
1753 pr_debug("following ref at offset %u for inode %llu in "
1754 "tree %llu\n", cur, found_key.objectid,
1755 fs_root->objectid);
1756 ret = iterate(parent, name_len,
1757 (unsigned long)(iref + 1), eb, ctx);
1758 if (ret)
1759 break;
1760 len = sizeof(*iref) + name_len;
1761 iref = (struct btrfs_inode_ref *)((char *)iref + len);
1763 btrfs_tree_read_unlock_blocking(eb);
1764 free_extent_buffer(eb);
1767 btrfs_release_path(path);
1769 return ret;
1772 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1773 struct btrfs_path *path,
1774 iterate_irefs_t *iterate, void *ctx)
1776 int ret;
1777 int slot;
1778 u64 offset = 0;
1779 u64 parent;
1780 int found = 0;
1781 struct extent_buffer *eb;
1782 struct btrfs_inode_extref *extref;
1783 u32 item_size;
1784 u32 cur_offset;
1785 unsigned long ptr;
1787 while (1) {
1788 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1789 &offset);
1790 if (ret < 0)
1791 break;
1792 if (ret) {
1793 ret = found ? 0 : -ENOENT;
1794 break;
1796 ++found;
1798 slot = path->slots[0];
1799 eb = btrfs_clone_extent_buffer(path->nodes[0]);
1800 if (!eb) {
1801 ret = -ENOMEM;
1802 break;
1804 extent_buffer_get(eb);
1806 btrfs_tree_read_lock(eb);
1807 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1808 btrfs_release_path(path);
1810 item_size = btrfs_item_size_nr(eb, slot);
1811 ptr = btrfs_item_ptr_offset(eb, slot);
1812 cur_offset = 0;
1814 while (cur_offset < item_size) {
1815 u32 name_len;
1817 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1818 parent = btrfs_inode_extref_parent(eb, extref);
1819 name_len = btrfs_inode_extref_name_len(eb, extref);
1820 ret = iterate(parent, name_len,
1821 (unsigned long)&extref->name, eb, ctx);
1822 if (ret)
1823 break;
1825 cur_offset += btrfs_inode_extref_name_len(eb, extref);
1826 cur_offset += sizeof(*extref);
1828 btrfs_tree_read_unlock_blocking(eb);
1829 free_extent_buffer(eb);
1831 offset++;
1834 btrfs_release_path(path);
1836 return ret;
1839 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1840 struct btrfs_path *path, iterate_irefs_t *iterate,
1841 void *ctx)
1843 int ret;
1844 int found_refs = 0;
1846 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1847 if (!ret)
1848 ++found_refs;
1849 else if (ret != -ENOENT)
1850 return ret;
1852 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1853 if (ret == -ENOENT && found_refs)
1854 return 0;
1856 return ret;
1860 * returns 0 if the path could be dumped (probably truncated)
1861 * returns <0 in case of an error
1863 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1864 struct extent_buffer *eb, void *ctx)
1866 struct inode_fs_paths *ipath = ctx;
1867 char *fspath;
1868 char *fspath_min;
1869 int i = ipath->fspath->elem_cnt;
1870 const int s_ptr = sizeof(char *);
1871 u32 bytes_left;
1873 bytes_left = ipath->fspath->bytes_left > s_ptr ?
1874 ipath->fspath->bytes_left - s_ptr : 0;
1876 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1877 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1878 name_off, eb, inum, fspath_min, bytes_left);
1879 if (IS_ERR(fspath))
1880 return PTR_ERR(fspath);
1882 if (fspath > fspath_min) {
1883 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1884 ++ipath->fspath->elem_cnt;
1885 ipath->fspath->bytes_left = fspath - fspath_min;
1886 } else {
1887 ++ipath->fspath->elem_missed;
1888 ipath->fspath->bytes_missing += fspath_min - fspath;
1889 ipath->fspath->bytes_left = 0;
1892 return 0;
1896 * this dumps all file system paths to the inode into the ipath struct, provided
1897 * is has been created large enough. each path is zero-terminated and accessed
1898 * from ipath->fspath->val[i].
1899 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1900 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1901 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1902 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1903 * have been needed to return all paths.
1905 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1907 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1908 inode_to_path, ipath);
1911 struct btrfs_data_container *init_data_container(u32 total_bytes)
1913 struct btrfs_data_container *data;
1914 size_t alloc_bytes;
1916 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1917 data = vmalloc(alloc_bytes);
1918 if (!data)
1919 return ERR_PTR(-ENOMEM);
1921 if (total_bytes >= sizeof(*data)) {
1922 data->bytes_left = total_bytes - sizeof(*data);
1923 data->bytes_missing = 0;
1924 } else {
1925 data->bytes_missing = sizeof(*data) - total_bytes;
1926 data->bytes_left = 0;
1929 data->elem_cnt = 0;
1930 data->elem_missed = 0;
1932 return data;
1936 * allocates space to return multiple file system paths for an inode.
1937 * total_bytes to allocate are passed, note that space usable for actual path
1938 * information will be total_bytes - sizeof(struct inode_fs_paths).
1939 * the returned pointer must be freed with free_ipath() in the end.
1941 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1942 struct btrfs_path *path)
1944 struct inode_fs_paths *ifp;
1945 struct btrfs_data_container *fspath;
1947 fspath = init_data_container(total_bytes);
1948 if (IS_ERR(fspath))
1949 return (void *)fspath;
1951 ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1952 if (!ifp) {
1953 kfree(fspath);
1954 return ERR_PTR(-ENOMEM);
1957 ifp->btrfs_path = path;
1958 ifp->fspath = fspath;
1959 ifp->fs_root = fs_root;
1961 return ifp;
1964 void free_ipath(struct inode_fs_paths *ipath)
1966 if (!ipath)
1967 return;
1968 vfree(ipath->fspath);
1969 kfree(ipath);