2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
31 #include "print-tree.h"
35 #include "free-space-cache.h"
40 #undef SCRAMBLE_DELAYED_REFS
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
57 CHUNK_ALLOC_NO_FORCE
= 0,
58 CHUNK_ALLOC_LIMITED
= 1,
59 CHUNK_ALLOC_FORCE
= 2,
63 * Control how reservations are dealt with.
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
74 RESERVE_ALLOC_NO_ACCOUNT
= 2,
77 static int update_block_group(struct btrfs_root
*root
,
78 u64 bytenr
, u64 num_bytes
, int alloc
);
79 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
80 struct btrfs_root
*root
,
81 u64 bytenr
, u64 num_bytes
, u64 parent
,
82 u64 root_objectid
, u64 owner_objectid
,
83 u64 owner_offset
, int refs_to_drop
,
84 struct btrfs_delayed_extent_op
*extra_op
,
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
87 struct extent_buffer
*leaf
,
88 struct btrfs_extent_item
*ei
);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
90 struct btrfs_root
*root
,
91 u64 parent
, u64 root_objectid
,
92 u64 flags
, u64 owner
, u64 offset
,
93 struct btrfs_key
*ins
, int ref_mod
);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
95 struct btrfs_root
*root
,
96 u64 parent
, u64 root_objectid
,
97 u64 flags
, struct btrfs_disk_key
*key
,
98 int level
, struct btrfs_key
*ins
,
100 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
101 struct btrfs_root
*extent_root
, u64 flags
,
103 static int find_next_key(struct btrfs_path
*path
, int level
,
104 struct btrfs_key
*key
);
105 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
106 int dump_block_groups
);
107 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
108 u64 num_bytes
, int reserve
,
110 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
112 int btrfs_pin_extent(struct btrfs_root
*root
,
113 u64 bytenr
, u64 num_bytes
, int reserved
);
116 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
119 return cache
->cached
== BTRFS_CACHE_FINISHED
||
120 cache
->cached
== BTRFS_CACHE_ERROR
;
123 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
125 return (cache
->flags
& bits
) == bits
;
128 static void btrfs_get_block_group(struct btrfs_block_group_cache
*cache
)
130 atomic_inc(&cache
->count
);
133 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
135 if (atomic_dec_and_test(&cache
->count
)) {
136 WARN_ON(cache
->pinned
> 0);
137 WARN_ON(cache
->reserved
> 0);
138 kfree(cache
->free_space_ctl
);
144 * this adds the block group to the fs_info rb tree for the block group
147 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
148 struct btrfs_block_group_cache
*block_group
)
151 struct rb_node
*parent
= NULL
;
152 struct btrfs_block_group_cache
*cache
;
154 spin_lock(&info
->block_group_cache_lock
);
155 p
= &info
->block_group_cache_tree
.rb_node
;
159 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
161 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
163 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
166 spin_unlock(&info
->block_group_cache_lock
);
171 rb_link_node(&block_group
->cache_node
, parent
, p
);
172 rb_insert_color(&block_group
->cache_node
,
173 &info
->block_group_cache_tree
);
175 if (info
->first_logical_byte
> block_group
->key
.objectid
)
176 info
->first_logical_byte
= block_group
->key
.objectid
;
178 spin_unlock(&info
->block_group_cache_lock
);
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
187 static struct btrfs_block_group_cache
*
188 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
191 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
195 spin_lock(&info
->block_group_cache_lock
);
196 n
= info
->block_group_cache_tree
.rb_node
;
199 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
201 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
202 start
= cache
->key
.objectid
;
204 if (bytenr
< start
) {
205 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
208 } else if (bytenr
> start
) {
209 if (contains
&& bytenr
<= end
) {
220 btrfs_get_block_group(ret
);
221 if (bytenr
== 0 && info
->first_logical_byte
> ret
->key
.objectid
)
222 info
->first_logical_byte
= ret
->key
.objectid
;
224 spin_unlock(&info
->block_group_cache_lock
);
229 static int add_excluded_extent(struct btrfs_root
*root
,
230 u64 start
, u64 num_bytes
)
232 u64 end
= start
+ num_bytes
- 1;
233 set_extent_bits(&root
->fs_info
->freed_extents
[0],
234 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
235 set_extent_bits(&root
->fs_info
->freed_extents
[1],
236 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
240 static void free_excluded_extents(struct btrfs_root
*root
,
241 struct btrfs_block_group_cache
*cache
)
245 start
= cache
->key
.objectid
;
246 end
= start
+ cache
->key
.offset
- 1;
248 clear_extent_bits(&root
->fs_info
->freed_extents
[0],
249 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
250 clear_extent_bits(&root
->fs_info
->freed_extents
[1],
251 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
254 static int exclude_super_stripes(struct btrfs_root
*root
,
255 struct btrfs_block_group_cache
*cache
)
262 if (cache
->key
.objectid
< BTRFS_SUPER_INFO_OFFSET
) {
263 stripe_len
= BTRFS_SUPER_INFO_OFFSET
- cache
->key
.objectid
;
264 cache
->bytes_super
+= stripe_len
;
265 ret
= add_excluded_extent(root
, cache
->key
.objectid
,
271 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
272 bytenr
= btrfs_sb_offset(i
);
273 ret
= btrfs_rmap_block(&root
->fs_info
->mapping_tree
,
274 cache
->key
.objectid
, bytenr
,
275 0, &logical
, &nr
, &stripe_len
);
282 if (logical
[nr
] > cache
->key
.objectid
+
286 if (logical
[nr
] + stripe_len
<= cache
->key
.objectid
)
290 if (start
< cache
->key
.objectid
) {
291 start
= cache
->key
.objectid
;
292 len
= (logical
[nr
] + stripe_len
) - start
;
294 len
= min_t(u64
, stripe_len
,
295 cache
->key
.objectid
+
296 cache
->key
.offset
- start
);
299 cache
->bytes_super
+= len
;
300 ret
= add_excluded_extent(root
, start
, len
);
312 static struct btrfs_caching_control
*
313 get_caching_control(struct btrfs_block_group_cache
*cache
)
315 struct btrfs_caching_control
*ctl
;
317 spin_lock(&cache
->lock
);
318 if (cache
->cached
!= BTRFS_CACHE_STARTED
) {
319 spin_unlock(&cache
->lock
);
323 /* We're loading it the fast way, so we don't have a caching_ctl. */
324 if (!cache
->caching_ctl
) {
325 spin_unlock(&cache
->lock
);
329 ctl
= cache
->caching_ctl
;
330 atomic_inc(&ctl
->count
);
331 spin_unlock(&cache
->lock
);
335 static void put_caching_control(struct btrfs_caching_control
*ctl
)
337 if (atomic_dec_and_test(&ctl
->count
))
342 * this is only called by cache_block_group, since we could have freed extents
343 * we need to check the pinned_extents for any extents that can't be used yet
344 * since their free space will be released as soon as the transaction commits.
346 static u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
347 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
349 u64 extent_start
, extent_end
, size
, total_added
= 0;
352 while (start
< end
) {
353 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
354 &extent_start
, &extent_end
,
355 EXTENT_DIRTY
| EXTENT_UPTODATE
,
360 if (extent_start
<= start
) {
361 start
= extent_end
+ 1;
362 } else if (extent_start
> start
&& extent_start
< end
) {
363 size
= extent_start
- start
;
365 ret
= btrfs_add_free_space(block_group
, start
,
367 BUG_ON(ret
); /* -ENOMEM or logic error */
368 start
= extent_end
+ 1;
377 ret
= btrfs_add_free_space(block_group
, start
, size
);
378 BUG_ON(ret
); /* -ENOMEM or logic error */
384 static noinline
void caching_thread(struct btrfs_work
*work
)
386 struct btrfs_block_group_cache
*block_group
;
387 struct btrfs_fs_info
*fs_info
;
388 struct btrfs_caching_control
*caching_ctl
;
389 struct btrfs_root
*extent_root
;
390 struct btrfs_path
*path
;
391 struct extent_buffer
*leaf
;
392 struct btrfs_key key
;
398 caching_ctl
= container_of(work
, struct btrfs_caching_control
, work
);
399 block_group
= caching_ctl
->block_group
;
400 fs_info
= block_group
->fs_info
;
401 extent_root
= fs_info
->extent_root
;
403 path
= btrfs_alloc_path();
407 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
410 * We don't want to deadlock with somebody trying to allocate a new
411 * extent for the extent root while also trying to search the extent
412 * root to add free space. So we skip locking and search the commit
413 * root, since its read-only
415 path
->skip_locking
= 1;
416 path
->search_commit_root
= 1;
421 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
423 mutex_lock(&caching_ctl
->mutex
);
424 /* need to make sure the commit_root doesn't disappear */
425 down_read(&fs_info
->commit_root_sem
);
428 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
432 leaf
= path
->nodes
[0];
433 nritems
= btrfs_header_nritems(leaf
);
436 if (btrfs_fs_closing(fs_info
) > 1) {
441 if (path
->slots
[0] < nritems
) {
442 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
444 ret
= find_next_key(path
, 0, &key
);
448 if (need_resched() ||
449 rwsem_is_contended(&fs_info
->commit_root_sem
)) {
450 caching_ctl
->progress
= last
;
451 btrfs_release_path(path
);
452 up_read(&fs_info
->commit_root_sem
);
453 mutex_unlock(&caching_ctl
->mutex
);
458 ret
= btrfs_next_leaf(extent_root
, path
);
463 leaf
= path
->nodes
[0];
464 nritems
= btrfs_header_nritems(leaf
);
468 if (key
.objectid
< last
) {
471 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
473 caching_ctl
->progress
= last
;
474 btrfs_release_path(path
);
478 if (key
.objectid
< block_group
->key
.objectid
) {
483 if (key
.objectid
>= block_group
->key
.objectid
+
484 block_group
->key
.offset
)
487 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
488 key
.type
== BTRFS_METADATA_ITEM_KEY
) {
489 total_found
+= add_new_free_space(block_group
,
492 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
493 last
= key
.objectid
+
494 fs_info
->tree_root
->nodesize
;
496 last
= key
.objectid
+ key
.offset
;
498 if (total_found
> (1024 * 1024 * 2)) {
500 wake_up(&caching_ctl
->wait
);
507 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
508 block_group
->key
.objectid
+
509 block_group
->key
.offset
);
510 caching_ctl
->progress
= (u64
)-1;
512 spin_lock(&block_group
->lock
);
513 block_group
->caching_ctl
= NULL
;
514 block_group
->cached
= BTRFS_CACHE_FINISHED
;
515 spin_unlock(&block_group
->lock
);
518 btrfs_free_path(path
);
519 up_read(&fs_info
->commit_root_sem
);
521 free_excluded_extents(extent_root
, block_group
);
523 mutex_unlock(&caching_ctl
->mutex
);
526 spin_lock(&block_group
->lock
);
527 block_group
->caching_ctl
= NULL
;
528 block_group
->cached
= BTRFS_CACHE_ERROR
;
529 spin_unlock(&block_group
->lock
);
531 wake_up(&caching_ctl
->wait
);
533 put_caching_control(caching_ctl
);
534 btrfs_put_block_group(block_group
);
537 static int cache_block_group(struct btrfs_block_group_cache
*cache
,
541 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
542 struct btrfs_caching_control
*caching_ctl
;
545 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_NOFS
);
549 INIT_LIST_HEAD(&caching_ctl
->list
);
550 mutex_init(&caching_ctl
->mutex
);
551 init_waitqueue_head(&caching_ctl
->wait
);
552 caching_ctl
->block_group
= cache
;
553 caching_ctl
->progress
= cache
->key
.objectid
;
554 atomic_set(&caching_ctl
->count
, 1);
555 btrfs_init_work(&caching_ctl
->work
, btrfs_cache_helper
,
556 caching_thread
, NULL
, NULL
);
558 spin_lock(&cache
->lock
);
560 * This should be a rare occasion, but this could happen I think in the
561 * case where one thread starts to load the space cache info, and then
562 * some other thread starts a transaction commit which tries to do an
563 * allocation while the other thread is still loading the space cache
564 * info. The previous loop should have kept us from choosing this block
565 * group, but if we've moved to the state where we will wait on caching
566 * block groups we need to first check if we're doing a fast load here,
567 * so we can wait for it to finish, otherwise we could end up allocating
568 * from a block group who's cache gets evicted for one reason or
571 while (cache
->cached
== BTRFS_CACHE_FAST
) {
572 struct btrfs_caching_control
*ctl
;
574 ctl
= cache
->caching_ctl
;
575 atomic_inc(&ctl
->count
);
576 prepare_to_wait(&ctl
->wait
, &wait
, TASK_UNINTERRUPTIBLE
);
577 spin_unlock(&cache
->lock
);
581 finish_wait(&ctl
->wait
, &wait
);
582 put_caching_control(ctl
);
583 spin_lock(&cache
->lock
);
586 if (cache
->cached
!= BTRFS_CACHE_NO
) {
587 spin_unlock(&cache
->lock
);
591 WARN_ON(cache
->caching_ctl
);
592 cache
->caching_ctl
= caching_ctl
;
593 cache
->cached
= BTRFS_CACHE_FAST
;
594 spin_unlock(&cache
->lock
);
596 if (fs_info
->mount_opt
& BTRFS_MOUNT_SPACE_CACHE
) {
597 ret
= load_free_space_cache(fs_info
, cache
);
599 spin_lock(&cache
->lock
);
601 cache
->caching_ctl
= NULL
;
602 cache
->cached
= BTRFS_CACHE_FINISHED
;
603 cache
->last_byte_to_unpin
= (u64
)-1;
605 if (load_cache_only
) {
606 cache
->caching_ctl
= NULL
;
607 cache
->cached
= BTRFS_CACHE_NO
;
609 cache
->cached
= BTRFS_CACHE_STARTED
;
612 spin_unlock(&cache
->lock
);
613 wake_up(&caching_ctl
->wait
);
615 put_caching_control(caching_ctl
);
616 free_excluded_extents(fs_info
->extent_root
, cache
);
621 * We are not going to do the fast caching, set cached to the
622 * appropriate value and wakeup any waiters.
624 spin_lock(&cache
->lock
);
625 if (load_cache_only
) {
626 cache
->caching_ctl
= NULL
;
627 cache
->cached
= BTRFS_CACHE_NO
;
629 cache
->cached
= BTRFS_CACHE_STARTED
;
631 spin_unlock(&cache
->lock
);
632 wake_up(&caching_ctl
->wait
);
635 if (load_cache_only
) {
636 put_caching_control(caching_ctl
);
640 down_write(&fs_info
->commit_root_sem
);
641 atomic_inc(&caching_ctl
->count
);
642 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
643 up_write(&fs_info
->commit_root_sem
);
645 btrfs_get_block_group(cache
);
647 btrfs_queue_work(fs_info
->caching_workers
, &caching_ctl
->work
);
653 * return the block group that starts at or after bytenr
655 static struct btrfs_block_group_cache
*
656 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
658 struct btrfs_block_group_cache
*cache
;
660 cache
= block_group_cache_tree_search(info
, bytenr
, 0);
666 * return the block group that contains the given bytenr
668 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
669 struct btrfs_fs_info
*info
,
672 struct btrfs_block_group_cache
*cache
;
674 cache
= block_group_cache_tree_search(info
, bytenr
, 1);
679 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
682 struct list_head
*head
= &info
->space_info
;
683 struct btrfs_space_info
*found
;
685 flags
&= BTRFS_BLOCK_GROUP_TYPE_MASK
;
688 list_for_each_entry_rcu(found
, head
, list
) {
689 if (found
->flags
& flags
) {
699 * after adding space to the filesystem, we need to clear the full flags
700 * on all the space infos.
702 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
704 struct list_head
*head
= &info
->space_info
;
705 struct btrfs_space_info
*found
;
708 list_for_each_entry_rcu(found
, head
, list
)
713 /* simple helper to search for an existing data extent at a given offset */
714 int btrfs_lookup_data_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
717 struct btrfs_key key
;
718 struct btrfs_path
*path
;
720 path
= btrfs_alloc_path();
724 key
.objectid
= start
;
726 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
727 ret
= btrfs_search_slot(NULL
, root
->fs_info
->extent_root
, &key
, path
,
729 btrfs_free_path(path
);
734 * helper function to lookup reference count and flags of a tree block.
736 * the head node for delayed ref is used to store the sum of all the
737 * reference count modifications queued up in the rbtree. the head
738 * node may also store the extent flags to set. This way you can check
739 * to see what the reference count and extent flags would be if all of
740 * the delayed refs are not processed.
742 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
743 struct btrfs_root
*root
, u64 bytenr
,
744 u64 offset
, int metadata
, u64
*refs
, u64
*flags
)
746 struct btrfs_delayed_ref_head
*head
;
747 struct btrfs_delayed_ref_root
*delayed_refs
;
748 struct btrfs_path
*path
;
749 struct btrfs_extent_item
*ei
;
750 struct extent_buffer
*leaf
;
751 struct btrfs_key key
;
758 * If we don't have skinny metadata, don't bother doing anything
761 if (metadata
&& !btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
)) {
762 offset
= root
->nodesize
;
766 path
= btrfs_alloc_path();
771 path
->skip_locking
= 1;
772 path
->search_commit_root
= 1;
776 key
.objectid
= bytenr
;
779 key
.type
= BTRFS_METADATA_ITEM_KEY
;
781 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
783 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
,
788 if (ret
> 0 && metadata
&& key
.type
== BTRFS_METADATA_ITEM_KEY
) {
789 if (path
->slots
[0]) {
791 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
793 if (key
.objectid
== bytenr
&&
794 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
795 key
.offset
== root
->nodesize
)
801 leaf
= path
->nodes
[0];
802 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
803 if (item_size
>= sizeof(*ei
)) {
804 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
805 struct btrfs_extent_item
);
806 num_refs
= btrfs_extent_refs(leaf
, ei
);
807 extent_flags
= btrfs_extent_flags(leaf
, ei
);
809 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
810 struct btrfs_extent_item_v0
*ei0
;
811 BUG_ON(item_size
!= sizeof(*ei0
));
812 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
813 struct btrfs_extent_item_v0
);
814 num_refs
= btrfs_extent_refs_v0(leaf
, ei0
);
815 /* FIXME: this isn't correct for data */
816 extent_flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
821 BUG_ON(num_refs
== 0);
831 delayed_refs
= &trans
->transaction
->delayed_refs
;
832 spin_lock(&delayed_refs
->lock
);
833 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
835 if (!mutex_trylock(&head
->mutex
)) {
836 atomic_inc(&head
->node
.refs
);
837 spin_unlock(&delayed_refs
->lock
);
839 btrfs_release_path(path
);
842 * Mutex was contended, block until it's released and try
845 mutex_lock(&head
->mutex
);
846 mutex_unlock(&head
->mutex
);
847 btrfs_put_delayed_ref(&head
->node
);
850 spin_lock(&head
->lock
);
851 if (head
->extent_op
&& head
->extent_op
->update_flags
)
852 extent_flags
|= head
->extent_op
->flags_to_set
;
854 BUG_ON(num_refs
== 0);
856 num_refs
+= head
->node
.ref_mod
;
857 spin_unlock(&head
->lock
);
858 mutex_unlock(&head
->mutex
);
860 spin_unlock(&delayed_refs
->lock
);
862 WARN_ON(num_refs
== 0);
866 *flags
= extent_flags
;
868 btrfs_free_path(path
);
873 * Back reference rules. Back refs have three main goals:
875 * 1) differentiate between all holders of references to an extent so that
876 * when a reference is dropped we can make sure it was a valid reference
877 * before freeing the extent.
879 * 2) Provide enough information to quickly find the holders of an extent
880 * if we notice a given block is corrupted or bad.
882 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
883 * maintenance. This is actually the same as #2, but with a slightly
884 * different use case.
886 * There are two kinds of back refs. The implicit back refs is optimized
887 * for pointers in non-shared tree blocks. For a given pointer in a block,
888 * back refs of this kind provide information about the block's owner tree
889 * and the pointer's key. These information allow us to find the block by
890 * b-tree searching. The full back refs is for pointers in tree blocks not
891 * referenced by their owner trees. The location of tree block is recorded
892 * in the back refs. Actually the full back refs is generic, and can be
893 * used in all cases the implicit back refs is used. The major shortcoming
894 * of the full back refs is its overhead. Every time a tree block gets
895 * COWed, we have to update back refs entry for all pointers in it.
897 * For a newly allocated tree block, we use implicit back refs for
898 * pointers in it. This means most tree related operations only involve
899 * implicit back refs. For a tree block created in old transaction, the
900 * only way to drop a reference to it is COW it. So we can detect the
901 * event that tree block loses its owner tree's reference and do the
902 * back refs conversion.
904 * When a tree block is COW'd through a tree, there are four cases:
906 * The reference count of the block is one and the tree is the block's
907 * owner tree. Nothing to do in this case.
909 * The reference count of the block is one and the tree is not the
910 * block's owner tree. In this case, full back refs is used for pointers
911 * in the block. Remove these full back refs, add implicit back refs for
912 * every pointers in the new block.
914 * The reference count of the block is greater than one and the tree is
915 * the block's owner tree. In this case, implicit back refs is used for
916 * pointers in the block. Add full back refs for every pointers in the
917 * block, increase lower level extents' reference counts. The original
918 * implicit back refs are entailed to the new block.
920 * The reference count of the block is greater than one and the tree is
921 * not the block's owner tree. Add implicit back refs for every pointer in
922 * the new block, increase lower level extents' reference count.
924 * Back Reference Key composing:
926 * The key objectid corresponds to the first byte in the extent,
927 * The key type is used to differentiate between types of back refs.
928 * There are different meanings of the key offset for different types
931 * File extents can be referenced by:
933 * - multiple snapshots, subvolumes, or different generations in one subvol
934 * - different files inside a single subvolume
935 * - different offsets inside a file (bookend extents in file.c)
937 * The extent ref structure for the implicit back refs has fields for:
939 * - Objectid of the subvolume root
940 * - objectid of the file holding the reference
941 * - original offset in the file
942 * - how many bookend extents
944 * The key offset for the implicit back refs is hash of the first
947 * The extent ref structure for the full back refs has field for:
949 * - number of pointers in the tree leaf
951 * The key offset for the implicit back refs is the first byte of
954 * When a file extent is allocated, The implicit back refs is used.
955 * the fields are filled in:
957 * (root_key.objectid, inode objectid, offset in file, 1)
959 * When a file extent is removed file truncation, we find the
960 * corresponding implicit back refs and check the following fields:
962 * (btrfs_header_owner(leaf), inode objectid, offset in file)
964 * Btree extents can be referenced by:
966 * - Different subvolumes
968 * Both the implicit back refs and the full back refs for tree blocks
969 * only consist of key. The key offset for the implicit back refs is
970 * objectid of block's owner tree. The key offset for the full back refs
971 * is the first byte of parent block.
973 * When implicit back refs is used, information about the lowest key and
974 * level of the tree block are required. These information are stored in
975 * tree block info structure.
978 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
980 struct btrfs_root
*root
,
981 struct btrfs_path
*path
,
982 u64 owner
, u32 extra_size
)
984 struct btrfs_extent_item
*item
;
985 struct btrfs_extent_item_v0
*ei0
;
986 struct btrfs_extent_ref_v0
*ref0
;
987 struct btrfs_tree_block_info
*bi
;
988 struct extent_buffer
*leaf
;
989 struct btrfs_key key
;
990 struct btrfs_key found_key
;
991 u32 new_size
= sizeof(*item
);
995 leaf
= path
->nodes
[0];
996 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
998 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
999 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1000 struct btrfs_extent_item_v0
);
1001 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
1003 if (owner
== (u64
)-1) {
1005 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1006 ret
= btrfs_next_leaf(root
, path
);
1009 BUG_ON(ret
> 0); /* Corruption */
1010 leaf
= path
->nodes
[0];
1012 btrfs_item_key_to_cpu(leaf
, &found_key
,
1014 BUG_ON(key
.objectid
!= found_key
.objectid
);
1015 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
1019 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1020 struct btrfs_extent_ref_v0
);
1021 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
1025 btrfs_release_path(path
);
1027 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
1028 new_size
+= sizeof(*bi
);
1030 new_size
-= sizeof(*ei0
);
1031 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
1032 new_size
+ extra_size
, 1);
1035 BUG_ON(ret
); /* Corruption */
1037 btrfs_extend_item(root
, path
, new_size
);
1039 leaf
= path
->nodes
[0];
1040 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1041 btrfs_set_extent_refs(leaf
, item
, refs
);
1042 /* FIXME: get real generation */
1043 btrfs_set_extent_generation(leaf
, item
, 0);
1044 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1045 btrfs_set_extent_flags(leaf
, item
,
1046 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
1047 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
1048 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
1049 /* FIXME: get first key of the block */
1050 memset_extent_buffer(leaf
, 0, (unsigned long)bi
, sizeof(*bi
));
1051 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
1053 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
1055 btrfs_mark_buffer_dirty(leaf
);
1060 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
1062 u32 high_crc
= ~(u32
)0;
1063 u32 low_crc
= ~(u32
)0;
1066 lenum
= cpu_to_le64(root_objectid
);
1067 high_crc
= btrfs_crc32c(high_crc
, &lenum
, sizeof(lenum
));
1068 lenum
= cpu_to_le64(owner
);
1069 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1070 lenum
= cpu_to_le64(offset
);
1071 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1073 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
1076 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
1077 struct btrfs_extent_data_ref
*ref
)
1079 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
1080 btrfs_extent_data_ref_objectid(leaf
, ref
),
1081 btrfs_extent_data_ref_offset(leaf
, ref
));
1084 static int match_extent_data_ref(struct extent_buffer
*leaf
,
1085 struct btrfs_extent_data_ref
*ref
,
1086 u64 root_objectid
, u64 owner
, u64 offset
)
1088 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
1089 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
1090 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
1095 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
1096 struct btrfs_root
*root
,
1097 struct btrfs_path
*path
,
1098 u64 bytenr
, u64 parent
,
1100 u64 owner
, u64 offset
)
1102 struct btrfs_key key
;
1103 struct btrfs_extent_data_ref
*ref
;
1104 struct extent_buffer
*leaf
;
1110 key
.objectid
= bytenr
;
1112 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1113 key
.offset
= parent
;
1115 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1116 key
.offset
= hash_extent_data_ref(root_objectid
,
1121 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1130 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1131 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1132 btrfs_release_path(path
);
1133 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1144 leaf
= path
->nodes
[0];
1145 nritems
= btrfs_header_nritems(leaf
);
1147 if (path
->slots
[0] >= nritems
) {
1148 ret
= btrfs_next_leaf(root
, path
);
1154 leaf
= path
->nodes
[0];
1155 nritems
= btrfs_header_nritems(leaf
);
1159 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1160 if (key
.objectid
!= bytenr
||
1161 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
1164 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1165 struct btrfs_extent_data_ref
);
1167 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1170 btrfs_release_path(path
);
1182 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
1183 struct btrfs_root
*root
,
1184 struct btrfs_path
*path
,
1185 u64 bytenr
, u64 parent
,
1186 u64 root_objectid
, u64 owner
,
1187 u64 offset
, int refs_to_add
)
1189 struct btrfs_key key
;
1190 struct extent_buffer
*leaf
;
1195 key
.objectid
= bytenr
;
1197 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1198 key
.offset
= parent
;
1199 size
= sizeof(struct btrfs_shared_data_ref
);
1201 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1202 key
.offset
= hash_extent_data_ref(root_objectid
,
1204 size
= sizeof(struct btrfs_extent_data_ref
);
1207 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
1208 if (ret
&& ret
!= -EEXIST
)
1211 leaf
= path
->nodes
[0];
1213 struct btrfs_shared_data_ref
*ref
;
1214 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1215 struct btrfs_shared_data_ref
);
1217 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
1219 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
1220 num_refs
+= refs_to_add
;
1221 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
1224 struct btrfs_extent_data_ref
*ref
;
1225 while (ret
== -EEXIST
) {
1226 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1227 struct btrfs_extent_data_ref
);
1228 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1231 btrfs_release_path(path
);
1233 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1235 if (ret
&& ret
!= -EEXIST
)
1238 leaf
= path
->nodes
[0];
1240 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1241 struct btrfs_extent_data_ref
);
1243 btrfs_set_extent_data_ref_root(leaf
, ref
,
1245 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
1246 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
1247 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
1249 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
1250 num_refs
+= refs_to_add
;
1251 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
1254 btrfs_mark_buffer_dirty(leaf
);
1257 btrfs_release_path(path
);
1261 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
1262 struct btrfs_root
*root
,
1263 struct btrfs_path
*path
,
1264 int refs_to_drop
, int *last_ref
)
1266 struct btrfs_key key
;
1267 struct btrfs_extent_data_ref
*ref1
= NULL
;
1268 struct btrfs_shared_data_ref
*ref2
= NULL
;
1269 struct extent_buffer
*leaf
;
1273 leaf
= path
->nodes
[0];
1274 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1276 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1277 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1278 struct btrfs_extent_data_ref
);
1279 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1280 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1281 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1282 struct btrfs_shared_data_ref
);
1283 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1284 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1285 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1286 struct btrfs_extent_ref_v0
*ref0
;
1287 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1288 struct btrfs_extent_ref_v0
);
1289 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1295 BUG_ON(num_refs
< refs_to_drop
);
1296 num_refs
-= refs_to_drop
;
1298 if (num_refs
== 0) {
1299 ret
= btrfs_del_item(trans
, root
, path
);
1302 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1303 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1304 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1305 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1306 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1308 struct btrfs_extent_ref_v0
*ref0
;
1309 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1310 struct btrfs_extent_ref_v0
);
1311 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1314 btrfs_mark_buffer_dirty(leaf
);
1319 static noinline u32
extent_data_ref_count(struct btrfs_root
*root
,
1320 struct btrfs_path
*path
,
1321 struct btrfs_extent_inline_ref
*iref
)
1323 struct btrfs_key key
;
1324 struct extent_buffer
*leaf
;
1325 struct btrfs_extent_data_ref
*ref1
;
1326 struct btrfs_shared_data_ref
*ref2
;
1329 leaf
= path
->nodes
[0];
1330 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1332 if (btrfs_extent_inline_ref_type(leaf
, iref
) ==
1333 BTRFS_EXTENT_DATA_REF_KEY
) {
1334 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1335 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1337 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1338 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1340 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1341 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1342 struct btrfs_extent_data_ref
);
1343 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1344 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1345 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1346 struct btrfs_shared_data_ref
);
1347 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1348 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1349 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1350 struct btrfs_extent_ref_v0
*ref0
;
1351 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1352 struct btrfs_extent_ref_v0
);
1353 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1361 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1362 struct btrfs_root
*root
,
1363 struct btrfs_path
*path
,
1364 u64 bytenr
, u64 parent
,
1367 struct btrfs_key key
;
1370 key
.objectid
= bytenr
;
1372 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1373 key
.offset
= parent
;
1375 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1376 key
.offset
= root_objectid
;
1379 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1382 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1383 if (ret
== -ENOENT
&& parent
) {
1384 btrfs_release_path(path
);
1385 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1386 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1394 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1395 struct btrfs_root
*root
,
1396 struct btrfs_path
*path
,
1397 u64 bytenr
, u64 parent
,
1400 struct btrfs_key key
;
1403 key
.objectid
= bytenr
;
1405 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1406 key
.offset
= parent
;
1408 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1409 key
.offset
= root_objectid
;
1412 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1413 btrfs_release_path(path
);
1417 static inline int extent_ref_type(u64 parent
, u64 owner
)
1420 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1422 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1424 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1427 type
= BTRFS_SHARED_DATA_REF_KEY
;
1429 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1434 static int find_next_key(struct btrfs_path
*path
, int level
,
1435 struct btrfs_key
*key
)
1438 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1439 if (!path
->nodes
[level
])
1441 if (path
->slots
[level
] + 1 >=
1442 btrfs_header_nritems(path
->nodes
[level
]))
1445 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1446 path
->slots
[level
] + 1);
1448 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1449 path
->slots
[level
] + 1);
1456 * look for inline back ref. if back ref is found, *ref_ret is set
1457 * to the address of inline back ref, and 0 is returned.
1459 * if back ref isn't found, *ref_ret is set to the address where it
1460 * should be inserted, and -ENOENT is returned.
1462 * if insert is true and there are too many inline back refs, the path
1463 * points to the extent item, and -EAGAIN is returned.
1465 * NOTE: inline back refs are ordered in the same way that back ref
1466 * items in the tree are ordered.
1468 static noinline_for_stack
1469 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1470 struct btrfs_root
*root
,
1471 struct btrfs_path
*path
,
1472 struct btrfs_extent_inline_ref
**ref_ret
,
1473 u64 bytenr
, u64 num_bytes
,
1474 u64 parent
, u64 root_objectid
,
1475 u64 owner
, u64 offset
, int insert
)
1477 struct btrfs_key key
;
1478 struct extent_buffer
*leaf
;
1479 struct btrfs_extent_item
*ei
;
1480 struct btrfs_extent_inline_ref
*iref
;
1490 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
1493 key
.objectid
= bytenr
;
1494 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1495 key
.offset
= num_bytes
;
1497 want
= extent_ref_type(parent
, owner
);
1499 extra_size
= btrfs_extent_inline_ref_size(want
);
1500 path
->keep_locks
= 1;
1505 * Owner is our parent level, so we can just add one to get the level
1506 * for the block we are interested in.
1508 if (skinny_metadata
&& owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1509 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1514 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1521 * We may be a newly converted file system which still has the old fat
1522 * extent entries for metadata, so try and see if we have one of those.
1524 if (ret
> 0 && skinny_metadata
) {
1525 skinny_metadata
= false;
1526 if (path
->slots
[0]) {
1528 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1530 if (key
.objectid
== bytenr
&&
1531 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
1532 key
.offset
== num_bytes
)
1536 key
.objectid
= bytenr
;
1537 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1538 key
.offset
= num_bytes
;
1539 btrfs_release_path(path
);
1544 if (ret
&& !insert
) {
1547 } else if (WARN_ON(ret
)) {
1552 leaf
= path
->nodes
[0];
1553 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1554 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1555 if (item_size
< sizeof(*ei
)) {
1560 ret
= convert_extent_item_v0(trans
, root
, path
, owner
,
1566 leaf
= path
->nodes
[0];
1567 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1570 BUG_ON(item_size
< sizeof(*ei
));
1572 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1573 flags
= btrfs_extent_flags(leaf
, ei
);
1575 ptr
= (unsigned long)(ei
+ 1);
1576 end
= (unsigned long)ei
+ item_size
;
1578 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
&& !skinny_metadata
) {
1579 ptr
+= sizeof(struct btrfs_tree_block_info
);
1589 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1590 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1594 ptr
+= btrfs_extent_inline_ref_size(type
);
1598 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1599 struct btrfs_extent_data_ref
*dref
;
1600 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1601 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1606 if (hash_extent_data_ref_item(leaf
, dref
) <
1607 hash_extent_data_ref(root_objectid
, owner
, offset
))
1611 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1613 if (parent
== ref_offset
) {
1617 if (ref_offset
< parent
)
1620 if (root_objectid
== ref_offset
) {
1624 if (ref_offset
< root_objectid
)
1628 ptr
+= btrfs_extent_inline_ref_size(type
);
1630 if (err
== -ENOENT
&& insert
) {
1631 if (item_size
+ extra_size
>=
1632 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1637 * To add new inline back ref, we have to make sure
1638 * there is no corresponding back ref item.
1639 * For simplicity, we just do not add new inline back
1640 * ref if there is any kind of item for this block
1642 if (find_next_key(path
, 0, &key
) == 0 &&
1643 key
.objectid
== bytenr
&&
1644 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1649 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1652 path
->keep_locks
= 0;
1653 btrfs_unlock_up_safe(path
, 1);
1659 * helper to add new inline back ref
1661 static noinline_for_stack
1662 void setup_inline_extent_backref(struct btrfs_root
*root
,
1663 struct btrfs_path
*path
,
1664 struct btrfs_extent_inline_ref
*iref
,
1665 u64 parent
, u64 root_objectid
,
1666 u64 owner
, u64 offset
, int refs_to_add
,
1667 struct btrfs_delayed_extent_op
*extent_op
)
1669 struct extent_buffer
*leaf
;
1670 struct btrfs_extent_item
*ei
;
1673 unsigned long item_offset
;
1678 leaf
= path
->nodes
[0];
1679 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1680 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1682 type
= extent_ref_type(parent
, owner
);
1683 size
= btrfs_extent_inline_ref_size(type
);
1685 btrfs_extend_item(root
, path
, size
);
1687 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1688 refs
= btrfs_extent_refs(leaf
, ei
);
1689 refs
+= refs_to_add
;
1690 btrfs_set_extent_refs(leaf
, ei
, refs
);
1692 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1694 ptr
= (unsigned long)ei
+ item_offset
;
1695 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1696 if (ptr
< end
- size
)
1697 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1700 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1701 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1702 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1703 struct btrfs_extent_data_ref
*dref
;
1704 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1705 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1706 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1707 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1708 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1709 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1710 struct btrfs_shared_data_ref
*sref
;
1711 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1712 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1713 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1714 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1715 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1717 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1719 btrfs_mark_buffer_dirty(leaf
);
1722 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1723 struct btrfs_root
*root
,
1724 struct btrfs_path
*path
,
1725 struct btrfs_extent_inline_ref
**ref_ret
,
1726 u64 bytenr
, u64 num_bytes
, u64 parent
,
1727 u64 root_objectid
, u64 owner
, u64 offset
)
1731 ret
= lookup_inline_extent_backref(trans
, root
, path
, ref_ret
,
1732 bytenr
, num_bytes
, parent
,
1733 root_objectid
, owner
, offset
, 0);
1737 btrfs_release_path(path
);
1740 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1741 ret
= lookup_tree_block_ref(trans
, root
, path
, bytenr
, parent
,
1744 ret
= lookup_extent_data_ref(trans
, root
, path
, bytenr
, parent
,
1745 root_objectid
, owner
, offset
);
1751 * helper to update/remove inline back ref
1753 static noinline_for_stack
1754 void update_inline_extent_backref(struct btrfs_root
*root
,
1755 struct btrfs_path
*path
,
1756 struct btrfs_extent_inline_ref
*iref
,
1758 struct btrfs_delayed_extent_op
*extent_op
,
1761 struct extent_buffer
*leaf
;
1762 struct btrfs_extent_item
*ei
;
1763 struct btrfs_extent_data_ref
*dref
= NULL
;
1764 struct btrfs_shared_data_ref
*sref
= NULL
;
1772 leaf
= path
->nodes
[0];
1773 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1774 refs
= btrfs_extent_refs(leaf
, ei
);
1775 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1776 refs
+= refs_to_mod
;
1777 btrfs_set_extent_refs(leaf
, ei
, refs
);
1779 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1781 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1783 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1784 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1785 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1786 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1787 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1788 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1791 BUG_ON(refs_to_mod
!= -1);
1794 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1795 refs
+= refs_to_mod
;
1798 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1799 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1801 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1804 size
= btrfs_extent_inline_ref_size(type
);
1805 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1806 ptr
= (unsigned long)iref
;
1807 end
= (unsigned long)ei
+ item_size
;
1808 if (ptr
+ size
< end
)
1809 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1812 btrfs_truncate_item(root
, path
, item_size
, 1);
1814 btrfs_mark_buffer_dirty(leaf
);
1817 static noinline_for_stack
1818 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1819 struct btrfs_root
*root
,
1820 struct btrfs_path
*path
,
1821 u64 bytenr
, u64 num_bytes
, u64 parent
,
1822 u64 root_objectid
, u64 owner
,
1823 u64 offset
, int refs_to_add
,
1824 struct btrfs_delayed_extent_op
*extent_op
)
1826 struct btrfs_extent_inline_ref
*iref
;
1829 ret
= lookup_inline_extent_backref(trans
, root
, path
, &iref
,
1830 bytenr
, num_bytes
, parent
,
1831 root_objectid
, owner
, offset
, 1);
1833 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1834 update_inline_extent_backref(root
, path
, iref
,
1835 refs_to_add
, extent_op
, NULL
);
1836 } else if (ret
== -ENOENT
) {
1837 setup_inline_extent_backref(root
, path
, iref
, parent
,
1838 root_objectid
, owner
, offset
,
1839 refs_to_add
, extent_op
);
1845 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
1846 struct btrfs_root
*root
,
1847 struct btrfs_path
*path
,
1848 u64 bytenr
, u64 parent
, u64 root_objectid
,
1849 u64 owner
, u64 offset
, int refs_to_add
)
1852 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1853 BUG_ON(refs_to_add
!= 1);
1854 ret
= insert_tree_block_ref(trans
, root
, path
, bytenr
,
1855 parent
, root_objectid
);
1857 ret
= insert_extent_data_ref(trans
, root
, path
, bytenr
,
1858 parent
, root_objectid
,
1859 owner
, offset
, refs_to_add
);
1864 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1865 struct btrfs_root
*root
,
1866 struct btrfs_path
*path
,
1867 struct btrfs_extent_inline_ref
*iref
,
1868 int refs_to_drop
, int is_data
, int *last_ref
)
1872 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1874 update_inline_extent_backref(root
, path
, iref
,
1875 -refs_to_drop
, NULL
, last_ref
);
1876 } else if (is_data
) {
1877 ret
= remove_extent_data_ref(trans
, root
, path
, refs_to_drop
,
1881 ret
= btrfs_del_item(trans
, root
, path
);
1886 static int btrfs_issue_discard(struct block_device
*bdev
,
1889 return blkdev_issue_discard(bdev
, start
>> 9, len
>> 9, GFP_NOFS
, 0);
1892 static int btrfs_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
1893 u64 num_bytes
, u64
*actual_bytes
)
1896 u64 discarded_bytes
= 0;
1897 struct btrfs_bio
*bbio
= NULL
;
1900 /* Tell the block device(s) that the sectors can be discarded */
1901 ret
= btrfs_map_block(root
->fs_info
, REQ_DISCARD
,
1902 bytenr
, &num_bytes
, &bbio
, 0);
1903 /* Error condition is -ENOMEM */
1905 struct btrfs_bio_stripe
*stripe
= bbio
->stripes
;
1909 for (i
= 0; i
< bbio
->num_stripes
; i
++, stripe
++) {
1910 if (!stripe
->dev
->can_discard
)
1913 ret
= btrfs_issue_discard(stripe
->dev
->bdev
,
1917 discarded_bytes
+= stripe
->length
;
1918 else if (ret
!= -EOPNOTSUPP
)
1919 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1922 * Just in case we get back EOPNOTSUPP for some reason,
1923 * just ignore the return value so we don't screw up
1924 * people calling discard_extent.
1932 *actual_bytes
= discarded_bytes
;
1935 if (ret
== -EOPNOTSUPP
)
1940 /* Can return -ENOMEM */
1941 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1942 struct btrfs_root
*root
,
1943 u64 bytenr
, u64 num_bytes
, u64 parent
,
1944 u64 root_objectid
, u64 owner
, u64 offset
,
1948 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1950 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
1951 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
1953 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1954 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
1956 parent
, root_objectid
, (int)owner
,
1957 BTRFS_ADD_DELAYED_REF
, NULL
, no_quota
);
1959 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
1961 parent
, root_objectid
, owner
, offset
,
1962 BTRFS_ADD_DELAYED_REF
, NULL
, no_quota
);
1967 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1968 struct btrfs_root
*root
,
1969 u64 bytenr
, u64 num_bytes
,
1970 u64 parent
, u64 root_objectid
,
1971 u64 owner
, u64 offset
, int refs_to_add
,
1973 struct btrfs_delayed_extent_op
*extent_op
)
1975 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1976 struct btrfs_path
*path
;
1977 struct extent_buffer
*leaf
;
1978 struct btrfs_extent_item
*item
;
1979 struct btrfs_key key
;
1982 enum btrfs_qgroup_operation_type type
= BTRFS_QGROUP_OPER_ADD_EXCL
;
1984 path
= btrfs_alloc_path();
1988 if (!is_fstree(root_objectid
) || !root
->fs_info
->quota_enabled
)
1992 path
->leave_spinning
= 1;
1993 /* this will setup the path even if it fails to insert the back ref */
1994 ret
= insert_inline_extent_backref(trans
, fs_info
->extent_root
, path
,
1995 bytenr
, num_bytes
, parent
,
1996 root_objectid
, owner
, offset
,
1997 refs_to_add
, extent_op
);
1998 if ((ret
< 0 && ret
!= -EAGAIN
) || (!ret
&& no_quota
))
2001 * Ok we were able to insert an inline extent and it appears to be a new
2002 * reference, deal with the qgroup accounting.
2004 if (!ret
&& !no_quota
) {
2005 ASSERT(root
->fs_info
->quota_enabled
);
2006 leaf
= path
->nodes
[0];
2007 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2008 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2009 struct btrfs_extent_item
);
2010 if (btrfs_extent_refs(leaf
, item
) > (u64
)refs_to_add
)
2011 type
= BTRFS_QGROUP_OPER_ADD_SHARED
;
2012 btrfs_release_path(path
);
2014 ret
= btrfs_qgroup_record_ref(trans
, fs_info
, root_objectid
,
2015 bytenr
, num_bytes
, type
, 0);
2020 * Ok we had -EAGAIN which means we didn't have space to insert and
2021 * inline extent ref, so just update the reference count and add a
2024 leaf
= path
->nodes
[0];
2025 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2026 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2027 refs
= btrfs_extent_refs(leaf
, item
);
2029 type
= BTRFS_QGROUP_OPER_ADD_SHARED
;
2030 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
2032 __run_delayed_extent_op(extent_op
, leaf
, item
);
2034 btrfs_mark_buffer_dirty(leaf
);
2035 btrfs_release_path(path
);
2038 ret
= btrfs_qgroup_record_ref(trans
, fs_info
, root_objectid
,
2039 bytenr
, num_bytes
, type
, 0);
2045 path
->leave_spinning
= 1;
2046 /* now insert the actual backref */
2047 ret
= insert_extent_backref(trans
, root
->fs_info
->extent_root
,
2048 path
, bytenr
, parent
, root_objectid
,
2049 owner
, offset
, refs_to_add
);
2051 btrfs_abort_transaction(trans
, root
, ret
);
2053 btrfs_free_path(path
);
2057 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
2058 struct btrfs_root
*root
,
2059 struct btrfs_delayed_ref_node
*node
,
2060 struct btrfs_delayed_extent_op
*extent_op
,
2061 int insert_reserved
)
2064 struct btrfs_delayed_data_ref
*ref
;
2065 struct btrfs_key ins
;
2070 ins
.objectid
= node
->bytenr
;
2071 ins
.offset
= node
->num_bytes
;
2072 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2074 ref
= btrfs_delayed_node_to_data_ref(node
);
2075 trace_run_delayed_data_ref(node
, ref
, node
->action
);
2077 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2078 parent
= ref
->parent
;
2079 ref_root
= ref
->root
;
2081 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2083 flags
|= extent_op
->flags_to_set
;
2084 ret
= alloc_reserved_file_extent(trans
, root
,
2085 parent
, ref_root
, flags
,
2086 ref
->objectid
, ref
->offset
,
2087 &ins
, node
->ref_mod
);
2088 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2089 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
2090 node
->num_bytes
, parent
,
2091 ref_root
, ref
->objectid
,
2092 ref
->offset
, node
->ref_mod
,
2093 node
->no_quota
, extent_op
);
2094 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2095 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
2096 node
->num_bytes
, parent
,
2097 ref_root
, ref
->objectid
,
2098 ref
->offset
, node
->ref_mod
,
2099 extent_op
, node
->no_quota
);
2106 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
2107 struct extent_buffer
*leaf
,
2108 struct btrfs_extent_item
*ei
)
2110 u64 flags
= btrfs_extent_flags(leaf
, ei
);
2111 if (extent_op
->update_flags
) {
2112 flags
|= extent_op
->flags_to_set
;
2113 btrfs_set_extent_flags(leaf
, ei
, flags
);
2116 if (extent_op
->update_key
) {
2117 struct btrfs_tree_block_info
*bi
;
2118 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
2119 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
2120 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
2124 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
2125 struct btrfs_root
*root
,
2126 struct btrfs_delayed_ref_node
*node
,
2127 struct btrfs_delayed_extent_op
*extent_op
)
2129 struct btrfs_key key
;
2130 struct btrfs_path
*path
;
2131 struct btrfs_extent_item
*ei
;
2132 struct extent_buffer
*leaf
;
2136 int metadata
= !extent_op
->is_data
;
2141 if (metadata
&& !btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
))
2144 path
= btrfs_alloc_path();
2148 key
.objectid
= node
->bytenr
;
2151 key
.type
= BTRFS_METADATA_ITEM_KEY
;
2152 key
.offset
= extent_op
->level
;
2154 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2155 key
.offset
= node
->num_bytes
;
2160 path
->leave_spinning
= 1;
2161 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
, &key
,
2169 if (path
->slots
[0] > 0) {
2171 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
2173 if (key
.objectid
== node
->bytenr
&&
2174 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
2175 key
.offset
== node
->num_bytes
)
2179 btrfs_release_path(path
);
2182 key
.objectid
= node
->bytenr
;
2183 key
.offset
= node
->num_bytes
;
2184 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2193 leaf
= path
->nodes
[0];
2194 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2195 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2196 if (item_size
< sizeof(*ei
)) {
2197 ret
= convert_extent_item_v0(trans
, root
->fs_info
->extent_root
,
2203 leaf
= path
->nodes
[0];
2204 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2207 BUG_ON(item_size
< sizeof(*ei
));
2208 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2209 __run_delayed_extent_op(extent_op
, leaf
, ei
);
2211 btrfs_mark_buffer_dirty(leaf
);
2213 btrfs_free_path(path
);
2217 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
2218 struct btrfs_root
*root
,
2219 struct btrfs_delayed_ref_node
*node
,
2220 struct btrfs_delayed_extent_op
*extent_op
,
2221 int insert_reserved
)
2224 struct btrfs_delayed_tree_ref
*ref
;
2225 struct btrfs_key ins
;
2228 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
2231 ref
= btrfs_delayed_node_to_tree_ref(node
);
2232 trace_run_delayed_tree_ref(node
, ref
, node
->action
);
2234 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2235 parent
= ref
->parent
;
2236 ref_root
= ref
->root
;
2238 ins
.objectid
= node
->bytenr
;
2239 if (skinny_metadata
) {
2240 ins
.offset
= ref
->level
;
2241 ins
.type
= BTRFS_METADATA_ITEM_KEY
;
2243 ins
.offset
= node
->num_bytes
;
2244 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2247 BUG_ON(node
->ref_mod
!= 1);
2248 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2249 BUG_ON(!extent_op
|| !extent_op
->update_flags
);
2250 ret
= alloc_reserved_tree_block(trans
, root
,
2252 extent_op
->flags_to_set
,
2256 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2257 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
2258 node
->num_bytes
, parent
, ref_root
,
2259 ref
->level
, 0, 1, node
->no_quota
,
2261 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2262 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
2263 node
->num_bytes
, parent
, ref_root
,
2264 ref
->level
, 0, 1, extent_op
,
2272 /* helper function to actually process a single delayed ref entry */
2273 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
2274 struct btrfs_root
*root
,
2275 struct btrfs_delayed_ref_node
*node
,
2276 struct btrfs_delayed_extent_op
*extent_op
,
2277 int insert_reserved
)
2281 if (trans
->aborted
) {
2282 if (insert_reserved
)
2283 btrfs_pin_extent(root
, node
->bytenr
,
2284 node
->num_bytes
, 1);
2288 if (btrfs_delayed_ref_is_head(node
)) {
2289 struct btrfs_delayed_ref_head
*head
;
2291 * we've hit the end of the chain and we were supposed
2292 * to insert this extent into the tree. But, it got
2293 * deleted before we ever needed to insert it, so all
2294 * we have to do is clean up the accounting
2297 head
= btrfs_delayed_node_to_head(node
);
2298 trace_run_delayed_ref_head(node
, head
, node
->action
);
2300 if (insert_reserved
) {
2301 btrfs_pin_extent(root
, node
->bytenr
,
2302 node
->num_bytes
, 1);
2303 if (head
->is_data
) {
2304 ret
= btrfs_del_csums(trans
, root
,
2312 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
2313 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2314 ret
= run_delayed_tree_ref(trans
, root
, node
, extent_op
,
2316 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
2317 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2318 ret
= run_delayed_data_ref(trans
, root
, node
, extent_op
,
2325 static noinline
struct btrfs_delayed_ref_node
*
2326 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
2328 struct rb_node
*node
;
2329 struct btrfs_delayed_ref_node
*ref
, *last
= NULL
;;
2332 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2333 * this prevents ref count from going down to zero when
2334 * there still are pending delayed ref.
2336 node
= rb_first(&head
->ref_root
);
2338 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2340 if (ref
->action
== BTRFS_ADD_DELAYED_REF
)
2342 else if (last
== NULL
)
2344 node
= rb_next(node
);
2350 * Returns 0 on success or if called with an already aborted transaction.
2351 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2353 static noinline
int __btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2354 struct btrfs_root
*root
,
2357 struct btrfs_delayed_ref_root
*delayed_refs
;
2358 struct btrfs_delayed_ref_node
*ref
;
2359 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
2360 struct btrfs_delayed_extent_op
*extent_op
;
2361 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2362 ktime_t start
= ktime_get();
2364 unsigned long count
= 0;
2365 unsigned long actual_count
= 0;
2366 int must_insert_reserved
= 0;
2368 delayed_refs
= &trans
->transaction
->delayed_refs
;
2374 spin_lock(&delayed_refs
->lock
);
2375 locked_ref
= btrfs_select_ref_head(trans
);
2377 spin_unlock(&delayed_refs
->lock
);
2381 /* grab the lock that says we are going to process
2382 * all the refs for this head */
2383 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
2384 spin_unlock(&delayed_refs
->lock
);
2386 * we may have dropped the spin lock to get the head
2387 * mutex lock, and that might have given someone else
2388 * time to free the head. If that's true, it has been
2389 * removed from our list and we can move on.
2391 if (ret
== -EAGAIN
) {
2399 * We need to try and merge add/drops of the same ref since we
2400 * can run into issues with relocate dropping the implicit ref
2401 * and then it being added back again before the drop can
2402 * finish. If we merged anything we need to re-loop so we can
2405 spin_lock(&locked_ref
->lock
);
2406 btrfs_merge_delayed_refs(trans
, fs_info
, delayed_refs
,
2410 * locked_ref is the head node, so we have to go one
2411 * node back for any delayed ref updates
2413 ref
= select_delayed_ref(locked_ref
);
2415 if (ref
&& ref
->seq
&&
2416 btrfs_check_delayed_seq(fs_info
, delayed_refs
, ref
->seq
)) {
2417 spin_unlock(&locked_ref
->lock
);
2418 btrfs_delayed_ref_unlock(locked_ref
);
2419 spin_lock(&delayed_refs
->lock
);
2420 locked_ref
->processing
= 0;
2421 delayed_refs
->num_heads_ready
++;
2422 spin_unlock(&delayed_refs
->lock
);
2430 * record the must insert reserved flag before we
2431 * drop the spin lock.
2433 must_insert_reserved
= locked_ref
->must_insert_reserved
;
2434 locked_ref
->must_insert_reserved
= 0;
2436 extent_op
= locked_ref
->extent_op
;
2437 locked_ref
->extent_op
= NULL
;
2442 /* All delayed refs have been processed, Go ahead
2443 * and send the head node to run_one_delayed_ref,
2444 * so that any accounting fixes can happen
2446 ref
= &locked_ref
->node
;
2448 if (extent_op
&& must_insert_reserved
) {
2449 btrfs_free_delayed_extent_op(extent_op
);
2454 spin_unlock(&locked_ref
->lock
);
2455 ret
= run_delayed_extent_op(trans
, root
,
2457 btrfs_free_delayed_extent_op(extent_op
);
2461 * Need to reset must_insert_reserved if
2462 * there was an error so the abort stuff
2463 * can cleanup the reserved space
2466 if (must_insert_reserved
)
2467 locked_ref
->must_insert_reserved
= 1;
2468 locked_ref
->processing
= 0;
2469 btrfs_debug(fs_info
, "run_delayed_extent_op returned %d", ret
);
2470 btrfs_delayed_ref_unlock(locked_ref
);
2477 * Need to drop our head ref lock and re-aqcuire the
2478 * delayed ref lock and then re-check to make sure
2481 spin_unlock(&locked_ref
->lock
);
2482 spin_lock(&delayed_refs
->lock
);
2483 spin_lock(&locked_ref
->lock
);
2484 if (rb_first(&locked_ref
->ref_root
) ||
2485 locked_ref
->extent_op
) {
2486 spin_unlock(&locked_ref
->lock
);
2487 spin_unlock(&delayed_refs
->lock
);
2491 delayed_refs
->num_heads
--;
2492 rb_erase(&locked_ref
->href_node
,
2493 &delayed_refs
->href_root
);
2494 spin_unlock(&delayed_refs
->lock
);
2498 rb_erase(&ref
->rb_node
, &locked_ref
->ref_root
);
2500 atomic_dec(&delayed_refs
->num_entries
);
2502 if (!btrfs_delayed_ref_is_head(ref
)) {
2504 * when we play the delayed ref, also correct the
2507 switch (ref
->action
) {
2508 case BTRFS_ADD_DELAYED_REF
:
2509 case BTRFS_ADD_DELAYED_EXTENT
:
2510 locked_ref
->node
.ref_mod
-= ref
->ref_mod
;
2512 case BTRFS_DROP_DELAYED_REF
:
2513 locked_ref
->node
.ref_mod
+= ref
->ref_mod
;
2519 spin_unlock(&locked_ref
->lock
);
2521 ret
= run_one_delayed_ref(trans
, root
, ref
, extent_op
,
2522 must_insert_reserved
);
2524 btrfs_free_delayed_extent_op(extent_op
);
2526 locked_ref
->processing
= 0;
2527 btrfs_delayed_ref_unlock(locked_ref
);
2528 btrfs_put_delayed_ref(ref
);
2529 btrfs_debug(fs_info
, "run_one_delayed_ref returned %d", ret
);
2534 * If this node is a head, that means all the refs in this head
2535 * have been dealt with, and we will pick the next head to deal
2536 * with, so we must unlock the head and drop it from the cluster
2537 * list before we release it.
2539 if (btrfs_delayed_ref_is_head(ref
)) {
2540 btrfs_delayed_ref_unlock(locked_ref
);
2543 btrfs_put_delayed_ref(ref
);
2549 * We don't want to include ref heads since we can have empty ref heads
2550 * and those will drastically skew our runtime down since we just do
2551 * accounting, no actual extent tree updates.
2553 if (actual_count
> 0) {
2554 u64 runtime
= ktime_to_ns(ktime_sub(ktime_get(), start
));
2558 * We weigh the current average higher than our current runtime
2559 * to avoid large swings in the average.
2561 spin_lock(&delayed_refs
->lock
);
2562 avg
= fs_info
->avg_delayed_ref_runtime
* 3 + runtime
;
2563 avg
= div64_u64(avg
, 4);
2564 fs_info
->avg_delayed_ref_runtime
= avg
;
2565 spin_unlock(&delayed_refs
->lock
);
2570 #ifdef SCRAMBLE_DELAYED_REFS
2572 * Normally delayed refs get processed in ascending bytenr order. This
2573 * correlates in most cases to the order added. To expose dependencies on this
2574 * order, we start to process the tree in the middle instead of the beginning
2576 static u64
find_middle(struct rb_root
*root
)
2578 struct rb_node
*n
= root
->rb_node
;
2579 struct btrfs_delayed_ref_node
*entry
;
2582 u64 first
= 0, last
= 0;
2586 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2587 first
= entry
->bytenr
;
2591 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2592 last
= entry
->bytenr
;
2597 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2598 WARN_ON(!entry
->in_tree
);
2600 middle
= entry
->bytenr
;
2613 static inline u64
heads_to_leaves(struct btrfs_root
*root
, u64 heads
)
2617 num_bytes
= heads
* (sizeof(struct btrfs_extent_item
) +
2618 sizeof(struct btrfs_extent_inline_ref
));
2619 if (!btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
))
2620 num_bytes
+= heads
* sizeof(struct btrfs_tree_block_info
);
2623 * We don't ever fill up leaves all the way so multiply by 2 just to be
2624 * closer to what we're really going to want to ouse.
2626 return div64_u64(num_bytes
, BTRFS_LEAF_DATA_SIZE(root
));
2629 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle
*trans
,
2630 struct btrfs_root
*root
)
2632 struct btrfs_block_rsv
*global_rsv
;
2633 u64 num_heads
= trans
->transaction
->delayed_refs
.num_heads_ready
;
2637 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
2638 num_heads
= heads_to_leaves(root
, num_heads
);
2640 num_bytes
+= (num_heads
- 1) * root
->nodesize
;
2642 global_rsv
= &root
->fs_info
->global_block_rsv
;
2645 * If we can't allocate any more chunks lets make sure we have _lots_ of
2646 * wiggle room since running delayed refs can create more delayed refs.
2648 if (global_rsv
->space_info
->full
)
2651 spin_lock(&global_rsv
->lock
);
2652 if (global_rsv
->reserved
<= num_bytes
)
2654 spin_unlock(&global_rsv
->lock
);
2658 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle
*trans
,
2659 struct btrfs_root
*root
)
2661 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2663 atomic_read(&trans
->transaction
->delayed_refs
.num_entries
);
2668 avg_runtime
= fs_info
->avg_delayed_ref_runtime
;
2669 val
= num_entries
* avg_runtime
;
2670 if (num_entries
* avg_runtime
>= NSEC_PER_SEC
)
2672 if (val
>= NSEC_PER_SEC
/ 2)
2675 return btrfs_check_space_for_delayed_refs(trans
, root
);
2678 struct async_delayed_refs
{
2679 struct btrfs_root
*root
;
2683 struct completion wait
;
2684 struct btrfs_work work
;
2687 static void delayed_ref_async_start(struct btrfs_work
*work
)
2689 struct async_delayed_refs
*async
;
2690 struct btrfs_trans_handle
*trans
;
2693 async
= container_of(work
, struct async_delayed_refs
, work
);
2695 trans
= btrfs_join_transaction(async
->root
);
2696 if (IS_ERR(trans
)) {
2697 async
->error
= PTR_ERR(trans
);
2702 * trans->sync means that when we call end_transaciton, we won't
2703 * wait on delayed refs
2706 ret
= btrfs_run_delayed_refs(trans
, async
->root
, async
->count
);
2710 ret
= btrfs_end_transaction(trans
, async
->root
);
2711 if (ret
&& !async
->error
)
2715 complete(&async
->wait
);
2720 int btrfs_async_run_delayed_refs(struct btrfs_root
*root
,
2721 unsigned long count
, int wait
)
2723 struct async_delayed_refs
*async
;
2726 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
2730 async
->root
= root
->fs_info
->tree_root
;
2731 async
->count
= count
;
2737 init_completion(&async
->wait
);
2739 btrfs_init_work(&async
->work
, btrfs_extent_refs_helper
,
2740 delayed_ref_async_start
, NULL
, NULL
);
2742 btrfs_queue_work(root
->fs_info
->extent_workers
, &async
->work
);
2745 wait_for_completion(&async
->wait
);
2754 * this starts processing the delayed reference count updates and
2755 * extent insertions we have queued up so far. count can be
2756 * 0, which means to process everything in the tree at the start
2757 * of the run (but not newly added entries), or it can be some target
2758 * number you'd like to process.
2760 * Returns 0 on success or if called with an aborted transaction
2761 * Returns <0 on error and aborts the transaction
2763 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2764 struct btrfs_root
*root
, unsigned long count
)
2766 struct rb_node
*node
;
2767 struct btrfs_delayed_ref_root
*delayed_refs
;
2768 struct btrfs_delayed_ref_head
*head
;
2770 int run_all
= count
== (unsigned long)-1;
2773 /* We'll clean this up in btrfs_cleanup_transaction */
2777 if (root
== root
->fs_info
->extent_root
)
2778 root
= root
->fs_info
->tree_root
;
2780 delayed_refs
= &trans
->transaction
->delayed_refs
;
2782 count
= atomic_read(&delayed_refs
->num_entries
) * 2;
2787 #ifdef SCRAMBLE_DELAYED_REFS
2788 delayed_refs
->run_delayed_start
= find_middle(&delayed_refs
->root
);
2790 ret
= __btrfs_run_delayed_refs(trans
, root
, count
);
2792 btrfs_abort_transaction(trans
, root
, ret
);
2797 if (!list_empty(&trans
->new_bgs
))
2798 btrfs_create_pending_block_groups(trans
, root
);
2800 spin_lock(&delayed_refs
->lock
);
2801 node
= rb_first(&delayed_refs
->href_root
);
2803 spin_unlock(&delayed_refs
->lock
);
2806 count
= (unsigned long)-1;
2809 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
2811 if (btrfs_delayed_ref_is_head(&head
->node
)) {
2812 struct btrfs_delayed_ref_node
*ref
;
2815 atomic_inc(&ref
->refs
);
2817 spin_unlock(&delayed_refs
->lock
);
2819 * Mutex was contended, block until it's
2820 * released and try again
2822 mutex_lock(&head
->mutex
);
2823 mutex_unlock(&head
->mutex
);
2825 btrfs_put_delayed_ref(ref
);
2831 node
= rb_next(node
);
2833 spin_unlock(&delayed_refs
->lock
);
2838 ret
= btrfs_delayed_qgroup_accounting(trans
, root
->fs_info
);
2841 assert_qgroups_uptodate(trans
);
2845 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
2846 struct btrfs_root
*root
,
2847 u64 bytenr
, u64 num_bytes
, u64 flags
,
2848 int level
, int is_data
)
2850 struct btrfs_delayed_extent_op
*extent_op
;
2853 extent_op
= btrfs_alloc_delayed_extent_op();
2857 extent_op
->flags_to_set
= flags
;
2858 extent_op
->update_flags
= 1;
2859 extent_op
->update_key
= 0;
2860 extent_op
->is_data
= is_data
? 1 : 0;
2861 extent_op
->level
= level
;
2863 ret
= btrfs_add_delayed_extent_op(root
->fs_info
, trans
, bytenr
,
2864 num_bytes
, extent_op
);
2866 btrfs_free_delayed_extent_op(extent_op
);
2870 static noinline
int check_delayed_ref(struct btrfs_trans_handle
*trans
,
2871 struct btrfs_root
*root
,
2872 struct btrfs_path
*path
,
2873 u64 objectid
, u64 offset
, u64 bytenr
)
2875 struct btrfs_delayed_ref_head
*head
;
2876 struct btrfs_delayed_ref_node
*ref
;
2877 struct btrfs_delayed_data_ref
*data_ref
;
2878 struct btrfs_delayed_ref_root
*delayed_refs
;
2879 struct rb_node
*node
;
2882 delayed_refs
= &trans
->transaction
->delayed_refs
;
2883 spin_lock(&delayed_refs
->lock
);
2884 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
2886 spin_unlock(&delayed_refs
->lock
);
2890 if (!mutex_trylock(&head
->mutex
)) {
2891 atomic_inc(&head
->node
.refs
);
2892 spin_unlock(&delayed_refs
->lock
);
2894 btrfs_release_path(path
);
2897 * Mutex was contended, block until it's released and let
2900 mutex_lock(&head
->mutex
);
2901 mutex_unlock(&head
->mutex
);
2902 btrfs_put_delayed_ref(&head
->node
);
2905 spin_unlock(&delayed_refs
->lock
);
2907 spin_lock(&head
->lock
);
2908 node
= rb_first(&head
->ref_root
);
2910 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2911 node
= rb_next(node
);
2913 /* If it's a shared ref we know a cross reference exists */
2914 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
) {
2919 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
2922 * If our ref doesn't match the one we're currently looking at
2923 * then we have a cross reference.
2925 if (data_ref
->root
!= root
->root_key
.objectid
||
2926 data_ref
->objectid
!= objectid
||
2927 data_ref
->offset
!= offset
) {
2932 spin_unlock(&head
->lock
);
2933 mutex_unlock(&head
->mutex
);
2937 static noinline
int check_committed_ref(struct btrfs_trans_handle
*trans
,
2938 struct btrfs_root
*root
,
2939 struct btrfs_path
*path
,
2940 u64 objectid
, u64 offset
, u64 bytenr
)
2942 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2943 struct extent_buffer
*leaf
;
2944 struct btrfs_extent_data_ref
*ref
;
2945 struct btrfs_extent_inline_ref
*iref
;
2946 struct btrfs_extent_item
*ei
;
2947 struct btrfs_key key
;
2951 key
.objectid
= bytenr
;
2952 key
.offset
= (u64
)-1;
2953 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2955 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
2958 BUG_ON(ret
== 0); /* Corruption */
2961 if (path
->slots
[0] == 0)
2965 leaf
= path
->nodes
[0];
2966 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2968 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
2972 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2973 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2974 if (item_size
< sizeof(*ei
)) {
2975 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
2979 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2981 if (item_size
!= sizeof(*ei
) +
2982 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
2985 if (btrfs_extent_generation(leaf
, ei
) <=
2986 btrfs_root_last_snapshot(&root
->root_item
))
2989 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
2990 if (btrfs_extent_inline_ref_type(leaf
, iref
) !=
2991 BTRFS_EXTENT_DATA_REF_KEY
)
2994 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
2995 if (btrfs_extent_refs(leaf
, ei
) !=
2996 btrfs_extent_data_ref_count(leaf
, ref
) ||
2997 btrfs_extent_data_ref_root(leaf
, ref
) !=
2998 root
->root_key
.objectid
||
2999 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
3000 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
3008 int btrfs_cross_ref_exist(struct btrfs_trans_handle
*trans
,
3009 struct btrfs_root
*root
,
3010 u64 objectid
, u64 offset
, u64 bytenr
)
3012 struct btrfs_path
*path
;
3016 path
= btrfs_alloc_path();
3021 ret
= check_committed_ref(trans
, root
, path
, objectid
,
3023 if (ret
&& ret
!= -ENOENT
)
3026 ret2
= check_delayed_ref(trans
, root
, path
, objectid
,
3028 } while (ret2
== -EAGAIN
);
3030 if (ret2
&& ret2
!= -ENOENT
) {
3035 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
3038 btrfs_free_path(path
);
3039 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
3044 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
3045 struct btrfs_root
*root
,
3046 struct extent_buffer
*buf
,
3047 int full_backref
, int inc
)
3054 struct btrfs_key key
;
3055 struct btrfs_file_extent_item
*fi
;
3059 int (*process_func
)(struct btrfs_trans_handle
*, struct btrfs_root
*,
3060 u64
, u64
, u64
, u64
, u64
, u64
, int);
3063 if (btrfs_test_is_dummy_root(root
))
3066 ref_root
= btrfs_header_owner(buf
);
3067 nritems
= btrfs_header_nritems(buf
);
3068 level
= btrfs_header_level(buf
);
3070 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) && level
== 0)
3074 process_func
= btrfs_inc_extent_ref
;
3076 process_func
= btrfs_free_extent
;
3079 parent
= buf
->start
;
3083 for (i
= 0; i
< nritems
; i
++) {
3085 btrfs_item_key_to_cpu(buf
, &key
, i
);
3086 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3088 fi
= btrfs_item_ptr(buf
, i
,
3089 struct btrfs_file_extent_item
);
3090 if (btrfs_file_extent_type(buf
, fi
) ==
3091 BTRFS_FILE_EXTENT_INLINE
)
3093 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
3097 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
3098 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
3099 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
3100 parent
, ref_root
, key
.objectid
,
3105 bytenr
= btrfs_node_blockptr(buf
, i
);
3106 num_bytes
= root
->nodesize
;
3107 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
3108 parent
, ref_root
, level
- 1, 0,
3119 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3120 struct extent_buffer
*buf
, int full_backref
)
3122 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1);
3125 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3126 struct extent_buffer
*buf
, int full_backref
)
3128 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0);
3131 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
3132 struct btrfs_root
*root
,
3133 struct btrfs_path
*path
,
3134 struct btrfs_block_group_cache
*cache
)
3137 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
3139 struct extent_buffer
*leaf
;
3141 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
3144 BUG_ON(ret
); /* Corruption */
3146 leaf
= path
->nodes
[0];
3147 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3148 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
3149 btrfs_mark_buffer_dirty(leaf
);
3150 btrfs_release_path(path
);
3153 btrfs_abort_transaction(trans
, root
, ret
);
3160 static struct btrfs_block_group_cache
*
3161 next_block_group(struct btrfs_root
*root
,
3162 struct btrfs_block_group_cache
*cache
)
3164 struct rb_node
*node
;
3165 spin_lock(&root
->fs_info
->block_group_cache_lock
);
3166 node
= rb_next(&cache
->cache_node
);
3167 btrfs_put_block_group(cache
);
3169 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
3171 btrfs_get_block_group(cache
);
3174 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
3178 static int cache_save_setup(struct btrfs_block_group_cache
*block_group
,
3179 struct btrfs_trans_handle
*trans
,
3180 struct btrfs_path
*path
)
3182 struct btrfs_root
*root
= block_group
->fs_info
->tree_root
;
3183 struct inode
*inode
= NULL
;
3185 int dcs
= BTRFS_DC_ERROR
;
3191 * If this block group is smaller than 100 megs don't bother caching the
3194 if (block_group
->key
.offset
< (100 * 1024 * 1024)) {
3195 spin_lock(&block_group
->lock
);
3196 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
3197 spin_unlock(&block_group
->lock
);
3202 inode
= lookup_free_space_inode(root
, block_group
, path
);
3203 if (IS_ERR(inode
) && PTR_ERR(inode
) != -ENOENT
) {
3204 ret
= PTR_ERR(inode
);
3205 btrfs_release_path(path
);
3209 if (IS_ERR(inode
)) {
3213 if (block_group
->ro
)
3216 ret
= create_free_space_inode(root
, trans
, block_group
, path
);
3222 /* We've already setup this transaction, go ahead and exit */
3223 if (block_group
->cache_generation
== trans
->transid
&&
3224 i_size_read(inode
)) {
3225 dcs
= BTRFS_DC_SETUP
;
3230 * We want to set the generation to 0, that way if anything goes wrong
3231 * from here on out we know not to trust this cache when we load up next
3234 BTRFS_I(inode
)->generation
= 0;
3235 ret
= btrfs_update_inode(trans
, root
, inode
);
3238 if (i_size_read(inode
) > 0) {
3239 ret
= btrfs_check_trunc_cache_free_space(root
,
3240 &root
->fs_info
->global_block_rsv
);
3244 ret
= btrfs_truncate_free_space_cache(root
, trans
, inode
);
3249 spin_lock(&block_group
->lock
);
3250 if (block_group
->cached
!= BTRFS_CACHE_FINISHED
||
3251 !btrfs_test_opt(root
, SPACE_CACHE
) ||
3252 block_group
->delalloc_bytes
) {
3254 * don't bother trying to write stuff out _if_
3255 * a) we're not cached,
3256 * b) we're with nospace_cache mount option.
3258 dcs
= BTRFS_DC_WRITTEN
;
3259 spin_unlock(&block_group
->lock
);
3262 spin_unlock(&block_group
->lock
);
3265 * Try to preallocate enough space based on how big the block group is.
3266 * Keep in mind this has to include any pinned space which could end up
3267 * taking up quite a bit since it's not folded into the other space
3270 num_pages
= (int)div64_u64(block_group
->key
.offset
, 256 * 1024 * 1024);
3275 num_pages
*= PAGE_CACHE_SIZE
;
3277 ret
= btrfs_check_data_free_space(inode
, num_pages
);
3281 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, num_pages
,
3282 num_pages
, num_pages
,
3285 dcs
= BTRFS_DC_SETUP
;
3286 btrfs_free_reserved_data_space(inode
, num_pages
);
3291 btrfs_release_path(path
);
3293 spin_lock(&block_group
->lock
);
3294 if (!ret
&& dcs
== BTRFS_DC_SETUP
)
3295 block_group
->cache_generation
= trans
->transid
;
3296 block_group
->disk_cache_state
= dcs
;
3297 spin_unlock(&block_group
->lock
);
3302 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3303 struct btrfs_root
*root
)
3305 struct btrfs_block_group_cache
*cache
;
3307 struct btrfs_path
*path
;
3310 path
= btrfs_alloc_path();
3316 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
3318 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
)
3320 cache
= next_block_group(root
, cache
);
3328 err
= cache_save_setup(cache
, trans
, path
);
3329 last
= cache
->key
.objectid
+ cache
->key
.offset
;
3330 btrfs_put_block_group(cache
);
3335 err
= btrfs_run_delayed_refs(trans
, root
,
3337 if (err
) /* File system offline */
3341 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
3343 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
) {
3344 btrfs_put_block_group(cache
);
3350 cache
= next_block_group(root
, cache
);
3359 if (cache
->disk_cache_state
== BTRFS_DC_SETUP
)
3360 cache
->disk_cache_state
= BTRFS_DC_NEED_WRITE
;
3362 last
= cache
->key
.objectid
+ cache
->key
.offset
;
3364 err
= write_one_cache_group(trans
, root
, path
, cache
);
3365 btrfs_put_block_group(cache
);
3366 if (err
) /* File system offline */
3372 * I don't think this is needed since we're just marking our
3373 * preallocated extent as written, but just in case it can't
3377 err
= btrfs_run_delayed_refs(trans
, root
,
3379 if (err
) /* File system offline */
3383 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
3386 * Really this shouldn't happen, but it could if we
3387 * couldn't write the entire preallocated extent and
3388 * splitting the extent resulted in a new block.
3391 btrfs_put_block_group(cache
);
3394 if (cache
->disk_cache_state
== BTRFS_DC_NEED_WRITE
)
3396 cache
= next_block_group(root
, cache
);
3405 err
= btrfs_write_out_cache(root
, trans
, cache
, path
);
3408 * If we didn't have an error then the cache state is still
3409 * NEED_WRITE, so we can set it to WRITTEN.
3411 if (!err
&& cache
->disk_cache_state
== BTRFS_DC_NEED_WRITE
)
3412 cache
->disk_cache_state
= BTRFS_DC_WRITTEN
;
3413 last
= cache
->key
.objectid
+ cache
->key
.offset
;
3414 btrfs_put_block_group(cache
);
3418 btrfs_free_path(path
);
3422 int btrfs_extent_readonly(struct btrfs_root
*root
, u64 bytenr
)
3424 struct btrfs_block_group_cache
*block_group
;
3427 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
3428 if (!block_group
|| block_group
->ro
)
3431 btrfs_put_block_group(block_group
);
3435 static const char *alloc_name(u64 flags
)
3438 case BTRFS_BLOCK_GROUP_METADATA
|BTRFS_BLOCK_GROUP_DATA
:
3440 case BTRFS_BLOCK_GROUP_METADATA
:
3442 case BTRFS_BLOCK_GROUP_DATA
:
3444 case BTRFS_BLOCK_GROUP_SYSTEM
:
3448 return "invalid-combination";
3452 static int update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
3453 u64 total_bytes
, u64 bytes_used
,
3454 struct btrfs_space_info
**space_info
)
3456 struct btrfs_space_info
*found
;
3461 if (flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3462 BTRFS_BLOCK_GROUP_RAID10
))
3467 found
= __find_space_info(info
, flags
);
3469 spin_lock(&found
->lock
);
3470 found
->total_bytes
+= total_bytes
;
3471 found
->disk_total
+= total_bytes
* factor
;
3472 found
->bytes_used
+= bytes_used
;
3473 found
->disk_used
+= bytes_used
* factor
;
3475 spin_unlock(&found
->lock
);
3476 *space_info
= found
;
3479 found
= kzalloc(sizeof(*found
), GFP_NOFS
);
3483 ret
= percpu_counter_init(&found
->total_bytes_pinned
, 0, GFP_KERNEL
);
3489 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
3490 INIT_LIST_HEAD(&found
->block_groups
[i
]);
3491 init_rwsem(&found
->groups_sem
);
3492 spin_lock_init(&found
->lock
);
3493 found
->flags
= flags
& BTRFS_BLOCK_GROUP_TYPE_MASK
;
3494 found
->total_bytes
= total_bytes
;
3495 found
->disk_total
= total_bytes
* factor
;
3496 found
->bytes_used
= bytes_used
;
3497 found
->disk_used
= bytes_used
* factor
;
3498 found
->bytes_pinned
= 0;
3499 found
->bytes_reserved
= 0;
3500 found
->bytes_readonly
= 0;
3501 found
->bytes_may_use
= 0;
3503 found
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
3504 found
->chunk_alloc
= 0;
3506 init_waitqueue_head(&found
->wait
);
3508 ret
= kobject_init_and_add(&found
->kobj
, &space_info_ktype
,
3509 info
->space_info_kobj
, "%s",
3510 alloc_name(found
->flags
));
3516 *space_info
= found
;
3517 list_add_rcu(&found
->list
, &info
->space_info
);
3518 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3519 info
->data_sinfo
= found
;
3524 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
3526 u64 extra_flags
= chunk_to_extended(flags
) &
3527 BTRFS_EXTENDED_PROFILE_MASK
;
3529 write_seqlock(&fs_info
->profiles_lock
);
3530 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3531 fs_info
->avail_data_alloc_bits
|= extra_flags
;
3532 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3533 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
3534 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3535 fs_info
->avail_system_alloc_bits
|= extra_flags
;
3536 write_sequnlock(&fs_info
->profiles_lock
);
3540 * returns target flags in extended format or 0 if restripe for this
3541 * chunk_type is not in progress
3543 * should be called with either volume_mutex or balance_lock held
3545 static u64
get_restripe_target(struct btrfs_fs_info
*fs_info
, u64 flags
)
3547 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3553 if (flags
& BTRFS_BLOCK_GROUP_DATA
&&
3554 bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3555 target
= BTRFS_BLOCK_GROUP_DATA
| bctl
->data
.target
;
3556 } else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
&&
3557 bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3558 target
= BTRFS_BLOCK_GROUP_SYSTEM
| bctl
->sys
.target
;
3559 } else if (flags
& BTRFS_BLOCK_GROUP_METADATA
&&
3560 bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3561 target
= BTRFS_BLOCK_GROUP_METADATA
| bctl
->meta
.target
;
3568 * @flags: available profiles in extended format (see ctree.h)
3570 * Returns reduced profile in chunk format. If profile changing is in
3571 * progress (either running or paused) picks the target profile (if it's
3572 * already available), otherwise falls back to plain reducing.
3574 static u64
btrfs_reduce_alloc_profile(struct btrfs_root
*root
, u64 flags
)
3576 u64 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
3581 * see if restripe for this chunk_type is in progress, if so
3582 * try to reduce to the target profile
3584 spin_lock(&root
->fs_info
->balance_lock
);
3585 target
= get_restripe_target(root
->fs_info
, flags
);
3587 /* pick target profile only if it's already available */
3588 if ((flags
& target
) & BTRFS_EXTENDED_PROFILE_MASK
) {
3589 spin_unlock(&root
->fs_info
->balance_lock
);
3590 return extended_to_chunk(target
);
3593 spin_unlock(&root
->fs_info
->balance_lock
);
3595 /* First, mask out the RAID levels which aren't possible */
3596 if (num_devices
== 1)
3597 flags
&= ~(BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID0
|
3598 BTRFS_BLOCK_GROUP_RAID5
);
3599 if (num_devices
< 3)
3600 flags
&= ~BTRFS_BLOCK_GROUP_RAID6
;
3601 if (num_devices
< 4)
3602 flags
&= ~BTRFS_BLOCK_GROUP_RAID10
;
3604 tmp
= flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID0
|
3605 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID5
|
3606 BTRFS_BLOCK_GROUP_RAID6
| BTRFS_BLOCK_GROUP_RAID10
);
3609 if (tmp
& BTRFS_BLOCK_GROUP_RAID6
)
3610 tmp
= BTRFS_BLOCK_GROUP_RAID6
;
3611 else if (tmp
& BTRFS_BLOCK_GROUP_RAID5
)
3612 tmp
= BTRFS_BLOCK_GROUP_RAID5
;
3613 else if (tmp
& BTRFS_BLOCK_GROUP_RAID10
)
3614 tmp
= BTRFS_BLOCK_GROUP_RAID10
;
3615 else if (tmp
& BTRFS_BLOCK_GROUP_RAID1
)
3616 tmp
= BTRFS_BLOCK_GROUP_RAID1
;
3617 else if (tmp
& BTRFS_BLOCK_GROUP_RAID0
)
3618 tmp
= BTRFS_BLOCK_GROUP_RAID0
;
3620 return extended_to_chunk(flags
| tmp
);
3623 static u64
get_alloc_profile(struct btrfs_root
*root
, u64 orig_flags
)
3630 seq
= read_seqbegin(&root
->fs_info
->profiles_lock
);
3632 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3633 flags
|= root
->fs_info
->avail_data_alloc_bits
;
3634 else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3635 flags
|= root
->fs_info
->avail_system_alloc_bits
;
3636 else if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3637 flags
|= root
->fs_info
->avail_metadata_alloc_bits
;
3638 } while (read_seqretry(&root
->fs_info
->profiles_lock
, seq
));
3640 return btrfs_reduce_alloc_profile(root
, flags
);
3643 u64
btrfs_get_alloc_profile(struct btrfs_root
*root
, int data
)
3649 flags
= BTRFS_BLOCK_GROUP_DATA
;
3650 else if (root
== root
->fs_info
->chunk_root
)
3651 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
3653 flags
= BTRFS_BLOCK_GROUP_METADATA
;
3655 ret
= get_alloc_profile(root
, flags
);
3660 * This will check the space that the inode allocates from to make sure we have
3661 * enough space for bytes.
3663 int btrfs_check_data_free_space(struct inode
*inode
, u64 bytes
)
3665 struct btrfs_space_info
*data_sinfo
;
3666 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3667 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3669 int ret
= 0, committed
= 0, alloc_chunk
= 1;
3671 /* make sure bytes are sectorsize aligned */
3672 bytes
= ALIGN(bytes
, root
->sectorsize
);
3674 if (btrfs_is_free_space_inode(inode
)) {
3676 ASSERT(current
->journal_info
);
3679 data_sinfo
= fs_info
->data_sinfo
;
3684 /* make sure we have enough space to handle the data first */
3685 spin_lock(&data_sinfo
->lock
);
3686 used
= data_sinfo
->bytes_used
+ data_sinfo
->bytes_reserved
+
3687 data_sinfo
->bytes_pinned
+ data_sinfo
->bytes_readonly
+
3688 data_sinfo
->bytes_may_use
;
3690 if (used
+ bytes
> data_sinfo
->total_bytes
) {
3691 struct btrfs_trans_handle
*trans
;
3694 * if we don't have enough free bytes in this space then we need
3695 * to alloc a new chunk.
3697 if (!data_sinfo
->full
&& alloc_chunk
) {
3700 data_sinfo
->force_alloc
= CHUNK_ALLOC_FORCE
;
3701 spin_unlock(&data_sinfo
->lock
);
3703 alloc_target
= btrfs_get_alloc_profile(root
, 1);
3705 * It is ugly that we don't call nolock join
3706 * transaction for the free space inode case here.
3707 * But it is safe because we only do the data space
3708 * reservation for the free space cache in the
3709 * transaction context, the common join transaction
3710 * just increase the counter of the current transaction
3711 * handler, doesn't try to acquire the trans_lock of
3714 trans
= btrfs_join_transaction(root
);
3716 return PTR_ERR(trans
);
3718 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
3720 CHUNK_ALLOC_NO_FORCE
);
3721 btrfs_end_transaction(trans
, root
);
3730 data_sinfo
= fs_info
->data_sinfo
;
3736 * If we don't have enough pinned space to deal with this
3737 * allocation don't bother committing the transaction.
3739 if (percpu_counter_compare(&data_sinfo
->total_bytes_pinned
,
3742 spin_unlock(&data_sinfo
->lock
);
3744 /* commit the current transaction and try again */
3747 !atomic_read(&root
->fs_info
->open_ioctl_trans
)) {
3750 trans
= btrfs_join_transaction(root
);
3752 return PTR_ERR(trans
);
3753 ret
= btrfs_commit_transaction(trans
, root
);
3759 trace_btrfs_space_reservation(root
->fs_info
,
3760 "space_info:enospc",
3761 data_sinfo
->flags
, bytes
, 1);
3764 data_sinfo
->bytes_may_use
+= bytes
;
3765 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
3766 data_sinfo
->flags
, bytes
, 1);
3767 spin_unlock(&data_sinfo
->lock
);
3773 * Called if we need to clear a data reservation for this inode.
3775 void btrfs_free_reserved_data_space(struct inode
*inode
, u64 bytes
)
3777 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3778 struct btrfs_space_info
*data_sinfo
;
3780 /* make sure bytes are sectorsize aligned */
3781 bytes
= ALIGN(bytes
, root
->sectorsize
);
3783 data_sinfo
= root
->fs_info
->data_sinfo
;
3784 spin_lock(&data_sinfo
->lock
);
3785 WARN_ON(data_sinfo
->bytes_may_use
< bytes
);
3786 data_sinfo
->bytes_may_use
-= bytes
;
3787 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
3788 data_sinfo
->flags
, bytes
, 0);
3789 spin_unlock(&data_sinfo
->lock
);
3792 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
3794 struct list_head
*head
= &info
->space_info
;
3795 struct btrfs_space_info
*found
;
3798 list_for_each_entry_rcu(found
, head
, list
) {
3799 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
3800 found
->force_alloc
= CHUNK_ALLOC_FORCE
;
3805 static inline u64
calc_global_rsv_need_space(struct btrfs_block_rsv
*global
)
3807 return (global
->size
<< 1);
3810 static int should_alloc_chunk(struct btrfs_root
*root
,
3811 struct btrfs_space_info
*sinfo
, int force
)
3813 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
3814 u64 num_bytes
= sinfo
->total_bytes
- sinfo
->bytes_readonly
;
3815 u64 num_allocated
= sinfo
->bytes_used
+ sinfo
->bytes_reserved
;
3818 if (force
== CHUNK_ALLOC_FORCE
)
3822 * We need to take into account the global rsv because for all intents
3823 * and purposes it's used space. Don't worry about locking the
3824 * global_rsv, it doesn't change except when the transaction commits.
3826 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
3827 num_allocated
+= calc_global_rsv_need_space(global_rsv
);
3830 * in limited mode, we want to have some free space up to
3831 * about 1% of the FS size.
3833 if (force
== CHUNK_ALLOC_LIMITED
) {
3834 thresh
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
3835 thresh
= max_t(u64
, 64 * 1024 * 1024,
3836 div_factor_fine(thresh
, 1));
3838 if (num_bytes
- num_allocated
< thresh
)
3842 if (num_allocated
+ 2 * 1024 * 1024 < div_factor(num_bytes
, 8))
3847 static u64
get_system_chunk_thresh(struct btrfs_root
*root
, u64 type
)
3851 if (type
& (BTRFS_BLOCK_GROUP_RAID10
|
3852 BTRFS_BLOCK_GROUP_RAID0
|
3853 BTRFS_BLOCK_GROUP_RAID5
|
3854 BTRFS_BLOCK_GROUP_RAID6
))
3855 num_dev
= root
->fs_info
->fs_devices
->rw_devices
;
3856 else if (type
& BTRFS_BLOCK_GROUP_RAID1
)
3859 num_dev
= 1; /* DUP or single */
3861 /* metadata for updaing devices and chunk tree */
3862 return btrfs_calc_trans_metadata_size(root
, num_dev
+ 1);
3865 static void check_system_chunk(struct btrfs_trans_handle
*trans
,
3866 struct btrfs_root
*root
, u64 type
)
3868 struct btrfs_space_info
*info
;
3872 info
= __find_space_info(root
->fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
3873 spin_lock(&info
->lock
);
3874 left
= info
->total_bytes
- info
->bytes_used
- info
->bytes_pinned
-
3875 info
->bytes_reserved
- info
->bytes_readonly
;
3876 spin_unlock(&info
->lock
);
3878 thresh
= get_system_chunk_thresh(root
, type
);
3879 if (left
< thresh
&& btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
3880 btrfs_info(root
->fs_info
, "left=%llu, need=%llu, flags=%llu",
3881 left
, thresh
, type
);
3882 dump_space_info(info
, 0, 0);
3885 if (left
< thresh
) {
3888 flags
= btrfs_get_alloc_profile(root
->fs_info
->chunk_root
, 0);
3889 btrfs_alloc_chunk(trans
, root
, flags
);
3893 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
3894 struct btrfs_root
*extent_root
, u64 flags
, int force
)
3896 struct btrfs_space_info
*space_info
;
3897 struct btrfs_fs_info
*fs_info
= extent_root
->fs_info
;
3898 int wait_for_alloc
= 0;
3901 /* Don't re-enter if we're already allocating a chunk */
3902 if (trans
->allocating_chunk
)
3905 space_info
= __find_space_info(extent_root
->fs_info
, flags
);
3907 ret
= update_space_info(extent_root
->fs_info
, flags
,
3909 BUG_ON(ret
); /* -ENOMEM */
3911 BUG_ON(!space_info
); /* Logic error */
3914 spin_lock(&space_info
->lock
);
3915 if (force
< space_info
->force_alloc
)
3916 force
= space_info
->force_alloc
;
3917 if (space_info
->full
) {
3918 if (should_alloc_chunk(extent_root
, space_info
, force
))
3922 spin_unlock(&space_info
->lock
);
3926 if (!should_alloc_chunk(extent_root
, space_info
, force
)) {
3927 spin_unlock(&space_info
->lock
);
3929 } else if (space_info
->chunk_alloc
) {
3932 space_info
->chunk_alloc
= 1;
3935 spin_unlock(&space_info
->lock
);
3937 mutex_lock(&fs_info
->chunk_mutex
);
3940 * The chunk_mutex is held throughout the entirety of a chunk
3941 * allocation, so once we've acquired the chunk_mutex we know that the
3942 * other guy is done and we need to recheck and see if we should
3945 if (wait_for_alloc
) {
3946 mutex_unlock(&fs_info
->chunk_mutex
);
3951 trans
->allocating_chunk
= true;
3954 * If we have mixed data/metadata chunks we want to make sure we keep
3955 * allocating mixed chunks instead of individual chunks.
3957 if (btrfs_mixed_space_info(space_info
))
3958 flags
|= (BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
);
3961 * if we're doing a data chunk, go ahead and make sure that
3962 * we keep a reasonable number of metadata chunks allocated in the
3965 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
3966 fs_info
->data_chunk_allocations
++;
3967 if (!(fs_info
->data_chunk_allocations
%
3968 fs_info
->metadata_ratio
))
3969 force_metadata_allocation(fs_info
);
3973 * Check if we have enough space in SYSTEM chunk because we may need
3974 * to update devices.
3976 check_system_chunk(trans
, extent_root
, flags
);
3978 ret
= btrfs_alloc_chunk(trans
, extent_root
, flags
);
3979 trans
->allocating_chunk
= false;
3981 spin_lock(&space_info
->lock
);
3982 if (ret
< 0 && ret
!= -ENOSPC
)
3985 space_info
->full
= 1;
3989 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
3991 space_info
->chunk_alloc
= 0;
3992 spin_unlock(&space_info
->lock
);
3993 mutex_unlock(&fs_info
->chunk_mutex
);
3997 static int can_overcommit(struct btrfs_root
*root
,
3998 struct btrfs_space_info
*space_info
, u64 bytes
,
3999 enum btrfs_reserve_flush_enum flush
)
4001 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
4002 u64 profile
= btrfs_get_alloc_profile(root
, 0);
4007 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4008 space_info
->bytes_pinned
+ space_info
->bytes_readonly
;
4011 * We only want to allow over committing if we have lots of actual space
4012 * free, but if we don't have enough space to handle the global reserve
4013 * space then we could end up having a real enospc problem when trying
4014 * to allocate a chunk or some other such important allocation.
4016 spin_lock(&global_rsv
->lock
);
4017 space_size
= calc_global_rsv_need_space(global_rsv
);
4018 spin_unlock(&global_rsv
->lock
);
4019 if (used
+ space_size
>= space_info
->total_bytes
)
4022 used
+= space_info
->bytes_may_use
;
4024 spin_lock(&root
->fs_info
->free_chunk_lock
);
4025 avail
= root
->fs_info
->free_chunk_space
;
4026 spin_unlock(&root
->fs_info
->free_chunk_lock
);
4029 * If we have dup, raid1 or raid10 then only half of the free
4030 * space is actually useable. For raid56, the space info used
4031 * doesn't include the parity drive, so we don't have to
4034 if (profile
& (BTRFS_BLOCK_GROUP_DUP
|
4035 BTRFS_BLOCK_GROUP_RAID1
|
4036 BTRFS_BLOCK_GROUP_RAID10
))
4040 * If we aren't flushing all things, let us overcommit up to
4041 * 1/2th of the space. If we can flush, don't let us overcommit
4042 * too much, let it overcommit up to 1/8 of the space.
4044 if (flush
== BTRFS_RESERVE_FLUSH_ALL
)
4049 if (used
+ bytes
< space_info
->total_bytes
+ avail
)
4054 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root
*root
,
4055 unsigned long nr_pages
, int nr_items
)
4057 struct super_block
*sb
= root
->fs_info
->sb
;
4059 if (down_read_trylock(&sb
->s_umount
)) {
4060 writeback_inodes_sb_nr(sb
, nr_pages
, WB_REASON_FS_FREE_SPACE
);
4061 up_read(&sb
->s_umount
);
4064 * We needn't worry the filesystem going from r/w to r/o though
4065 * we don't acquire ->s_umount mutex, because the filesystem
4066 * should guarantee the delalloc inodes list be empty after
4067 * the filesystem is readonly(all dirty pages are written to
4070 btrfs_start_delalloc_roots(root
->fs_info
, 0, nr_items
);
4071 if (!current
->journal_info
)
4072 btrfs_wait_ordered_roots(root
->fs_info
, nr_items
);
4076 static inline int calc_reclaim_items_nr(struct btrfs_root
*root
, u64 to_reclaim
)
4081 bytes
= btrfs_calc_trans_metadata_size(root
, 1);
4082 nr
= (int)div64_u64(to_reclaim
, bytes
);
4088 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4091 * shrink metadata reservation for delalloc
4093 static void shrink_delalloc(struct btrfs_root
*root
, u64 to_reclaim
, u64 orig
,
4096 struct btrfs_block_rsv
*block_rsv
;
4097 struct btrfs_space_info
*space_info
;
4098 struct btrfs_trans_handle
*trans
;
4102 unsigned long nr_pages
;
4105 enum btrfs_reserve_flush_enum flush
;
4107 /* Calc the number of the pages we need flush for space reservation */
4108 items
= calc_reclaim_items_nr(root
, to_reclaim
);
4109 to_reclaim
= items
* EXTENT_SIZE_PER_ITEM
;
4111 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4112 block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
4113 space_info
= block_rsv
->space_info
;
4115 delalloc_bytes
= percpu_counter_sum_positive(
4116 &root
->fs_info
->delalloc_bytes
);
4117 if (delalloc_bytes
== 0) {
4121 btrfs_wait_ordered_roots(root
->fs_info
, items
);
4126 while (delalloc_bytes
&& loops
< 3) {
4127 max_reclaim
= min(delalloc_bytes
, to_reclaim
);
4128 nr_pages
= max_reclaim
>> PAGE_CACHE_SHIFT
;
4129 btrfs_writeback_inodes_sb_nr(root
, nr_pages
, items
);
4131 * We need to wait for the async pages to actually start before
4134 max_reclaim
= atomic_read(&root
->fs_info
->async_delalloc_pages
);
4138 if (max_reclaim
<= nr_pages
)
4141 max_reclaim
-= nr_pages
;
4143 wait_event(root
->fs_info
->async_submit_wait
,
4144 atomic_read(&root
->fs_info
->async_delalloc_pages
) <=
4148 flush
= BTRFS_RESERVE_FLUSH_ALL
;
4150 flush
= BTRFS_RESERVE_NO_FLUSH
;
4151 spin_lock(&space_info
->lock
);
4152 if (can_overcommit(root
, space_info
, orig
, flush
)) {
4153 spin_unlock(&space_info
->lock
);
4156 spin_unlock(&space_info
->lock
);
4159 if (wait_ordered
&& !trans
) {
4160 btrfs_wait_ordered_roots(root
->fs_info
, items
);
4162 time_left
= schedule_timeout_killable(1);
4166 delalloc_bytes
= percpu_counter_sum_positive(
4167 &root
->fs_info
->delalloc_bytes
);
4172 * maybe_commit_transaction - possibly commit the transaction if its ok to
4173 * @root - the root we're allocating for
4174 * @bytes - the number of bytes we want to reserve
4175 * @force - force the commit
4177 * This will check to make sure that committing the transaction will actually
4178 * get us somewhere and then commit the transaction if it does. Otherwise it
4179 * will return -ENOSPC.
4181 static int may_commit_transaction(struct btrfs_root
*root
,
4182 struct btrfs_space_info
*space_info
,
4183 u64 bytes
, int force
)
4185 struct btrfs_block_rsv
*delayed_rsv
= &root
->fs_info
->delayed_block_rsv
;
4186 struct btrfs_trans_handle
*trans
;
4188 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4195 /* See if there is enough pinned space to make this reservation */
4196 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4201 * See if there is some space in the delayed insertion reservation for
4204 if (space_info
!= delayed_rsv
->space_info
)
4207 spin_lock(&delayed_rsv
->lock
);
4208 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4209 bytes
- delayed_rsv
->size
) >= 0) {
4210 spin_unlock(&delayed_rsv
->lock
);
4213 spin_unlock(&delayed_rsv
->lock
);
4216 trans
= btrfs_join_transaction(root
);
4220 return btrfs_commit_transaction(trans
, root
);
4224 FLUSH_DELAYED_ITEMS_NR
= 1,
4225 FLUSH_DELAYED_ITEMS
= 2,
4227 FLUSH_DELALLOC_WAIT
= 4,
4232 static int flush_space(struct btrfs_root
*root
,
4233 struct btrfs_space_info
*space_info
, u64 num_bytes
,
4234 u64 orig_bytes
, int state
)
4236 struct btrfs_trans_handle
*trans
;
4241 case FLUSH_DELAYED_ITEMS_NR
:
4242 case FLUSH_DELAYED_ITEMS
:
4243 if (state
== FLUSH_DELAYED_ITEMS_NR
)
4244 nr
= calc_reclaim_items_nr(root
, num_bytes
) * 2;
4248 trans
= btrfs_join_transaction(root
);
4249 if (IS_ERR(trans
)) {
4250 ret
= PTR_ERR(trans
);
4253 ret
= btrfs_run_delayed_items_nr(trans
, root
, nr
);
4254 btrfs_end_transaction(trans
, root
);
4256 case FLUSH_DELALLOC
:
4257 case FLUSH_DELALLOC_WAIT
:
4258 shrink_delalloc(root
, num_bytes
* 2, orig_bytes
,
4259 state
== FLUSH_DELALLOC_WAIT
);
4262 trans
= btrfs_join_transaction(root
);
4263 if (IS_ERR(trans
)) {
4264 ret
= PTR_ERR(trans
);
4267 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
4268 btrfs_get_alloc_profile(root
, 0),
4269 CHUNK_ALLOC_NO_FORCE
);
4270 btrfs_end_transaction(trans
, root
);
4275 ret
= may_commit_transaction(root
, space_info
, orig_bytes
, 0);
4286 btrfs_calc_reclaim_metadata_size(struct btrfs_root
*root
,
4287 struct btrfs_space_info
*space_info
)
4293 to_reclaim
= min_t(u64
, num_online_cpus() * 1024 * 1024,
4295 spin_lock(&space_info
->lock
);
4296 if (can_overcommit(root
, space_info
, to_reclaim
,
4297 BTRFS_RESERVE_FLUSH_ALL
)) {
4302 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4303 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
4304 space_info
->bytes_may_use
;
4305 if (can_overcommit(root
, space_info
, 1024 * 1024,
4306 BTRFS_RESERVE_FLUSH_ALL
))
4307 expected
= div_factor_fine(space_info
->total_bytes
, 95);
4309 expected
= div_factor_fine(space_info
->total_bytes
, 90);
4311 if (used
> expected
)
4312 to_reclaim
= used
- expected
;
4315 to_reclaim
= min(to_reclaim
, space_info
->bytes_may_use
+
4316 space_info
->bytes_reserved
);
4318 spin_unlock(&space_info
->lock
);
4323 static inline int need_do_async_reclaim(struct btrfs_space_info
*space_info
,
4324 struct btrfs_fs_info
*fs_info
, u64 used
)
4326 return (used
>= div_factor_fine(space_info
->total_bytes
, 98) &&
4327 !btrfs_fs_closing(fs_info
) &&
4328 !test_bit(BTRFS_FS_STATE_REMOUNTING
, &fs_info
->fs_state
));
4331 static int btrfs_need_do_async_reclaim(struct btrfs_space_info
*space_info
,
4332 struct btrfs_fs_info
*fs_info
,
4337 spin_lock(&space_info
->lock
);
4339 * We run out of space and have not got any free space via flush_space,
4340 * so don't bother doing async reclaim.
4342 if (flush_state
> COMMIT_TRANS
&& space_info
->full
) {
4343 spin_unlock(&space_info
->lock
);
4347 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4348 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
4349 space_info
->bytes_may_use
;
4350 if (need_do_async_reclaim(space_info
, fs_info
, used
)) {
4351 spin_unlock(&space_info
->lock
);
4354 spin_unlock(&space_info
->lock
);
4359 static void btrfs_async_reclaim_metadata_space(struct work_struct
*work
)
4361 struct btrfs_fs_info
*fs_info
;
4362 struct btrfs_space_info
*space_info
;
4366 fs_info
= container_of(work
, struct btrfs_fs_info
, async_reclaim_work
);
4367 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4369 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
->fs_root
,
4374 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
4376 flush_space(fs_info
->fs_root
, space_info
, to_reclaim
,
4377 to_reclaim
, flush_state
);
4379 if (!btrfs_need_do_async_reclaim(space_info
, fs_info
,
4382 } while (flush_state
<= COMMIT_TRANS
);
4384 if (btrfs_need_do_async_reclaim(space_info
, fs_info
, flush_state
))
4385 queue_work(system_unbound_wq
, work
);
4388 void btrfs_init_async_reclaim_work(struct work_struct
*work
)
4390 INIT_WORK(work
, btrfs_async_reclaim_metadata_space
);
4394 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4395 * @root - the root we're allocating for
4396 * @block_rsv - the block_rsv we're allocating for
4397 * @orig_bytes - the number of bytes we want
4398 * @flush - whether or not we can flush to make our reservation
4400 * This will reserve orgi_bytes number of bytes from the space info associated
4401 * with the block_rsv. If there is not enough space it will make an attempt to
4402 * flush out space to make room. It will do this by flushing delalloc if
4403 * possible or committing the transaction. If flush is 0 then no attempts to
4404 * regain reservations will be made and this will fail if there is not enough
4407 static int reserve_metadata_bytes(struct btrfs_root
*root
,
4408 struct btrfs_block_rsv
*block_rsv
,
4410 enum btrfs_reserve_flush_enum flush
)
4412 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
4414 u64 num_bytes
= orig_bytes
;
4415 int flush_state
= FLUSH_DELAYED_ITEMS_NR
;
4417 bool flushing
= false;
4421 spin_lock(&space_info
->lock
);
4423 * We only want to wait if somebody other than us is flushing and we
4424 * are actually allowed to flush all things.
4426 while (flush
== BTRFS_RESERVE_FLUSH_ALL
&& !flushing
&&
4427 space_info
->flush
) {
4428 spin_unlock(&space_info
->lock
);
4430 * If we have a trans handle we can't wait because the flusher
4431 * may have to commit the transaction, which would mean we would
4432 * deadlock since we are waiting for the flusher to finish, but
4433 * hold the current transaction open.
4435 if (current
->journal_info
)
4437 ret
= wait_event_killable(space_info
->wait
, !space_info
->flush
);
4438 /* Must have been killed, return */
4442 spin_lock(&space_info
->lock
);
4446 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4447 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
4448 space_info
->bytes_may_use
;
4451 * The idea here is that we've not already over-reserved the block group
4452 * then we can go ahead and save our reservation first and then start
4453 * flushing if we need to. Otherwise if we've already overcommitted
4454 * lets start flushing stuff first and then come back and try to make
4457 if (used
<= space_info
->total_bytes
) {
4458 if (used
+ orig_bytes
<= space_info
->total_bytes
) {
4459 space_info
->bytes_may_use
+= orig_bytes
;
4460 trace_btrfs_space_reservation(root
->fs_info
,
4461 "space_info", space_info
->flags
, orig_bytes
, 1);
4465 * Ok set num_bytes to orig_bytes since we aren't
4466 * overocmmitted, this way we only try and reclaim what
4469 num_bytes
= orig_bytes
;
4473 * Ok we're over committed, set num_bytes to the overcommitted
4474 * amount plus the amount of bytes that we need for this
4477 num_bytes
= used
- space_info
->total_bytes
+
4481 if (ret
&& can_overcommit(root
, space_info
, orig_bytes
, flush
)) {
4482 space_info
->bytes_may_use
+= orig_bytes
;
4483 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
4484 space_info
->flags
, orig_bytes
,
4490 * Couldn't make our reservation, save our place so while we're trying
4491 * to reclaim space we can actually use it instead of somebody else
4492 * stealing it from us.
4494 * We make the other tasks wait for the flush only when we can flush
4497 if (ret
&& flush
!= BTRFS_RESERVE_NO_FLUSH
) {
4499 space_info
->flush
= 1;
4500 } else if (!ret
&& space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
4503 * We will do the space reservation dance during log replay,
4504 * which means we won't have fs_info->fs_root set, so don't do
4505 * the async reclaim as we will panic.
4507 if (!root
->fs_info
->log_root_recovering
&&
4508 need_do_async_reclaim(space_info
, root
->fs_info
, used
) &&
4509 !work_busy(&root
->fs_info
->async_reclaim_work
))
4510 queue_work(system_unbound_wq
,
4511 &root
->fs_info
->async_reclaim_work
);
4513 spin_unlock(&space_info
->lock
);
4515 if (!ret
|| flush
== BTRFS_RESERVE_NO_FLUSH
)
4518 ret
= flush_space(root
, space_info
, num_bytes
, orig_bytes
,
4523 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4524 * would happen. So skip delalloc flush.
4526 if (flush
== BTRFS_RESERVE_FLUSH_LIMIT
&&
4527 (flush_state
== FLUSH_DELALLOC
||
4528 flush_state
== FLUSH_DELALLOC_WAIT
))
4529 flush_state
= ALLOC_CHUNK
;
4533 else if (flush
== BTRFS_RESERVE_FLUSH_LIMIT
&&
4534 flush_state
< COMMIT_TRANS
)
4536 else if (flush
== BTRFS_RESERVE_FLUSH_ALL
&&
4537 flush_state
<= COMMIT_TRANS
)
4541 if (ret
== -ENOSPC
&&
4542 unlikely(root
->orphan_cleanup_state
== ORPHAN_CLEANUP_STARTED
)) {
4543 struct btrfs_block_rsv
*global_rsv
=
4544 &root
->fs_info
->global_block_rsv
;
4546 if (block_rsv
!= global_rsv
&&
4547 !block_rsv_use_bytes(global_rsv
, orig_bytes
))
4551 trace_btrfs_space_reservation(root
->fs_info
,
4552 "space_info:enospc",
4553 space_info
->flags
, orig_bytes
, 1);
4555 spin_lock(&space_info
->lock
);
4556 space_info
->flush
= 0;
4557 wake_up_all(&space_info
->wait
);
4558 spin_unlock(&space_info
->lock
);
4563 static struct btrfs_block_rsv
*get_block_rsv(
4564 const struct btrfs_trans_handle
*trans
,
4565 const struct btrfs_root
*root
)
4567 struct btrfs_block_rsv
*block_rsv
= NULL
;
4569 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4570 block_rsv
= trans
->block_rsv
;
4572 if (root
== root
->fs_info
->csum_root
&& trans
->adding_csums
)
4573 block_rsv
= trans
->block_rsv
;
4575 if (root
== root
->fs_info
->uuid_root
)
4576 block_rsv
= trans
->block_rsv
;
4579 block_rsv
= root
->block_rsv
;
4582 block_rsv
= &root
->fs_info
->empty_block_rsv
;
4587 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
4591 spin_lock(&block_rsv
->lock
);
4592 if (block_rsv
->reserved
>= num_bytes
) {
4593 block_rsv
->reserved
-= num_bytes
;
4594 if (block_rsv
->reserved
< block_rsv
->size
)
4595 block_rsv
->full
= 0;
4598 spin_unlock(&block_rsv
->lock
);
4602 static void block_rsv_add_bytes(struct btrfs_block_rsv
*block_rsv
,
4603 u64 num_bytes
, int update_size
)
4605 spin_lock(&block_rsv
->lock
);
4606 block_rsv
->reserved
+= num_bytes
;
4608 block_rsv
->size
+= num_bytes
;
4609 else if (block_rsv
->reserved
>= block_rsv
->size
)
4610 block_rsv
->full
= 1;
4611 spin_unlock(&block_rsv
->lock
);
4614 int btrfs_cond_migrate_bytes(struct btrfs_fs_info
*fs_info
,
4615 struct btrfs_block_rsv
*dest
, u64 num_bytes
,
4618 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
4621 if (global_rsv
->space_info
!= dest
->space_info
)
4624 spin_lock(&global_rsv
->lock
);
4625 min_bytes
= div_factor(global_rsv
->size
, min_factor
);
4626 if (global_rsv
->reserved
< min_bytes
+ num_bytes
) {
4627 spin_unlock(&global_rsv
->lock
);
4630 global_rsv
->reserved
-= num_bytes
;
4631 if (global_rsv
->reserved
< global_rsv
->size
)
4632 global_rsv
->full
= 0;
4633 spin_unlock(&global_rsv
->lock
);
4635 block_rsv_add_bytes(dest
, num_bytes
, 1);
4639 static void block_rsv_release_bytes(struct btrfs_fs_info
*fs_info
,
4640 struct btrfs_block_rsv
*block_rsv
,
4641 struct btrfs_block_rsv
*dest
, u64 num_bytes
)
4643 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
4645 spin_lock(&block_rsv
->lock
);
4646 if (num_bytes
== (u64
)-1)
4647 num_bytes
= block_rsv
->size
;
4648 block_rsv
->size
-= num_bytes
;
4649 if (block_rsv
->reserved
>= block_rsv
->size
) {
4650 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
4651 block_rsv
->reserved
= block_rsv
->size
;
4652 block_rsv
->full
= 1;
4656 spin_unlock(&block_rsv
->lock
);
4658 if (num_bytes
> 0) {
4660 spin_lock(&dest
->lock
);
4664 bytes_to_add
= dest
->size
- dest
->reserved
;
4665 bytes_to_add
= min(num_bytes
, bytes_to_add
);
4666 dest
->reserved
+= bytes_to_add
;
4667 if (dest
->reserved
>= dest
->size
)
4669 num_bytes
-= bytes_to_add
;
4671 spin_unlock(&dest
->lock
);
4674 spin_lock(&space_info
->lock
);
4675 space_info
->bytes_may_use
-= num_bytes
;
4676 trace_btrfs_space_reservation(fs_info
, "space_info",
4677 space_info
->flags
, num_bytes
, 0);
4678 spin_unlock(&space_info
->lock
);
4683 static int block_rsv_migrate_bytes(struct btrfs_block_rsv
*src
,
4684 struct btrfs_block_rsv
*dst
, u64 num_bytes
)
4688 ret
= block_rsv_use_bytes(src
, num_bytes
);
4692 block_rsv_add_bytes(dst
, num_bytes
, 1);
4696 void btrfs_init_block_rsv(struct btrfs_block_rsv
*rsv
, unsigned short type
)
4698 memset(rsv
, 0, sizeof(*rsv
));
4699 spin_lock_init(&rsv
->lock
);
4703 struct btrfs_block_rsv
*btrfs_alloc_block_rsv(struct btrfs_root
*root
,
4704 unsigned short type
)
4706 struct btrfs_block_rsv
*block_rsv
;
4707 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4709 block_rsv
= kmalloc(sizeof(*block_rsv
), GFP_NOFS
);
4713 btrfs_init_block_rsv(block_rsv
, type
);
4714 block_rsv
->space_info
= __find_space_info(fs_info
,
4715 BTRFS_BLOCK_GROUP_METADATA
);
4719 void btrfs_free_block_rsv(struct btrfs_root
*root
,
4720 struct btrfs_block_rsv
*rsv
)
4724 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
4728 int btrfs_block_rsv_add(struct btrfs_root
*root
,
4729 struct btrfs_block_rsv
*block_rsv
, u64 num_bytes
,
4730 enum btrfs_reserve_flush_enum flush
)
4737 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
4739 block_rsv_add_bytes(block_rsv
, num_bytes
, 1);
4746 int btrfs_block_rsv_check(struct btrfs_root
*root
,
4747 struct btrfs_block_rsv
*block_rsv
, int min_factor
)
4755 spin_lock(&block_rsv
->lock
);
4756 num_bytes
= div_factor(block_rsv
->size
, min_factor
);
4757 if (block_rsv
->reserved
>= num_bytes
)
4759 spin_unlock(&block_rsv
->lock
);
4764 int btrfs_block_rsv_refill(struct btrfs_root
*root
,
4765 struct btrfs_block_rsv
*block_rsv
, u64 min_reserved
,
4766 enum btrfs_reserve_flush_enum flush
)
4774 spin_lock(&block_rsv
->lock
);
4775 num_bytes
= min_reserved
;
4776 if (block_rsv
->reserved
>= num_bytes
)
4779 num_bytes
-= block_rsv
->reserved
;
4780 spin_unlock(&block_rsv
->lock
);
4785 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
4787 block_rsv_add_bytes(block_rsv
, num_bytes
, 0);
4794 int btrfs_block_rsv_migrate(struct btrfs_block_rsv
*src_rsv
,
4795 struct btrfs_block_rsv
*dst_rsv
,
4798 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
4801 void btrfs_block_rsv_release(struct btrfs_root
*root
,
4802 struct btrfs_block_rsv
*block_rsv
,
4805 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
4806 if (global_rsv
== block_rsv
||
4807 block_rsv
->space_info
!= global_rsv
->space_info
)
4809 block_rsv_release_bytes(root
->fs_info
, block_rsv
, global_rsv
,
4814 * helper to calculate size of global block reservation.
4815 * the desired value is sum of space used by extent tree,
4816 * checksum tree and root tree
4818 static u64
calc_global_metadata_size(struct btrfs_fs_info
*fs_info
)
4820 struct btrfs_space_info
*sinfo
;
4824 int csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
4826 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_DATA
);
4827 spin_lock(&sinfo
->lock
);
4828 data_used
= sinfo
->bytes_used
;
4829 spin_unlock(&sinfo
->lock
);
4831 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4832 spin_lock(&sinfo
->lock
);
4833 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_DATA
)
4835 meta_used
= sinfo
->bytes_used
;
4836 spin_unlock(&sinfo
->lock
);
4838 num_bytes
= (data_used
>> fs_info
->sb
->s_blocksize_bits
) *
4840 num_bytes
+= div64_u64(data_used
+ meta_used
, 50);
4842 if (num_bytes
* 3 > meta_used
)
4843 num_bytes
= div64_u64(meta_used
, 3);
4845 return ALIGN(num_bytes
, fs_info
->extent_root
->nodesize
<< 10);
4848 static void update_global_block_rsv(struct btrfs_fs_info
*fs_info
)
4850 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
4851 struct btrfs_space_info
*sinfo
= block_rsv
->space_info
;
4854 num_bytes
= calc_global_metadata_size(fs_info
);
4856 spin_lock(&sinfo
->lock
);
4857 spin_lock(&block_rsv
->lock
);
4859 block_rsv
->size
= min_t(u64
, num_bytes
, 512 * 1024 * 1024);
4861 num_bytes
= sinfo
->bytes_used
+ sinfo
->bytes_pinned
+
4862 sinfo
->bytes_reserved
+ sinfo
->bytes_readonly
+
4863 sinfo
->bytes_may_use
;
4865 if (sinfo
->total_bytes
> num_bytes
) {
4866 num_bytes
= sinfo
->total_bytes
- num_bytes
;
4867 block_rsv
->reserved
+= num_bytes
;
4868 sinfo
->bytes_may_use
+= num_bytes
;
4869 trace_btrfs_space_reservation(fs_info
, "space_info",
4870 sinfo
->flags
, num_bytes
, 1);
4873 if (block_rsv
->reserved
>= block_rsv
->size
) {
4874 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
4875 sinfo
->bytes_may_use
-= num_bytes
;
4876 trace_btrfs_space_reservation(fs_info
, "space_info",
4877 sinfo
->flags
, num_bytes
, 0);
4878 block_rsv
->reserved
= block_rsv
->size
;
4879 block_rsv
->full
= 1;
4882 spin_unlock(&block_rsv
->lock
);
4883 spin_unlock(&sinfo
->lock
);
4886 static void init_global_block_rsv(struct btrfs_fs_info
*fs_info
)
4888 struct btrfs_space_info
*space_info
;
4890 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
4891 fs_info
->chunk_block_rsv
.space_info
= space_info
;
4893 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4894 fs_info
->global_block_rsv
.space_info
= space_info
;
4895 fs_info
->delalloc_block_rsv
.space_info
= space_info
;
4896 fs_info
->trans_block_rsv
.space_info
= space_info
;
4897 fs_info
->empty_block_rsv
.space_info
= space_info
;
4898 fs_info
->delayed_block_rsv
.space_info
= space_info
;
4900 fs_info
->extent_root
->block_rsv
= &fs_info
->global_block_rsv
;
4901 fs_info
->csum_root
->block_rsv
= &fs_info
->global_block_rsv
;
4902 fs_info
->dev_root
->block_rsv
= &fs_info
->global_block_rsv
;
4903 fs_info
->tree_root
->block_rsv
= &fs_info
->global_block_rsv
;
4904 if (fs_info
->quota_root
)
4905 fs_info
->quota_root
->block_rsv
= &fs_info
->global_block_rsv
;
4906 fs_info
->chunk_root
->block_rsv
= &fs_info
->chunk_block_rsv
;
4908 update_global_block_rsv(fs_info
);
4911 static void release_global_block_rsv(struct btrfs_fs_info
*fs_info
)
4913 block_rsv_release_bytes(fs_info
, &fs_info
->global_block_rsv
, NULL
,
4915 WARN_ON(fs_info
->delalloc_block_rsv
.size
> 0);
4916 WARN_ON(fs_info
->delalloc_block_rsv
.reserved
> 0);
4917 WARN_ON(fs_info
->trans_block_rsv
.size
> 0);
4918 WARN_ON(fs_info
->trans_block_rsv
.reserved
> 0);
4919 WARN_ON(fs_info
->chunk_block_rsv
.size
> 0);
4920 WARN_ON(fs_info
->chunk_block_rsv
.reserved
> 0);
4921 WARN_ON(fs_info
->delayed_block_rsv
.size
> 0);
4922 WARN_ON(fs_info
->delayed_block_rsv
.reserved
> 0);
4925 void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
,
4926 struct btrfs_root
*root
)
4928 if (!trans
->block_rsv
)
4931 if (!trans
->bytes_reserved
)
4934 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
4935 trans
->transid
, trans
->bytes_reserved
, 0);
4936 btrfs_block_rsv_release(root
, trans
->block_rsv
, trans
->bytes_reserved
);
4937 trans
->bytes_reserved
= 0;
4940 /* Can only return 0 or -ENOSPC */
4941 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle
*trans
,
4942 struct inode
*inode
)
4944 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4945 struct btrfs_block_rsv
*src_rsv
= get_block_rsv(trans
, root
);
4946 struct btrfs_block_rsv
*dst_rsv
= root
->orphan_block_rsv
;
4949 * We need to hold space in order to delete our orphan item once we've
4950 * added it, so this takes the reservation so we can release it later
4951 * when we are truly done with the orphan item.
4953 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
4954 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
4955 btrfs_ino(inode
), num_bytes
, 1);
4956 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
4959 void btrfs_orphan_release_metadata(struct inode
*inode
)
4961 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4962 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
4963 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
4964 btrfs_ino(inode
), num_bytes
, 0);
4965 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
, num_bytes
);
4969 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
4970 * root: the root of the parent directory
4971 * rsv: block reservation
4972 * items: the number of items that we need do reservation
4973 * qgroup_reserved: used to return the reserved size in qgroup
4975 * This function is used to reserve the space for snapshot/subvolume
4976 * creation and deletion. Those operations are different with the
4977 * common file/directory operations, they change two fs/file trees
4978 * and root tree, the number of items that the qgroup reserves is
4979 * different with the free space reservation. So we can not use
4980 * the space reseravtion mechanism in start_transaction().
4982 int btrfs_subvolume_reserve_metadata(struct btrfs_root
*root
,
4983 struct btrfs_block_rsv
*rsv
,
4985 u64
*qgroup_reserved
,
4986 bool use_global_rsv
)
4990 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
4992 if (root
->fs_info
->quota_enabled
) {
4993 /* One for parent inode, two for dir entries */
4994 num_bytes
= 3 * root
->nodesize
;
4995 ret
= btrfs_qgroup_reserve(root
, num_bytes
);
5002 *qgroup_reserved
= num_bytes
;
5004 num_bytes
= btrfs_calc_trans_metadata_size(root
, items
);
5005 rsv
->space_info
= __find_space_info(root
->fs_info
,
5006 BTRFS_BLOCK_GROUP_METADATA
);
5007 ret
= btrfs_block_rsv_add(root
, rsv
, num_bytes
,
5008 BTRFS_RESERVE_FLUSH_ALL
);
5010 if (ret
== -ENOSPC
&& use_global_rsv
)
5011 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, num_bytes
);
5014 if (*qgroup_reserved
)
5015 btrfs_qgroup_free(root
, *qgroup_reserved
);
5021 void btrfs_subvolume_release_metadata(struct btrfs_root
*root
,
5022 struct btrfs_block_rsv
*rsv
,
5023 u64 qgroup_reserved
)
5025 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
5026 if (qgroup_reserved
)
5027 btrfs_qgroup_free(root
, qgroup_reserved
);
5031 * drop_outstanding_extent - drop an outstanding extent
5032 * @inode: the inode we're dropping the extent for
5034 * This is called when we are freeing up an outstanding extent, either called
5035 * after an error or after an extent is written. This will return the number of
5036 * reserved extents that need to be freed. This must be called with
5037 * BTRFS_I(inode)->lock held.
5039 static unsigned drop_outstanding_extent(struct inode
*inode
)
5041 unsigned drop_inode_space
= 0;
5042 unsigned dropped_extents
= 0;
5044 BUG_ON(!BTRFS_I(inode
)->outstanding_extents
);
5045 BTRFS_I(inode
)->outstanding_extents
--;
5047 if (BTRFS_I(inode
)->outstanding_extents
== 0 &&
5048 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5049 &BTRFS_I(inode
)->runtime_flags
))
5050 drop_inode_space
= 1;
5053 * If we have more or the same amount of outsanding extents than we have
5054 * reserved then we need to leave the reserved extents count alone.
5056 if (BTRFS_I(inode
)->outstanding_extents
>=
5057 BTRFS_I(inode
)->reserved_extents
)
5058 return drop_inode_space
;
5060 dropped_extents
= BTRFS_I(inode
)->reserved_extents
-
5061 BTRFS_I(inode
)->outstanding_extents
;
5062 BTRFS_I(inode
)->reserved_extents
-= dropped_extents
;
5063 return dropped_extents
+ drop_inode_space
;
5067 * calc_csum_metadata_size - return the amount of metada space that must be
5068 * reserved/free'd for the given bytes.
5069 * @inode: the inode we're manipulating
5070 * @num_bytes: the number of bytes in question
5071 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5073 * This adjusts the number of csum_bytes in the inode and then returns the
5074 * correct amount of metadata that must either be reserved or freed. We
5075 * calculate how many checksums we can fit into one leaf and then divide the
5076 * number of bytes that will need to be checksumed by this value to figure out
5077 * how many checksums will be required. If we are adding bytes then the number
5078 * may go up and we will return the number of additional bytes that must be
5079 * reserved. If it is going down we will return the number of bytes that must
5082 * This must be called with BTRFS_I(inode)->lock held.
5084 static u64
calc_csum_metadata_size(struct inode
*inode
, u64 num_bytes
,
5087 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5089 int num_csums_per_leaf
;
5093 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
&&
5094 BTRFS_I(inode
)->csum_bytes
== 0)
5097 old_csums
= (int)div64_u64(BTRFS_I(inode
)->csum_bytes
, root
->sectorsize
);
5099 BTRFS_I(inode
)->csum_bytes
+= num_bytes
;
5101 BTRFS_I(inode
)->csum_bytes
-= num_bytes
;
5102 csum_size
= BTRFS_LEAF_DATA_SIZE(root
) - sizeof(struct btrfs_item
);
5103 num_csums_per_leaf
= (int)div64_u64(csum_size
,
5104 sizeof(struct btrfs_csum_item
) +
5105 sizeof(struct btrfs_disk_key
));
5106 num_csums
= (int)div64_u64(BTRFS_I(inode
)->csum_bytes
, root
->sectorsize
);
5107 num_csums
= num_csums
+ num_csums_per_leaf
- 1;
5108 num_csums
= num_csums
/ num_csums_per_leaf
;
5110 old_csums
= old_csums
+ num_csums_per_leaf
- 1;
5111 old_csums
= old_csums
/ num_csums_per_leaf
;
5113 /* No change, no need to reserve more */
5114 if (old_csums
== num_csums
)
5118 return btrfs_calc_trans_metadata_size(root
,
5119 num_csums
- old_csums
);
5121 return btrfs_calc_trans_metadata_size(root
, old_csums
- num_csums
);
5124 int btrfs_delalloc_reserve_metadata(struct inode
*inode
, u64 num_bytes
)
5126 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5127 struct btrfs_block_rsv
*block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5130 unsigned nr_extents
= 0;
5131 int extra_reserve
= 0;
5132 enum btrfs_reserve_flush_enum flush
= BTRFS_RESERVE_FLUSH_ALL
;
5134 bool delalloc_lock
= true;
5138 /* If we are a free space inode we need to not flush since we will be in
5139 * the middle of a transaction commit. We also don't need the delalloc
5140 * mutex since we won't race with anybody. We need this mostly to make
5141 * lockdep shut its filthy mouth.
5143 if (btrfs_is_free_space_inode(inode
)) {
5144 flush
= BTRFS_RESERVE_NO_FLUSH
;
5145 delalloc_lock
= false;
5148 if (flush
!= BTRFS_RESERVE_NO_FLUSH
&&
5149 btrfs_transaction_in_commit(root
->fs_info
))
5150 schedule_timeout(1);
5153 mutex_lock(&BTRFS_I(inode
)->delalloc_mutex
);
5155 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
5157 spin_lock(&BTRFS_I(inode
)->lock
);
5158 BTRFS_I(inode
)->outstanding_extents
++;
5160 if (BTRFS_I(inode
)->outstanding_extents
>
5161 BTRFS_I(inode
)->reserved_extents
)
5162 nr_extents
= BTRFS_I(inode
)->outstanding_extents
-
5163 BTRFS_I(inode
)->reserved_extents
;
5166 * Add an item to reserve for updating the inode when we complete the
5169 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5170 &BTRFS_I(inode
)->runtime_flags
)) {
5175 to_reserve
= btrfs_calc_trans_metadata_size(root
, nr_extents
);
5176 to_reserve
+= calc_csum_metadata_size(inode
, num_bytes
, 1);
5177 csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
5178 spin_unlock(&BTRFS_I(inode
)->lock
);
5180 if (root
->fs_info
->quota_enabled
) {
5181 ret
= btrfs_qgroup_reserve(root
, num_bytes
+
5182 nr_extents
* root
->nodesize
);
5187 ret
= reserve_metadata_bytes(root
, block_rsv
, to_reserve
, flush
);
5188 if (unlikely(ret
)) {
5189 if (root
->fs_info
->quota_enabled
)
5190 btrfs_qgroup_free(root
, num_bytes
+
5191 nr_extents
* root
->nodesize
);
5195 spin_lock(&BTRFS_I(inode
)->lock
);
5196 if (extra_reserve
) {
5197 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5198 &BTRFS_I(inode
)->runtime_flags
);
5201 BTRFS_I(inode
)->reserved_extents
+= nr_extents
;
5202 spin_unlock(&BTRFS_I(inode
)->lock
);
5205 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
5208 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
5209 btrfs_ino(inode
), to_reserve
, 1);
5210 block_rsv_add_bytes(block_rsv
, to_reserve
, 1);
5215 spin_lock(&BTRFS_I(inode
)->lock
);
5216 dropped
= drop_outstanding_extent(inode
);
5218 * If the inodes csum_bytes is the same as the original
5219 * csum_bytes then we know we haven't raced with any free()ers
5220 * so we can just reduce our inodes csum bytes and carry on.
5222 if (BTRFS_I(inode
)->csum_bytes
== csum_bytes
) {
5223 calc_csum_metadata_size(inode
, num_bytes
, 0);
5225 u64 orig_csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
5229 * This is tricky, but first we need to figure out how much we
5230 * free'd from any free-ers that occured during this
5231 * reservation, so we reset ->csum_bytes to the csum_bytes
5232 * before we dropped our lock, and then call the free for the
5233 * number of bytes that were freed while we were trying our
5236 bytes
= csum_bytes
- BTRFS_I(inode
)->csum_bytes
;
5237 BTRFS_I(inode
)->csum_bytes
= csum_bytes
;
5238 to_free
= calc_csum_metadata_size(inode
, bytes
, 0);
5242 * Now we need to see how much we would have freed had we not
5243 * been making this reservation and our ->csum_bytes were not
5244 * artificially inflated.
5246 BTRFS_I(inode
)->csum_bytes
= csum_bytes
- num_bytes
;
5247 bytes
= csum_bytes
- orig_csum_bytes
;
5248 bytes
= calc_csum_metadata_size(inode
, bytes
, 0);
5251 * Now reset ->csum_bytes to what it should be. If bytes is
5252 * more than to_free then we would have free'd more space had we
5253 * not had an artificially high ->csum_bytes, so we need to free
5254 * the remainder. If bytes is the same or less then we don't
5255 * need to do anything, the other free-ers did the correct
5258 BTRFS_I(inode
)->csum_bytes
= orig_csum_bytes
- num_bytes
;
5259 if (bytes
> to_free
)
5260 to_free
= bytes
- to_free
;
5264 spin_unlock(&BTRFS_I(inode
)->lock
);
5266 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
5269 btrfs_block_rsv_release(root
, block_rsv
, to_free
);
5270 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
5271 btrfs_ino(inode
), to_free
, 0);
5274 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
5279 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5280 * @inode: the inode to release the reservation for
5281 * @num_bytes: the number of bytes we're releasing
5283 * This will release the metadata reservation for an inode. This can be called
5284 * once we complete IO for a given set of bytes to release their metadata
5287 void btrfs_delalloc_release_metadata(struct inode
*inode
, u64 num_bytes
)
5289 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5293 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
5294 spin_lock(&BTRFS_I(inode
)->lock
);
5295 dropped
= drop_outstanding_extent(inode
);
5298 to_free
= calc_csum_metadata_size(inode
, num_bytes
, 0);
5299 spin_unlock(&BTRFS_I(inode
)->lock
);
5301 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
5303 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
5304 btrfs_ino(inode
), to_free
, 0);
5305 if (root
->fs_info
->quota_enabled
) {
5306 btrfs_qgroup_free(root
, num_bytes
+
5307 dropped
* root
->nodesize
);
5310 btrfs_block_rsv_release(root
, &root
->fs_info
->delalloc_block_rsv
,
5315 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5316 * @inode: inode we're writing to
5317 * @num_bytes: the number of bytes we want to allocate
5319 * This will do the following things
5321 * o reserve space in the data space info for num_bytes
5322 * o reserve space in the metadata space info based on number of outstanding
5323 * extents and how much csums will be needed
5324 * o add to the inodes ->delalloc_bytes
5325 * o add it to the fs_info's delalloc inodes list.
5327 * This will return 0 for success and -ENOSPC if there is no space left.
5329 int btrfs_delalloc_reserve_space(struct inode
*inode
, u64 num_bytes
)
5333 ret
= btrfs_check_data_free_space(inode
, num_bytes
);
5337 ret
= btrfs_delalloc_reserve_metadata(inode
, num_bytes
);
5339 btrfs_free_reserved_data_space(inode
, num_bytes
);
5347 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5348 * @inode: inode we're releasing space for
5349 * @num_bytes: the number of bytes we want to free up
5351 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5352 * called in the case that we don't need the metadata AND data reservations
5353 * anymore. So if there is an error or we insert an inline extent.
5355 * This function will release the metadata space that was not used and will
5356 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5357 * list if there are no delalloc bytes left.
5359 void btrfs_delalloc_release_space(struct inode
*inode
, u64 num_bytes
)
5361 btrfs_delalloc_release_metadata(inode
, num_bytes
);
5362 btrfs_free_reserved_data_space(inode
, num_bytes
);
5365 static int update_block_group(struct btrfs_root
*root
,
5366 u64 bytenr
, u64 num_bytes
, int alloc
)
5368 struct btrfs_block_group_cache
*cache
= NULL
;
5369 struct btrfs_fs_info
*info
= root
->fs_info
;
5370 u64 total
= num_bytes
;
5375 /* block accounting for super block */
5376 spin_lock(&info
->delalloc_root_lock
);
5377 old_val
= btrfs_super_bytes_used(info
->super_copy
);
5379 old_val
+= num_bytes
;
5381 old_val
-= num_bytes
;
5382 btrfs_set_super_bytes_used(info
->super_copy
, old_val
);
5383 spin_unlock(&info
->delalloc_root_lock
);
5386 cache
= btrfs_lookup_block_group(info
, bytenr
);
5389 if (cache
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
5390 BTRFS_BLOCK_GROUP_RAID1
|
5391 BTRFS_BLOCK_GROUP_RAID10
))
5396 * If this block group has free space cache written out, we
5397 * need to make sure to load it if we are removing space. This
5398 * is because we need the unpinning stage to actually add the
5399 * space back to the block group, otherwise we will leak space.
5401 if (!alloc
&& cache
->cached
== BTRFS_CACHE_NO
)
5402 cache_block_group(cache
, 1);
5404 byte_in_group
= bytenr
- cache
->key
.objectid
;
5405 WARN_ON(byte_in_group
> cache
->key
.offset
);
5407 spin_lock(&cache
->space_info
->lock
);
5408 spin_lock(&cache
->lock
);
5410 if (btrfs_test_opt(root
, SPACE_CACHE
) &&
5411 cache
->disk_cache_state
< BTRFS_DC_CLEAR
)
5412 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
5415 old_val
= btrfs_block_group_used(&cache
->item
);
5416 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
5418 old_val
+= num_bytes
;
5419 btrfs_set_block_group_used(&cache
->item
, old_val
);
5420 cache
->reserved
-= num_bytes
;
5421 cache
->space_info
->bytes_reserved
-= num_bytes
;
5422 cache
->space_info
->bytes_used
+= num_bytes
;
5423 cache
->space_info
->disk_used
+= num_bytes
* factor
;
5424 spin_unlock(&cache
->lock
);
5425 spin_unlock(&cache
->space_info
->lock
);
5427 old_val
-= num_bytes
;
5430 * No longer have used bytes in this block group, queue
5434 spin_lock(&info
->unused_bgs_lock
);
5435 if (list_empty(&cache
->bg_list
)) {
5436 btrfs_get_block_group(cache
);
5437 list_add_tail(&cache
->bg_list
,
5440 spin_unlock(&info
->unused_bgs_lock
);
5442 btrfs_set_block_group_used(&cache
->item
, old_val
);
5443 cache
->pinned
+= num_bytes
;
5444 cache
->space_info
->bytes_pinned
+= num_bytes
;
5445 cache
->space_info
->bytes_used
-= num_bytes
;
5446 cache
->space_info
->disk_used
-= num_bytes
* factor
;
5447 spin_unlock(&cache
->lock
);
5448 spin_unlock(&cache
->space_info
->lock
);
5450 set_extent_dirty(info
->pinned_extents
,
5451 bytenr
, bytenr
+ num_bytes
- 1,
5452 GFP_NOFS
| __GFP_NOFAIL
);
5454 btrfs_put_block_group(cache
);
5456 bytenr
+= num_bytes
;
5461 static u64
first_logical_byte(struct btrfs_root
*root
, u64 search_start
)
5463 struct btrfs_block_group_cache
*cache
;
5466 spin_lock(&root
->fs_info
->block_group_cache_lock
);
5467 bytenr
= root
->fs_info
->first_logical_byte
;
5468 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
5470 if (bytenr
< (u64
)-1)
5473 cache
= btrfs_lookup_first_block_group(root
->fs_info
, search_start
);
5477 bytenr
= cache
->key
.objectid
;
5478 btrfs_put_block_group(cache
);
5483 static int pin_down_extent(struct btrfs_root
*root
,
5484 struct btrfs_block_group_cache
*cache
,
5485 u64 bytenr
, u64 num_bytes
, int reserved
)
5487 spin_lock(&cache
->space_info
->lock
);
5488 spin_lock(&cache
->lock
);
5489 cache
->pinned
+= num_bytes
;
5490 cache
->space_info
->bytes_pinned
+= num_bytes
;
5492 cache
->reserved
-= num_bytes
;
5493 cache
->space_info
->bytes_reserved
-= num_bytes
;
5495 spin_unlock(&cache
->lock
);
5496 spin_unlock(&cache
->space_info
->lock
);
5498 set_extent_dirty(root
->fs_info
->pinned_extents
, bytenr
,
5499 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
5501 trace_btrfs_reserved_extent_free(root
, bytenr
, num_bytes
);
5506 * this function must be called within transaction
5508 int btrfs_pin_extent(struct btrfs_root
*root
,
5509 u64 bytenr
, u64 num_bytes
, int reserved
)
5511 struct btrfs_block_group_cache
*cache
;
5513 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
5514 BUG_ON(!cache
); /* Logic error */
5516 pin_down_extent(root
, cache
, bytenr
, num_bytes
, reserved
);
5518 btrfs_put_block_group(cache
);
5523 * this function must be called within transaction
5525 int btrfs_pin_extent_for_log_replay(struct btrfs_root
*root
,
5526 u64 bytenr
, u64 num_bytes
)
5528 struct btrfs_block_group_cache
*cache
;
5531 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
5536 * pull in the free space cache (if any) so that our pin
5537 * removes the free space from the cache. We have load_only set
5538 * to one because the slow code to read in the free extents does check
5539 * the pinned extents.
5541 cache_block_group(cache
, 1);
5543 pin_down_extent(root
, cache
, bytenr
, num_bytes
, 0);
5545 /* remove us from the free space cache (if we're there at all) */
5546 ret
= btrfs_remove_free_space(cache
, bytenr
, num_bytes
);
5547 btrfs_put_block_group(cache
);
5551 static int __exclude_logged_extent(struct btrfs_root
*root
, u64 start
, u64 num_bytes
)
5554 struct btrfs_block_group_cache
*block_group
;
5555 struct btrfs_caching_control
*caching_ctl
;
5557 block_group
= btrfs_lookup_block_group(root
->fs_info
, start
);
5561 cache_block_group(block_group
, 0);
5562 caching_ctl
= get_caching_control(block_group
);
5566 BUG_ON(!block_group_cache_done(block_group
));
5567 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
5569 mutex_lock(&caching_ctl
->mutex
);
5571 if (start
>= caching_ctl
->progress
) {
5572 ret
= add_excluded_extent(root
, start
, num_bytes
);
5573 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
5574 ret
= btrfs_remove_free_space(block_group
,
5577 num_bytes
= caching_ctl
->progress
- start
;
5578 ret
= btrfs_remove_free_space(block_group
,
5583 num_bytes
= (start
+ num_bytes
) -
5584 caching_ctl
->progress
;
5585 start
= caching_ctl
->progress
;
5586 ret
= add_excluded_extent(root
, start
, num_bytes
);
5589 mutex_unlock(&caching_ctl
->mutex
);
5590 put_caching_control(caching_ctl
);
5592 btrfs_put_block_group(block_group
);
5596 int btrfs_exclude_logged_extents(struct btrfs_root
*log
,
5597 struct extent_buffer
*eb
)
5599 struct btrfs_file_extent_item
*item
;
5600 struct btrfs_key key
;
5604 if (!btrfs_fs_incompat(log
->fs_info
, MIXED_GROUPS
))
5607 for (i
= 0; i
< btrfs_header_nritems(eb
); i
++) {
5608 btrfs_item_key_to_cpu(eb
, &key
, i
);
5609 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5611 item
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
5612 found_type
= btrfs_file_extent_type(eb
, item
);
5613 if (found_type
== BTRFS_FILE_EXTENT_INLINE
)
5615 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
5617 key
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
5618 key
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
5619 __exclude_logged_extent(log
, key
.objectid
, key
.offset
);
5626 * btrfs_update_reserved_bytes - update the block_group and space info counters
5627 * @cache: The cache we are manipulating
5628 * @num_bytes: The number of bytes in question
5629 * @reserve: One of the reservation enums
5630 * @delalloc: The blocks are allocated for the delalloc write
5632 * This is called by the allocator when it reserves space, or by somebody who is
5633 * freeing space that was never actually used on disk. For example if you
5634 * reserve some space for a new leaf in transaction A and before transaction A
5635 * commits you free that leaf, you call this with reserve set to 0 in order to
5636 * clear the reservation.
5638 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5639 * ENOSPC accounting. For data we handle the reservation through clearing the
5640 * delalloc bits in the io_tree. We have to do this since we could end up
5641 * allocating less disk space for the amount of data we have reserved in the
5642 * case of compression.
5644 * If this is a reservation and the block group has become read only we cannot
5645 * make the reservation and return -EAGAIN, otherwise this function always
5648 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
5649 u64 num_bytes
, int reserve
, int delalloc
)
5651 struct btrfs_space_info
*space_info
= cache
->space_info
;
5654 spin_lock(&space_info
->lock
);
5655 spin_lock(&cache
->lock
);
5656 if (reserve
!= RESERVE_FREE
) {
5660 cache
->reserved
+= num_bytes
;
5661 space_info
->bytes_reserved
+= num_bytes
;
5662 if (reserve
== RESERVE_ALLOC
) {
5663 trace_btrfs_space_reservation(cache
->fs_info
,
5664 "space_info", space_info
->flags
,
5666 space_info
->bytes_may_use
-= num_bytes
;
5670 cache
->delalloc_bytes
+= num_bytes
;
5674 space_info
->bytes_readonly
+= num_bytes
;
5675 cache
->reserved
-= num_bytes
;
5676 space_info
->bytes_reserved
-= num_bytes
;
5679 cache
->delalloc_bytes
-= num_bytes
;
5681 spin_unlock(&cache
->lock
);
5682 spin_unlock(&space_info
->lock
);
5686 void btrfs_prepare_extent_commit(struct btrfs_trans_handle
*trans
,
5687 struct btrfs_root
*root
)
5689 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5690 struct btrfs_caching_control
*next
;
5691 struct btrfs_caching_control
*caching_ctl
;
5692 struct btrfs_block_group_cache
*cache
;
5694 down_write(&fs_info
->commit_root_sem
);
5696 list_for_each_entry_safe(caching_ctl
, next
,
5697 &fs_info
->caching_block_groups
, list
) {
5698 cache
= caching_ctl
->block_group
;
5699 if (block_group_cache_done(cache
)) {
5700 cache
->last_byte_to_unpin
= (u64
)-1;
5701 list_del_init(&caching_ctl
->list
);
5702 put_caching_control(caching_ctl
);
5704 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
5708 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
5709 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
5711 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
5713 up_write(&fs_info
->commit_root_sem
);
5715 update_global_block_rsv(fs_info
);
5718 static int unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
,
5719 const bool return_free_space
)
5721 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5722 struct btrfs_block_group_cache
*cache
= NULL
;
5723 struct btrfs_space_info
*space_info
;
5724 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5728 while (start
<= end
) {
5731 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
5733 btrfs_put_block_group(cache
);
5734 cache
= btrfs_lookup_block_group(fs_info
, start
);
5735 BUG_ON(!cache
); /* Logic error */
5738 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
5739 len
= min(len
, end
+ 1 - start
);
5741 if (start
< cache
->last_byte_to_unpin
) {
5742 len
= min(len
, cache
->last_byte_to_unpin
- start
);
5743 if (return_free_space
)
5744 btrfs_add_free_space(cache
, start
, len
);
5748 space_info
= cache
->space_info
;
5750 spin_lock(&space_info
->lock
);
5751 spin_lock(&cache
->lock
);
5752 cache
->pinned
-= len
;
5753 space_info
->bytes_pinned
-= len
;
5754 percpu_counter_add(&space_info
->total_bytes_pinned
, -len
);
5756 space_info
->bytes_readonly
+= len
;
5759 spin_unlock(&cache
->lock
);
5760 if (!readonly
&& global_rsv
->space_info
== space_info
) {
5761 spin_lock(&global_rsv
->lock
);
5762 if (!global_rsv
->full
) {
5763 len
= min(len
, global_rsv
->size
-
5764 global_rsv
->reserved
);
5765 global_rsv
->reserved
+= len
;
5766 space_info
->bytes_may_use
+= len
;
5767 if (global_rsv
->reserved
>= global_rsv
->size
)
5768 global_rsv
->full
= 1;
5770 spin_unlock(&global_rsv
->lock
);
5772 spin_unlock(&space_info
->lock
);
5776 btrfs_put_block_group(cache
);
5780 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
5781 struct btrfs_root
*root
)
5783 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5784 struct extent_io_tree
*unpin
;
5792 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
5793 unpin
= &fs_info
->freed_extents
[1];
5795 unpin
= &fs_info
->freed_extents
[0];
5798 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
5799 EXTENT_DIRTY
, NULL
);
5803 if (btrfs_test_opt(root
, DISCARD
))
5804 ret
= btrfs_discard_extent(root
, start
,
5805 end
+ 1 - start
, NULL
);
5807 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
5808 unpin_extent_range(root
, start
, end
, true);
5815 static void add_pinned_bytes(struct btrfs_fs_info
*fs_info
, u64 num_bytes
,
5816 u64 owner
, u64 root_objectid
)
5818 struct btrfs_space_info
*space_info
;
5821 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
5822 if (root_objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
5823 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
5825 flags
= BTRFS_BLOCK_GROUP_METADATA
;
5827 flags
= BTRFS_BLOCK_GROUP_DATA
;
5830 space_info
= __find_space_info(fs_info
, flags
);
5831 BUG_ON(!space_info
); /* Logic bug */
5832 percpu_counter_add(&space_info
->total_bytes_pinned
, num_bytes
);
5836 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
5837 struct btrfs_root
*root
,
5838 u64 bytenr
, u64 num_bytes
, u64 parent
,
5839 u64 root_objectid
, u64 owner_objectid
,
5840 u64 owner_offset
, int refs_to_drop
,
5841 struct btrfs_delayed_extent_op
*extent_op
,
5844 struct btrfs_key key
;
5845 struct btrfs_path
*path
;
5846 struct btrfs_fs_info
*info
= root
->fs_info
;
5847 struct btrfs_root
*extent_root
= info
->extent_root
;
5848 struct extent_buffer
*leaf
;
5849 struct btrfs_extent_item
*ei
;
5850 struct btrfs_extent_inline_ref
*iref
;
5853 int extent_slot
= 0;
5854 int found_extent
= 0;
5859 enum btrfs_qgroup_operation_type type
= BTRFS_QGROUP_OPER_SUB_EXCL
;
5860 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
5863 if (!info
->quota_enabled
|| !is_fstree(root_objectid
))
5866 path
= btrfs_alloc_path();
5871 path
->leave_spinning
= 1;
5873 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
5874 BUG_ON(!is_data
&& refs_to_drop
!= 1);
5877 skinny_metadata
= 0;
5879 ret
= lookup_extent_backref(trans
, extent_root
, path
, &iref
,
5880 bytenr
, num_bytes
, parent
,
5881 root_objectid
, owner_objectid
,
5884 extent_slot
= path
->slots
[0];
5885 while (extent_slot
>= 0) {
5886 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
5888 if (key
.objectid
!= bytenr
)
5890 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
5891 key
.offset
== num_bytes
) {
5895 if (key
.type
== BTRFS_METADATA_ITEM_KEY
&&
5896 key
.offset
== owner_objectid
) {
5900 if (path
->slots
[0] - extent_slot
> 5)
5904 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5905 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
5906 if (found_extent
&& item_size
< sizeof(*ei
))
5909 if (!found_extent
) {
5911 ret
= remove_extent_backref(trans
, extent_root
, path
,
5913 is_data
, &last_ref
);
5915 btrfs_abort_transaction(trans
, extent_root
, ret
);
5918 btrfs_release_path(path
);
5919 path
->leave_spinning
= 1;
5921 key
.objectid
= bytenr
;
5922 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
5923 key
.offset
= num_bytes
;
5925 if (!is_data
&& skinny_metadata
) {
5926 key
.type
= BTRFS_METADATA_ITEM_KEY
;
5927 key
.offset
= owner_objectid
;
5930 ret
= btrfs_search_slot(trans
, extent_root
,
5932 if (ret
> 0 && skinny_metadata
&& path
->slots
[0]) {
5934 * Couldn't find our skinny metadata item,
5935 * see if we have ye olde extent item.
5938 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
5940 if (key
.objectid
== bytenr
&&
5941 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
5942 key
.offset
== num_bytes
)
5946 if (ret
> 0 && skinny_metadata
) {
5947 skinny_metadata
= false;
5948 key
.objectid
= bytenr
;
5949 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
5950 key
.offset
= num_bytes
;
5951 btrfs_release_path(path
);
5952 ret
= btrfs_search_slot(trans
, extent_root
,
5957 btrfs_err(info
, "umm, got %d back from search, was looking for %llu",
5960 btrfs_print_leaf(extent_root
,
5964 btrfs_abort_transaction(trans
, extent_root
, ret
);
5967 extent_slot
= path
->slots
[0];
5969 } else if (WARN_ON(ret
== -ENOENT
)) {
5970 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
5972 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
5973 bytenr
, parent
, root_objectid
, owner_objectid
,
5975 btrfs_abort_transaction(trans
, extent_root
, ret
);
5978 btrfs_abort_transaction(trans
, extent_root
, ret
);
5982 leaf
= path
->nodes
[0];
5983 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
5984 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5985 if (item_size
< sizeof(*ei
)) {
5986 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
5987 ret
= convert_extent_item_v0(trans
, extent_root
, path
,
5990 btrfs_abort_transaction(trans
, extent_root
, ret
);
5994 btrfs_release_path(path
);
5995 path
->leave_spinning
= 1;
5997 key
.objectid
= bytenr
;
5998 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
5999 key
.offset
= num_bytes
;
6001 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
6004 btrfs_err(info
, "umm, got %d back from search, was looking for %llu",
6006 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
6009 btrfs_abort_transaction(trans
, extent_root
, ret
);
6013 extent_slot
= path
->slots
[0];
6014 leaf
= path
->nodes
[0];
6015 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
6018 BUG_ON(item_size
< sizeof(*ei
));
6019 ei
= btrfs_item_ptr(leaf
, extent_slot
,
6020 struct btrfs_extent_item
);
6021 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
6022 key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
6023 struct btrfs_tree_block_info
*bi
;
6024 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
6025 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
6026 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
6029 refs
= btrfs_extent_refs(leaf
, ei
);
6030 if (refs
< refs_to_drop
) {
6031 btrfs_err(info
, "trying to drop %d refs but we only have %Lu "
6032 "for bytenr %Lu", refs_to_drop
, refs
, bytenr
);
6034 btrfs_abort_transaction(trans
, extent_root
, ret
);
6037 refs
-= refs_to_drop
;
6040 type
= BTRFS_QGROUP_OPER_SUB_SHARED
;
6042 __run_delayed_extent_op(extent_op
, leaf
, ei
);
6044 * In the case of inline back ref, reference count will
6045 * be updated by remove_extent_backref
6048 BUG_ON(!found_extent
);
6050 btrfs_set_extent_refs(leaf
, ei
, refs
);
6051 btrfs_mark_buffer_dirty(leaf
);
6054 ret
= remove_extent_backref(trans
, extent_root
, path
,
6056 is_data
, &last_ref
);
6058 btrfs_abort_transaction(trans
, extent_root
, ret
);
6062 add_pinned_bytes(root
->fs_info
, -num_bytes
, owner_objectid
,
6066 BUG_ON(is_data
&& refs_to_drop
!=
6067 extent_data_ref_count(root
, path
, iref
));
6069 BUG_ON(path
->slots
[0] != extent_slot
);
6071 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
6072 path
->slots
[0] = extent_slot
;
6078 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
6081 btrfs_abort_transaction(trans
, extent_root
, ret
);
6084 btrfs_release_path(path
);
6087 ret
= btrfs_del_csums(trans
, root
, bytenr
, num_bytes
);
6089 btrfs_abort_transaction(trans
, extent_root
, ret
);
6094 ret
= update_block_group(root
, bytenr
, num_bytes
, 0);
6096 btrfs_abort_transaction(trans
, extent_root
, ret
);
6100 btrfs_release_path(path
);
6102 /* Deal with the quota accounting */
6103 if (!ret
&& last_ref
&& !no_quota
) {
6106 if (owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
&&
6107 type
== BTRFS_QGROUP_OPER_SUB_SHARED
)
6110 ret
= btrfs_qgroup_record_ref(trans
, info
, root_objectid
,
6111 bytenr
, num_bytes
, type
,
6115 btrfs_free_path(path
);
6120 * when we free an block, it is possible (and likely) that we free the last
6121 * delayed ref for that extent as well. This searches the delayed ref tree for
6122 * a given extent, and if there are no other delayed refs to be processed, it
6123 * removes it from the tree.
6125 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
6126 struct btrfs_root
*root
, u64 bytenr
)
6128 struct btrfs_delayed_ref_head
*head
;
6129 struct btrfs_delayed_ref_root
*delayed_refs
;
6132 delayed_refs
= &trans
->transaction
->delayed_refs
;
6133 spin_lock(&delayed_refs
->lock
);
6134 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
6136 goto out_delayed_unlock
;
6138 spin_lock(&head
->lock
);
6139 if (rb_first(&head
->ref_root
))
6142 if (head
->extent_op
) {
6143 if (!head
->must_insert_reserved
)
6145 btrfs_free_delayed_extent_op(head
->extent_op
);
6146 head
->extent_op
= NULL
;
6150 * waiting for the lock here would deadlock. If someone else has it
6151 * locked they are already in the process of dropping it anyway
6153 if (!mutex_trylock(&head
->mutex
))
6157 * at this point we have a head with no other entries. Go
6158 * ahead and process it.
6160 head
->node
.in_tree
= 0;
6161 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
6163 atomic_dec(&delayed_refs
->num_entries
);
6166 * we don't take a ref on the node because we're removing it from the
6167 * tree, so we just steal the ref the tree was holding.
6169 delayed_refs
->num_heads
--;
6170 if (head
->processing
== 0)
6171 delayed_refs
->num_heads_ready
--;
6172 head
->processing
= 0;
6173 spin_unlock(&head
->lock
);
6174 spin_unlock(&delayed_refs
->lock
);
6176 BUG_ON(head
->extent_op
);
6177 if (head
->must_insert_reserved
)
6180 mutex_unlock(&head
->mutex
);
6181 btrfs_put_delayed_ref(&head
->node
);
6184 spin_unlock(&head
->lock
);
6187 spin_unlock(&delayed_refs
->lock
);
6191 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
6192 struct btrfs_root
*root
,
6193 struct extent_buffer
*buf
,
6194 u64 parent
, int last_ref
)
6196 struct btrfs_block_group_cache
*cache
= NULL
;
6200 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
6201 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
6202 buf
->start
, buf
->len
,
6203 parent
, root
->root_key
.objectid
,
6204 btrfs_header_level(buf
),
6205 BTRFS_DROP_DELAYED_REF
, NULL
, 0);
6206 BUG_ON(ret
); /* -ENOMEM */
6212 cache
= btrfs_lookup_block_group(root
->fs_info
, buf
->start
);
6214 if (btrfs_header_generation(buf
) == trans
->transid
) {
6215 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
6216 ret
= check_ref_cleanup(trans
, root
, buf
->start
);
6221 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
6222 pin_down_extent(root
, cache
, buf
->start
, buf
->len
, 1);
6226 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
6228 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
6229 btrfs_update_reserved_bytes(cache
, buf
->len
, RESERVE_FREE
, 0);
6230 trace_btrfs_reserved_extent_free(root
, buf
->start
, buf
->len
);
6235 add_pinned_bytes(root
->fs_info
, buf
->len
,
6236 btrfs_header_level(buf
),
6237 root
->root_key
.objectid
);
6240 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6243 clear_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
);
6244 btrfs_put_block_group(cache
);
6247 /* Can return -ENOMEM */
6248 int btrfs_free_extent(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
6249 u64 bytenr
, u64 num_bytes
, u64 parent
, u64 root_objectid
,
6250 u64 owner
, u64 offset
, int no_quota
)
6253 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6255 if (btrfs_test_is_dummy_root(root
))
6258 add_pinned_bytes(root
->fs_info
, num_bytes
, owner
, root_objectid
);
6261 * tree log blocks never actually go into the extent allocation
6262 * tree, just update pinning info and exit early.
6264 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
6265 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
6266 /* unlocks the pinned mutex */
6267 btrfs_pin_extent(root
, bytenr
, num_bytes
, 1);
6269 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
6270 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
6272 parent
, root_objectid
, (int)owner
,
6273 BTRFS_DROP_DELAYED_REF
, NULL
, no_quota
);
6275 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
6277 parent
, root_objectid
, owner
,
6278 offset
, BTRFS_DROP_DELAYED_REF
,
6285 * when we wait for progress in the block group caching, its because
6286 * our allocation attempt failed at least once. So, we must sleep
6287 * and let some progress happen before we try again.
6289 * This function will sleep at least once waiting for new free space to
6290 * show up, and then it will check the block group free space numbers
6291 * for our min num_bytes. Another option is to have it go ahead
6292 * and look in the rbtree for a free extent of a given size, but this
6295 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6296 * any of the information in this block group.
6298 static noinline
void
6299 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
6302 struct btrfs_caching_control
*caching_ctl
;
6304 caching_ctl
= get_caching_control(cache
);
6308 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
6309 (cache
->free_space_ctl
->free_space
>= num_bytes
));
6311 put_caching_control(caching_ctl
);
6315 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
6317 struct btrfs_caching_control
*caching_ctl
;
6320 caching_ctl
= get_caching_control(cache
);
6322 return (cache
->cached
== BTRFS_CACHE_ERROR
) ? -EIO
: 0;
6324 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
6325 if (cache
->cached
== BTRFS_CACHE_ERROR
)
6327 put_caching_control(caching_ctl
);
6331 int __get_raid_index(u64 flags
)
6333 if (flags
& BTRFS_BLOCK_GROUP_RAID10
)
6334 return BTRFS_RAID_RAID10
;
6335 else if (flags
& BTRFS_BLOCK_GROUP_RAID1
)
6336 return BTRFS_RAID_RAID1
;
6337 else if (flags
& BTRFS_BLOCK_GROUP_DUP
)
6338 return BTRFS_RAID_DUP
;
6339 else if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
6340 return BTRFS_RAID_RAID0
;
6341 else if (flags
& BTRFS_BLOCK_GROUP_RAID5
)
6342 return BTRFS_RAID_RAID5
;
6343 else if (flags
& BTRFS_BLOCK_GROUP_RAID6
)
6344 return BTRFS_RAID_RAID6
;
6346 return BTRFS_RAID_SINGLE
; /* BTRFS_BLOCK_GROUP_SINGLE */
6349 int get_block_group_index(struct btrfs_block_group_cache
*cache
)
6351 return __get_raid_index(cache
->flags
);
6354 static const char *btrfs_raid_type_names
[BTRFS_NR_RAID_TYPES
] = {
6355 [BTRFS_RAID_RAID10
] = "raid10",
6356 [BTRFS_RAID_RAID1
] = "raid1",
6357 [BTRFS_RAID_DUP
] = "dup",
6358 [BTRFS_RAID_RAID0
] = "raid0",
6359 [BTRFS_RAID_SINGLE
] = "single",
6360 [BTRFS_RAID_RAID5
] = "raid5",
6361 [BTRFS_RAID_RAID6
] = "raid6",
6364 static const char *get_raid_name(enum btrfs_raid_types type
)
6366 if (type
>= BTRFS_NR_RAID_TYPES
)
6369 return btrfs_raid_type_names
[type
];
6372 enum btrfs_loop_type
{
6373 LOOP_CACHING_NOWAIT
= 0,
6374 LOOP_CACHING_WAIT
= 1,
6375 LOOP_ALLOC_CHUNK
= 2,
6376 LOOP_NO_EMPTY_SIZE
= 3,
6380 btrfs_lock_block_group(struct btrfs_block_group_cache
*cache
,
6384 down_read(&cache
->data_rwsem
);
6388 btrfs_grab_block_group(struct btrfs_block_group_cache
*cache
,
6391 btrfs_get_block_group(cache
);
6393 down_read(&cache
->data_rwsem
);
6396 static struct btrfs_block_group_cache
*
6397 btrfs_lock_cluster(struct btrfs_block_group_cache
*block_group
,
6398 struct btrfs_free_cluster
*cluster
,
6401 struct btrfs_block_group_cache
*used_bg
;
6402 bool locked
= false;
6404 spin_lock(&cluster
->refill_lock
);
6406 if (used_bg
== cluster
->block_group
)
6409 up_read(&used_bg
->data_rwsem
);
6410 btrfs_put_block_group(used_bg
);
6413 used_bg
= cluster
->block_group
;
6417 if (used_bg
== block_group
)
6420 btrfs_get_block_group(used_bg
);
6425 if (down_read_trylock(&used_bg
->data_rwsem
))
6428 spin_unlock(&cluster
->refill_lock
);
6429 down_read(&used_bg
->data_rwsem
);
6435 btrfs_release_block_group(struct btrfs_block_group_cache
*cache
,
6439 up_read(&cache
->data_rwsem
);
6440 btrfs_put_block_group(cache
);
6444 * walks the btree of allocated extents and find a hole of a given size.
6445 * The key ins is changed to record the hole:
6446 * ins->objectid == start position
6447 * ins->flags = BTRFS_EXTENT_ITEM_KEY
6448 * ins->offset == the size of the hole.
6449 * Any available blocks before search_start are skipped.
6451 * If there is no suitable free space, we will record the max size of
6452 * the free space extent currently.
6454 static noinline
int find_free_extent(struct btrfs_root
*orig_root
,
6455 u64 num_bytes
, u64 empty_size
,
6456 u64 hint_byte
, struct btrfs_key
*ins
,
6457 u64 flags
, int delalloc
)
6460 struct btrfs_root
*root
= orig_root
->fs_info
->extent_root
;
6461 struct btrfs_free_cluster
*last_ptr
= NULL
;
6462 struct btrfs_block_group_cache
*block_group
= NULL
;
6463 u64 search_start
= 0;
6464 u64 max_extent_size
= 0;
6465 int empty_cluster
= 2 * 1024 * 1024;
6466 struct btrfs_space_info
*space_info
;
6468 int index
= __get_raid_index(flags
);
6469 int alloc_type
= (flags
& BTRFS_BLOCK_GROUP_DATA
) ?
6470 RESERVE_ALLOC_NO_ACCOUNT
: RESERVE_ALLOC
;
6471 bool failed_cluster_refill
= false;
6472 bool failed_alloc
= false;
6473 bool use_cluster
= true;
6474 bool have_caching_bg
= false;
6476 WARN_ON(num_bytes
< root
->sectorsize
);
6477 ins
->type
= BTRFS_EXTENT_ITEM_KEY
;
6481 trace_find_free_extent(orig_root
, num_bytes
, empty_size
, flags
);
6483 space_info
= __find_space_info(root
->fs_info
, flags
);
6485 btrfs_err(root
->fs_info
, "No space info for %llu", flags
);
6490 * If the space info is for both data and metadata it means we have a
6491 * small filesystem and we can't use the clustering stuff.
6493 if (btrfs_mixed_space_info(space_info
))
6494 use_cluster
= false;
6496 if (flags
& BTRFS_BLOCK_GROUP_METADATA
&& use_cluster
) {
6497 last_ptr
= &root
->fs_info
->meta_alloc_cluster
;
6498 if (!btrfs_test_opt(root
, SSD
))
6499 empty_cluster
= 64 * 1024;
6502 if ((flags
& BTRFS_BLOCK_GROUP_DATA
) && use_cluster
&&
6503 btrfs_test_opt(root
, SSD
)) {
6504 last_ptr
= &root
->fs_info
->data_alloc_cluster
;
6508 spin_lock(&last_ptr
->lock
);
6509 if (last_ptr
->block_group
)
6510 hint_byte
= last_ptr
->window_start
;
6511 spin_unlock(&last_ptr
->lock
);
6514 search_start
= max(search_start
, first_logical_byte(root
, 0));
6515 search_start
= max(search_start
, hint_byte
);
6520 if (search_start
== hint_byte
) {
6521 block_group
= btrfs_lookup_block_group(root
->fs_info
,
6524 * we don't want to use the block group if it doesn't match our
6525 * allocation bits, or if its not cached.
6527 * However if we are re-searching with an ideal block group
6528 * picked out then we don't care that the block group is cached.
6530 if (block_group
&& block_group_bits(block_group
, flags
) &&
6531 block_group
->cached
!= BTRFS_CACHE_NO
) {
6532 down_read(&space_info
->groups_sem
);
6533 if (list_empty(&block_group
->list
) ||
6536 * someone is removing this block group,
6537 * we can't jump into the have_block_group
6538 * target because our list pointers are not
6541 btrfs_put_block_group(block_group
);
6542 up_read(&space_info
->groups_sem
);
6544 index
= get_block_group_index(block_group
);
6545 btrfs_lock_block_group(block_group
, delalloc
);
6546 goto have_block_group
;
6548 } else if (block_group
) {
6549 btrfs_put_block_group(block_group
);
6553 have_caching_bg
= false;
6554 down_read(&space_info
->groups_sem
);
6555 list_for_each_entry(block_group
, &space_info
->block_groups
[index
],
6560 btrfs_grab_block_group(block_group
, delalloc
);
6561 search_start
= block_group
->key
.objectid
;
6564 * this can happen if we end up cycling through all the
6565 * raid types, but we want to make sure we only allocate
6566 * for the proper type.
6568 if (!block_group_bits(block_group
, flags
)) {
6569 u64 extra
= BTRFS_BLOCK_GROUP_DUP
|
6570 BTRFS_BLOCK_GROUP_RAID1
|
6571 BTRFS_BLOCK_GROUP_RAID5
|
6572 BTRFS_BLOCK_GROUP_RAID6
|
6573 BTRFS_BLOCK_GROUP_RAID10
;
6576 * if they asked for extra copies and this block group
6577 * doesn't provide them, bail. This does allow us to
6578 * fill raid0 from raid1.
6580 if ((flags
& extra
) && !(block_group
->flags
& extra
))
6585 cached
= block_group_cache_done(block_group
);
6586 if (unlikely(!cached
)) {
6587 ret
= cache_block_group(block_group
, 0);
6592 if (unlikely(block_group
->cached
== BTRFS_CACHE_ERROR
))
6594 if (unlikely(block_group
->ro
))
6598 * Ok we want to try and use the cluster allocator, so
6602 struct btrfs_block_group_cache
*used_block_group
;
6603 unsigned long aligned_cluster
;
6605 * the refill lock keeps out other
6606 * people trying to start a new cluster
6608 used_block_group
= btrfs_lock_cluster(block_group
,
6611 if (!used_block_group
)
6612 goto refill_cluster
;
6614 if (used_block_group
!= block_group
&&
6615 (used_block_group
->ro
||
6616 !block_group_bits(used_block_group
, flags
)))
6617 goto release_cluster
;
6619 offset
= btrfs_alloc_from_cluster(used_block_group
,
6622 used_block_group
->key
.objectid
,
6625 /* we have a block, we're done */
6626 spin_unlock(&last_ptr
->refill_lock
);
6627 trace_btrfs_reserve_extent_cluster(root
,
6629 search_start
, num_bytes
);
6630 if (used_block_group
!= block_group
) {
6631 btrfs_release_block_group(block_group
,
6633 block_group
= used_block_group
;
6638 WARN_ON(last_ptr
->block_group
!= used_block_group
);
6640 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6641 * set up a new clusters, so lets just skip it
6642 * and let the allocator find whatever block
6643 * it can find. If we reach this point, we
6644 * will have tried the cluster allocator
6645 * plenty of times and not have found
6646 * anything, so we are likely way too
6647 * fragmented for the clustering stuff to find
6650 * However, if the cluster is taken from the
6651 * current block group, release the cluster
6652 * first, so that we stand a better chance of
6653 * succeeding in the unclustered
6655 if (loop
>= LOOP_NO_EMPTY_SIZE
&&
6656 used_block_group
!= block_group
) {
6657 spin_unlock(&last_ptr
->refill_lock
);
6658 btrfs_release_block_group(used_block_group
,
6660 goto unclustered_alloc
;
6664 * this cluster didn't work out, free it and
6667 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
6669 if (used_block_group
!= block_group
)
6670 btrfs_release_block_group(used_block_group
,
6673 if (loop
>= LOOP_NO_EMPTY_SIZE
) {
6674 spin_unlock(&last_ptr
->refill_lock
);
6675 goto unclustered_alloc
;
6678 aligned_cluster
= max_t(unsigned long,
6679 empty_cluster
+ empty_size
,
6680 block_group
->full_stripe_len
);
6682 /* allocate a cluster in this block group */
6683 ret
= btrfs_find_space_cluster(root
, block_group
,
6684 last_ptr
, search_start
,
6689 * now pull our allocation out of this
6692 offset
= btrfs_alloc_from_cluster(block_group
,
6698 /* we found one, proceed */
6699 spin_unlock(&last_ptr
->refill_lock
);
6700 trace_btrfs_reserve_extent_cluster(root
,
6701 block_group
, search_start
,
6705 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
6706 && !failed_cluster_refill
) {
6707 spin_unlock(&last_ptr
->refill_lock
);
6709 failed_cluster_refill
= true;
6710 wait_block_group_cache_progress(block_group
,
6711 num_bytes
+ empty_cluster
+ empty_size
);
6712 goto have_block_group
;
6716 * at this point we either didn't find a cluster
6717 * or we weren't able to allocate a block from our
6718 * cluster. Free the cluster we've been trying
6719 * to use, and go to the next block group
6721 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
6722 spin_unlock(&last_ptr
->refill_lock
);
6727 spin_lock(&block_group
->free_space_ctl
->tree_lock
);
6729 block_group
->free_space_ctl
->free_space
<
6730 num_bytes
+ empty_cluster
+ empty_size
) {
6731 if (block_group
->free_space_ctl
->free_space
>
6734 block_group
->free_space_ctl
->free_space
;
6735 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
6738 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
6740 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
6741 num_bytes
, empty_size
,
6744 * If we didn't find a chunk, and we haven't failed on this
6745 * block group before, and this block group is in the middle of
6746 * caching and we are ok with waiting, then go ahead and wait
6747 * for progress to be made, and set failed_alloc to true.
6749 * If failed_alloc is true then we've already waited on this
6750 * block group once and should move on to the next block group.
6752 if (!offset
&& !failed_alloc
&& !cached
&&
6753 loop
> LOOP_CACHING_NOWAIT
) {
6754 wait_block_group_cache_progress(block_group
,
6755 num_bytes
+ empty_size
);
6756 failed_alloc
= true;
6757 goto have_block_group
;
6758 } else if (!offset
) {
6760 have_caching_bg
= true;
6764 search_start
= ALIGN(offset
, root
->stripesize
);
6766 /* move on to the next group */
6767 if (search_start
+ num_bytes
>
6768 block_group
->key
.objectid
+ block_group
->key
.offset
) {
6769 btrfs_add_free_space(block_group
, offset
, num_bytes
);
6773 if (offset
< search_start
)
6774 btrfs_add_free_space(block_group
, offset
,
6775 search_start
- offset
);
6776 BUG_ON(offset
> search_start
);
6778 ret
= btrfs_update_reserved_bytes(block_group
, num_bytes
,
6779 alloc_type
, delalloc
);
6780 if (ret
== -EAGAIN
) {
6781 btrfs_add_free_space(block_group
, offset
, num_bytes
);
6785 /* we are all good, lets return */
6786 ins
->objectid
= search_start
;
6787 ins
->offset
= num_bytes
;
6789 trace_btrfs_reserve_extent(orig_root
, block_group
,
6790 search_start
, num_bytes
);
6791 btrfs_release_block_group(block_group
, delalloc
);
6794 failed_cluster_refill
= false;
6795 failed_alloc
= false;
6796 BUG_ON(index
!= get_block_group_index(block_group
));
6797 btrfs_release_block_group(block_group
, delalloc
);
6799 up_read(&space_info
->groups_sem
);
6801 if (!ins
->objectid
&& loop
>= LOOP_CACHING_WAIT
&& have_caching_bg
)
6804 if (!ins
->objectid
&& ++index
< BTRFS_NR_RAID_TYPES
)
6808 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
6809 * caching kthreads as we move along
6810 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
6811 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
6812 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
6815 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
) {
6818 if (loop
== LOOP_ALLOC_CHUNK
) {
6819 struct btrfs_trans_handle
*trans
;
6822 trans
= current
->journal_info
;
6826 trans
= btrfs_join_transaction(root
);
6828 if (IS_ERR(trans
)) {
6829 ret
= PTR_ERR(trans
);
6833 ret
= do_chunk_alloc(trans
, root
, flags
,
6836 * Do not bail out on ENOSPC since we
6837 * can do more things.
6839 if (ret
< 0 && ret
!= -ENOSPC
)
6840 btrfs_abort_transaction(trans
,
6845 btrfs_end_transaction(trans
, root
);
6850 if (loop
== LOOP_NO_EMPTY_SIZE
) {
6856 } else if (!ins
->objectid
) {
6858 } else if (ins
->objectid
) {
6863 ins
->offset
= max_extent_size
;
6867 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
6868 int dump_block_groups
)
6870 struct btrfs_block_group_cache
*cache
;
6873 spin_lock(&info
->lock
);
6874 printk(KERN_INFO
"BTRFS: space_info %llu has %llu free, is %sfull\n",
6876 info
->total_bytes
- info
->bytes_used
- info
->bytes_pinned
-
6877 info
->bytes_reserved
- info
->bytes_readonly
,
6878 (info
->full
) ? "" : "not ");
6879 printk(KERN_INFO
"BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
6880 "reserved=%llu, may_use=%llu, readonly=%llu\n",
6881 info
->total_bytes
, info
->bytes_used
, info
->bytes_pinned
,
6882 info
->bytes_reserved
, info
->bytes_may_use
,
6883 info
->bytes_readonly
);
6884 spin_unlock(&info
->lock
);
6886 if (!dump_block_groups
)
6889 down_read(&info
->groups_sem
);
6891 list_for_each_entry(cache
, &info
->block_groups
[index
], list
) {
6892 spin_lock(&cache
->lock
);
6893 printk(KERN_INFO
"BTRFS: "
6894 "block group %llu has %llu bytes, "
6895 "%llu used %llu pinned %llu reserved %s\n",
6896 cache
->key
.objectid
, cache
->key
.offset
,
6897 btrfs_block_group_used(&cache
->item
), cache
->pinned
,
6898 cache
->reserved
, cache
->ro
? "[readonly]" : "");
6899 btrfs_dump_free_space(cache
, bytes
);
6900 spin_unlock(&cache
->lock
);
6902 if (++index
< BTRFS_NR_RAID_TYPES
)
6904 up_read(&info
->groups_sem
);
6907 int btrfs_reserve_extent(struct btrfs_root
*root
,
6908 u64 num_bytes
, u64 min_alloc_size
,
6909 u64 empty_size
, u64 hint_byte
,
6910 struct btrfs_key
*ins
, int is_data
, int delalloc
)
6912 bool final_tried
= false;
6916 flags
= btrfs_get_alloc_profile(root
, is_data
);
6918 WARN_ON(num_bytes
< root
->sectorsize
);
6919 ret
= find_free_extent(root
, num_bytes
, empty_size
, hint_byte
, ins
,
6922 if (ret
== -ENOSPC
) {
6923 if (!final_tried
&& ins
->offset
) {
6924 num_bytes
= min(num_bytes
>> 1, ins
->offset
);
6925 num_bytes
= round_down(num_bytes
, root
->sectorsize
);
6926 num_bytes
= max(num_bytes
, min_alloc_size
);
6927 if (num_bytes
== min_alloc_size
)
6930 } else if (btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
6931 struct btrfs_space_info
*sinfo
;
6933 sinfo
= __find_space_info(root
->fs_info
, flags
);
6934 btrfs_err(root
->fs_info
, "allocation failed flags %llu, wanted %llu",
6937 dump_space_info(sinfo
, num_bytes
, 1);
6944 static int __btrfs_free_reserved_extent(struct btrfs_root
*root
,
6946 int pin
, int delalloc
)
6948 struct btrfs_block_group_cache
*cache
;
6951 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
6953 btrfs_err(root
->fs_info
, "Unable to find block group for %llu",
6959 pin_down_extent(root
, cache
, start
, len
, 1);
6961 if (btrfs_test_opt(root
, DISCARD
))
6962 ret
= btrfs_discard_extent(root
, start
, len
, NULL
);
6963 btrfs_add_free_space(cache
, start
, len
);
6964 btrfs_update_reserved_bytes(cache
, len
, RESERVE_FREE
, delalloc
);
6966 btrfs_put_block_group(cache
);
6968 trace_btrfs_reserved_extent_free(root
, start
, len
);
6973 int btrfs_free_reserved_extent(struct btrfs_root
*root
,
6974 u64 start
, u64 len
, int delalloc
)
6976 return __btrfs_free_reserved_extent(root
, start
, len
, 0, delalloc
);
6979 int btrfs_free_and_pin_reserved_extent(struct btrfs_root
*root
,
6982 return __btrfs_free_reserved_extent(root
, start
, len
, 1, 0);
6985 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
6986 struct btrfs_root
*root
,
6987 u64 parent
, u64 root_objectid
,
6988 u64 flags
, u64 owner
, u64 offset
,
6989 struct btrfs_key
*ins
, int ref_mod
)
6992 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6993 struct btrfs_extent_item
*extent_item
;
6994 struct btrfs_extent_inline_ref
*iref
;
6995 struct btrfs_path
*path
;
6996 struct extent_buffer
*leaf
;
7001 type
= BTRFS_SHARED_DATA_REF_KEY
;
7003 type
= BTRFS_EXTENT_DATA_REF_KEY
;
7005 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
7007 path
= btrfs_alloc_path();
7011 path
->leave_spinning
= 1;
7012 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
7015 btrfs_free_path(path
);
7019 leaf
= path
->nodes
[0];
7020 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
7021 struct btrfs_extent_item
);
7022 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
7023 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
7024 btrfs_set_extent_flags(leaf
, extent_item
,
7025 flags
| BTRFS_EXTENT_FLAG_DATA
);
7027 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
7028 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
7030 struct btrfs_shared_data_ref
*ref
;
7031 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
7032 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
7033 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
7035 struct btrfs_extent_data_ref
*ref
;
7036 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
7037 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
7038 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
7039 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
7040 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
7043 btrfs_mark_buffer_dirty(path
->nodes
[0]);
7044 btrfs_free_path(path
);
7046 /* Always set parent to 0 here since its exclusive anyway. */
7047 ret
= btrfs_qgroup_record_ref(trans
, fs_info
, root_objectid
,
7048 ins
->objectid
, ins
->offset
,
7049 BTRFS_QGROUP_OPER_ADD_EXCL
, 0);
7053 ret
= update_block_group(root
, ins
->objectid
, ins
->offset
, 1);
7054 if (ret
) { /* -ENOENT, logic error */
7055 btrfs_err(fs_info
, "update block group failed for %llu %llu",
7056 ins
->objectid
, ins
->offset
);
7059 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, ins
->offset
);
7063 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
7064 struct btrfs_root
*root
,
7065 u64 parent
, u64 root_objectid
,
7066 u64 flags
, struct btrfs_disk_key
*key
,
7067 int level
, struct btrfs_key
*ins
,
7071 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7072 struct btrfs_extent_item
*extent_item
;
7073 struct btrfs_tree_block_info
*block_info
;
7074 struct btrfs_extent_inline_ref
*iref
;
7075 struct btrfs_path
*path
;
7076 struct extent_buffer
*leaf
;
7077 u32 size
= sizeof(*extent_item
) + sizeof(*iref
);
7078 u64 num_bytes
= ins
->offset
;
7079 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
7082 if (!skinny_metadata
)
7083 size
+= sizeof(*block_info
);
7085 path
= btrfs_alloc_path();
7087 btrfs_free_and_pin_reserved_extent(root
, ins
->objectid
,
7092 path
->leave_spinning
= 1;
7093 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
7096 btrfs_free_and_pin_reserved_extent(root
, ins
->objectid
,
7098 btrfs_free_path(path
);
7102 leaf
= path
->nodes
[0];
7103 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
7104 struct btrfs_extent_item
);
7105 btrfs_set_extent_refs(leaf
, extent_item
, 1);
7106 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
7107 btrfs_set_extent_flags(leaf
, extent_item
,
7108 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
7110 if (skinny_metadata
) {
7111 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
7112 num_bytes
= root
->nodesize
;
7114 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
7115 btrfs_set_tree_block_key(leaf
, block_info
, key
);
7116 btrfs_set_tree_block_level(leaf
, block_info
, level
);
7117 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
7121 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
7122 btrfs_set_extent_inline_ref_type(leaf
, iref
,
7123 BTRFS_SHARED_BLOCK_REF_KEY
);
7124 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
7126 btrfs_set_extent_inline_ref_type(leaf
, iref
,
7127 BTRFS_TREE_BLOCK_REF_KEY
);
7128 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
7131 btrfs_mark_buffer_dirty(leaf
);
7132 btrfs_free_path(path
);
7135 ret
= btrfs_qgroup_record_ref(trans
, fs_info
, root_objectid
,
7136 ins
->objectid
, num_bytes
,
7137 BTRFS_QGROUP_OPER_ADD_EXCL
, 0);
7142 ret
= update_block_group(root
, ins
->objectid
, root
->nodesize
, 1);
7143 if (ret
) { /* -ENOENT, logic error */
7144 btrfs_err(fs_info
, "update block group failed for %llu %llu",
7145 ins
->objectid
, ins
->offset
);
7149 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, root
->nodesize
);
7153 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
7154 struct btrfs_root
*root
,
7155 u64 root_objectid
, u64 owner
,
7156 u64 offset
, struct btrfs_key
*ins
)
7160 BUG_ON(root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
7162 ret
= btrfs_add_delayed_data_ref(root
->fs_info
, trans
, ins
->objectid
,
7164 root_objectid
, owner
, offset
,
7165 BTRFS_ADD_DELAYED_EXTENT
, NULL
, 0);
7170 * this is used by the tree logging recovery code. It records that
7171 * an extent has been allocated and makes sure to clear the free
7172 * space cache bits as well
7174 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
7175 struct btrfs_root
*root
,
7176 u64 root_objectid
, u64 owner
, u64 offset
,
7177 struct btrfs_key
*ins
)
7180 struct btrfs_block_group_cache
*block_group
;
7183 * Mixed block groups will exclude before processing the log so we only
7184 * need to do the exlude dance if this fs isn't mixed.
7186 if (!btrfs_fs_incompat(root
->fs_info
, MIXED_GROUPS
)) {
7187 ret
= __exclude_logged_extent(root
, ins
->objectid
, ins
->offset
);
7192 block_group
= btrfs_lookup_block_group(root
->fs_info
, ins
->objectid
);
7196 ret
= btrfs_update_reserved_bytes(block_group
, ins
->offset
,
7197 RESERVE_ALLOC_NO_ACCOUNT
, 0);
7198 BUG_ON(ret
); /* logic error */
7199 ret
= alloc_reserved_file_extent(trans
, root
, 0, root_objectid
,
7200 0, owner
, offset
, ins
, 1);
7201 btrfs_put_block_group(block_group
);
7205 static struct extent_buffer
*
7206 btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
7207 u64 bytenr
, u32 blocksize
, int level
)
7209 struct extent_buffer
*buf
;
7211 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
7213 return ERR_PTR(-ENOMEM
);
7214 btrfs_set_header_generation(buf
, trans
->transid
);
7215 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, buf
, level
);
7216 btrfs_tree_lock(buf
);
7217 clean_tree_block(trans
, root
, buf
);
7218 clear_bit(EXTENT_BUFFER_STALE
, &buf
->bflags
);
7220 btrfs_set_lock_blocking(buf
);
7221 btrfs_set_buffer_uptodate(buf
);
7223 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
7224 buf
->log_index
= root
->log_transid
% 2;
7226 * we allow two log transactions at a time, use different
7227 * EXENT bit to differentiate dirty pages.
7229 if (buf
->log_index
== 0)
7230 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
7231 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
7233 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
7234 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
7236 buf
->log_index
= -1;
7237 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
7238 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
7240 trans
->blocks_used
++;
7241 /* this returns a buffer locked for blocking */
7245 static struct btrfs_block_rsv
*
7246 use_block_rsv(struct btrfs_trans_handle
*trans
,
7247 struct btrfs_root
*root
, u32 blocksize
)
7249 struct btrfs_block_rsv
*block_rsv
;
7250 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
7252 bool global_updated
= false;
7254 block_rsv
= get_block_rsv(trans
, root
);
7256 if (unlikely(block_rsv
->size
== 0))
7259 ret
= block_rsv_use_bytes(block_rsv
, blocksize
);
7263 if (block_rsv
->failfast
)
7264 return ERR_PTR(ret
);
7266 if (block_rsv
->type
== BTRFS_BLOCK_RSV_GLOBAL
&& !global_updated
) {
7267 global_updated
= true;
7268 update_global_block_rsv(root
->fs_info
);
7272 if (btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
7273 static DEFINE_RATELIMIT_STATE(_rs
,
7274 DEFAULT_RATELIMIT_INTERVAL
* 10,
7275 /*DEFAULT_RATELIMIT_BURST*/ 1);
7276 if (__ratelimit(&_rs
))
7278 "BTRFS: block rsv returned %d\n", ret
);
7281 ret
= reserve_metadata_bytes(root
, block_rsv
, blocksize
,
7282 BTRFS_RESERVE_NO_FLUSH
);
7286 * If we couldn't reserve metadata bytes try and use some from
7287 * the global reserve if its space type is the same as the global
7290 if (block_rsv
->type
!= BTRFS_BLOCK_RSV_GLOBAL
&&
7291 block_rsv
->space_info
== global_rsv
->space_info
) {
7292 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
7296 return ERR_PTR(ret
);
7299 static void unuse_block_rsv(struct btrfs_fs_info
*fs_info
,
7300 struct btrfs_block_rsv
*block_rsv
, u32 blocksize
)
7302 block_rsv_add_bytes(block_rsv
, blocksize
, 0);
7303 block_rsv_release_bytes(fs_info
, block_rsv
, NULL
, 0);
7307 * finds a free extent and does all the dirty work required for allocation
7308 * returns the key for the extent through ins, and a tree buffer for
7309 * the first block of the extent through buf.
7311 * returns the tree buffer or NULL.
7313 struct extent_buffer
*btrfs_alloc_tree_block(struct btrfs_trans_handle
*trans
,
7314 struct btrfs_root
*root
,
7315 u64 parent
, u64 root_objectid
,
7316 struct btrfs_disk_key
*key
, int level
,
7317 u64 hint
, u64 empty_size
)
7319 struct btrfs_key ins
;
7320 struct btrfs_block_rsv
*block_rsv
;
7321 struct extent_buffer
*buf
;
7324 u32 blocksize
= root
->nodesize
;
7325 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
7328 if (btrfs_test_is_dummy_root(root
)) {
7329 buf
= btrfs_init_new_buffer(trans
, root
, root
->alloc_bytenr
,
7332 root
->alloc_bytenr
+= blocksize
;
7336 block_rsv
= use_block_rsv(trans
, root
, blocksize
);
7337 if (IS_ERR(block_rsv
))
7338 return ERR_CAST(block_rsv
);
7340 ret
= btrfs_reserve_extent(root
, blocksize
, blocksize
,
7341 empty_size
, hint
, &ins
, 0, 0);
7343 unuse_block_rsv(root
->fs_info
, block_rsv
, blocksize
);
7344 return ERR_PTR(ret
);
7347 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
,
7349 BUG_ON(IS_ERR(buf
)); /* -ENOMEM */
7351 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
7353 parent
= ins
.objectid
;
7354 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
7358 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
7359 struct btrfs_delayed_extent_op
*extent_op
;
7360 extent_op
= btrfs_alloc_delayed_extent_op();
7361 BUG_ON(!extent_op
); /* -ENOMEM */
7363 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
7365 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
7366 extent_op
->flags_to_set
= flags
;
7367 if (skinny_metadata
)
7368 extent_op
->update_key
= 0;
7370 extent_op
->update_key
= 1;
7371 extent_op
->update_flags
= 1;
7372 extent_op
->is_data
= 0;
7373 extent_op
->level
= level
;
7375 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
7377 ins
.offset
, parent
, root_objectid
,
7378 level
, BTRFS_ADD_DELAYED_EXTENT
,
7380 BUG_ON(ret
); /* -ENOMEM */
7385 struct walk_control
{
7386 u64 refs
[BTRFS_MAX_LEVEL
];
7387 u64 flags
[BTRFS_MAX_LEVEL
];
7388 struct btrfs_key update_progress
;
7399 #define DROP_REFERENCE 1
7400 #define UPDATE_BACKREF 2
7402 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
7403 struct btrfs_root
*root
,
7404 struct walk_control
*wc
,
7405 struct btrfs_path
*path
)
7413 struct btrfs_key key
;
7414 struct extent_buffer
*eb
;
7419 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
7420 wc
->reada_count
= wc
->reada_count
* 2 / 3;
7421 wc
->reada_count
= max(wc
->reada_count
, 2);
7423 wc
->reada_count
= wc
->reada_count
* 3 / 2;
7424 wc
->reada_count
= min_t(int, wc
->reada_count
,
7425 BTRFS_NODEPTRS_PER_BLOCK(root
));
7428 eb
= path
->nodes
[wc
->level
];
7429 nritems
= btrfs_header_nritems(eb
);
7430 blocksize
= root
->nodesize
;
7432 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
7433 if (nread
>= wc
->reada_count
)
7437 bytenr
= btrfs_node_blockptr(eb
, slot
);
7438 generation
= btrfs_node_ptr_generation(eb
, slot
);
7440 if (slot
== path
->slots
[wc
->level
])
7443 if (wc
->stage
== UPDATE_BACKREF
&&
7444 generation
<= root
->root_key
.offset
)
7447 /* We don't lock the tree block, it's OK to be racy here */
7448 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
,
7449 wc
->level
- 1, 1, &refs
,
7451 /* We don't care about errors in readahead. */
7456 if (wc
->stage
== DROP_REFERENCE
) {
7460 if (wc
->level
== 1 &&
7461 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
7463 if (!wc
->update_ref
||
7464 generation
<= root
->root_key
.offset
)
7466 btrfs_node_key_to_cpu(eb
, &key
, slot
);
7467 ret
= btrfs_comp_cpu_keys(&key
,
7468 &wc
->update_progress
);
7472 if (wc
->level
== 1 &&
7473 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
7477 readahead_tree_block(root
, bytenr
, blocksize
);
7480 wc
->reada_slot
= slot
;
7483 static int account_leaf_items(struct btrfs_trans_handle
*trans
,
7484 struct btrfs_root
*root
,
7485 struct extent_buffer
*eb
)
7487 int nr
= btrfs_header_nritems(eb
);
7488 int i
, extent_type
, ret
;
7489 struct btrfs_key key
;
7490 struct btrfs_file_extent_item
*fi
;
7491 u64 bytenr
, num_bytes
;
7493 for (i
= 0; i
< nr
; i
++) {
7494 btrfs_item_key_to_cpu(eb
, &key
, i
);
7496 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
7499 fi
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
7500 /* filter out non qgroup-accountable extents */
7501 extent_type
= btrfs_file_extent_type(eb
, fi
);
7503 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
)
7506 bytenr
= btrfs_file_extent_disk_bytenr(eb
, fi
);
7510 num_bytes
= btrfs_file_extent_disk_num_bytes(eb
, fi
);
7512 ret
= btrfs_qgroup_record_ref(trans
, root
->fs_info
,
7515 BTRFS_QGROUP_OPER_SUB_SUBTREE
, 0);
7523 * Walk up the tree from the bottom, freeing leaves and any interior
7524 * nodes which have had all slots visited. If a node (leaf or
7525 * interior) is freed, the node above it will have it's slot
7526 * incremented. The root node will never be freed.
7528 * At the end of this function, we should have a path which has all
7529 * slots incremented to the next position for a search. If we need to
7530 * read a new node it will be NULL and the node above it will have the
7531 * correct slot selected for a later read.
7533 * If we increment the root nodes slot counter past the number of
7534 * elements, 1 is returned to signal completion of the search.
7536 static int adjust_slots_upwards(struct btrfs_root
*root
,
7537 struct btrfs_path
*path
, int root_level
)
7541 struct extent_buffer
*eb
;
7543 if (root_level
== 0)
7546 while (level
<= root_level
) {
7547 eb
= path
->nodes
[level
];
7548 nr
= btrfs_header_nritems(eb
);
7549 path
->slots
[level
]++;
7550 slot
= path
->slots
[level
];
7551 if (slot
>= nr
|| level
== 0) {
7553 * Don't free the root - we will detect this
7554 * condition after our loop and return a
7555 * positive value for caller to stop walking the tree.
7557 if (level
!= root_level
) {
7558 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
7559 path
->locks
[level
] = 0;
7561 free_extent_buffer(eb
);
7562 path
->nodes
[level
] = NULL
;
7563 path
->slots
[level
] = 0;
7567 * We have a valid slot to walk back down
7568 * from. Stop here so caller can process these
7577 eb
= path
->nodes
[root_level
];
7578 if (path
->slots
[root_level
] >= btrfs_header_nritems(eb
))
7585 * root_eb is the subtree root and is locked before this function is called.
7587 static int account_shared_subtree(struct btrfs_trans_handle
*trans
,
7588 struct btrfs_root
*root
,
7589 struct extent_buffer
*root_eb
,
7595 struct extent_buffer
*eb
= root_eb
;
7596 struct btrfs_path
*path
= NULL
;
7598 BUG_ON(root_level
< 0 || root_level
> BTRFS_MAX_LEVEL
);
7599 BUG_ON(root_eb
== NULL
);
7601 if (!root
->fs_info
->quota_enabled
)
7604 if (!extent_buffer_uptodate(root_eb
)) {
7605 ret
= btrfs_read_buffer(root_eb
, root_gen
);
7610 if (root_level
== 0) {
7611 ret
= account_leaf_items(trans
, root
, root_eb
);
7615 path
= btrfs_alloc_path();
7620 * Walk down the tree. Missing extent blocks are filled in as
7621 * we go. Metadata is accounted every time we read a new
7624 * When we reach a leaf, we account for file extent items in it,
7625 * walk back up the tree (adjusting slot pointers as we go)
7626 * and restart the search process.
7628 extent_buffer_get(root_eb
); /* For path */
7629 path
->nodes
[root_level
] = root_eb
;
7630 path
->slots
[root_level
] = 0;
7631 path
->locks
[root_level
] = 0; /* so release_path doesn't try to unlock */
7634 while (level
>= 0) {
7635 if (path
->nodes
[level
] == NULL
) {
7640 /* We need to get child blockptr/gen from
7641 * parent before we can read it. */
7642 eb
= path
->nodes
[level
+ 1];
7643 parent_slot
= path
->slots
[level
+ 1];
7644 child_bytenr
= btrfs_node_blockptr(eb
, parent_slot
);
7645 child_gen
= btrfs_node_ptr_generation(eb
, parent_slot
);
7647 eb
= read_tree_block(root
, child_bytenr
, child_gen
);
7648 if (!eb
|| !extent_buffer_uptodate(eb
)) {
7653 path
->nodes
[level
] = eb
;
7654 path
->slots
[level
] = 0;
7656 btrfs_tree_read_lock(eb
);
7657 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
7658 path
->locks
[level
] = BTRFS_READ_LOCK_BLOCKING
;
7660 ret
= btrfs_qgroup_record_ref(trans
, root
->fs_info
,
7664 BTRFS_QGROUP_OPER_SUB_SUBTREE
,
7672 ret
= account_leaf_items(trans
, root
, path
->nodes
[level
]);
7676 /* Nonzero return here means we completed our search */
7677 ret
= adjust_slots_upwards(root
, path
, root_level
);
7681 /* Restart search with new slots */
7690 btrfs_free_path(path
);
7696 * helper to process tree block while walking down the tree.
7698 * when wc->stage == UPDATE_BACKREF, this function updates
7699 * back refs for pointers in the block.
7701 * NOTE: return value 1 means we should stop walking down.
7703 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
7704 struct btrfs_root
*root
,
7705 struct btrfs_path
*path
,
7706 struct walk_control
*wc
, int lookup_info
)
7708 int level
= wc
->level
;
7709 struct extent_buffer
*eb
= path
->nodes
[level
];
7710 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
7713 if (wc
->stage
== UPDATE_BACKREF
&&
7714 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
7718 * when reference count of tree block is 1, it won't increase
7719 * again. once full backref flag is set, we never clear it.
7722 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
7723 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
7724 BUG_ON(!path
->locks
[level
]);
7725 ret
= btrfs_lookup_extent_info(trans
, root
,
7726 eb
->start
, level
, 1,
7729 BUG_ON(ret
== -ENOMEM
);
7732 BUG_ON(wc
->refs
[level
] == 0);
7735 if (wc
->stage
== DROP_REFERENCE
) {
7736 if (wc
->refs
[level
] > 1)
7739 if (path
->locks
[level
] && !wc
->keep_locks
) {
7740 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
7741 path
->locks
[level
] = 0;
7746 /* wc->stage == UPDATE_BACKREF */
7747 if (!(wc
->flags
[level
] & flag
)) {
7748 BUG_ON(!path
->locks
[level
]);
7749 ret
= btrfs_inc_ref(trans
, root
, eb
, 1);
7750 BUG_ON(ret
); /* -ENOMEM */
7751 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
7752 BUG_ON(ret
); /* -ENOMEM */
7753 ret
= btrfs_set_disk_extent_flags(trans
, root
, eb
->start
,
7755 btrfs_header_level(eb
), 0);
7756 BUG_ON(ret
); /* -ENOMEM */
7757 wc
->flags
[level
] |= flag
;
7761 * the block is shared by multiple trees, so it's not good to
7762 * keep the tree lock
7764 if (path
->locks
[level
] && level
> 0) {
7765 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
7766 path
->locks
[level
] = 0;
7772 * helper to process tree block pointer.
7774 * when wc->stage == DROP_REFERENCE, this function checks
7775 * reference count of the block pointed to. if the block
7776 * is shared and we need update back refs for the subtree
7777 * rooted at the block, this function changes wc->stage to
7778 * UPDATE_BACKREF. if the block is shared and there is no
7779 * need to update back, this function drops the reference
7782 * NOTE: return value 1 means we should stop walking down.
7784 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
7785 struct btrfs_root
*root
,
7786 struct btrfs_path
*path
,
7787 struct walk_control
*wc
, int *lookup_info
)
7793 struct btrfs_key key
;
7794 struct extent_buffer
*next
;
7795 int level
= wc
->level
;
7798 bool need_account
= false;
7800 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
7801 path
->slots
[level
]);
7803 * if the lower level block was created before the snapshot
7804 * was created, we know there is no need to update back refs
7807 if (wc
->stage
== UPDATE_BACKREF
&&
7808 generation
<= root
->root_key
.offset
) {
7813 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
7814 blocksize
= root
->nodesize
;
7816 next
= btrfs_find_tree_block(root
, bytenr
);
7818 next
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
7821 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, next
,
7825 btrfs_tree_lock(next
);
7826 btrfs_set_lock_blocking(next
);
7828 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, level
- 1, 1,
7829 &wc
->refs
[level
- 1],
7830 &wc
->flags
[level
- 1]);
7832 btrfs_tree_unlock(next
);
7836 if (unlikely(wc
->refs
[level
- 1] == 0)) {
7837 btrfs_err(root
->fs_info
, "Missing references.");
7842 if (wc
->stage
== DROP_REFERENCE
) {
7843 if (wc
->refs
[level
- 1] > 1) {
7844 need_account
= true;
7846 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
7849 if (!wc
->update_ref
||
7850 generation
<= root
->root_key
.offset
)
7853 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
7854 path
->slots
[level
]);
7855 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
7859 wc
->stage
= UPDATE_BACKREF
;
7860 wc
->shared_level
= level
- 1;
7864 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
7868 if (!btrfs_buffer_uptodate(next
, generation
, 0)) {
7869 btrfs_tree_unlock(next
);
7870 free_extent_buffer(next
);
7876 if (reada
&& level
== 1)
7877 reada_walk_down(trans
, root
, wc
, path
);
7878 next
= read_tree_block(root
, bytenr
, generation
);
7879 if (!next
|| !extent_buffer_uptodate(next
)) {
7880 free_extent_buffer(next
);
7883 btrfs_tree_lock(next
);
7884 btrfs_set_lock_blocking(next
);
7888 BUG_ON(level
!= btrfs_header_level(next
));
7889 path
->nodes
[level
] = next
;
7890 path
->slots
[level
] = 0;
7891 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
7897 wc
->refs
[level
- 1] = 0;
7898 wc
->flags
[level
- 1] = 0;
7899 if (wc
->stage
== DROP_REFERENCE
) {
7900 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
7901 parent
= path
->nodes
[level
]->start
;
7903 BUG_ON(root
->root_key
.objectid
!=
7904 btrfs_header_owner(path
->nodes
[level
]));
7909 ret
= account_shared_subtree(trans
, root
, next
,
7910 generation
, level
- 1);
7912 printk_ratelimited(KERN_ERR
"BTRFS: %s Error "
7913 "%d accounting shared subtree. Quota "
7914 "is out of sync, rescan required.\n",
7915 root
->fs_info
->sb
->s_id
, ret
);
7918 ret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
, parent
,
7919 root
->root_key
.objectid
, level
- 1, 0, 0);
7920 BUG_ON(ret
); /* -ENOMEM */
7922 btrfs_tree_unlock(next
);
7923 free_extent_buffer(next
);
7929 * helper to process tree block while walking up the tree.
7931 * when wc->stage == DROP_REFERENCE, this function drops
7932 * reference count on the block.
7934 * when wc->stage == UPDATE_BACKREF, this function changes
7935 * wc->stage back to DROP_REFERENCE if we changed wc->stage
7936 * to UPDATE_BACKREF previously while processing the block.
7938 * NOTE: return value 1 means we should stop walking up.
7940 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
7941 struct btrfs_root
*root
,
7942 struct btrfs_path
*path
,
7943 struct walk_control
*wc
)
7946 int level
= wc
->level
;
7947 struct extent_buffer
*eb
= path
->nodes
[level
];
7950 if (wc
->stage
== UPDATE_BACKREF
) {
7951 BUG_ON(wc
->shared_level
< level
);
7952 if (level
< wc
->shared_level
)
7955 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
7959 wc
->stage
= DROP_REFERENCE
;
7960 wc
->shared_level
= -1;
7961 path
->slots
[level
] = 0;
7964 * check reference count again if the block isn't locked.
7965 * we should start walking down the tree again if reference
7968 if (!path
->locks
[level
]) {
7970 btrfs_tree_lock(eb
);
7971 btrfs_set_lock_blocking(eb
);
7972 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
7974 ret
= btrfs_lookup_extent_info(trans
, root
,
7975 eb
->start
, level
, 1,
7979 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
7980 path
->locks
[level
] = 0;
7983 BUG_ON(wc
->refs
[level
] == 0);
7984 if (wc
->refs
[level
] == 1) {
7985 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
7986 path
->locks
[level
] = 0;
7992 /* wc->stage == DROP_REFERENCE */
7993 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
7995 if (wc
->refs
[level
] == 1) {
7997 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
7998 ret
= btrfs_dec_ref(trans
, root
, eb
, 1);
8000 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
8001 BUG_ON(ret
); /* -ENOMEM */
8002 ret
= account_leaf_items(trans
, root
, eb
);
8004 printk_ratelimited(KERN_ERR
"BTRFS: %s Error "
8005 "%d accounting leaf items. Quota "
8006 "is out of sync, rescan required.\n",
8007 root
->fs_info
->sb
->s_id
, ret
);
8010 /* make block locked assertion in clean_tree_block happy */
8011 if (!path
->locks
[level
] &&
8012 btrfs_header_generation(eb
) == trans
->transid
) {
8013 btrfs_tree_lock(eb
);
8014 btrfs_set_lock_blocking(eb
);
8015 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8017 clean_tree_block(trans
, root
, eb
);
8020 if (eb
== root
->node
) {
8021 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
8024 BUG_ON(root
->root_key
.objectid
!=
8025 btrfs_header_owner(eb
));
8027 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
8028 parent
= path
->nodes
[level
+ 1]->start
;
8030 BUG_ON(root
->root_key
.objectid
!=
8031 btrfs_header_owner(path
->nodes
[level
+ 1]));
8034 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1);
8036 wc
->refs
[level
] = 0;
8037 wc
->flags
[level
] = 0;
8041 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
8042 struct btrfs_root
*root
,
8043 struct btrfs_path
*path
,
8044 struct walk_control
*wc
)
8046 int level
= wc
->level
;
8047 int lookup_info
= 1;
8050 while (level
>= 0) {
8051 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
8058 if (path
->slots
[level
] >=
8059 btrfs_header_nritems(path
->nodes
[level
]))
8062 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
8064 path
->slots
[level
]++;
8073 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
8074 struct btrfs_root
*root
,
8075 struct btrfs_path
*path
,
8076 struct walk_control
*wc
, int max_level
)
8078 int level
= wc
->level
;
8081 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
8082 while (level
< max_level
&& path
->nodes
[level
]) {
8084 if (path
->slots
[level
] + 1 <
8085 btrfs_header_nritems(path
->nodes
[level
])) {
8086 path
->slots
[level
]++;
8089 ret
= walk_up_proc(trans
, root
, path
, wc
);
8093 if (path
->locks
[level
]) {
8094 btrfs_tree_unlock_rw(path
->nodes
[level
],
8095 path
->locks
[level
]);
8096 path
->locks
[level
] = 0;
8098 free_extent_buffer(path
->nodes
[level
]);
8099 path
->nodes
[level
] = NULL
;
8107 * drop a subvolume tree.
8109 * this function traverses the tree freeing any blocks that only
8110 * referenced by the tree.
8112 * when a shared tree block is found. this function decreases its
8113 * reference count by one. if update_ref is true, this function
8114 * also make sure backrefs for the shared block and all lower level
8115 * blocks are properly updated.
8117 * If called with for_reloc == 0, may exit early with -EAGAIN
8119 int btrfs_drop_snapshot(struct btrfs_root
*root
,
8120 struct btrfs_block_rsv
*block_rsv
, int update_ref
,
8123 struct btrfs_path
*path
;
8124 struct btrfs_trans_handle
*trans
;
8125 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
8126 struct btrfs_root_item
*root_item
= &root
->root_item
;
8127 struct walk_control
*wc
;
8128 struct btrfs_key key
;
8132 bool root_dropped
= false;
8134 btrfs_debug(root
->fs_info
, "Drop subvolume %llu", root
->objectid
);
8136 path
= btrfs_alloc_path();
8142 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
8144 btrfs_free_path(path
);
8149 trans
= btrfs_start_transaction(tree_root
, 0);
8150 if (IS_ERR(trans
)) {
8151 err
= PTR_ERR(trans
);
8156 trans
->block_rsv
= block_rsv
;
8158 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
8159 level
= btrfs_header_level(root
->node
);
8160 path
->nodes
[level
] = btrfs_lock_root_node(root
);
8161 btrfs_set_lock_blocking(path
->nodes
[level
]);
8162 path
->slots
[level
] = 0;
8163 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8164 memset(&wc
->update_progress
, 0,
8165 sizeof(wc
->update_progress
));
8167 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
8168 memcpy(&wc
->update_progress
, &key
,
8169 sizeof(wc
->update_progress
));
8171 level
= root_item
->drop_level
;
8173 path
->lowest_level
= level
;
8174 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
8175 path
->lowest_level
= 0;
8183 * unlock our path, this is safe because only this
8184 * function is allowed to delete this snapshot
8186 btrfs_unlock_up_safe(path
, 0);
8188 level
= btrfs_header_level(root
->node
);
8190 btrfs_tree_lock(path
->nodes
[level
]);
8191 btrfs_set_lock_blocking(path
->nodes
[level
]);
8192 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8194 ret
= btrfs_lookup_extent_info(trans
, root
,
8195 path
->nodes
[level
]->start
,
8196 level
, 1, &wc
->refs
[level
],
8202 BUG_ON(wc
->refs
[level
] == 0);
8204 if (level
== root_item
->drop_level
)
8207 btrfs_tree_unlock(path
->nodes
[level
]);
8208 path
->locks
[level
] = 0;
8209 WARN_ON(wc
->refs
[level
] != 1);
8215 wc
->shared_level
= -1;
8216 wc
->stage
= DROP_REFERENCE
;
8217 wc
->update_ref
= update_ref
;
8219 wc
->for_reloc
= for_reloc
;
8220 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
8224 ret
= walk_down_tree(trans
, root
, path
, wc
);
8230 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
8237 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
8241 if (wc
->stage
== DROP_REFERENCE
) {
8243 btrfs_node_key(path
->nodes
[level
],
8244 &root_item
->drop_progress
,
8245 path
->slots
[level
]);
8246 root_item
->drop_level
= level
;
8249 BUG_ON(wc
->level
== 0);
8250 if (btrfs_should_end_transaction(trans
, tree_root
) ||
8251 (!for_reloc
&& btrfs_need_cleaner_sleep(root
))) {
8252 ret
= btrfs_update_root(trans
, tree_root
,
8256 btrfs_abort_transaction(trans
, tree_root
, ret
);
8262 * Qgroup update accounting is run from
8263 * delayed ref handling. This usually works
8264 * out because delayed refs are normally the
8265 * only way qgroup updates are added. However,
8266 * we may have added updates during our tree
8267 * walk so run qgroups here to make sure we
8268 * don't lose any updates.
8270 ret
= btrfs_delayed_qgroup_accounting(trans
,
8273 printk_ratelimited(KERN_ERR
"BTRFS: Failure %d "
8274 "running qgroup updates "
8275 "during snapshot delete. "
8276 "Quota is out of sync, "
8277 "rescan required.\n", ret
);
8279 btrfs_end_transaction_throttle(trans
, tree_root
);
8280 if (!for_reloc
&& btrfs_need_cleaner_sleep(root
)) {
8281 pr_debug("BTRFS: drop snapshot early exit\n");
8286 trans
= btrfs_start_transaction(tree_root
, 0);
8287 if (IS_ERR(trans
)) {
8288 err
= PTR_ERR(trans
);
8292 trans
->block_rsv
= block_rsv
;
8295 btrfs_release_path(path
);
8299 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
8301 btrfs_abort_transaction(trans
, tree_root
, ret
);
8305 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
8306 ret
= btrfs_find_root(tree_root
, &root
->root_key
, path
,
8309 btrfs_abort_transaction(trans
, tree_root
, ret
);
8312 } else if (ret
> 0) {
8313 /* if we fail to delete the orphan item this time
8314 * around, it'll get picked up the next time.
8316 * The most common failure here is just -ENOENT.
8318 btrfs_del_orphan_item(trans
, tree_root
,
8319 root
->root_key
.objectid
);
8323 if (test_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
)) {
8324 btrfs_drop_and_free_fs_root(tree_root
->fs_info
, root
);
8326 free_extent_buffer(root
->node
);
8327 free_extent_buffer(root
->commit_root
);
8328 btrfs_put_fs_root(root
);
8330 root_dropped
= true;
8332 ret
= btrfs_delayed_qgroup_accounting(trans
, tree_root
->fs_info
);
8334 printk_ratelimited(KERN_ERR
"BTRFS: Failure %d "
8335 "running qgroup updates "
8336 "during snapshot delete. "
8337 "Quota is out of sync, "
8338 "rescan required.\n", ret
);
8340 btrfs_end_transaction_throttle(trans
, tree_root
);
8343 btrfs_free_path(path
);
8346 * So if we need to stop dropping the snapshot for whatever reason we
8347 * need to make sure to add it back to the dead root list so that we
8348 * keep trying to do the work later. This also cleans up roots if we
8349 * don't have it in the radix (like when we recover after a power fail
8350 * or unmount) so we don't leak memory.
8352 if (!for_reloc
&& root_dropped
== false)
8353 btrfs_add_dead_root(root
);
8354 if (err
&& err
!= -EAGAIN
)
8355 btrfs_std_error(root
->fs_info
, err
);
8360 * drop subtree rooted at tree block 'node'.
8362 * NOTE: this function will unlock and release tree block 'node'
8363 * only used by relocation code
8365 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
8366 struct btrfs_root
*root
,
8367 struct extent_buffer
*node
,
8368 struct extent_buffer
*parent
)
8370 struct btrfs_path
*path
;
8371 struct walk_control
*wc
;
8377 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
8379 path
= btrfs_alloc_path();
8383 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
8385 btrfs_free_path(path
);
8389 btrfs_assert_tree_locked(parent
);
8390 parent_level
= btrfs_header_level(parent
);
8391 extent_buffer_get(parent
);
8392 path
->nodes
[parent_level
] = parent
;
8393 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
8395 btrfs_assert_tree_locked(node
);
8396 level
= btrfs_header_level(node
);
8397 path
->nodes
[level
] = node
;
8398 path
->slots
[level
] = 0;
8399 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8401 wc
->refs
[parent_level
] = 1;
8402 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
8404 wc
->shared_level
= -1;
8405 wc
->stage
= DROP_REFERENCE
;
8409 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
8412 wret
= walk_down_tree(trans
, root
, path
, wc
);
8418 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
8426 btrfs_free_path(path
);
8430 static u64
update_block_group_flags(struct btrfs_root
*root
, u64 flags
)
8436 * if restripe for this chunk_type is on pick target profile and
8437 * return, otherwise do the usual balance
8439 stripped
= get_restripe_target(root
->fs_info
, flags
);
8441 return extended_to_chunk(stripped
);
8443 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
8445 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
8446 BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
|
8447 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
8449 if (num_devices
== 1) {
8450 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
8451 stripped
= flags
& ~stripped
;
8453 /* turn raid0 into single device chunks */
8454 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
8457 /* turn mirroring into duplication */
8458 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
8459 BTRFS_BLOCK_GROUP_RAID10
))
8460 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
8462 /* they already had raid on here, just return */
8463 if (flags
& stripped
)
8466 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
8467 stripped
= flags
& ~stripped
;
8469 /* switch duplicated blocks with raid1 */
8470 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
8471 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
8473 /* this is drive concat, leave it alone */
8479 static int set_block_group_ro(struct btrfs_block_group_cache
*cache
, int force
)
8481 struct btrfs_space_info
*sinfo
= cache
->space_info
;
8483 u64 min_allocable_bytes
;
8488 * We need some metadata space and system metadata space for
8489 * allocating chunks in some corner cases until we force to set
8490 * it to be readonly.
8493 (BTRFS_BLOCK_GROUP_SYSTEM
| BTRFS_BLOCK_GROUP_METADATA
)) &&
8495 min_allocable_bytes
= 1 * 1024 * 1024;
8497 min_allocable_bytes
= 0;
8499 spin_lock(&sinfo
->lock
);
8500 spin_lock(&cache
->lock
);
8507 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
8508 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
8510 if (sinfo
->bytes_used
+ sinfo
->bytes_reserved
+ sinfo
->bytes_pinned
+
8511 sinfo
->bytes_may_use
+ sinfo
->bytes_readonly
+ num_bytes
+
8512 min_allocable_bytes
<= sinfo
->total_bytes
) {
8513 sinfo
->bytes_readonly
+= num_bytes
;
8518 spin_unlock(&cache
->lock
);
8519 spin_unlock(&sinfo
->lock
);
8523 int btrfs_set_block_group_ro(struct btrfs_root
*root
,
8524 struct btrfs_block_group_cache
*cache
)
8527 struct btrfs_trans_handle
*trans
;
8533 trans
= btrfs_join_transaction(root
);
8535 return PTR_ERR(trans
);
8537 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
8538 if (alloc_flags
!= cache
->flags
) {
8539 ret
= do_chunk_alloc(trans
, root
, alloc_flags
,
8545 ret
= set_block_group_ro(cache
, 0);
8548 alloc_flags
= get_alloc_profile(root
, cache
->space_info
->flags
);
8549 ret
= do_chunk_alloc(trans
, root
, alloc_flags
,
8553 ret
= set_block_group_ro(cache
, 0);
8555 btrfs_end_transaction(trans
, root
);
8559 int btrfs_force_chunk_alloc(struct btrfs_trans_handle
*trans
,
8560 struct btrfs_root
*root
, u64 type
)
8562 u64 alloc_flags
= get_alloc_profile(root
, type
);
8563 return do_chunk_alloc(trans
, root
, alloc_flags
,
8568 * helper to account the unused space of all the readonly block group in the
8569 * list. takes mirrors into account.
8571 static u64
__btrfs_get_ro_block_group_free_space(struct list_head
*groups_list
)
8573 struct btrfs_block_group_cache
*block_group
;
8577 list_for_each_entry(block_group
, groups_list
, list
) {
8578 spin_lock(&block_group
->lock
);
8580 if (!block_group
->ro
) {
8581 spin_unlock(&block_group
->lock
);
8585 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_RAID1
|
8586 BTRFS_BLOCK_GROUP_RAID10
|
8587 BTRFS_BLOCK_GROUP_DUP
))
8592 free_bytes
+= (block_group
->key
.offset
-
8593 btrfs_block_group_used(&block_group
->item
)) *
8596 spin_unlock(&block_group
->lock
);
8603 * helper to account the unused space of all the readonly block group in the
8604 * space_info. takes mirrors into account.
8606 u64
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info
*sinfo
)
8611 spin_lock(&sinfo
->lock
);
8613 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
8614 if (!list_empty(&sinfo
->block_groups
[i
]))
8615 free_bytes
+= __btrfs_get_ro_block_group_free_space(
8616 &sinfo
->block_groups
[i
]);
8618 spin_unlock(&sinfo
->lock
);
8623 void btrfs_set_block_group_rw(struct btrfs_root
*root
,
8624 struct btrfs_block_group_cache
*cache
)
8626 struct btrfs_space_info
*sinfo
= cache
->space_info
;
8631 spin_lock(&sinfo
->lock
);
8632 spin_lock(&cache
->lock
);
8633 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
8634 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
8635 sinfo
->bytes_readonly
-= num_bytes
;
8637 spin_unlock(&cache
->lock
);
8638 spin_unlock(&sinfo
->lock
);
8642 * checks to see if its even possible to relocate this block group.
8644 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8645 * ok to go ahead and try.
8647 int btrfs_can_relocate(struct btrfs_root
*root
, u64 bytenr
)
8649 struct btrfs_block_group_cache
*block_group
;
8650 struct btrfs_space_info
*space_info
;
8651 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
8652 struct btrfs_device
*device
;
8653 struct btrfs_trans_handle
*trans
;
8662 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
8664 /* odd, couldn't find the block group, leave it alone */
8668 min_free
= btrfs_block_group_used(&block_group
->item
);
8670 /* no bytes used, we're good */
8674 space_info
= block_group
->space_info
;
8675 spin_lock(&space_info
->lock
);
8677 full
= space_info
->full
;
8680 * if this is the last block group we have in this space, we can't
8681 * relocate it unless we're able to allocate a new chunk below.
8683 * Otherwise, we need to make sure we have room in the space to handle
8684 * all of the extents from this block group. If we can, we're good
8686 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
8687 (space_info
->bytes_used
+ space_info
->bytes_reserved
+
8688 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
8689 min_free
< space_info
->total_bytes
)) {
8690 spin_unlock(&space_info
->lock
);
8693 spin_unlock(&space_info
->lock
);
8696 * ok we don't have enough space, but maybe we have free space on our
8697 * devices to allocate new chunks for relocation, so loop through our
8698 * alloc devices and guess if we have enough space. if this block
8699 * group is going to be restriped, run checks against the target
8700 * profile instead of the current one.
8712 target
= get_restripe_target(root
->fs_info
, block_group
->flags
);
8714 index
= __get_raid_index(extended_to_chunk(target
));
8717 * this is just a balance, so if we were marked as full
8718 * we know there is no space for a new chunk
8723 index
= get_block_group_index(block_group
);
8726 if (index
== BTRFS_RAID_RAID10
) {
8730 } else if (index
== BTRFS_RAID_RAID1
) {
8732 } else if (index
== BTRFS_RAID_DUP
) {
8735 } else if (index
== BTRFS_RAID_RAID0
) {
8736 dev_min
= fs_devices
->rw_devices
;
8737 do_div(min_free
, dev_min
);
8740 /* We need to do this so that we can look at pending chunks */
8741 trans
= btrfs_join_transaction(root
);
8742 if (IS_ERR(trans
)) {
8743 ret
= PTR_ERR(trans
);
8747 mutex_lock(&root
->fs_info
->chunk_mutex
);
8748 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
8752 * check to make sure we can actually find a chunk with enough
8753 * space to fit our block group in.
8755 if (device
->total_bytes
> device
->bytes_used
+ min_free
&&
8756 !device
->is_tgtdev_for_dev_replace
) {
8757 ret
= find_free_dev_extent(trans
, device
, min_free
,
8762 if (dev_nr
>= dev_min
)
8768 mutex_unlock(&root
->fs_info
->chunk_mutex
);
8769 btrfs_end_transaction(trans
, root
);
8771 btrfs_put_block_group(block_group
);
8775 static int find_first_block_group(struct btrfs_root
*root
,
8776 struct btrfs_path
*path
, struct btrfs_key
*key
)
8779 struct btrfs_key found_key
;
8780 struct extent_buffer
*leaf
;
8783 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
8788 slot
= path
->slots
[0];
8789 leaf
= path
->nodes
[0];
8790 if (slot
>= btrfs_header_nritems(leaf
)) {
8791 ret
= btrfs_next_leaf(root
, path
);
8798 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
8800 if (found_key
.objectid
>= key
->objectid
&&
8801 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
8811 void btrfs_put_block_group_cache(struct btrfs_fs_info
*info
)
8813 struct btrfs_block_group_cache
*block_group
;
8817 struct inode
*inode
;
8819 block_group
= btrfs_lookup_first_block_group(info
, last
);
8820 while (block_group
) {
8821 spin_lock(&block_group
->lock
);
8822 if (block_group
->iref
)
8824 spin_unlock(&block_group
->lock
);
8825 block_group
= next_block_group(info
->tree_root
,
8835 inode
= block_group
->inode
;
8836 block_group
->iref
= 0;
8837 block_group
->inode
= NULL
;
8838 spin_unlock(&block_group
->lock
);
8840 last
= block_group
->key
.objectid
+ block_group
->key
.offset
;
8841 btrfs_put_block_group(block_group
);
8845 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
8847 struct btrfs_block_group_cache
*block_group
;
8848 struct btrfs_space_info
*space_info
;
8849 struct btrfs_caching_control
*caching_ctl
;
8852 down_write(&info
->commit_root_sem
);
8853 while (!list_empty(&info
->caching_block_groups
)) {
8854 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
8855 struct btrfs_caching_control
, list
);
8856 list_del(&caching_ctl
->list
);
8857 put_caching_control(caching_ctl
);
8859 up_write(&info
->commit_root_sem
);
8861 spin_lock(&info
->unused_bgs_lock
);
8862 while (!list_empty(&info
->unused_bgs
)) {
8863 block_group
= list_first_entry(&info
->unused_bgs
,
8864 struct btrfs_block_group_cache
,
8866 list_del_init(&block_group
->bg_list
);
8867 btrfs_put_block_group(block_group
);
8869 spin_unlock(&info
->unused_bgs_lock
);
8871 spin_lock(&info
->block_group_cache_lock
);
8872 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
8873 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
8875 rb_erase(&block_group
->cache_node
,
8876 &info
->block_group_cache_tree
);
8877 spin_unlock(&info
->block_group_cache_lock
);
8879 down_write(&block_group
->space_info
->groups_sem
);
8880 list_del(&block_group
->list
);
8881 up_write(&block_group
->space_info
->groups_sem
);
8883 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
8884 wait_block_group_cache_done(block_group
);
8887 * We haven't cached this block group, which means we could
8888 * possibly have excluded extents on this block group.
8890 if (block_group
->cached
== BTRFS_CACHE_NO
||
8891 block_group
->cached
== BTRFS_CACHE_ERROR
)
8892 free_excluded_extents(info
->extent_root
, block_group
);
8894 btrfs_remove_free_space_cache(block_group
);
8895 btrfs_put_block_group(block_group
);
8897 spin_lock(&info
->block_group_cache_lock
);
8899 spin_unlock(&info
->block_group_cache_lock
);
8901 /* now that all the block groups are freed, go through and
8902 * free all the space_info structs. This is only called during
8903 * the final stages of unmount, and so we know nobody is
8904 * using them. We call synchronize_rcu() once before we start,
8905 * just to be on the safe side.
8909 release_global_block_rsv(info
);
8911 while (!list_empty(&info
->space_info
)) {
8914 space_info
= list_entry(info
->space_info
.next
,
8915 struct btrfs_space_info
,
8917 if (btrfs_test_opt(info
->tree_root
, ENOSPC_DEBUG
)) {
8918 if (WARN_ON(space_info
->bytes_pinned
> 0 ||
8919 space_info
->bytes_reserved
> 0 ||
8920 space_info
->bytes_may_use
> 0)) {
8921 dump_space_info(space_info
, 0, 0);
8924 list_del(&space_info
->list
);
8925 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
8926 struct kobject
*kobj
;
8927 kobj
= space_info
->block_group_kobjs
[i
];
8928 space_info
->block_group_kobjs
[i
] = NULL
;
8934 kobject_del(&space_info
->kobj
);
8935 kobject_put(&space_info
->kobj
);
8940 static void __link_block_group(struct btrfs_space_info
*space_info
,
8941 struct btrfs_block_group_cache
*cache
)
8943 int index
= get_block_group_index(cache
);
8946 down_write(&space_info
->groups_sem
);
8947 if (list_empty(&space_info
->block_groups
[index
]))
8949 list_add_tail(&cache
->list
, &space_info
->block_groups
[index
]);
8950 up_write(&space_info
->groups_sem
);
8953 struct raid_kobject
*rkobj
;
8956 rkobj
= kzalloc(sizeof(*rkobj
), GFP_NOFS
);
8959 rkobj
->raid_type
= index
;
8960 kobject_init(&rkobj
->kobj
, &btrfs_raid_ktype
);
8961 ret
= kobject_add(&rkobj
->kobj
, &space_info
->kobj
,
8962 "%s", get_raid_name(index
));
8964 kobject_put(&rkobj
->kobj
);
8967 space_info
->block_group_kobjs
[index
] = &rkobj
->kobj
;
8972 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
8975 static struct btrfs_block_group_cache
*
8976 btrfs_create_block_group_cache(struct btrfs_root
*root
, u64 start
, u64 size
)
8978 struct btrfs_block_group_cache
*cache
;
8980 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
8984 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
8986 if (!cache
->free_space_ctl
) {
8991 cache
->key
.objectid
= start
;
8992 cache
->key
.offset
= size
;
8993 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
8995 cache
->sectorsize
= root
->sectorsize
;
8996 cache
->fs_info
= root
->fs_info
;
8997 cache
->full_stripe_len
= btrfs_full_stripe_len(root
,
8998 &root
->fs_info
->mapping_tree
,
9000 atomic_set(&cache
->count
, 1);
9001 spin_lock_init(&cache
->lock
);
9002 init_rwsem(&cache
->data_rwsem
);
9003 INIT_LIST_HEAD(&cache
->list
);
9004 INIT_LIST_HEAD(&cache
->cluster_list
);
9005 INIT_LIST_HEAD(&cache
->bg_list
);
9006 btrfs_init_free_space_ctl(cache
);
9011 int btrfs_read_block_groups(struct btrfs_root
*root
)
9013 struct btrfs_path
*path
;
9015 struct btrfs_block_group_cache
*cache
;
9016 struct btrfs_fs_info
*info
= root
->fs_info
;
9017 struct btrfs_space_info
*space_info
;
9018 struct btrfs_key key
;
9019 struct btrfs_key found_key
;
9020 struct extent_buffer
*leaf
;
9024 root
= info
->extent_root
;
9027 key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
9028 path
= btrfs_alloc_path();
9033 cache_gen
= btrfs_super_cache_generation(root
->fs_info
->super_copy
);
9034 if (btrfs_test_opt(root
, SPACE_CACHE
) &&
9035 btrfs_super_generation(root
->fs_info
->super_copy
) != cache_gen
)
9037 if (btrfs_test_opt(root
, CLEAR_CACHE
))
9041 ret
= find_first_block_group(root
, path
, &key
);
9047 leaf
= path
->nodes
[0];
9048 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
9050 cache
= btrfs_create_block_group_cache(root
, found_key
.objectid
,
9059 * When we mount with old space cache, we need to
9060 * set BTRFS_DC_CLEAR and set dirty flag.
9062 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9063 * truncate the old free space cache inode and
9065 * b) Setting 'dirty flag' makes sure that we flush
9066 * the new space cache info onto disk.
9068 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
9069 if (btrfs_test_opt(root
, SPACE_CACHE
))
9073 read_extent_buffer(leaf
, &cache
->item
,
9074 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
9075 sizeof(cache
->item
));
9076 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
9078 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
9079 btrfs_release_path(path
);
9082 * We need to exclude the super stripes now so that the space
9083 * info has super bytes accounted for, otherwise we'll think
9084 * we have more space than we actually do.
9086 ret
= exclude_super_stripes(root
, cache
);
9089 * We may have excluded something, so call this just in
9092 free_excluded_extents(root
, cache
);
9093 btrfs_put_block_group(cache
);
9098 * check for two cases, either we are full, and therefore
9099 * don't need to bother with the caching work since we won't
9100 * find any space, or we are empty, and we can just add all
9101 * the space in and be done with it. This saves us _alot_ of
9102 * time, particularly in the full case.
9104 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
9105 cache
->last_byte_to_unpin
= (u64
)-1;
9106 cache
->cached
= BTRFS_CACHE_FINISHED
;
9107 free_excluded_extents(root
, cache
);
9108 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
9109 cache
->last_byte_to_unpin
= (u64
)-1;
9110 cache
->cached
= BTRFS_CACHE_FINISHED
;
9111 add_new_free_space(cache
, root
->fs_info
,
9113 found_key
.objectid
+
9115 free_excluded_extents(root
, cache
);
9118 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
9120 btrfs_remove_free_space_cache(cache
);
9121 btrfs_put_block_group(cache
);
9125 ret
= update_space_info(info
, cache
->flags
, found_key
.offset
,
9126 btrfs_block_group_used(&cache
->item
),
9129 btrfs_remove_free_space_cache(cache
);
9130 spin_lock(&info
->block_group_cache_lock
);
9131 rb_erase(&cache
->cache_node
,
9132 &info
->block_group_cache_tree
);
9133 spin_unlock(&info
->block_group_cache_lock
);
9134 btrfs_put_block_group(cache
);
9138 cache
->space_info
= space_info
;
9139 spin_lock(&cache
->space_info
->lock
);
9140 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
9141 spin_unlock(&cache
->space_info
->lock
);
9143 __link_block_group(space_info
, cache
);
9145 set_avail_alloc_bits(root
->fs_info
, cache
->flags
);
9146 if (btrfs_chunk_readonly(root
, cache
->key
.objectid
)) {
9147 set_block_group_ro(cache
, 1);
9148 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
9149 spin_lock(&info
->unused_bgs_lock
);
9150 /* Should always be true but just in case. */
9151 if (list_empty(&cache
->bg_list
)) {
9152 btrfs_get_block_group(cache
);
9153 list_add_tail(&cache
->bg_list
,
9156 spin_unlock(&info
->unused_bgs_lock
);
9160 list_for_each_entry_rcu(space_info
, &root
->fs_info
->space_info
, list
) {
9161 if (!(get_alloc_profile(root
, space_info
->flags
) &
9162 (BTRFS_BLOCK_GROUP_RAID10
|
9163 BTRFS_BLOCK_GROUP_RAID1
|
9164 BTRFS_BLOCK_GROUP_RAID5
|
9165 BTRFS_BLOCK_GROUP_RAID6
|
9166 BTRFS_BLOCK_GROUP_DUP
)))
9169 * avoid allocating from un-mirrored block group if there are
9170 * mirrored block groups.
9172 list_for_each_entry(cache
,
9173 &space_info
->block_groups
[BTRFS_RAID_RAID0
],
9175 set_block_group_ro(cache
, 1);
9176 list_for_each_entry(cache
,
9177 &space_info
->block_groups
[BTRFS_RAID_SINGLE
],
9179 set_block_group_ro(cache
, 1);
9182 init_global_block_rsv(info
);
9185 btrfs_free_path(path
);
9189 void btrfs_create_pending_block_groups(struct btrfs_trans_handle
*trans
,
9190 struct btrfs_root
*root
)
9192 struct btrfs_block_group_cache
*block_group
, *tmp
;
9193 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
9194 struct btrfs_block_group_item item
;
9195 struct btrfs_key key
;
9198 list_for_each_entry_safe(block_group
, tmp
, &trans
->new_bgs
, bg_list
) {
9199 list_del_init(&block_group
->bg_list
);
9203 spin_lock(&block_group
->lock
);
9204 memcpy(&item
, &block_group
->item
, sizeof(item
));
9205 memcpy(&key
, &block_group
->key
, sizeof(key
));
9206 spin_unlock(&block_group
->lock
);
9208 ret
= btrfs_insert_item(trans
, extent_root
, &key
, &item
,
9211 btrfs_abort_transaction(trans
, extent_root
, ret
);
9212 ret
= btrfs_finish_chunk_alloc(trans
, extent_root
,
9213 key
.objectid
, key
.offset
);
9215 btrfs_abort_transaction(trans
, extent_root
, ret
);
9219 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
9220 struct btrfs_root
*root
, u64 bytes_used
,
9221 u64 type
, u64 chunk_objectid
, u64 chunk_offset
,
9225 struct btrfs_root
*extent_root
;
9226 struct btrfs_block_group_cache
*cache
;
9228 extent_root
= root
->fs_info
->extent_root
;
9230 btrfs_set_log_full_commit(root
->fs_info
, trans
);
9232 cache
= btrfs_create_block_group_cache(root
, chunk_offset
, size
);
9236 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
9237 btrfs_set_block_group_chunk_objectid(&cache
->item
, chunk_objectid
);
9238 btrfs_set_block_group_flags(&cache
->item
, type
);
9240 cache
->flags
= type
;
9241 cache
->last_byte_to_unpin
= (u64
)-1;
9242 cache
->cached
= BTRFS_CACHE_FINISHED
;
9243 ret
= exclude_super_stripes(root
, cache
);
9246 * We may have excluded something, so call this just in
9249 free_excluded_extents(root
, cache
);
9250 btrfs_put_block_group(cache
);
9254 add_new_free_space(cache
, root
->fs_info
, chunk_offset
,
9255 chunk_offset
+ size
);
9257 free_excluded_extents(root
, cache
);
9259 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
9261 btrfs_remove_free_space_cache(cache
);
9262 btrfs_put_block_group(cache
);
9266 ret
= update_space_info(root
->fs_info
, cache
->flags
, size
, bytes_used
,
9267 &cache
->space_info
);
9269 btrfs_remove_free_space_cache(cache
);
9270 spin_lock(&root
->fs_info
->block_group_cache_lock
);
9271 rb_erase(&cache
->cache_node
,
9272 &root
->fs_info
->block_group_cache_tree
);
9273 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
9274 btrfs_put_block_group(cache
);
9277 update_global_block_rsv(root
->fs_info
);
9279 spin_lock(&cache
->space_info
->lock
);
9280 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
9281 spin_unlock(&cache
->space_info
->lock
);
9283 __link_block_group(cache
->space_info
, cache
);
9285 list_add_tail(&cache
->bg_list
, &trans
->new_bgs
);
9287 set_avail_alloc_bits(extent_root
->fs_info
, type
);
9292 static void clear_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
9294 u64 extra_flags
= chunk_to_extended(flags
) &
9295 BTRFS_EXTENDED_PROFILE_MASK
;
9297 write_seqlock(&fs_info
->profiles_lock
);
9298 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
9299 fs_info
->avail_data_alloc_bits
&= ~extra_flags
;
9300 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
9301 fs_info
->avail_metadata_alloc_bits
&= ~extra_flags
;
9302 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
9303 fs_info
->avail_system_alloc_bits
&= ~extra_flags
;
9304 write_sequnlock(&fs_info
->profiles_lock
);
9307 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
9308 struct btrfs_root
*root
, u64 group_start
)
9310 struct btrfs_path
*path
;
9311 struct btrfs_block_group_cache
*block_group
;
9312 struct btrfs_free_cluster
*cluster
;
9313 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
9314 struct btrfs_key key
;
9315 struct inode
*inode
;
9316 struct kobject
*kobj
= NULL
;
9321 root
= root
->fs_info
->extent_root
;
9323 block_group
= btrfs_lookup_block_group(root
->fs_info
, group_start
);
9324 BUG_ON(!block_group
);
9325 BUG_ON(!block_group
->ro
);
9328 * Free the reserved super bytes from this block group before
9331 free_excluded_extents(root
, block_group
);
9333 memcpy(&key
, &block_group
->key
, sizeof(key
));
9334 index
= get_block_group_index(block_group
);
9335 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
9336 BTRFS_BLOCK_GROUP_RAID1
|
9337 BTRFS_BLOCK_GROUP_RAID10
))
9342 /* make sure this block group isn't part of an allocation cluster */
9343 cluster
= &root
->fs_info
->data_alloc_cluster
;
9344 spin_lock(&cluster
->refill_lock
);
9345 btrfs_return_cluster_to_free_space(block_group
, cluster
);
9346 spin_unlock(&cluster
->refill_lock
);
9349 * make sure this block group isn't part of a metadata
9350 * allocation cluster
9352 cluster
= &root
->fs_info
->meta_alloc_cluster
;
9353 spin_lock(&cluster
->refill_lock
);
9354 btrfs_return_cluster_to_free_space(block_group
, cluster
);
9355 spin_unlock(&cluster
->refill_lock
);
9357 path
= btrfs_alloc_path();
9363 inode
= lookup_free_space_inode(tree_root
, block_group
, path
);
9364 if (!IS_ERR(inode
)) {
9365 ret
= btrfs_orphan_add(trans
, inode
);
9367 btrfs_add_delayed_iput(inode
);
9371 /* One for the block groups ref */
9372 spin_lock(&block_group
->lock
);
9373 if (block_group
->iref
) {
9374 block_group
->iref
= 0;
9375 block_group
->inode
= NULL
;
9376 spin_unlock(&block_group
->lock
);
9379 spin_unlock(&block_group
->lock
);
9381 /* One for our lookup ref */
9382 btrfs_add_delayed_iput(inode
);
9385 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
9386 key
.offset
= block_group
->key
.objectid
;
9389 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
9393 btrfs_release_path(path
);
9395 ret
= btrfs_del_item(trans
, tree_root
, path
);
9398 btrfs_release_path(path
);
9401 spin_lock(&root
->fs_info
->block_group_cache_lock
);
9402 rb_erase(&block_group
->cache_node
,
9403 &root
->fs_info
->block_group_cache_tree
);
9405 if (root
->fs_info
->first_logical_byte
== block_group
->key
.objectid
)
9406 root
->fs_info
->first_logical_byte
= (u64
)-1;
9407 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
9409 down_write(&block_group
->space_info
->groups_sem
);
9411 * we must use list_del_init so people can check to see if they
9412 * are still on the list after taking the semaphore
9414 list_del_init(&block_group
->list
);
9415 if (list_empty(&block_group
->space_info
->block_groups
[index
])) {
9416 kobj
= block_group
->space_info
->block_group_kobjs
[index
];
9417 block_group
->space_info
->block_group_kobjs
[index
] = NULL
;
9418 clear_avail_alloc_bits(root
->fs_info
, block_group
->flags
);
9420 up_write(&block_group
->space_info
->groups_sem
);
9426 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
9427 wait_block_group_cache_done(block_group
);
9429 btrfs_remove_free_space_cache(block_group
);
9431 spin_lock(&block_group
->space_info
->lock
);
9432 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
9433 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
9434 block_group
->space_info
->disk_total
-= block_group
->key
.offset
* factor
;
9435 spin_unlock(&block_group
->space_info
->lock
);
9437 memcpy(&key
, &block_group
->key
, sizeof(key
));
9439 btrfs_put_block_group(block_group
);
9440 btrfs_put_block_group(block_group
);
9442 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
9448 ret
= btrfs_del_item(trans
, root
, path
);
9450 btrfs_free_path(path
);
9455 * Process the unused_bgs list and remove any that don't have any allocated
9456 * space inside of them.
9458 void btrfs_delete_unused_bgs(struct btrfs_fs_info
*fs_info
)
9460 struct btrfs_block_group_cache
*block_group
;
9461 struct btrfs_space_info
*space_info
;
9462 struct btrfs_root
*root
= fs_info
->extent_root
;
9463 struct btrfs_trans_handle
*trans
;
9469 spin_lock(&fs_info
->unused_bgs_lock
);
9470 while (!list_empty(&fs_info
->unused_bgs
)) {
9473 block_group
= list_first_entry(&fs_info
->unused_bgs
,
9474 struct btrfs_block_group_cache
,
9476 space_info
= block_group
->space_info
;
9477 list_del_init(&block_group
->bg_list
);
9478 if (ret
|| btrfs_mixed_space_info(space_info
)) {
9479 btrfs_put_block_group(block_group
);
9482 spin_unlock(&fs_info
->unused_bgs_lock
);
9484 /* Don't want to race with allocators so take the groups_sem */
9485 down_write(&space_info
->groups_sem
);
9486 spin_lock(&block_group
->lock
);
9487 if (block_group
->reserved
||
9488 btrfs_block_group_used(&block_group
->item
) ||
9491 * We want to bail if we made new allocations or have
9492 * outstanding allocations in this block group. We do
9493 * the ro check in case balance is currently acting on
9496 spin_unlock(&block_group
->lock
);
9497 up_write(&space_info
->groups_sem
);
9500 spin_unlock(&block_group
->lock
);
9502 /* We don't want to force the issue, only flip if it's ok. */
9503 ret
= set_block_group_ro(block_group
, 0);
9504 up_write(&space_info
->groups_sem
);
9511 * Want to do this before we do anything else so we can recover
9512 * properly if we fail to join the transaction.
9514 trans
= btrfs_join_transaction(root
);
9515 if (IS_ERR(trans
)) {
9516 btrfs_set_block_group_rw(root
, block_group
);
9517 ret
= PTR_ERR(trans
);
9522 * We could have pending pinned extents for this block group,
9523 * just delete them, we don't care about them anymore.
9525 start
= block_group
->key
.objectid
;
9526 end
= start
+ block_group
->key
.offset
- 1;
9527 clear_extent_bits(&fs_info
->freed_extents
[0], start
, end
,
9528 EXTENT_DIRTY
, GFP_NOFS
);
9529 clear_extent_bits(&fs_info
->freed_extents
[1], start
, end
,
9530 EXTENT_DIRTY
, GFP_NOFS
);
9532 /* Reset pinned so btrfs_put_block_group doesn't complain */
9533 block_group
->pinned
= 0;
9536 * Btrfs_remove_chunk will abort the transaction if things go
9539 ret
= btrfs_remove_chunk(trans
, root
,
9540 block_group
->key
.objectid
);
9541 btrfs_end_transaction(trans
, root
);
9543 btrfs_put_block_group(block_group
);
9544 spin_lock(&fs_info
->unused_bgs_lock
);
9546 spin_unlock(&fs_info
->unused_bgs_lock
);
9549 int btrfs_init_space_info(struct btrfs_fs_info
*fs_info
)
9551 struct btrfs_space_info
*space_info
;
9552 struct btrfs_super_block
*disk_super
;
9558 disk_super
= fs_info
->super_copy
;
9559 if (!btrfs_super_root(disk_super
))
9562 features
= btrfs_super_incompat_flags(disk_super
);
9563 if (features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
9566 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
9567 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
9572 flags
= BTRFS_BLOCK_GROUP_METADATA
| BTRFS_BLOCK_GROUP_DATA
;
9573 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
9575 flags
= BTRFS_BLOCK_GROUP_METADATA
;
9576 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
9580 flags
= BTRFS_BLOCK_GROUP_DATA
;
9581 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
9587 int btrfs_error_unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
9589 return unpin_extent_range(root
, start
, end
, false);
9592 int btrfs_error_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
9593 u64 num_bytes
, u64
*actual_bytes
)
9595 return btrfs_discard_extent(root
, bytenr
, num_bytes
, actual_bytes
);
9598 int btrfs_trim_fs(struct btrfs_root
*root
, struct fstrim_range
*range
)
9600 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
9601 struct btrfs_block_group_cache
*cache
= NULL
;
9606 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
9610 * try to trim all FS space, our block group may start from non-zero.
9612 if (range
->len
== total_bytes
)
9613 cache
= btrfs_lookup_first_block_group(fs_info
, range
->start
);
9615 cache
= btrfs_lookup_block_group(fs_info
, range
->start
);
9618 if (cache
->key
.objectid
>= (range
->start
+ range
->len
)) {
9619 btrfs_put_block_group(cache
);
9623 start
= max(range
->start
, cache
->key
.objectid
);
9624 end
= min(range
->start
+ range
->len
,
9625 cache
->key
.objectid
+ cache
->key
.offset
);
9627 if (end
- start
>= range
->minlen
) {
9628 if (!block_group_cache_done(cache
)) {
9629 ret
= cache_block_group(cache
, 0);
9631 btrfs_put_block_group(cache
);
9634 ret
= wait_block_group_cache_done(cache
);
9636 btrfs_put_block_group(cache
);
9640 ret
= btrfs_trim_block_group(cache
,
9646 trimmed
+= group_trimmed
;
9648 btrfs_put_block_group(cache
);
9653 cache
= next_block_group(fs_info
->tree_root
, cache
);
9656 range
->len
= trimmed
;
9661 * btrfs_{start,end}_write() is similar to mnt_{want, drop}_write(),
9662 * they are used to prevent the some tasks writing data into the page cache
9663 * by nocow before the subvolume is snapshoted, but flush the data into
9664 * the disk after the snapshot creation.
9666 void btrfs_end_nocow_write(struct btrfs_root
*root
)
9668 percpu_counter_dec(&root
->subv_writers
->counter
);
9670 * Make sure counter is updated before we wake up
9674 if (waitqueue_active(&root
->subv_writers
->wait
))
9675 wake_up(&root
->subv_writers
->wait
);
9678 int btrfs_start_nocow_write(struct btrfs_root
*root
)
9680 if (atomic_read(&root
->will_be_snapshoted
))
9683 percpu_counter_inc(&root
->subv_writers
->counter
);
9685 * Make sure counter is updated before we check for snapshot creation.
9688 if (atomic_read(&root
->will_be_snapshoted
)) {
9689 btrfs_end_nocow_write(root
);