Bluetooth: vhci: Fix race at creating hci device
[linux/fpc-iii.git] / fs / btrfs / scrub.c
blobefa08311382725c6770f3899033778ba8e3129ac
1 /*
2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
31 #include "raid56.h"
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
37 * any can be found.
39 * Future enhancements:
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
42 * - track and record media errors, throw out bad devices
43 * - add a mode to also read unallocated space
46 struct scrub_block;
47 struct scrub_ctx;
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
55 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
64 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
66 struct scrub_page {
67 struct scrub_block *sblock;
68 struct page *page;
69 struct btrfs_device *dev;
70 u64 flags; /* extent flags */
71 u64 generation;
72 u64 logical;
73 u64 physical;
74 u64 physical_for_dev_replace;
75 atomic_t ref_count;
76 struct {
77 unsigned int mirror_num:8;
78 unsigned int have_csum:1;
79 unsigned int io_error:1;
81 u8 csum[BTRFS_CSUM_SIZE];
84 struct scrub_bio {
85 int index;
86 struct scrub_ctx *sctx;
87 struct btrfs_device *dev;
88 struct bio *bio;
89 int err;
90 u64 logical;
91 u64 physical;
92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
94 #else
95 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
96 #endif
97 int page_count;
98 int next_free;
99 struct btrfs_work work;
102 struct scrub_block {
103 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
104 int page_count;
105 atomic_t outstanding_pages;
106 atomic_t ref_count; /* free mem on transition to zero */
107 struct scrub_ctx *sctx;
108 struct {
109 unsigned int header_error:1;
110 unsigned int checksum_error:1;
111 unsigned int no_io_error_seen:1;
112 unsigned int generation_error:1; /* also sets header_error */
116 struct scrub_wr_ctx {
117 struct scrub_bio *wr_curr_bio;
118 struct btrfs_device *tgtdev;
119 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
120 atomic_t flush_all_writes;
121 struct mutex wr_lock;
124 struct scrub_ctx {
125 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
126 struct btrfs_root *dev_root;
127 int first_free;
128 int curr;
129 atomic_t bios_in_flight;
130 atomic_t workers_pending;
131 spinlock_t list_lock;
132 wait_queue_head_t list_wait;
133 u16 csum_size;
134 struct list_head csum_list;
135 atomic_t cancel_req;
136 int readonly;
137 int pages_per_rd_bio;
138 u32 sectorsize;
139 u32 nodesize;
141 int is_dev_replace;
142 struct scrub_wr_ctx wr_ctx;
145 * statistics
147 struct btrfs_scrub_progress stat;
148 spinlock_t stat_lock;
151 struct scrub_fixup_nodatasum {
152 struct scrub_ctx *sctx;
153 struct btrfs_device *dev;
154 u64 logical;
155 struct btrfs_root *root;
156 struct btrfs_work work;
157 int mirror_num;
160 struct scrub_nocow_inode {
161 u64 inum;
162 u64 offset;
163 u64 root;
164 struct list_head list;
167 struct scrub_copy_nocow_ctx {
168 struct scrub_ctx *sctx;
169 u64 logical;
170 u64 len;
171 int mirror_num;
172 u64 physical_for_dev_replace;
173 struct list_head inodes;
174 struct btrfs_work work;
177 struct scrub_warning {
178 struct btrfs_path *path;
179 u64 extent_item_size;
180 const char *errstr;
181 sector_t sector;
182 u64 logical;
183 struct btrfs_device *dev;
186 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
187 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
188 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
189 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
190 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
191 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
192 struct btrfs_fs_info *fs_info,
193 struct scrub_block *original_sblock,
194 u64 length, u64 logical,
195 struct scrub_block *sblocks_for_recheck);
196 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
197 struct scrub_block *sblock, int is_metadata,
198 int have_csum, u8 *csum, u64 generation,
199 u16 csum_size);
200 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
201 struct scrub_block *sblock,
202 int is_metadata, int have_csum,
203 const u8 *csum, u64 generation,
204 u16 csum_size);
205 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
206 struct scrub_block *sblock_good,
207 int force_write);
208 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
209 struct scrub_block *sblock_good,
210 int page_num, int force_write);
211 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
212 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
213 int page_num);
214 static int scrub_checksum_data(struct scrub_block *sblock);
215 static int scrub_checksum_tree_block(struct scrub_block *sblock);
216 static int scrub_checksum_super(struct scrub_block *sblock);
217 static void scrub_block_get(struct scrub_block *sblock);
218 static void scrub_block_put(struct scrub_block *sblock);
219 static void scrub_page_get(struct scrub_page *spage);
220 static void scrub_page_put(struct scrub_page *spage);
221 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
222 struct scrub_page *spage);
223 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
224 u64 physical, struct btrfs_device *dev, u64 flags,
225 u64 gen, int mirror_num, u8 *csum, int force,
226 u64 physical_for_dev_replace);
227 static void scrub_bio_end_io(struct bio *bio, int err);
228 static void scrub_bio_end_io_worker(struct btrfs_work *work);
229 static void scrub_block_complete(struct scrub_block *sblock);
230 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
231 u64 extent_logical, u64 extent_len,
232 u64 *extent_physical,
233 struct btrfs_device **extent_dev,
234 int *extent_mirror_num);
235 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
236 struct scrub_wr_ctx *wr_ctx,
237 struct btrfs_fs_info *fs_info,
238 struct btrfs_device *dev,
239 int is_dev_replace);
240 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
241 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
242 struct scrub_page *spage);
243 static void scrub_wr_submit(struct scrub_ctx *sctx);
244 static void scrub_wr_bio_end_io(struct bio *bio, int err);
245 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
246 static int write_page_nocow(struct scrub_ctx *sctx,
247 u64 physical_for_dev_replace, struct page *page);
248 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
249 struct scrub_copy_nocow_ctx *ctx);
250 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
251 int mirror_num, u64 physical_for_dev_replace);
252 static void copy_nocow_pages_worker(struct btrfs_work *work);
253 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
254 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
257 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
259 atomic_inc(&sctx->bios_in_flight);
262 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
264 atomic_dec(&sctx->bios_in_flight);
265 wake_up(&sctx->list_wait);
268 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
270 while (atomic_read(&fs_info->scrub_pause_req)) {
271 mutex_unlock(&fs_info->scrub_lock);
272 wait_event(fs_info->scrub_pause_wait,
273 atomic_read(&fs_info->scrub_pause_req) == 0);
274 mutex_lock(&fs_info->scrub_lock);
278 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
280 atomic_inc(&fs_info->scrubs_paused);
281 wake_up(&fs_info->scrub_pause_wait);
283 mutex_lock(&fs_info->scrub_lock);
284 __scrub_blocked_if_needed(fs_info);
285 atomic_dec(&fs_info->scrubs_paused);
286 mutex_unlock(&fs_info->scrub_lock);
288 wake_up(&fs_info->scrub_pause_wait);
292 * used for workers that require transaction commits (i.e., for the
293 * NOCOW case)
295 static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
297 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
300 * increment scrubs_running to prevent cancel requests from
301 * completing as long as a worker is running. we must also
302 * increment scrubs_paused to prevent deadlocking on pause
303 * requests used for transactions commits (as the worker uses a
304 * transaction context). it is safe to regard the worker
305 * as paused for all matters practical. effectively, we only
306 * avoid cancellation requests from completing.
308 mutex_lock(&fs_info->scrub_lock);
309 atomic_inc(&fs_info->scrubs_running);
310 atomic_inc(&fs_info->scrubs_paused);
311 mutex_unlock(&fs_info->scrub_lock);
314 * check if @scrubs_running=@scrubs_paused condition
315 * inside wait_event() is not an atomic operation.
316 * which means we may inc/dec @scrub_running/paused
317 * at any time. Let's wake up @scrub_pause_wait as
318 * much as we can to let commit transaction blocked less.
320 wake_up(&fs_info->scrub_pause_wait);
322 atomic_inc(&sctx->workers_pending);
325 /* used for workers that require transaction commits */
326 static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
328 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
331 * see scrub_pending_trans_workers_inc() why we're pretending
332 * to be paused in the scrub counters
334 mutex_lock(&fs_info->scrub_lock);
335 atomic_dec(&fs_info->scrubs_running);
336 atomic_dec(&fs_info->scrubs_paused);
337 mutex_unlock(&fs_info->scrub_lock);
338 atomic_dec(&sctx->workers_pending);
339 wake_up(&fs_info->scrub_pause_wait);
340 wake_up(&sctx->list_wait);
343 static void scrub_free_csums(struct scrub_ctx *sctx)
345 while (!list_empty(&sctx->csum_list)) {
346 struct btrfs_ordered_sum *sum;
347 sum = list_first_entry(&sctx->csum_list,
348 struct btrfs_ordered_sum, list);
349 list_del(&sum->list);
350 kfree(sum);
354 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
356 int i;
358 if (!sctx)
359 return;
361 scrub_free_wr_ctx(&sctx->wr_ctx);
363 /* this can happen when scrub is cancelled */
364 if (sctx->curr != -1) {
365 struct scrub_bio *sbio = sctx->bios[sctx->curr];
367 for (i = 0; i < sbio->page_count; i++) {
368 WARN_ON(!sbio->pagev[i]->page);
369 scrub_block_put(sbio->pagev[i]->sblock);
371 bio_put(sbio->bio);
374 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
375 struct scrub_bio *sbio = sctx->bios[i];
377 if (!sbio)
378 break;
379 kfree(sbio);
382 scrub_free_csums(sctx);
383 kfree(sctx);
386 static noinline_for_stack
387 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
389 struct scrub_ctx *sctx;
390 int i;
391 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
392 int pages_per_rd_bio;
393 int ret;
396 * the setting of pages_per_rd_bio is correct for scrub but might
397 * be wrong for the dev_replace code where we might read from
398 * different devices in the initial huge bios. However, that
399 * code is able to correctly handle the case when adding a page
400 * to a bio fails.
402 if (dev->bdev)
403 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
404 bio_get_nr_vecs(dev->bdev));
405 else
406 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
407 sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
408 if (!sctx)
409 goto nomem;
410 sctx->is_dev_replace = is_dev_replace;
411 sctx->pages_per_rd_bio = pages_per_rd_bio;
412 sctx->curr = -1;
413 sctx->dev_root = dev->dev_root;
414 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
415 struct scrub_bio *sbio;
417 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
418 if (!sbio)
419 goto nomem;
420 sctx->bios[i] = sbio;
422 sbio->index = i;
423 sbio->sctx = sctx;
424 sbio->page_count = 0;
425 btrfs_init_work(&sbio->work, btrfs_scrub_helper,
426 scrub_bio_end_io_worker, NULL, NULL);
428 if (i != SCRUB_BIOS_PER_SCTX - 1)
429 sctx->bios[i]->next_free = i + 1;
430 else
431 sctx->bios[i]->next_free = -1;
433 sctx->first_free = 0;
434 sctx->nodesize = dev->dev_root->nodesize;
435 sctx->sectorsize = dev->dev_root->sectorsize;
436 atomic_set(&sctx->bios_in_flight, 0);
437 atomic_set(&sctx->workers_pending, 0);
438 atomic_set(&sctx->cancel_req, 0);
439 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
440 INIT_LIST_HEAD(&sctx->csum_list);
442 spin_lock_init(&sctx->list_lock);
443 spin_lock_init(&sctx->stat_lock);
444 init_waitqueue_head(&sctx->list_wait);
446 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
447 fs_info->dev_replace.tgtdev, is_dev_replace);
448 if (ret) {
449 scrub_free_ctx(sctx);
450 return ERR_PTR(ret);
452 return sctx;
454 nomem:
455 scrub_free_ctx(sctx);
456 return ERR_PTR(-ENOMEM);
459 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
460 void *warn_ctx)
462 u64 isize;
463 u32 nlink;
464 int ret;
465 int i;
466 struct extent_buffer *eb;
467 struct btrfs_inode_item *inode_item;
468 struct scrub_warning *swarn = warn_ctx;
469 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
470 struct inode_fs_paths *ipath = NULL;
471 struct btrfs_root *local_root;
472 struct btrfs_key root_key;
474 root_key.objectid = root;
475 root_key.type = BTRFS_ROOT_ITEM_KEY;
476 root_key.offset = (u64)-1;
477 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
478 if (IS_ERR(local_root)) {
479 ret = PTR_ERR(local_root);
480 goto err;
483 ret = inode_item_info(inum, 0, local_root, swarn->path);
484 if (ret) {
485 btrfs_release_path(swarn->path);
486 goto err;
489 eb = swarn->path->nodes[0];
490 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
491 struct btrfs_inode_item);
492 isize = btrfs_inode_size(eb, inode_item);
493 nlink = btrfs_inode_nlink(eb, inode_item);
494 btrfs_release_path(swarn->path);
496 ipath = init_ipath(4096, local_root, swarn->path);
497 if (IS_ERR(ipath)) {
498 ret = PTR_ERR(ipath);
499 ipath = NULL;
500 goto err;
502 ret = paths_from_inode(inum, ipath);
504 if (ret < 0)
505 goto err;
508 * we deliberately ignore the bit ipath might have been too small to
509 * hold all of the paths here
511 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
512 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
513 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
514 "length %llu, links %u (path: %s)\n", swarn->errstr,
515 swarn->logical, rcu_str_deref(swarn->dev->name),
516 (unsigned long long)swarn->sector, root, inum, offset,
517 min(isize - offset, (u64)PAGE_SIZE), nlink,
518 (char *)(unsigned long)ipath->fspath->val[i]);
520 free_ipath(ipath);
521 return 0;
523 err:
524 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
525 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
526 "resolving failed with ret=%d\n", swarn->errstr,
527 swarn->logical, rcu_str_deref(swarn->dev->name),
528 (unsigned long long)swarn->sector, root, inum, offset, ret);
530 free_ipath(ipath);
531 return 0;
534 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
536 struct btrfs_device *dev;
537 struct btrfs_fs_info *fs_info;
538 struct btrfs_path *path;
539 struct btrfs_key found_key;
540 struct extent_buffer *eb;
541 struct btrfs_extent_item *ei;
542 struct scrub_warning swarn;
543 unsigned long ptr = 0;
544 u64 extent_item_pos;
545 u64 flags = 0;
546 u64 ref_root;
547 u32 item_size;
548 u8 ref_level;
549 int ret;
551 WARN_ON(sblock->page_count < 1);
552 dev = sblock->pagev[0]->dev;
553 fs_info = sblock->sctx->dev_root->fs_info;
555 path = btrfs_alloc_path();
556 if (!path)
557 return;
559 swarn.sector = (sblock->pagev[0]->physical) >> 9;
560 swarn.logical = sblock->pagev[0]->logical;
561 swarn.errstr = errstr;
562 swarn.dev = NULL;
564 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
565 &flags);
566 if (ret < 0)
567 goto out;
569 extent_item_pos = swarn.logical - found_key.objectid;
570 swarn.extent_item_size = found_key.offset;
572 eb = path->nodes[0];
573 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
574 item_size = btrfs_item_size_nr(eb, path->slots[0]);
576 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
577 do {
578 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
579 item_size, &ref_root,
580 &ref_level);
581 printk_in_rcu(KERN_WARNING
582 "BTRFS: %s at logical %llu on dev %s, "
583 "sector %llu: metadata %s (level %d) in tree "
584 "%llu\n", errstr, swarn.logical,
585 rcu_str_deref(dev->name),
586 (unsigned long long)swarn.sector,
587 ref_level ? "node" : "leaf",
588 ret < 0 ? -1 : ref_level,
589 ret < 0 ? -1 : ref_root);
590 } while (ret != 1);
591 btrfs_release_path(path);
592 } else {
593 btrfs_release_path(path);
594 swarn.path = path;
595 swarn.dev = dev;
596 iterate_extent_inodes(fs_info, found_key.objectid,
597 extent_item_pos, 1,
598 scrub_print_warning_inode, &swarn);
601 out:
602 btrfs_free_path(path);
605 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
607 struct page *page = NULL;
608 unsigned long index;
609 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
610 int ret;
611 int corrected = 0;
612 struct btrfs_key key;
613 struct inode *inode = NULL;
614 struct btrfs_fs_info *fs_info;
615 u64 end = offset + PAGE_SIZE - 1;
616 struct btrfs_root *local_root;
617 int srcu_index;
619 key.objectid = root;
620 key.type = BTRFS_ROOT_ITEM_KEY;
621 key.offset = (u64)-1;
623 fs_info = fixup->root->fs_info;
624 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
626 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
627 if (IS_ERR(local_root)) {
628 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
629 return PTR_ERR(local_root);
632 key.type = BTRFS_INODE_ITEM_KEY;
633 key.objectid = inum;
634 key.offset = 0;
635 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
636 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
637 if (IS_ERR(inode))
638 return PTR_ERR(inode);
640 index = offset >> PAGE_CACHE_SHIFT;
642 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
643 if (!page) {
644 ret = -ENOMEM;
645 goto out;
648 if (PageUptodate(page)) {
649 if (PageDirty(page)) {
651 * we need to write the data to the defect sector. the
652 * data that was in that sector is not in memory,
653 * because the page was modified. we must not write the
654 * modified page to that sector.
656 * TODO: what could be done here: wait for the delalloc
657 * runner to write out that page (might involve
658 * COW) and see whether the sector is still
659 * referenced afterwards.
661 * For the meantime, we'll treat this error
662 * incorrectable, although there is a chance that a
663 * later scrub will find the bad sector again and that
664 * there's no dirty page in memory, then.
666 ret = -EIO;
667 goto out;
669 ret = repair_io_failure(inode, offset, PAGE_SIZE,
670 fixup->logical, page,
671 offset - page_offset(page),
672 fixup->mirror_num);
673 unlock_page(page);
674 corrected = !ret;
675 } else {
677 * we need to get good data first. the general readpage path
678 * will call repair_io_failure for us, we just have to make
679 * sure we read the bad mirror.
681 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
682 EXTENT_DAMAGED, GFP_NOFS);
683 if (ret) {
684 /* set_extent_bits should give proper error */
685 WARN_ON(ret > 0);
686 if (ret > 0)
687 ret = -EFAULT;
688 goto out;
691 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
692 btrfs_get_extent,
693 fixup->mirror_num);
694 wait_on_page_locked(page);
696 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
697 end, EXTENT_DAMAGED, 0, NULL);
698 if (!corrected)
699 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
700 EXTENT_DAMAGED, GFP_NOFS);
703 out:
704 if (page)
705 put_page(page);
707 iput(inode);
709 if (ret < 0)
710 return ret;
712 if (ret == 0 && corrected) {
714 * we only need to call readpage for one of the inodes belonging
715 * to this extent. so make iterate_extent_inodes stop
717 return 1;
720 return -EIO;
723 static void scrub_fixup_nodatasum(struct btrfs_work *work)
725 int ret;
726 struct scrub_fixup_nodatasum *fixup;
727 struct scrub_ctx *sctx;
728 struct btrfs_trans_handle *trans = NULL;
729 struct btrfs_path *path;
730 int uncorrectable = 0;
732 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
733 sctx = fixup->sctx;
735 path = btrfs_alloc_path();
736 if (!path) {
737 spin_lock(&sctx->stat_lock);
738 ++sctx->stat.malloc_errors;
739 spin_unlock(&sctx->stat_lock);
740 uncorrectable = 1;
741 goto out;
744 trans = btrfs_join_transaction(fixup->root);
745 if (IS_ERR(trans)) {
746 uncorrectable = 1;
747 goto out;
751 * the idea is to trigger a regular read through the standard path. we
752 * read a page from the (failed) logical address by specifying the
753 * corresponding copynum of the failed sector. thus, that readpage is
754 * expected to fail.
755 * that is the point where on-the-fly error correction will kick in
756 * (once it's finished) and rewrite the failed sector if a good copy
757 * can be found.
759 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
760 path, scrub_fixup_readpage,
761 fixup);
762 if (ret < 0) {
763 uncorrectable = 1;
764 goto out;
766 WARN_ON(ret != 1);
768 spin_lock(&sctx->stat_lock);
769 ++sctx->stat.corrected_errors;
770 spin_unlock(&sctx->stat_lock);
772 out:
773 if (trans && !IS_ERR(trans))
774 btrfs_end_transaction(trans, fixup->root);
775 if (uncorrectable) {
776 spin_lock(&sctx->stat_lock);
777 ++sctx->stat.uncorrectable_errors;
778 spin_unlock(&sctx->stat_lock);
779 btrfs_dev_replace_stats_inc(
780 &sctx->dev_root->fs_info->dev_replace.
781 num_uncorrectable_read_errors);
782 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
783 "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
784 fixup->logical, rcu_str_deref(fixup->dev->name));
787 btrfs_free_path(path);
788 kfree(fixup);
790 scrub_pending_trans_workers_dec(sctx);
794 * scrub_handle_errored_block gets called when either verification of the
795 * pages failed or the bio failed to read, e.g. with EIO. In the latter
796 * case, this function handles all pages in the bio, even though only one
797 * may be bad.
798 * The goal of this function is to repair the errored block by using the
799 * contents of one of the mirrors.
801 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
803 struct scrub_ctx *sctx = sblock_to_check->sctx;
804 struct btrfs_device *dev;
805 struct btrfs_fs_info *fs_info;
806 u64 length;
807 u64 logical;
808 u64 generation;
809 unsigned int failed_mirror_index;
810 unsigned int is_metadata;
811 unsigned int have_csum;
812 u8 *csum;
813 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
814 struct scrub_block *sblock_bad;
815 int ret;
816 int mirror_index;
817 int page_num;
818 int success;
819 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
820 DEFAULT_RATELIMIT_BURST);
822 BUG_ON(sblock_to_check->page_count < 1);
823 fs_info = sctx->dev_root->fs_info;
824 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
826 * if we find an error in a super block, we just report it.
827 * They will get written with the next transaction commit
828 * anyway
830 spin_lock(&sctx->stat_lock);
831 ++sctx->stat.super_errors;
832 spin_unlock(&sctx->stat_lock);
833 return 0;
835 length = sblock_to_check->page_count * PAGE_SIZE;
836 logical = sblock_to_check->pagev[0]->logical;
837 generation = sblock_to_check->pagev[0]->generation;
838 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
839 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
840 is_metadata = !(sblock_to_check->pagev[0]->flags &
841 BTRFS_EXTENT_FLAG_DATA);
842 have_csum = sblock_to_check->pagev[0]->have_csum;
843 csum = sblock_to_check->pagev[0]->csum;
844 dev = sblock_to_check->pagev[0]->dev;
846 if (sctx->is_dev_replace && !is_metadata && !have_csum) {
847 sblocks_for_recheck = NULL;
848 goto nodatasum_case;
852 * read all mirrors one after the other. This includes to
853 * re-read the extent or metadata block that failed (that was
854 * the cause that this fixup code is called) another time,
855 * page by page this time in order to know which pages
856 * caused I/O errors and which ones are good (for all mirrors).
857 * It is the goal to handle the situation when more than one
858 * mirror contains I/O errors, but the errors do not
859 * overlap, i.e. the data can be repaired by selecting the
860 * pages from those mirrors without I/O error on the
861 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
862 * would be that mirror #1 has an I/O error on the first page,
863 * the second page is good, and mirror #2 has an I/O error on
864 * the second page, but the first page is good.
865 * Then the first page of the first mirror can be repaired by
866 * taking the first page of the second mirror, and the
867 * second page of the second mirror can be repaired by
868 * copying the contents of the 2nd page of the 1st mirror.
869 * One more note: if the pages of one mirror contain I/O
870 * errors, the checksum cannot be verified. In order to get
871 * the best data for repairing, the first attempt is to find
872 * a mirror without I/O errors and with a validated checksum.
873 * Only if this is not possible, the pages are picked from
874 * mirrors with I/O errors without considering the checksum.
875 * If the latter is the case, at the end, the checksum of the
876 * repaired area is verified in order to correctly maintain
877 * the statistics.
880 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
881 sizeof(*sblocks_for_recheck),
882 GFP_NOFS);
883 if (!sblocks_for_recheck) {
884 spin_lock(&sctx->stat_lock);
885 sctx->stat.malloc_errors++;
886 sctx->stat.read_errors++;
887 sctx->stat.uncorrectable_errors++;
888 spin_unlock(&sctx->stat_lock);
889 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
890 goto out;
893 /* setup the context, map the logical blocks and alloc the pages */
894 ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
895 logical, sblocks_for_recheck);
896 if (ret) {
897 spin_lock(&sctx->stat_lock);
898 sctx->stat.read_errors++;
899 sctx->stat.uncorrectable_errors++;
900 spin_unlock(&sctx->stat_lock);
901 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
902 goto out;
904 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
905 sblock_bad = sblocks_for_recheck + failed_mirror_index;
907 /* build and submit the bios for the failed mirror, check checksums */
908 scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
909 csum, generation, sctx->csum_size);
911 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
912 sblock_bad->no_io_error_seen) {
914 * the error disappeared after reading page by page, or
915 * the area was part of a huge bio and other parts of the
916 * bio caused I/O errors, or the block layer merged several
917 * read requests into one and the error is caused by a
918 * different bio (usually one of the two latter cases is
919 * the cause)
921 spin_lock(&sctx->stat_lock);
922 sctx->stat.unverified_errors++;
923 spin_unlock(&sctx->stat_lock);
925 if (sctx->is_dev_replace)
926 scrub_write_block_to_dev_replace(sblock_bad);
927 goto out;
930 if (!sblock_bad->no_io_error_seen) {
931 spin_lock(&sctx->stat_lock);
932 sctx->stat.read_errors++;
933 spin_unlock(&sctx->stat_lock);
934 if (__ratelimit(&_rs))
935 scrub_print_warning("i/o error", sblock_to_check);
936 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
937 } else if (sblock_bad->checksum_error) {
938 spin_lock(&sctx->stat_lock);
939 sctx->stat.csum_errors++;
940 spin_unlock(&sctx->stat_lock);
941 if (__ratelimit(&_rs))
942 scrub_print_warning("checksum error", sblock_to_check);
943 btrfs_dev_stat_inc_and_print(dev,
944 BTRFS_DEV_STAT_CORRUPTION_ERRS);
945 } else if (sblock_bad->header_error) {
946 spin_lock(&sctx->stat_lock);
947 sctx->stat.verify_errors++;
948 spin_unlock(&sctx->stat_lock);
949 if (__ratelimit(&_rs))
950 scrub_print_warning("checksum/header error",
951 sblock_to_check);
952 if (sblock_bad->generation_error)
953 btrfs_dev_stat_inc_and_print(dev,
954 BTRFS_DEV_STAT_GENERATION_ERRS);
955 else
956 btrfs_dev_stat_inc_and_print(dev,
957 BTRFS_DEV_STAT_CORRUPTION_ERRS);
960 if (sctx->readonly) {
961 ASSERT(!sctx->is_dev_replace);
962 goto out;
965 if (!is_metadata && !have_csum) {
966 struct scrub_fixup_nodatasum *fixup_nodatasum;
968 nodatasum_case:
969 WARN_ON(sctx->is_dev_replace);
972 * !is_metadata and !have_csum, this means that the data
973 * might not be COW'ed, that it might be modified
974 * concurrently. The general strategy to work on the
975 * commit root does not help in the case when COW is not
976 * used.
978 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
979 if (!fixup_nodatasum)
980 goto did_not_correct_error;
981 fixup_nodatasum->sctx = sctx;
982 fixup_nodatasum->dev = dev;
983 fixup_nodatasum->logical = logical;
984 fixup_nodatasum->root = fs_info->extent_root;
985 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
986 scrub_pending_trans_workers_inc(sctx);
987 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
988 scrub_fixup_nodatasum, NULL, NULL);
989 btrfs_queue_work(fs_info->scrub_workers,
990 &fixup_nodatasum->work);
991 goto out;
995 * now build and submit the bios for the other mirrors, check
996 * checksums.
997 * First try to pick the mirror which is completely without I/O
998 * errors and also does not have a checksum error.
999 * If one is found, and if a checksum is present, the full block
1000 * that is known to contain an error is rewritten. Afterwards
1001 * the block is known to be corrected.
1002 * If a mirror is found which is completely correct, and no
1003 * checksum is present, only those pages are rewritten that had
1004 * an I/O error in the block to be repaired, since it cannot be
1005 * determined, which copy of the other pages is better (and it
1006 * could happen otherwise that a correct page would be
1007 * overwritten by a bad one).
1009 for (mirror_index = 0;
1010 mirror_index < BTRFS_MAX_MIRRORS &&
1011 sblocks_for_recheck[mirror_index].page_count > 0;
1012 mirror_index++) {
1013 struct scrub_block *sblock_other;
1015 if (mirror_index == failed_mirror_index)
1016 continue;
1017 sblock_other = sblocks_for_recheck + mirror_index;
1019 /* build and submit the bios, check checksums */
1020 scrub_recheck_block(fs_info, sblock_other, is_metadata,
1021 have_csum, csum, generation,
1022 sctx->csum_size);
1024 if (!sblock_other->header_error &&
1025 !sblock_other->checksum_error &&
1026 sblock_other->no_io_error_seen) {
1027 if (sctx->is_dev_replace) {
1028 scrub_write_block_to_dev_replace(sblock_other);
1029 } else {
1030 int force_write = is_metadata || have_csum;
1032 ret = scrub_repair_block_from_good_copy(
1033 sblock_bad, sblock_other,
1034 force_write);
1036 if (0 == ret)
1037 goto corrected_error;
1042 * for dev_replace, pick good pages and write to the target device.
1044 if (sctx->is_dev_replace) {
1045 success = 1;
1046 for (page_num = 0; page_num < sblock_bad->page_count;
1047 page_num++) {
1048 int sub_success;
1050 sub_success = 0;
1051 for (mirror_index = 0;
1052 mirror_index < BTRFS_MAX_MIRRORS &&
1053 sblocks_for_recheck[mirror_index].page_count > 0;
1054 mirror_index++) {
1055 struct scrub_block *sblock_other =
1056 sblocks_for_recheck + mirror_index;
1057 struct scrub_page *page_other =
1058 sblock_other->pagev[page_num];
1060 if (!page_other->io_error) {
1061 ret = scrub_write_page_to_dev_replace(
1062 sblock_other, page_num);
1063 if (ret == 0) {
1064 /* succeeded for this page */
1065 sub_success = 1;
1066 break;
1067 } else {
1068 btrfs_dev_replace_stats_inc(
1069 &sctx->dev_root->
1070 fs_info->dev_replace.
1071 num_write_errors);
1076 if (!sub_success) {
1078 * did not find a mirror to fetch the page
1079 * from. scrub_write_page_to_dev_replace()
1080 * handles this case (page->io_error), by
1081 * filling the block with zeros before
1082 * submitting the write request
1084 success = 0;
1085 ret = scrub_write_page_to_dev_replace(
1086 sblock_bad, page_num);
1087 if (ret)
1088 btrfs_dev_replace_stats_inc(
1089 &sctx->dev_root->fs_info->
1090 dev_replace.num_write_errors);
1094 goto out;
1098 * for regular scrub, repair those pages that are errored.
1099 * In case of I/O errors in the area that is supposed to be
1100 * repaired, continue by picking good copies of those pages.
1101 * Select the good pages from mirrors to rewrite bad pages from
1102 * the area to fix. Afterwards verify the checksum of the block
1103 * that is supposed to be repaired. This verification step is
1104 * only done for the purpose of statistic counting and for the
1105 * final scrub report, whether errors remain.
1106 * A perfect algorithm could make use of the checksum and try
1107 * all possible combinations of pages from the different mirrors
1108 * until the checksum verification succeeds. For example, when
1109 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1110 * of mirror #2 is readable but the final checksum test fails,
1111 * then the 2nd page of mirror #3 could be tried, whether now
1112 * the final checksum succeedes. But this would be a rare
1113 * exception and is therefore not implemented. At least it is
1114 * avoided that the good copy is overwritten.
1115 * A more useful improvement would be to pick the sectors
1116 * without I/O error based on sector sizes (512 bytes on legacy
1117 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1118 * mirror could be repaired by taking 512 byte of a different
1119 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1120 * area are unreadable.
1123 /* can only fix I/O errors from here on */
1124 if (sblock_bad->no_io_error_seen)
1125 goto did_not_correct_error;
1127 success = 1;
1128 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1129 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1131 if (!page_bad->io_error)
1132 continue;
1134 for (mirror_index = 0;
1135 mirror_index < BTRFS_MAX_MIRRORS &&
1136 sblocks_for_recheck[mirror_index].page_count > 0;
1137 mirror_index++) {
1138 struct scrub_block *sblock_other = sblocks_for_recheck +
1139 mirror_index;
1140 struct scrub_page *page_other = sblock_other->pagev[
1141 page_num];
1143 if (!page_other->io_error) {
1144 ret = scrub_repair_page_from_good_copy(
1145 sblock_bad, sblock_other, page_num, 0);
1146 if (0 == ret) {
1147 page_bad->io_error = 0;
1148 break; /* succeeded for this page */
1153 if (page_bad->io_error) {
1154 /* did not find a mirror to copy the page from */
1155 success = 0;
1159 if (success) {
1160 if (is_metadata || have_csum) {
1162 * need to verify the checksum now that all
1163 * sectors on disk are repaired (the write
1164 * request for data to be repaired is on its way).
1165 * Just be lazy and use scrub_recheck_block()
1166 * which re-reads the data before the checksum
1167 * is verified, but most likely the data comes out
1168 * of the page cache.
1170 scrub_recheck_block(fs_info, sblock_bad,
1171 is_metadata, have_csum, csum,
1172 generation, sctx->csum_size);
1173 if (!sblock_bad->header_error &&
1174 !sblock_bad->checksum_error &&
1175 sblock_bad->no_io_error_seen)
1176 goto corrected_error;
1177 else
1178 goto did_not_correct_error;
1179 } else {
1180 corrected_error:
1181 spin_lock(&sctx->stat_lock);
1182 sctx->stat.corrected_errors++;
1183 spin_unlock(&sctx->stat_lock);
1184 printk_ratelimited_in_rcu(KERN_ERR
1185 "BTRFS: fixed up error at logical %llu on dev %s\n",
1186 logical, rcu_str_deref(dev->name));
1188 } else {
1189 did_not_correct_error:
1190 spin_lock(&sctx->stat_lock);
1191 sctx->stat.uncorrectable_errors++;
1192 spin_unlock(&sctx->stat_lock);
1193 printk_ratelimited_in_rcu(KERN_ERR
1194 "BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1195 logical, rcu_str_deref(dev->name));
1198 out:
1199 if (sblocks_for_recheck) {
1200 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1201 mirror_index++) {
1202 struct scrub_block *sblock = sblocks_for_recheck +
1203 mirror_index;
1204 int page_index;
1206 for (page_index = 0; page_index < sblock->page_count;
1207 page_index++) {
1208 sblock->pagev[page_index]->sblock = NULL;
1209 scrub_page_put(sblock->pagev[page_index]);
1212 kfree(sblocks_for_recheck);
1215 return 0;
1218 static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1219 struct btrfs_fs_info *fs_info,
1220 struct scrub_block *original_sblock,
1221 u64 length, u64 logical,
1222 struct scrub_block *sblocks_for_recheck)
1224 int page_index;
1225 int mirror_index;
1226 int ret;
1229 * note: the two members ref_count and outstanding_pages
1230 * are not used (and not set) in the blocks that are used for
1231 * the recheck procedure
1234 page_index = 0;
1235 while (length > 0) {
1236 u64 sublen = min_t(u64, length, PAGE_SIZE);
1237 u64 mapped_length = sublen;
1238 struct btrfs_bio *bbio = NULL;
1241 * with a length of PAGE_SIZE, each returned stripe
1242 * represents one mirror
1244 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1245 &mapped_length, &bbio, 0);
1246 if (ret || !bbio || mapped_length < sublen) {
1247 kfree(bbio);
1248 return -EIO;
1251 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1252 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1253 mirror_index++) {
1254 struct scrub_block *sblock;
1255 struct scrub_page *page;
1257 if (mirror_index >= BTRFS_MAX_MIRRORS)
1258 continue;
1260 sblock = sblocks_for_recheck + mirror_index;
1261 sblock->sctx = sctx;
1262 page = kzalloc(sizeof(*page), GFP_NOFS);
1263 if (!page) {
1264 leave_nomem:
1265 spin_lock(&sctx->stat_lock);
1266 sctx->stat.malloc_errors++;
1267 spin_unlock(&sctx->stat_lock);
1268 kfree(bbio);
1269 return -ENOMEM;
1271 scrub_page_get(page);
1272 sblock->pagev[page_index] = page;
1273 page->logical = logical;
1274 page->physical = bbio->stripes[mirror_index].physical;
1275 BUG_ON(page_index >= original_sblock->page_count);
1276 page->physical_for_dev_replace =
1277 original_sblock->pagev[page_index]->
1278 physical_for_dev_replace;
1279 /* for missing devices, dev->bdev is NULL */
1280 page->dev = bbio->stripes[mirror_index].dev;
1281 page->mirror_num = mirror_index + 1;
1282 sblock->page_count++;
1283 page->page = alloc_page(GFP_NOFS);
1284 if (!page->page)
1285 goto leave_nomem;
1287 kfree(bbio);
1288 length -= sublen;
1289 logical += sublen;
1290 page_index++;
1293 return 0;
1297 * this function will check the on disk data for checksum errors, header
1298 * errors and read I/O errors. If any I/O errors happen, the exact pages
1299 * which are errored are marked as being bad. The goal is to enable scrub
1300 * to take those pages that are not errored from all the mirrors so that
1301 * the pages that are errored in the just handled mirror can be repaired.
1303 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1304 struct scrub_block *sblock, int is_metadata,
1305 int have_csum, u8 *csum, u64 generation,
1306 u16 csum_size)
1308 int page_num;
1310 sblock->no_io_error_seen = 1;
1311 sblock->header_error = 0;
1312 sblock->checksum_error = 0;
1314 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1315 struct bio *bio;
1316 struct scrub_page *page = sblock->pagev[page_num];
1318 if (page->dev->bdev == NULL) {
1319 page->io_error = 1;
1320 sblock->no_io_error_seen = 0;
1321 continue;
1324 WARN_ON(!page->page);
1325 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1326 if (!bio) {
1327 page->io_error = 1;
1328 sblock->no_io_error_seen = 0;
1329 continue;
1331 bio->bi_bdev = page->dev->bdev;
1332 bio->bi_iter.bi_sector = page->physical >> 9;
1334 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1335 if (btrfsic_submit_bio_wait(READ, bio))
1336 sblock->no_io_error_seen = 0;
1338 bio_put(bio);
1341 if (sblock->no_io_error_seen)
1342 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1343 have_csum, csum, generation,
1344 csum_size);
1346 return;
1349 static inline int scrub_check_fsid(u8 fsid[],
1350 struct scrub_page *spage)
1352 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1353 int ret;
1355 ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
1356 return !ret;
1359 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1360 struct scrub_block *sblock,
1361 int is_metadata, int have_csum,
1362 const u8 *csum, u64 generation,
1363 u16 csum_size)
1365 int page_num;
1366 u8 calculated_csum[BTRFS_CSUM_SIZE];
1367 u32 crc = ~(u32)0;
1368 void *mapped_buffer;
1370 WARN_ON(!sblock->pagev[0]->page);
1371 if (is_metadata) {
1372 struct btrfs_header *h;
1374 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1375 h = (struct btrfs_header *)mapped_buffer;
1377 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
1378 !scrub_check_fsid(h->fsid, sblock->pagev[0]) ||
1379 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1380 BTRFS_UUID_SIZE)) {
1381 sblock->header_error = 1;
1382 } else if (generation != btrfs_stack_header_generation(h)) {
1383 sblock->header_error = 1;
1384 sblock->generation_error = 1;
1386 csum = h->csum;
1387 } else {
1388 if (!have_csum)
1389 return;
1391 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1394 for (page_num = 0;;) {
1395 if (page_num == 0 && is_metadata)
1396 crc = btrfs_csum_data(
1397 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1398 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1399 else
1400 crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1402 kunmap_atomic(mapped_buffer);
1403 page_num++;
1404 if (page_num >= sblock->page_count)
1405 break;
1406 WARN_ON(!sblock->pagev[page_num]->page);
1408 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1411 btrfs_csum_final(crc, calculated_csum);
1412 if (memcmp(calculated_csum, csum, csum_size))
1413 sblock->checksum_error = 1;
1416 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1417 struct scrub_block *sblock_good,
1418 int force_write)
1420 int page_num;
1421 int ret = 0;
1423 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1424 int ret_sub;
1426 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1427 sblock_good,
1428 page_num,
1429 force_write);
1430 if (ret_sub)
1431 ret = ret_sub;
1434 return ret;
1437 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1438 struct scrub_block *sblock_good,
1439 int page_num, int force_write)
1441 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1442 struct scrub_page *page_good = sblock_good->pagev[page_num];
1444 BUG_ON(page_bad->page == NULL);
1445 BUG_ON(page_good->page == NULL);
1446 if (force_write || sblock_bad->header_error ||
1447 sblock_bad->checksum_error || page_bad->io_error) {
1448 struct bio *bio;
1449 int ret;
1451 if (!page_bad->dev->bdev) {
1452 printk_ratelimited(KERN_WARNING "BTRFS: "
1453 "scrub_repair_page_from_good_copy(bdev == NULL) "
1454 "is unexpected!\n");
1455 return -EIO;
1458 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1459 if (!bio)
1460 return -EIO;
1461 bio->bi_bdev = page_bad->dev->bdev;
1462 bio->bi_iter.bi_sector = page_bad->physical >> 9;
1464 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1465 if (PAGE_SIZE != ret) {
1466 bio_put(bio);
1467 return -EIO;
1470 if (btrfsic_submit_bio_wait(WRITE, bio)) {
1471 btrfs_dev_stat_inc_and_print(page_bad->dev,
1472 BTRFS_DEV_STAT_WRITE_ERRS);
1473 btrfs_dev_replace_stats_inc(
1474 &sblock_bad->sctx->dev_root->fs_info->
1475 dev_replace.num_write_errors);
1476 bio_put(bio);
1477 return -EIO;
1479 bio_put(bio);
1482 return 0;
1485 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1487 int page_num;
1489 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1490 int ret;
1492 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1493 if (ret)
1494 btrfs_dev_replace_stats_inc(
1495 &sblock->sctx->dev_root->fs_info->dev_replace.
1496 num_write_errors);
1500 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1501 int page_num)
1503 struct scrub_page *spage = sblock->pagev[page_num];
1505 BUG_ON(spage->page == NULL);
1506 if (spage->io_error) {
1507 void *mapped_buffer = kmap_atomic(spage->page);
1509 memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1510 flush_dcache_page(spage->page);
1511 kunmap_atomic(mapped_buffer);
1513 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1516 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1517 struct scrub_page *spage)
1519 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1520 struct scrub_bio *sbio;
1521 int ret;
1523 mutex_lock(&wr_ctx->wr_lock);
1524 again:
1525 if (!wr_ctx->wr_curr_bio) {
1526 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1527 GFP_NOFS);
1528 if (!wr_ctx->wr_curr_bio) {
1529 mutex_unlock(&wr_ctx->wr_lock);
1530 return -ENOMEM;
1532 wr_ctx->wr_curr_bio->sctx = sctx;
1533 wr_ctx->wr_curr_bio->page_count = 0;
1535 sbio = wr_ctx->wr_curr_bio;
1536 if (sbio->page_count == 0) {
1537 struct bio *bio;
1539 sbio->physical = spage->physical_for_dev_replace;
1540 sbio->logical = spage->logical;
1541 sbio->dev = wr_ctx->tgtdev;
1542 bio = sbio->bio;
1543 if (!bio) {
1544 bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1545 if (!bio) {
1546 mutex_unlock(&wr_ctx->wr_lock);
1547 return -ENOMEM;
1549 sbio->bio = bio;
1552 bio->bi_private = sbio;
1553 bio->bi_end_io = scrub_wr_bio_end_io;
1554 bio->bi_bdev = sbio->dev->bdev;
1555 bio->bi_iter.bi_sector = sbio->physical >> 9;
1556 sbio->err = 0;
1557 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1558 spage->physical_for_dev_replace ||
1559 sbio->logical + sbio->page_count * PAGE_SIZE !=
1560 spage->logical) {
1561 scrub_wr_submit(sctx);
1562 goto again;
1565 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1566 if (ret != PAGE_SIZE) {
1567 if (sbio->page_count < 1) {
1568 bio_put(sbio->bio);
1569 sbio->bio = NULL;
1570 mutex_unlock(&wr_ctx->wr_lock);
1571 return -EIO;
1573 scrub_wr_submit(sctx);
1574 goto again;
1577 sbio->pagev[sbio->page_count] = spage;
1578 scrub_page_get(spage);
1579 sbio->page_count++;
1580 if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1581 scrub_wr_submit(sctx);
1582 mutex_unlock(&wr_ctx->wr_lock);
1584 return 0;
1587 static void scrub_wr_submit(struct scrub_ctx *sctx)
1589 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1590 struct scrub_bio *sbio;
1592 if (!wr_ctx->wr_curr_bio)
1593 return;
1595 sbio = wr_ctx->wr_curr_bio;
1596 wr_ctx->wr_curr_bio = NULL;
1597 WARN_ON(!sbio->bio->bi_bdev);
1598 scrub_pending_bio_inc(sctx);
1599 /* process all writes in a single worker thread. Then the block layer
1600 * orders the requests before sending them to the driver which
1601 * doubled the write performance on spinning disks when measured
1602 * with Linux 3.5 */
1603 btrfsic_submit_bio(WRITE, sbio->bio);
1606 static void scrub_wr_bio_end_io(struct bio *bio, int err)
1608 struct scrub_bio *sbio = bio->bi_private;
1609 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1611 sbio->err = err;
1612 sbio->bio = bio;
1614 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1615 scrub_wr_bio_end_io_worker, NULL, NULL);
1616 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1619 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1621 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1622 struct scrub_ctx *sctx = sbio->sctx;
1623 int i;
1625 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1626 if (sbio->err) {
1627 struct btrfs_dev_replace *dev_replace =
1628 &sbio->sctx->dev_root->fs_info->dev_replace;
1630 for (i = 0; i < sbio->page_count; i++) {
1631 struct scrub_page *spage = sbio->pagev[i];
1633 spage->io_error = 1;
1634 btrfs_dev_replace_stats_inc(&dev_replace->
1635 num_write_errors);
1639 for (i = 0; i < sbio->page_count; i++)
1640 scrub_page_put(sbio->pagev[i]);
1642 bio_put(sbio->bio);
1643 kfree(sbio);
1644 scrub_pending_bio_dec(sctx);
1647 static int scrub_checksum(struct scrub_block *sblock)
1649 u64 flags;
1650 int ret;
1652 WARN_ON(sblock->page_count < 1);
1653 flags = sblock->pagev[0]->flags;
1654 ret = 0;
1655 if (flags & BTRFS_EXTENT_FLAG_DATA)
1656 ret = scrub_checksum_data(sblock);
1657 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1658 ret = scrub_checksum_tree_block(sblock);
1659 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1660 (void)scrub_checksum_super(sblock);
1661 else
1662 WARN_ON(1);
1663 if (ret)
1664 scrub_handle_errored_block(sblock);
1666 return ret;
1669 static int scrub_checksum_data(struct scrub_block *sblock)
1671 struct scrub_ctx *sctx = sblock->sctx;
1672 u8 csum[BTRFS_CSUM_SIZE];
1673 u8 *on_disk_csum;
1674 struct page *page;
1675 void *buffer;
1676 u32 crc = ~(u32)0;
1677 int fail = 0;
1678 u64 len;
1679 int index;
1681 BUG_ON(sblock->page_count < 1);
1682 if (!sblock->pagev[0]->have_csum)
1683 return 0;
1685 on_disk_csum = sblock->pagev[0]->csum;
1686 page = sblock->pagev[0]->page;
1687 buffer = kmap_atomic(page);
1689 len = sctx->sectorsize;
1690 index = 0;
1691 for (;;) {
1692 u64 l = min_t(u64, len, PAGE_SIZE);
1694 crc = btrfs_csum_data(buffer, crc, l);
1695 kunmap_atomic(buffer);
1696 len -= l;
1697 if (len == 0)
1698 break;
1699 index++;
1700 BUG_ON(index >= sblock->page_count);
1701 BUG_ON(!sblock->pagev[index]->page);
1702 page = sblock->pagev[index]->page;
1703 buffer = kmap_atomic(page);
1706 btrfs_csum_final(crc, csum);
1707 if (memcmp(csum, on_disk_csum, sctx->csum_size))
1708 fail = 1;
1710 return fail;
1713 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1715 struct scrub_ctx *sctx = sblock->sctx;
1716 struct btrfs_header *h;
1717 struct btrfs_root *root = sctx->dev_root;
1718 struct btrfs_fs_info *fs_info = root->fs_info;
1719 u8 calculated_csum[BTRFS_CSUM_SIZE];
1720 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1721 struct page *page;
1722 void *mapped_buffer;
1723 u64 mapped_size;
1724 void *p;
1725 u32 crc = ~(u32)0;
1726 int fail = 0;
1727 int crc_fail = 0;
1728 u64 len;
1729 int index;
1731 BUG_ON(sblock->page_count < 1);
1732 page = sblock->pagev[0]->page;
1733 mapped_buffer = kmap_atomic(page);
1734 h = (struct btrfs_header *)mapped_buffer;
1735 memcpy(on_disk_csum, h->csum, sctx->csum_size);
1738 * we don't use the getter functions here, as we
1739 * a) don't have an extent buffer and
1740 * b) the page is already kmapped
1743 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1744 ++fail;
1746 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
1747 ++fail;
1749 if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1750 ++fail;
1752 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1753 BTRFS_UUID_SIZE))
1754 ++fail;
1756 len = sctx->nodesize - BTRFS_CSUM_SIZE;
1757 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1758 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1759 index = 0;
1760 for (;;) {
1761 u64 l = min_t(u64, len, mapped_size);
1763 crc = btrfs_csum_data(p, crc, l);
1764 kunmap_atomic(mapped_buffer);
1765 len -= l;
1766 if (len == 0)
1767 break;
1768 index++;
1769 BUG_ON(index >= sblock->page_count);
1770 BUG_ON(!sblock->pagev[index]->page);
1771 page = sblock->pagev[index]->page;
1772 mapped_buffer = kmap_atomic(page);
1773 mapped_size = PAGE_SIZE;
1774 p = mapped_buffer;
1777 btrfs_csum_final(crc, calculated_csum);
1778 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1779 ++crc_fail;
1781 return fail || crc_fail;
1784 static int scrub_checksum_super(struct scrub_block *sblock)
1786 struct btrfs_super_block *s;
1787 struct scrub_ctx *sctx = sblock->sctx;
1788 u8 calculated_csum[BTRFS_CSUM_SIZE];
1789 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1790 struct page *page;
1791 void *mapped_buffer;
1792 u64 mapped_size;
1793 void *p;
1794 u32 crc = ~(u32)0;
1795 int fail_gen = 0;
1796 int fail_cor = 0;
1797 u64 len;
1798 int index;
1800 BUG_ON(sblock->page_count < 1);
1801 page = sblock->pagev[0]->page;
1802 mapped_buffer = kmap_atomic(page);
1803 s = (struct btrfs_super_block *)mapped_buffer;
1804 memcpy(on_disk_csum, s->csum, sctx->csum_size);
1806 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1807 ++fail_cor;
1809 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1810 ++fail_gen;
1812 if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1813 ++fail_cor;
1815 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1816 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1817 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1818 index = 0;
1819 for (;;) {
1820 u64 l = min_t(u64, len, mapped_size);
1822 crc = btrfs_csum_data(p, crc, l);
1823 kunmap_atomic(mapped_buffer);
1824 len -= l;
1825 if (len == 0)
1826 break;
1827 index++;
1828 BUG_ON(index >= sblock->page_count);
1829 BUG_ON(!sblock->pagev[index]->page);
1830 page = sblock->pagev[index]->page;
1831 mapped_buffer = kmap_atomic(page);
1832 mapped_size = PAGE_SIZE;
1833 p = mapped_buffer;
1836 btrfs_csum_final(crc, calculated_csum);
1837 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1838 ++fail_cor;
1840 if (fail_cor + fail_gen) {
1842 * if we find an error in a super block, we just report it.
1843 * They will get written with the next transaction commit
1844 * anyway
1846 spin_lock(&sctx->stat_lock);
1847 ++sctx->stat.super_errors;
1848 spin_unlock(&sctx->stat_lock);
1849 if (fail_cor)
1850 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1851 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1852 else
1853 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1854 BTRFS_DEV_STAT_GENERATION_ERRS);
1857 return fail_cor + fail_gen;
1860 static void scrub_block_get(struct scrub_block *sblock)
1862 atomic_inc(&sblock->ref_count);
1865 static void scrub_block_put(struct scrub_block *sblock)
1867 if (atomic_dec_and_test(&sblock->ref_count)) {
1868 int i;
1870 for (i = 0; i < sblock->page_count; i++)
1871 scrub_page_put(sblock->pagev[i]);
1872 kfree(sblock);
1876 static void scrub_page_get(struct scrub_page *spage)
1878 atomic_inc(&spage->ref_count);
1881 static void scrub_page_put(struct scrub_page *spage)
1883 if (atomic_dec_and_test(&spage->ref_count)) {
1884 if (spage->page)
1885 __free_page(spage->page);
1886 kfree(spage);
1890 static void scrub_submit(struct scrub_ctx *sctx)
1892 struct scrub_bio *sbio;
1894 if (sctx->curr == -1)
1895 return;
1897 sbio = sctx->bios[sctx->curr];
1898 sctx->curr = -1;
1899 scrub_pending_bio_inc(sctx);
1901 if (!sbio->bio->bi_bdev) {
1903 * this case should not happen. If btrfs_map_block() is
1904 * wrong, it could happen for dev-replace operations on
1905 * missing devices when no mirrors are available, but in
1906 * this case it should already fail the mount.
1907 * This case is handled correctly (but _very_ slowly).
1909 printk_ratelimited(KERN_WARNING
1910 "BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
1911 bio_endio(sbio->bio, -EIO);
1912 } else {
1913 btrfsic_submit_bio(READ, sbio->bio);
1917 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1918 struct scrub_page *spage)
1920 struct scrub_block *sblock = spage->sblock;
1921 struct scrub_bio *sbio;
1922 int ret;
1924 again:
1926 * grab a fresh bio or wait for one to become available
1928 while (sctx->curr == -1) {
1929 spin_lock(&sctx->list_lock);
1930 sctx->curr = sctx->first_free;
1931 if (sctx->curr != -1) {
1932 sctx->first_free = sctx->bios[sctx->curr]->next_free;
1933 sctx->bios[sctx->curr]->next_free = -1;
1934 sctx->bios[sctx->curr]->page_count = 0;
1935 spin_unlock(&sctx->list_lock);
1936 } else {
1937 spin_unlock(&sctx->list_lock);
1938 wait_event(sctx->list_wait, sctx->first_free != -1);
1941 sbio = sctx->bios[sctx->curr];
1942 if (sbio->page_count == 0) {
1943 struct bio *bio;
1945 sbio->physical = spage->physical;
1946 sbio->logical = spage->logical;
1947 sbio->dev = spage->dev;
1948 bio = sbio->bio;
1949 if (!bio) {
1950 bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1951 if (!bio)
1952 return -ENOMEM;
1953 sbio->bio = bio;
1956 bio->bi_private = sbio;
1957 bio->bi_end_io = scrub_bio_end_io;
1958 bio->bi_bdev = sbio->dev->bdev;
1959 bio->bi_iter.bi_sector = sbio->physical >> 9;
1960 sbio->err = 0;
1961 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1962 spage->physical ||
1963 sbio->logical + sbio->page_count * PAGE_SIZE !=
1964 spage->logical ||
1965 sbio->dev != spage->dev) {
1966 scrub_submit(sctx);
1967 goto again;
1970 sbio->pagev[sbio->page_count] = spage;
1971 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1972 if (ret != PAGE_SIZE) {
1973 if (sbio->page_count < 1) {
1974 bio_put(sbio->bio);
1975 sbio->bio = NULL;
1976 return -EIO;
1978 scrub_submit(sctx);
1979 goto again;
1982 scrub_block_get(sblock); /* one for the page added to the bio */
1983 atomic_inc(&sblock->outstanding_pages);
1984 sbio->page_count++;
1985 if (sbio->page_count == sctx->pages_per_rd_bio)
1986 scrub_submit(sctx);
1988 return 0;
1991 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1992 u64 physical, struct btrfs_device *dev, u64 flags,
1993 u64 gen, int mirror_num, u8 *csum, int force,
1994 u64 physical_for_dev_replace)
1996 struct scrub_block *sblock;
1997 int index;
1999 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2000 if (!sblock) {
2001 spin_lock(&sctx->stat_lock);
2002 sctx->stat.malloc_errors++;
2003 spin_unlock(&sctx->stat_lock);
2004 return -ENOMEM;
2007 /* one ref inside this function, plus one for each page added to
2008 * a bio later on */
2009 atomic_set(&sblock->ref_count, 1);
2010 sblock->sctx = sctx;
2011 sblock->no_io_error_seen = 1;
2013 for (index = 0; len > 0; index++) {
2014 struct scrub_page *spage;
2015 u64 l = min_t(u64, len, PAGE_SIZE);
2017 spage = kzalloc(sizeof(*spage), GFP_NOFS);
2018 if (!spage) {
2019 leave_nomem:
2020 spin_lock(&sctx->stat_lock);
2021 sctx->stat.malloc_errors++;
2022 spin_unlock(&sctx->stat_lock);
2023 scrub_block_put(sblock);
2024 return -ENOMEM;
2026 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2027 scrub_page_get(spage);
2028 sblock->pagev[index] = spage;
2029 spage->sblock = sblock;
2030 spage->dev = dev;
2031 spage->flags = flags;
2032 spage->generation = gen;
2033 spage->logical = logical;
2034 spage->physical = physical;
2035 spage->physical_for_dev_replace = physical_for_dev_replace;
2036 spage->mirror_num = mirror_num;
2037 if (csum) {
2038 spage->have_csum = 1;
2039 memcpy(spage->csum, csum, sctx->csum_size);
2040 } else {
2041 spage->have_csum = 0;
2043 sblock->page_count++;
2044 spage->page = alloc_page(GFP_NOFS);
2045 if (!spage->page)
2046 goto leave_nomem;
2047 len -= l;
2048 logical += l;
2049 physical += l;
2050 physical_for_dev_replace += l;
2053 WARN_ON(sblock->page_count == 0);
2054 for (index = 0; index < sblock->page_count; index++) {
2055 struct scrub_page *spage = sblock->pagev[index];
2056 int ret;
2058 ret = scrub_add_page_to_rd_bio(sctx, spage);
2059 if (ret) {
2060 scrub_block_put(sblock);
2061 return ret;
2065 if (force)
2066 scrub_submit(sctx);
2068 /* last one frees, either here or in bio completion for last page */
2069 scrub_block_put(sblock);
2070 return 0;
2073 static void scrub_bio_end_io(struct bio *bio, int err)
2075 struct scrub_bio *sbio = bio->bi_private;
2076 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2078 sbio->err = err;
2079 sbio->bio = bio;
2081 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2084 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2086 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2087 struct scrub_ctx *sctx = sbio->sctx;
2088 int i;
2090 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2091 if (sbio->err) {
2092 for (i = 0; i < sbio->page_count; i++) {
2093 struct scrub_page *spage = sbio->pagev[i];
2095 spage->io_error = 1;
2096 spage->sblock->no_io_error_seen = 0;
2100 /* now complete the scrub_block items that have all pages completed */
2101 for (i = 0; i < sbio->page_count; i++) {
2102 struct scrub_page *spage = sbio->pagev[i];
2103 struct scrub_block *sblock = spage->sblock;
2105 if (atomic_dec_and_test(&sblock->outstanding_pages))
2106 scrub_block_complete(sblock);
2107 scrub_block_put(sblock);
2110 bio_put(sbio->bio);
2111 sbio->bio = NULL;
2112 spin_lock(&sctx->list_lock);
2113 sbio->next_free = sctx->first_free;
2114 sctx->first_free = sbio->index;
2115 spin_unlock(&sctx->list_lock);
2117 if (sctx->is_dev_replace &&
2118 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2119 mutex_lock(&sctx->wr_ctx.wr_lock);
2120 scrub_wr_submit(sctx);
2121 mutex_unlock(&sctx->wr_ctx.wr_lock);
2124 scrub_pending_bio_dec(sctx);
2127 static void scrub_block_complete(struct scrub_block *sblock)
2129 if (!sblock->no_io_error_seen) {
2130 scrub_handle_errored_block(sblock);
2131 } else {
2133 * if has checksum error, write via repair mechanism in
2134 * dev replace case, otherwise write here in dev replace
2135 * case.
2137 if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2138 scrub_write_block_to_dev_replace(sblock);
2142 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2143 u8 *csum)
2145 struct btrfs_ordered_sum *sum = NULL;
2146 unsigned long index;
2147 unsigned long num_sectors;
2149 while (!list_empty(&sctx->csum_list)) {
2150 sum = list_first_entry(&sctx->csum_list,
2151 struct btrfs_ordered_sum, list);
2152 if (sum->bytenr > logical)
2153 return 0;
2154 if (sum->bytenr + sum->len > logical)
2155 break;
2157 ++sctx->stat.csum_discards;
2158 list_del(&sum->list);
2159 kfree(sum);
2160 sum = NULL;
2162 if (!sum)
2163 return 0;
2165 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
2166 num_sectors = sum->len / sctx->sectorsize;
2167 memcpy(csum, sum->sums + index, sctx->csum_size);
2168 if (index == num_sectors - 1) {
2169 list_del(&sum->list);
2170 kfree(sum);
2172 return 1;
2175 /* scrub extent tries to collect up to 64 kB for each bio */
2176 static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2177 u64 physical, struct btrfs_device *dev, u64 flags,
2178 u64 gen, int mirror_num, u64 physical_for_dev_replace)
2180 int ret;
2181 u8 csum[BTRFS_CSUM_SIZE];
2182 u32 blocksize;
2184 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2185 blocksize = sctx->sectorsize;
2186 spin_lock(&sctx->stat_lock);
2187 sctx->stat.data_extents_scrubbed++;
2188 sctx->stat.data_bytes_scrubbed += len;
2189 spin_unlock(&sctx->stat_lock);
2190 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2191 blocksize = sctx->nodesize;
2192 spin_lock(&sctx->stat_lock);
2193 sctx->stat.tree_extents_scrubbed++;
2194 sctx->stat.tree_bytes_scrubbed += len;
2195 spin_unlock(&sctx->stat_lock);
2196 } else {
2197 blocksize = sctx->sectorsize;
2198 WARN_ON(1);
2201 while (len) {
2202 u64 l = min_t(u64, len, blocksize);
2203 int have_csum = 0;
2205 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2206 /* push csums to sbio */
2207 have_csum = scrub_find_csum(sctx, logical, l, csum);
2208 if (have_csum == 0)
2209 ++sctx->stat.no_csum;
2210 if (sctx->is_dev_replace && !have_csum) {
2211 ret = copy_nocow_pages(sctx, logical, l,
2212 mirror_num,
2213 physical_for_dev_replace);
2214 goto behind_scrub_pages;
2217 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2218 mirror_num, have_csum ? csum : NULL, 0,
2219 physical_for_dev_replace);
2220 behind_scrub_pages:
2221 if (ret)
2222 return ret;
2223 len -= l;
2224 logical += l;
2225 physical += l;
2226 physical_for_dev_replace += l;
2228 return 0;
2232 * Given a physical address, this will calculate it's
2233 * logical offset. if this is a parity stripe, it will return
2234 * the most left data stripe's logical offset.
2236 * return 0 if it is a data stripe, 1 means parity stripe.
2238 static int get_raid56_logic_offset(u64 physical, int num,
2239 struct map_lookup *map, u64 *offset)
2241 int i;
2242 int j = 0;
2243 u64 stripe_nr;
2244 u64 last_offset;
2245 int stripe_index;
2246 int rot;
2248 last_offset = (physical - map->stripes[num].physical) *
2249 nr_data_stripes(map);
2250 *offset = last_offset;
2251 for (i = 0; i < nr_data_stripes(map); i++) {
2252 *offset = last_offset + i * map->stripe_len;
2254 stripe_nr = *offset;
2255 do_div(stripe_nr, map->stripe_len);
2256 do_div(stripe_nr, nr_data_stripes(map));
2258 /* Work out the disk rotation on this stripe-set */
2259 rot = do_div(stripe_nr, map->num_stripes);
2260 /* calculate which stripe this data locates */
2261 rot += i;
2262 stripe_index = rot % map->num_stripes;
2263 if (stripe_index == num)
2264 return 0;
2265 if (stripe_index < num)
2266 j++;
2268 *offset = last_offset + j * map->stripe_len;
2269 return 1;
2272 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2273 struct map_lookup *map,
2274 struct btrfs_device *scrub_dev,
2275 int num, u64 base, u64 length,
2276 int is_dev_replace)
2278 struct btrfs_path *path;
2279 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2280 struct btrfs_root *root = fs_info->extent_root;
2281 struct btrfs_root *csum_root = fs_info->csum_root;
2282 struct btrfs_extent_item *extent;
2283 struct blk_plug plug;
2284 u64 flags;
2285 int ret;
2286 int slot;
2287 u64 nstripes;
2288 struct extent_buffer *l;
2289 struct btrfs_key key;
2290 u64 physical;
2291 u64 logical;
2292 u64 logic_end;
2293 u64 physical_end;
2294 u64 generation;
2295 int mirror_num;
2296 struct reada_control *reada1;
2297 struct reada_control *reada2;
2298 struct btrfs_key key_start;
2299 struct btrfs_key key_end;
2300 u64 increment = map->stripe_len;
2301 u64 offset;
2302 u64 extent_logical;
2303 u64 extent_physical;
2304 u64 extent_len;
2305 struct btrfs_device *extent_dev;
2306 int extent_mirror_num;
2307 int stop_loop = 0;
2309 nstripes = length;
2310 physical = map->stripes[num].physical;
2311 offset = 0;
2312 do_div(nstripes, map->stripe_len);
2313 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2314 offset = map->stripe_len * num;
2315 increment = map->stripe_len * map->num_stripes;
2316 mirror_num = 1;
2317 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2318 int factor = map->num_stripes / map->sub_stripes;
2319 offset = map->stripe_len * (num / map->sub_stripes);
2320 increment = map->stripe_len * factor;
2321 mirror_num = num % map->sub_stripes + 1;
2322 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2323 increment = map->stripe_len;
2324 mirror_num = num % map->num_stripes + 1;
2325 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2326 increment = map->stripe_len;
2327 mirror_num = num % map->num_stripes + 1;
2328 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2329 BTRFS_BLOCK_GROUP_RAID6)) {
2330 get_raid56_logic_offset(physical, num, map, &offset);
2331 increment = map->stripe_len * nr_data_stripes(map);
2332 mirror_num = 1;
2333 } else {
2334 increment = map->stripe_len;
2335 mirror_num = 1;
2338 path = btrfs_alloc_path();
2339 if (!path)
2340 return -ENOMEM;
2343 * work on commit root. The related disk blocks are static as
2344 * long as COW is applied. This means, it is save to rewrite
2345 * them to repair disk errors without any race conditions
2347 path->search_commit_root = 1;
2348 path->skip_locking = 1;
2351 * trigger the readahead for extent tree csum tree and wait for
2352 * completion. During readahead, the scrub is officially paused
2353 * to not hold off transaction commits
2355 logical = base + offset;
2356 physical_end = physical + nstripes * map->stripe_len;
2357 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2358 BTRFS_BLOCK_GROUP_RAID6)) {
2359 get_raid56_logic_offset(physical_end, num,
2360 map, &logic_end);
2361 logic_end += base;
2362 } else {
2363 logic_end = logical + increment * nstripes;
2365 wait_event(sctx->list_wait,
2366 atomic_read(&sctx->bios_in_flight) == 0);
2367 scrub_blocked_if_needed(fs_info);
2369 /* FIXME it might be better to start readahead at commit root */
2370 key_start.objectid = logical;
2371 key_start.type = BTRFS_EXTENT_ITEM_KEY;
2372 key_start.offset = (u64)0;
2373 key_end.objectid = logic_end;
2374 key_end.type = BTRFS_METADATA_ITEM_KEY;
2375 key_end.offset = (u64)-1;
2376 reada1 = btrfs_reada_add(root, &key_start, &key_end);
2378 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2379 key_start.type = BTRFS_EXTENT_CSUM_KEY;
2380 key_start.offset = logical;
2381 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2382 key_end.type = BTRFS_EXTENT_CSUM_KEY;
2383 key_end.offset = logic_end;
2384 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2386 if (!IS_ERR(reada1))
2387 btrfs_reada_wait(reada1);
2388 if (!IS_ERR(reada2))
2389 btrfs_reada_wait(reada2);
2393 * collect all data csums for the stripe to avoid seeking during
2394 * the scrub. This might currently (crc32) end up to be about 1MB
2396 blk_start_plug(&plug);
2399 * now find all extents for each stripe and scrub them
2401 ret = 0;
2402 while (physical < physical_end) {
2403 /* for raid56, we skip parity stripe */
2404 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2405 BTRFS_BLOCK_GROUP_RAID6)) {
2406 ret = get_raid56_logic_offset(physical, num,
2407 map, &logical);
2408 logical += base;
2409 if (ret)
2410 goto skip;
2413 * canceled?
2415 if (atomic_read(&fs_info->scrub_cancel_req) ||
2416 atomic_read(&sctx->cancel_req)) {
2417 ret = -ECANCELED;
2418 goto out;
2421 * check to see if we have to pause
2423 if (atomic_read(&fs_info->scrub_pause_req)) {
2424 /* push queued extents */
2425 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2426 scrub_submit(sctx);
2427 mutex_lock(&sctx->wr_ctx.wr_lock);
2428 scrub_wr_submit(sctx);
2429 mutex_unlock(&sctx->wr_ctx.wr_lock);
2430 wait_event(sctx->list_wait,
2431 atomic_read(&sctx->bios_in_flight) == 0);
2432 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2433 scrub_blocked_if_needed(fs_info);
2436 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2437 key.type = BTRFS_METADATA_ITEM_KEY;
2438 else
2439 key.type = BTRFS_EXTENT_ITEM_KEY;
2440 key.objectid = logical;
2441 key.offset = (u64)-1;
2443 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2444 if (ret < 0)
2445 goto out;
2447 if (ret > 0) {
2448 ret = btrfs_previous_extent_item(root, path, 0);
2449 if (ret < 0)
2450 goto out;
2451 if (ret > 0) {
2452 /* there's no smaller item, so stick with the
2453 * larger one */
2454 btrfs_release_path(path);
2455 ret = btrfs_search_slot(NULL, root, &key,
2456 path, 0, 0);
2457 if (ret < 0)
2458 goto out;
2462 stop_loop = 0;
2463 while (1) {
2464 u64 bytes;
2466 l = path->nodes[0];
2467 slot = path->slots[0];
2468 if (slot >= btrfs_header_nritems(l)) {
2469 ret = btrfs_next_leaf(root, path);
2470 if (ret == 0)
2471 continue;
2472 if (ret < 0)
2473 goto out;
2475 stop_loop = 1;
2476 break;
2478 btrfs_item_key_to_cpu(l, &key, slot);
2480 if (key.type == BTRFS_METADATA_ITEM_KEY)
2481 bytes = root->nodesize;
2482 else
2483 bytes = key.offset;
2485 if (key.objectid + bytes <= logical)
2486 goto next;
2488 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2489 key.type != BTRFS_METADATA_ITEM_KEY)
2490 goto next;
2492 if (key.objectid >= logical + map->stripe_len) {
2493 /* out of this device extent */
2494 if (key.objectid >= logic_end)
2495 stop_loop = 1;
2496 break;
2499 extent = btrfs_item_ptr(l, slot,
2500 struct btrfs_extent_item);
2501 flags = btrfs_extent_flags(l, extent);
2502 generation = btrfs_extent_generation(l, extent);
2504 if (key.objectid < logical &&
2505 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2506 btrfs_err(fs_info,
2507 "scrub: tree block %llu spanning "
2508 "stripes, ignored. logical=%llu",
2509 key.objectid, logical);
2510 goto next;
2513 again:
2514 extent_logical = key.objectid;
2515 extent_len = bytes;
2518 * trim extent to this stripe
2520 if (extent_logical < logical) {
2521 extent_len -= logical - extent_logical;
2522 extent_logical = logical;
2524 if (extent_logical + extent_len >
2525 logical + map->stripe_len) {
2526 extent_len = logical + map->stripe_len -
2527 extent_logical;
2530 extent_physical = extent_logical - logical + physical;
2531 extent_dev = scrub_dev;
2532 extent_mirror_num = mirror_num;
2533 if (is_dev_replace)
2534 scrub_remap_extent(fs_info, extent_logical,
2535 extent_len, &extent_physical,
2536 &extent_dev,
2537 &extent_mirror_num);
2539 ret = btrfs_lookup_csums_range(csum_root, logical,
2540 logical + map->stripe_len - 1,
2541 &sctx->csum_list, 1);
2542 if (ret)
2543 goto out;
2545 ret = scrub_extent(sctx, extent_logical, extent_len,
2546 extent_physical, extent_dev, flags,
2547 generation, extent_mirror_num,
2548 extent_logical - logical + physical);
2549 if (ret)
2550 goto out;
2552 scrub_free_csums(sctx);
2553 if (extent_logical + extent_len <
2554 key.objectid + bytes) {
2555 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2556 BTRFS_BLOCK_GROUP_RAID6)) {
2558 * loop until we find next data stripe
2559 * or we have finished all stripes.
2561 do {
2562 physical += map->stripe_len;
2563 ret = get_raid56_logic_offset(
2564 physical, num,
2565 map, &logical);
2566 logical += base;
2567 } while (physical < physical_end && ret);
2568 } else {
2569 physical += map->stripe_len;
2570 logical += increment;
2572 if (logical < key.objectid + bytes) {
2573 cond_resched();
2574 goto again;
2577 if (physical >= physical_end) {
2578 stop_loop = 1;
2579 break;
2582 next:
2583 path->slots[0]++;
2585 btrfs_release_path(path);
2586 skip:
2587 logical += increment;
2588 physical += map->stripe_len;
2589 spin_lock(&sctx->stat_lock);
2590 if (stop_loop)
2591 sctx->stat.last_physical = map->stripes[num].physical +
2592 length;
2593 else
2594 sctx->stat.last_physical = physical;
2595 spin_unlock(&sctx->stat_lock);
2596 if (stop_loop)
2597 break;
2599 out:
2600 /* push queued extents */
2601 scrub_submit(sctx);
2602 mutex_lock(&sctx->wr_ctx.wr_lock);
2603 scrub_wr_submit(sctx);
2604 mutex_unlock(&sctx->wr_ctx.wr_lock);
2606 blk_finish_plug(&plug);
2607 btrfs_free_path(path);
2608 return ret < 0 ? ret : 0;
2611 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2612 struct btrfs_device *scrub_dev,
2613 u64 chunk_tree, u64 chunk_objectid,
2614 u64 chunk_offset, u64 length,
2615 u64 dev_offset, int is_dev_replace)
2617 struct btrfs_mapping_tree *map_tree =
2618 &sctx->dev_root->fs_info->mapping_tree;
2619 struct map_lookup *map;
2620 struct extent_map *em;
2621 int i;
2622 int ret = 0;
2624 read_lock(&map_tree->map_tree.lock);
2625 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2626 read_unlock(&map_tree->map_tree.lock);
2628 if (!em)
2629 return -EINVAL;
2631 map = (struct map_lookup *)em->bdev;
2632 if (em->start != chunk_offset)
2633 goto out;
2635 if (em->len < length)
2636 goto out;
2638 for (i = 0; i < map->num_stripes; ++i) {
2639 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2640 map->stripes[i].physical == dev_offset) {
2641 ret = scrub_stripe(sctx, map, scrub_dev, i,
2642 chunk_offset, length,
2643 is_dev_replace);
2644 if (ret)
2645 goto out;
2648 out:
2649 free_extent_map(em);
2651 return ret;
2654 static noinline_for_stack
2655 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2656 struct btrfs_device *scrub_dev, u64 start, u64 end,
2657 int is_dev_replace)
2659 struct btrfs_dev_extent *dev_extent = NULL;
2660 struct btrfs_path *path;
2661 struct btrfs_root *root = sctx->dev_root;
2662 struct btrfs_fs_info *fs_info = root->fs_info;
2663 u64 length;
2664 u64 chunk_tree;
2665 u64 chunk_objectid;
2666 u64 chunk_offset;
2667 int ret;
2668 int slot;
2669 struct extent_buffer *l;
2670 struct btrfs_key key;
2671 struct btrfs_key found_key;
2672 struct btrfs_block_group_cache *cache;
2673 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2675 path = btrfs_alloc_path();
2676 if (!path)
2677 return -ENOMEM;
2679 path->reada = 2;
2680 path->search_commit_root = 1;
2681 path->skip_locking = 1;
2683 key.objectid = scrub_dev->devid;
2684 key.offset = 0ull;
2685 key.type = BTRFS_DEV_EXTENT_KEY;
2687 while (1) {
2688 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2689 if (ret < 0)
2690 break;
2691 if (ret > 0) {
2692 if (path->slots[0] >=
2693 btrfs_header_nritems(path->nodes[0])) {
2694 ret = btrfs_next_leaf(root, path);
2695 if (ret)
2696 break;
2700 l = path->nodes[0];
2701 slot = path->slots[0];
2703 btrfs_item_key_to_cpu(l, &found_key, slot);
2705 if (found_key.objectid != scrub_dev->devid)
2706 break;
2708 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2709 break;
2711 if (found_key.offset >= end)
2712 break;
2714 if (found_key.offset < key.offset)
2715 break;
2717 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2718 length = btrfs_dev_extent_length(l, dev_extent);
2720 if (found_key.offset + length <= start)
2721 goto skip;
2723 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2724 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2725 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2728 * get a reference on the corresponding block group to prevent
2729 * the chunk from going away while we scrub it
2731 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2733 /* some chunks are removed but not committed to disk yet,
2734 * continue scrubbing */
2735 if (!cache)
2736 goto skip;
2738 dev_replace->cursor_right = found_key.offset + length;
2739 dev_replace->cursor_left = found_key.offset;
2740 dev_replace->item_needs_writeback = 1;
2741 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2742 chunk_offset, length, found_key.offset,
2743 is_dev_replace);
2746 * flush, submit all pending read and write bios, afterwards
2747 * wait for them.
2748 * Note that in the dev replace case, a read request causes
2749 * write requests that are submitted in the read completion
2750 * worker. Therefore in the current situation, it is required
2751 * that all write requests are flushed, so that all read and
2752 * write requests are really completed when bios_in_flight
2753 * changes to 0.
2755 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2756 scrub_submit(sctx);
2757 mutex_lock(&sctx->wr_ctx.wr_lock);
2758 scrub_wr_submit(sctx);
2759 mutex_unlock(&sctx->wr_ctx.wr_lock);
2761 wait_event(sctx->list_wait,
2762 atomic_read(&sctx->bios_in_flight) == 0);
2763 atomic_inc(&fs_info->scrubs_paused);
2764 wake_up(&fs_info->scrub_pause_wait);
2767 * must be called before we decrease @scrub_paused.
2768 * make sure we don't block transaction commit while
2769 * we are waiting pending workers finished.
2771 wait_event(sctx->list_wait,
2772 atomic_read(&sctx->workers_pending) == 0);
2773 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2775 mutex_lock(&fs_info->scrub_lock);
2776 __scrub_blocked_if_needed(fs_info);
2777 atomic_dec(&fs_info->scrubs_paused);
2778 mutex_unlock(&fs_info->scrub_lock);
2779 wake_up(&fs_info->scrub_pause_wait);
2781 btrfs_put_block_group(cache);
2782 if (ret)
2783 break;
2784 if (is_dev_replace &&
2785 atomic64_read(&dev_replace->num_write_errors) > 0) {
2786 ret = -EIO;
2787 break;
2789 if (sctx->stat.malloc_errors > 0) {
2790 ret = -ENOMEM;
2791 break;
2794 dev_replace->cursor_left = dev_replace->cursor_right;
2795 dev_replace->item_needs_writeback = 1;
2796 skip:
2797 key.offset = found_key.offset + length;
2798 btrfs_release_path(path);
2801 btrfs_free_path(path);
2804 * ret can still be 1 from search_slot or next_leaf,
2805 * that's not an error
2807 return ret < 0 ? ret : 0;
2810 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2811 struct btrfs_device *scrub_dev)
2813 int i;
2814 u64 bytenr;
2815 u64 gen;
2816 int ret;
2817 struct btrfs_root *root = sctx->dev_root;
2819 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2820 return -EIO;
2822 /* Seed devices of a new filesystem has their own generation. */
2823 if (scrub_dev->fs_devices != root->fs_info->fs_devices)
2824 gen = scrub_dev->generation;
2825 else
2826 gen = root->fs_info->last_trans_committed;
2828 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2829 bytenr = btrfs_sb_offset(i);
2830 if (bytenr + BTRFS_SUPER_INFO_SIZE >
2831 scrub_dev->commit_total_bytes)
2832 break;
2834 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2835 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2836 NULL, 1, bytenr);
2837 if (ret)
2838 return ret;
2840 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2842 return 0;
2846 * get a reference count on fs_info->scrub_workers. start worker if necessary
2848 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2849 int is_dev_replace)
2851 int ret = 0;
2852 int flags = WQ_FREEZABLE | WQ_UNBOUND;
2853 int max_active = fs_info->thread_pool_size;
2855 if (fs_info->scrub_workers_refcnt == 0) {
2856 if (is_dev_replace)
2857 fs_info->scrub_workers =
2858 btrfs_alloc_workqueue("btrfs-scrub", flags,
2859 1, 4);
2860 else
2861 fs_info->scrub_workers =
2862 btrfs_alloc_workqueue("btrfs-scrub", flags,
2863 max_active, 4);
2864 if (!fs_info->scrub_workers) {
2865 ret = -ENOMEM;
2866 goto out;
2868 fs_info->scrub_wr_completion_workers =
2869 btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
2870 max_active, 2);
2871 if (!fs_info->scrub_wr_completion_workers) {
2872 ret = -ENOMEM;
2873 goto out;
2875 fs_info->scrub_nocow_workers =
2876 btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
2877 if (!fs_info->scrub_nocow_workers) {
2878 ret = -ENOMEM;
2879 goto out;
2882 ++fs_info->scrub_workers_refcnt;
2883 out:
2884 return ret;
2887 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2889 if (--fs_info->scrub_workers_refcnt == 0) {
2890 btrfs_destroy_workqueue(fs_info->scrub_workers);
2891 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
2892 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
2894 WARN_ON(fs_info->scrub_workers_refcnt < 0);
2897 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2898 u64 end, struct btrfs_scrub_progress *progress,
2899 int readonly, int is_dev_replace)
2901 struct scrub_ctx *sctx;
2902 int ret;
2903 struct btrfs_device *dev;
2904 struct rcu_string *name;
2906 if (btrfs_fs_closing(fs_info))
2907 return -EINVAL;
2909 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2911 * in this case scrub is unable to calculate the checksum
2912 * the way scrub is implemented. Do not handle this
2913 * situation at all because it won't ever happen.
2915 btrfs_err(fs_info,
2916 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
2917 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2918 return -EINVAL;
2921 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2922 /* not supported for data w/o checksums */
2923 btrfs_err(fs_info,
2924 "scrub: size assumption sectorsize != PAGE_SIZE "
2925 "(%d != %lu) fails",
2926 fs_info->chunk_root->sectorsize, PAGE_SIZE);
2927 return -EINVAL;
2930 if (fs_info->chunk_root->nodesize >
2931 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2932 fs_info->chunk_root->sectorsize >
2933 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2935 * would exhaust the array bounds of pagev member in
2936 * struct scrub_block
2938 btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
2939 "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
2940 fs_info->chunk_root->nodesize,
2941 SCRUB_MAX_PAGES_PER_BLOCK,
2942 fs_info->chunk_root->sectorsize,
2943 SCRUB_MAX_PAGES_PER_BLOCK);
2944 return -EINVAL;
2948 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2949 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2950 if (!dev || (dev->missing && !is_dev_replace)) {
2951 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2952 return -ENODEV;
2955 if (!is_dev_replace && !readonly && !dev->writeable) {
2956 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2957 rcu_read_lock();
2958 name = rcu_dereference(dev->name);
2959 btrfs_err(fs_info, "scrub: device %s is not writable",
2960 name->str);
2961 rcu_read_unlock();
2962 return -EROFS;
2965 mutex_lock(&fs_info->scrub_lock);
2966 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
2967 mutex_unlock(&fs_info->scrub_lock);
2968 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2969 return -EIO;
2972 btrfs_dev_replace_lock(&fs_info->dev_replace);
2973 if (dev->scrub_device ||
2974 (!is_dev_replace &&
2975 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2976 btrfs_dev_replace_unlock(&fs_info->dev_replace);
2977 mutex_unlock(&fs_info->scrub_lock);
2978 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2979 return -EINPROGRESS;
2981 btrfs_dev_replace_unlock(&fs_info->dev_replace);
2983 ret = scrub_workers_get(fs_info, is_dev_replace);
2984 if (ret) {
2985 mutex_unlock(&fs_info->scrub_lock);
2986 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2987 return ret;
2990 sctx = scrub_setup_ctx(dev, is_dev_replace);
2991 if (IS_ERR(sctx)) {
2992 mutex_unlock(&fs_info->scrub_lock);
2993 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2994 scrub_workers_put(fs_info);
2995 return PTR_ERR(sctx);
2997 sctx->readonly = readonly;
2998 dev->scrub_device = sctx;
2999 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3002 * checking @scrub_pause_req here, we can avoid
3003 * race between committing transaction and scrubbing.
3005 __scrub_blocked_if_needed(fs_info);
3006 atomic_inc(&fs_info->scrubs_running);
3007 mutex_unlock(&fs_info->scrub_lock);
3009 if (!is_dev_replace) {
3011 * by holding device list mutex, we can
3012 * kick off writing super in log tree sync.
3014 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3015 ret = scrub_supers(sctx, dev);
3016 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3019 if (!ret)
3020 ret = scrub_enumerate_chunks(sctx, dev, start, end,
3021 is_dev_replace);
3023 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3024 atomic_dec(&fs_info->scrubs_running);
3025 wake_up(&fs_info->scrub_pause_wait);
3027 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3029 if (progress)
3030 memcpy(progress, &sctx->stat, sizeof(*progress));
3032 mutex_lock(&fs_info->scrub_lock);
3033 dev->scrub_device = NULL;
3034 scrub_workers_put(fs_info);
3035 mutex_unlock(&fs_info->scrub_lock);
3037 scrub_free_ctx(sctx);
3039 return ret;
3042 void btrfs_scrub_pause(struct btrfs_root *root)
3044 struct btrfs_fs_info *fs_info = root->fs_info;
3046 mutex_lock(&fs_info->scrub_lock);
3047 atomic_inc(&fs_info->scrub_pause_req);
3048 while (atomic_read(&fs_info->scrubs_paused) !=
3049 atomic_read(&fs_info->scrubs_running)) {
3050 mutex_unlock(&fs_info->scrub_lock);
3051 wait_event(fs_info->scrub_pause_wait,
3052 atomic_read(&fs_info->scrubs_paused) ==
3053 atomic_read(&fs_info->scrubs_running));
3054 mutex_lock(&fs_info->scrub_lock);
3056 mutex_unlock(&fs_info->scrub_lock);
3059 void btrfs_scrub_continue(struct btrfs_root *root)
3061 struct btrfs_fs_info *fs_info = root->fs_info;
3063 atomic_dec(&fs_info->scrub_pause_req);
3064 wake_up(&fs_info->scrub_pause_wait);
3067 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3069 mutex_lock(&fs_info->scrub_lock);
3070 if (!atomic_read(&fs_info->scrubs_running)) {
3071 mutex_unlock(&fs_info->scrub_lock);
3072 return -ENOTCONN;
3075 atomic_inc(&fs_info->scrub_cancel_req);
3076 while (atomic_read(&fs_info->scrubs_running)) {
3077 mutex_unlock(&fs_info->scrub_lock);
3078 wait_event(fs_info->scrub_pause_wait,
3079 atomic_read(&fs_info->scrubs_running) == 0);
3080 mutex_lock(&fs_info->scrub_lock);
3082 atomic_dec(&fs_info->scrub_cancel_req);
3083 mutex_unlock(&fs_info->scrub_lock);
3085 return 0;
3088 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3089 struct btrfs_device *dev)
3091 struct scrub_ctx *sctx;
3093 mutex_lock(&fs_info->scrub_lock);
3094 sctx = dev->scrub_device;
3095 if (!sctx) {
3096 mutex_unlock(&fs_info->scrub_lock);
3097 return -ENOTCONN;
3099 atomic_inc(&sctx->cancel_req);
3100 while (dev->scrub_device) {
3101 mutex_unlock(&fs_info->scrub_lock);
3102 wait_event(fs_info->scrub_pause_wait,
3103 dev->scrub_device == NULL);
3104 mutex_lock(&fs_info->scrub_lock);
3106 mutex_unlock(&fs_info->scrub_lock);
3108 return 0;
3111 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3112 struct btrfs_scrub_progress *progress)
3114 struct btrfs_device *dev;
3115 struct scrub_ctx *sctx = NULL;
3117 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3118 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3119 if (dev)
3120 sctx = dev->scrub_device;
3121 if (sctx)
3122 memcpy(progress, &sctx->stat, sizeof(*progress));
3123 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3125 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3128 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3129 u64 extent_logical, u64 extent_len,
3130 u64 *extent_physical,
3131 struct btrfs_device **extent_dev,
3132 int *extent_mirror_num)
3134 u64 mapped_length;
3135 struct btrfs_bio *bbio = NULL;
3136 int ret;
3138 mapped_length = extent_len;
3139 ret = btrfs_map_block(fs_info, READ, extent_logical,
3140 &mapped_length, &bbio, 0);
3141 if (ret || !bbio || mapped_length < extent_len ||
3142 !bbio->stripes[0].dev->bdev) {
3143 kfree(bbio);
3144 return;
3147 *extent_physical = bbio->stripes[0].physical;
3148 *extent_mirror_num = bbio->mirror_num;
3149 *extent_dev = bbio->stripes[0].dev;
3150 kfree(bbio);
3153 static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3154 struct scrub_wr_ctx *wr_ctx,
3155 struct btrfs_fs_info *fs_info,
3156 struct btrfs_device *dev,
3157 int is_dev_replace)
3159 WARN_ON(wr_ctx->wr_curr_bio != NULL);
3161 mutex_init(&wr_ctx->wr_lock);
3162 wr_ctx->wr_curr_bio = NULL;
3163 if (!is_dev_replace)
3164 return 0;
3166 WARN_ON(!dev->bdev);
3167 wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3168 bio_get_nr_vecs(dev->bdev));
3169 wr_ctx->tgtdev = dev;
3170 atomic_set(&wr_ctx->flush_all_writes, 0);
3171 return 0;
3174 static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3176 mutex_lock(&wr_ctx->wr_lock);
3177 kfree(wr_ctx->wr_curr_bio);
3178 wr_ctx->wr_curr_bio = NULL;
3179 mutex_unlock(&wr_ctx->wr_lock);
3182 static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3183 int mirror_num, u64 physical_for_dev_replace)
3185 struct scrub_copy_nocow_ctx *nocow_ctx;
3186 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3188 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3189 if (!nocow_ctx) {
3190 spin_lock(&sctx->stat_lock);
3191 sctx->stat.malloc_errors++;
3192 spin_unlock(&sctx->stat_lock);
3193 return -ENOMEM;
3196 scrub_pending_trans_workers_inc(sctx);
3198 nocow_ctx->sctx = sctx;
3199 nocow_ctx->logical = logical;
3200 nocow_ctx->len = len;
3201 nocow_ctx->mirror_num = mirror_num;
3202 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3203 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
3204 copy_nocow_pages_worker, NULL, NULL);
3205 INIT_LIST_HEAD(&nocow_ctx->inodes);
3206 btrfs_queue_work(fs_info->scrub_nocow_workers,
3207 &nocow_ctx->work);
3209 return 0;
3212 static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3214 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3215 struct scrub_nocow_inode *nocow_inode;
3217 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3218 if (!nocow_inode)
3219 return -ENOMEM;
3220 nocow_inode->inum = inum;
3221 nocow_inode->offset = offset;
3222 nocow_inode->root = root;
3223 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3224 return 0;
3227 #define COPY_COMPLETE 1
3229 static void copy_nocow_pages_worker(struct btrfs_work *work)
3231 struct scrub_copy_nocow_ctx *nocow_ctx =
3232 container_of(work, struct scrub_copy_nocow_ctx, work);
3233 struct scrub_ctx *sctx = nocow_ctx->sctx;
3234 u64 logical = nocow_ctx->logical;
3235 u64 len = nocow_ctx->len;
3236 int mirror_num = nocow_ctx->mirror_num;
3237 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3238 int ret;
3239 struct btrfs_trans_handle *trans = NULL;
3240 struct btrfs_fs_info *fs_info;
3241 struct btrfs_path *path;
3242 struct btrfs_root *root;
3243 int not_written = 0;
3245 fs_info = sctx->dev_root->fs_info;
3246 root = fs_info->extent_root;
3248 path = btrfs_alloc_path();
3249 if (!path) {
3250 spin_lock(&sctx->stat_lock);
3251 sctx->stat.malloc_errors++;
3252 spin_unlock(&sctx->stat_lock);
3253 not_written = 1;
3254 goto out;
3257 trans = btrfs_join_transaction(root);
3258 if (IS_ERR(trans)) {
3259 not_written = 1;
3260 goto out;
3263 ret = iterate_inodes_from_logical(logical, fs_info, path,
3264 record_inode_for_nocow, nocow_ctx);
3265 if (ret != 0 && ret != -ENOENT) {
3266 btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
3267 "phys %llu, len %llu, mir %u, ret %d",
3268 logical, physical_for_dev_replace, len, mirror_num,
3269 ret);
3270 not_written = 1;
3271 goto out;
3274 btrfs_end_transaction(trans, root);
3275 trans = NULL;
3276 while (!list_empty(&nocow_ctx->inodes)) {
3277 struct scrub_nocow_inode *entry;
3278 entry = list_first_entry(&nocow_ctx->inodes,
3279 struct scrub_nocow_inode,
3280 list);
3281 list_del_init(&entry->list);
3282 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
3283 entry->root, nocow_ctx);
3284 kfree(entry);
3285 if (ret == COPY_COMPLETE) {
3286 ret = 0;
3287 break;
3288 } else if (ret) {
3289 break;
3292 out:
3293 while (!list_empty(&nocow_ctx->inodes)) {
3294 struct scrub_nocow_inode *entry;
3295 entry = list_first_entry(&nocow_ctx->inodes,
3296 struct scrub_nocow_inode,
3297 list);
3298 list_del_init(&entry->list);
3299 kfree(entry);
3301 if (trans && !IS_ERR(trans))
3302 btrfs_end_transaction(trans, root);
3303 if (not_written)
3304 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3305 num_uncorrectable_read_errors);
3307 btrfs_free_path(path);
3308 kfree(nocow_ctx);
3310 scrub_pending_trans_workers_dec(sctx);
3313 static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
3314 struct scrub_copy_nocow_ctx *nocow_ctx)
3316 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3317 struct btrfs_key key;
3318 struct inode *inode;
3319 struct page *page;
3320 struct btrfs_root *local_root;
3321 struct btrfs_ordered_extent *ordered;
3322 struct extent_map *em;
3323 struct extent_state *cached_state = NULL;
3324 struct extent_io_tree *io_tree;
3325 u64 physical_for_dev_replace;
3326 u64 len = nocow_ctx->len;
3327 u64 lockstart = offset, lockend = offset + len - 1;
3328 unsigned long index;
3329 int srcu_index;
3330 int ret = 0;
3331 int err = 0;
3333 key.objectid = root;
3334 key.type = BTRFS_ROOT_ITEM_KEY;
3335 key.offset = (u64)-1;
3337 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3339 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3340 if (IS_ERR(local_root)) {
3341 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3342 return PTR_ERR(local_root);
3345 key.type = BTRFS_INODE_ITEM_KEY;
3346 key.objectid = inum;
3347 key.offset = 0;
3348 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3349 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3350 if (IS_ERR(inode))
3351 return PTR_ERR(inode);
3353 /* Avoid truncate/dio/punch hole.. */
3354 mutex_lock(&inode->i_mutex);
3355 inode_dio_wait(inode);
3357 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3358 io_tree = &BTRFS_I(inode)->io_tree;
3360 lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
3361 ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
3362 if (ordered) {
3363 btrfs_put_ordered_extent(ordered);
3364 goto out_unlock;
3367 em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
3368 if (IS_ERR(em)) {
3369 ret = PTR_ERR(em);
3370 goto out_unlock;
3374 * This extent does not actually cover the logical extent anymore,
3375 * move on to the next inode.
3377 if (em->block_start > nocow_ctx->logical ||
3378 em->block_start + em->block_len < nocow_ctx->logical + len) {
3379 free_extent_map(em);
3380 goto out_unlock;
3382 free_extent_map(em);
3384 while (len >= PAGE_CACHE_SIZE) {
3385 index = offset >> PAGE_CACHE_SHIFT;
3386 again:
3387 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3388 if (!page) {
3389 btrfs_err(fs_info, "find_or_create_page() failed");
3390 ret = -ENOMEM;
3391 goto out;
3394 if (PageUptodate(page)) {
3395 if (PageDirty(page))
3396 goto next_page;
3397 } else {
3398 ClearPageError(page);
3399 err = extent_read_full_page_nolock(io_tree, page,
3400 btrfs_get_extent,
3401 nocow_ctx->mirror_num);
3402 if (err) {
3403 ret = err;
3404 goto next_page;
3407 lock_page(page);
3409 * If the page has been remove from the page cache,
3410 * the data on it is meaningless, because it may be
3411 * old one, the new data may be written into the new
3412 * page in the page cache.
3414 if (page->mapping != inode->i_mapping) {
3415 unlock_page(page);
3416 page_cache_release(page);
3417 goto again;
3419 if (!PageUptodate(page)) {
3420 ret = -EIO;
3421 goto next_page;
3424 err = write_page_nocow(nocow_ctx->sctx,
3425 physical_for_dev_replace, page);
3426 if (err)
3427 ret = err;
3428 next_page:
3429 unlock_page(page);
3430 page_cache_release(page);
3432 if (ret)
3433 break;
3435 offset += PAGE_CACHE_SIZE;
3436 physical_for_dev_replace += PAGE_CACHE_SIZE;
3437 len -= PAGE_CACHE_SIZE;
3439 ret = COPY_COMPLETE;
3440 out_unlock:
3441 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
3442 GFP_NOFS);
3443 out:
3444 mutex_unlock(&inode->i_mutex);
3445 iput(inode);
3446 return ret;
3449 static int write_page_nocow(struct scrub_ctx *sctx,
3450 u64 physical_for_dev_replace, struct page *page)
3452 struct bio *bio;
3453 struct btrfs_device *dev;
3454 int ret;
3456 dev = sctx->wr_ctx.tgtdev;
3457 if (!dev)
3458 return -EIO;
3459 if (!dev->bdev) {
3460 printk_ratelimited(KERN_WARNING
3461 "BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3462 return -EIO;
3464 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3465 if (!bio) {
3466 spin_lock(&sctx->stat_lock);
3467 sctx->stat.malloc_errors++;
3468 spin_unlock(&sctx->stat_lock);
3469 return -ENOMEM;
3471 bio->bi_iter.bi_size = 0;
3472 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
3473 bio->bi_bdev = dev->bdev;
3474 ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3475 if (ret != PAGE_CACHE_SIZE) {
3476 leave_with_eio:
3477 bio_put(bio);
3478 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3479 return -EIO;
3482 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
3483 goto leave_with_eio;
3485 bio_put(bio);
3486 return 0;