2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
24 #include "ordered-data.h"
25 #include "transaction.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
39 * Future enhancements:
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
42 * - track and record media errors, throw out bad devices
43 * - add a mode to also read unallocated space
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
55 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
64 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
67 struct scrub_block
*sblock
;
69 struct btrfs_device
*dev
;
70 u64 flags
; /* extent flags */
74 u64 physical_for_dev_replace
;
77 unsigned int mirror_num
:8;
78 unsigned int have_csum
:1;
79 unsigned int io_error
:1;
81 u8 csum
[BTRFS_CSUM_SIZE
];
86 struct scrub_ctx
*sctx
;
87 struct btrfs_device
*dev
;
92 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93 struct scrub_page
*pagev
[SCRUB_PAGES_PER_WR_BIO
];
95 struct scrub_page
*pagev
[SCRUB_PAGES_PER_RD_BIO
];
99 struct btrfs_work work
;
103 struct scrub_page
*pagev
[SCRUB_MAX_PAGES_PER_BLOCK
];
105 atomic_t outstanding_pages
;
106 atomic_t ref_count
; /* free mem on transition to zero */
107 struct scrub_ctx
*sctx
;
109 unsigned int header_error
:1;
110 unsigned int checksum_error
:1;
111 unsigned int no_io_error_seen
:1;
112 unsigned int generation_error
:1; /* also sets header_error */
116 struct scrub_wr_ctx
{
117 struct scrub_bio
*wr_curr_bio
;
118 struct btrfs_device
*tgtdev
;
119 int pages_per_wr_bio
; /* <= SCRUB_PAGES_PER_WR_BIO */
120 atomic_t flush_all_writes
;
121 struct mutex wr_lock
;
125 struct scrub_bio
*bios
[SCRUB_BIOS_PER_SCTX
];
126 struct btrfs_root
*dev_root
;
129 atomic_t bios_in_flight
;
130 atomic_t workers_pending
;
131 spinlock_t list_lock
;
132 wait_queue_head_t list_wait
;
134 struct list_head csum_list
;
137 int pages_per_rd_bio
;
142 struct scrub_wr_ctx wr_ctx
;
147 struct btrfs_scrub_progress stat
;
148 spinlock_t stat_lock
;
151 struct scrub_fixup_nodatasum
{
152 struct scrub_ctx
*sctx
;
153 struct btrfs_device
*dev
;
155 struct btrfs_root
*root
;
156 struct btrfs_work work
;
160 struct scrub_nocow_inode
{
164 struct list_head list
;
167 struct scrub_copy_nocow_ctx
{
168 struct scrub_ctx
*sctx
;
172 u64 physical_for_dev_replace
;
173 struct list_head inodes
;
174 struct btrfs_work work
;
177 struct scrub_warning
{
178 struct btrfs_path
*path
;
179 u64 extent_item_size
;
183 struct btrfs_device
*dev
;
186 static void scrub_pending_bio_inc(struct scrub_ctx
*sctx
);
187 static void scrub_pending_bio_dec(struct scrub_ctx
*sctx
);
188 static void scrub_pending_trans_workers_inc(struct scrub_ctx
*sctx
);
189 static void scrub_pending_trans_workers_dec(struct scrub_ctx
*sctx
);
190 static int scrub_handle_errored_block(struct scrub_block
*sblock_to_check
);
191 static int scrub_setup_recheck_block(struct scrub_ctx
*sctx
,
192 struct btrfs_fs_info
*fs_info
,
193 struct scrub_block
*original_sblock
,
194 u64 length
, u64 logical
,
195 struct scrub_block
*sblocks_for_recheck
);
196 static void scrub_recheck_block(struct btrfs_fs_info
*fs_info
,
197 struct scrub_block
*sblock
, int is_metadata
,
198 int have_csum
, u8
*csum
, u64 generation
,
200 static void scrub_recheck_block_checksum(struct btrfs_fs_info
*fs_info
,
201 struct scrub_block
*sblock
,
202 int is_metadata
, int have_csum
,
203 const u8
*csum
, u64 generation
,
205 static int scrub_repair_block_from_good_copy(struct scrub_block
*sblock_bad
,
206 struct scrub_block
*sblock_good
,
208 static int scrub_repair_page_from_good_copy(struct scrub_block
*sblock_bad
,
209 struct scrub_block
*sblock_good
,
210 int page_num
, int force_write
);
211 static void scrub_write_block_to_dev_replace(struct scrub_block
*sblock
);
212 static int scrub_write_page_to_dev_replace(struct scrub_block
*sblock
,
214 static int scrub_checksum_data(struct scrub_block
*sblock
);
215 static int scrub_checksum_tree_block(struct scrub_block
*sblock
);
216 static int scrub_checksum_super(struct scrub_block
*sblock
);
217 static void scrub_block_get(struct scrub_block
*sblock
);
218 static void scrub_block_put(struct scrub_block
*sblock
);
219 static void scrub_page_get(struct scrub_page
*spage
);
220 static void scrub_page_put(struct scrub_page
*spage
);
221 static int scrub_add_page_to_rd_bio(struct scrub_ctx
*sctx
,
222 struct scrub_page
*spage
);
223 static int scrub_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
224 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
225 u64 gen
, int mirror_num
, u8
*csum
, int force
,
226 u64 physical_for_dev_replace
);
227 static void scrub_bio_end_io(struct bio
*bio
, int err
);
228 static void scrub_bio_end_io_worker(struct btrfs_work
*work
);
229 static void scrub_block_complete(struct scrub_block
*sblock
);
230 static void scrub_remap_extent(struct btrfs_fs_info
*fs_info
,
231 u64 extent_logical
, u64 extent_len
,
232 u64
*extent_physical
,
233 struct btrfs_device
**extent_dev
,
234 int *extent_mirror_num
);
235 static int scrub_setup_wr_ctx(struct scrub_ctx
*sctx
,
236 struct scrub_wr_ctx
*wr_ctx
,
237 struct btrfs_fs_info
*fs_info
,
238 struct btrfs_device
*dev
,
240 static void scrub_free_wr_ctx(struct scrub_wr_ctx
*wr_ctx
);
241 static int scrub_add_page_to_wr_bio(struct scrub_ctx
*sctx
,
242 struct scrub_page
*spage
);
243 static void scrub_wr_submit(struct scrub_ctx
*sctx
);
244 static void scrub_wr_bio_end_io(struct bio
*bio
, int err
);
245 static void scrub_wr_bio_end_io_worker(struct btrfs_work
*work
);
246 static int write_page_nocow(struct scrub_ctx
*sctx
,
247 u64 physical_for_dev_replace
, struct page
*page
);
248 static int copy_nocow_pages_for_inode(u64 inum
, u64 offset
, u64 root
,
249 struct scrub_copy_nocow_ctx
*ctx
);
250 static int copy_nocow_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
251 int mirror_num
, u64 physical_for_dev_replace
);
252 static void copy_nocow_pages_worker(struct btrfs_work
*work
);
253 static void __scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
);
254 static void scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
);
257 static void scrub_pending_bio_inc(struct scrub_ctx
*sctx
)
259 atomic_inc(&sctx
->bios_in_flight
);
262 static void scrub_pending_bio_dec(struct scrub_ctx
*sctx
)
264 atomic_dec(&sctx
->bios_in_flight
);
265 wake_up(&sctx
->list_wait
);
268 static void __scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
)
270 while (atomic_read(&fs_info
->scrub_pause_req
)) {
271 mutex_unlock(&fs_info
->scrub_lock
);
272 wait_event(fs_info
->scrub_pause_wait
,
273 atomic_read(&fs_info
->scrub_pause_req
) == 0);
274 mutex_lock(&fs_info
->scrub_lock
);
278 static void scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
)
280 atomic_inc(&fs_info
->scrubs_paused
);
281 wake_up(&fs_info
->scrub_pause_wait
);
283 mutex_lock(&fs_info
->scrub_lock
);
284 __scrub_blocked_if_needed(fs_info
);
285 atomic_dec(&fs_info
->scrubs_paused
);
286 mutex_unlock(&fs_info
->scrub_lock
);
288 wake_up(&fs_info
->scrub_pause_wait
);
292 * used for workers that require transaction commits (i.e., for the
295 static void scrub_pending_trans_workers_inc(struct scrub_ctx
*sctx
)
297 struct btrfs_fs_info
*fs_info
= sctx
->dev_root
->fs_info
;
300 * increment scrubs_running to prevent cancel requests from
301 * completing as long as a worker is running. we must also
302 * increment scrubs_paused to prevent deadlocking on pause
303 * requests used for transactions commits (as the worker uses a
304 * transaction context). it is safe to regard the worker
305 * as paused for all matters practical. effectively, we only
306 * avoid cancellation requests from completing.
308 mutex_lock(&fs_info
->scrub_lock
);
309 atomic_inc(&fs_info
->scrubs_running
);
310 atomic_inc(&fs_info
->scrubs_paused
);
311 mutex_unlock(&fs_info
->scrub_lock
);
314 * check if @scrubs_running=@scrubs_paused condition
315 * inside wait_event() is not an atomic operation.
316 * which means we may inc/dec @scrub_running/paused
317 * at any time. Let's wake up @scrub_pause_wait as
318 * much as we can to let commit transaction blocked less.
320 wake_up(&fs_info
->scrub_pause_wait
);
322 atomic_inc(&sctx
->workers_pending
);
325 /* used for workers that require transaction commits */
326 static void scrub_pending_trans_workers_dec(struct scrub_ctx
*sctx
)
328 struct btrfs_fs_info
*fs_info
= sctx
->dev_root
->fs_info
;
331 * see scrub_pending_trans_workers_inc() why we're pretending
332 * to be paused in the scrub counters
334 mutex_lock(&fs_info
->scrub_lock
);
335 atomic_dec(&fs_info
->scrubs_running
);
336 atomic_dec(&fs_info
->scrubs_paused
);
337 mutex_unlock(&fs_info
->scrub_lock
);
338 atomic_dec(&sctx
->workers_pending
);
339 wake_up(&fs_info
->scrub_pause_wait
);
340 wake_up(&sctx
->list_wait
);
343 static void scrub_free_csums(struct scrub_ctx
*sctx
)
345 while (!list_empty(&sctx
->csum_list
)) {
346 struct btrfs_ordered_sum
*sum
;
347 sum
= list_first_entry(&sctx
->csum_list
,
348 struct btrfs_ordered_sum
, list
);
349 list_del(&sum
->list
);
354 static noinline_for_stack
void scrub_free_ctx(struct scrub_ctx
*sctx
)
361 scrub_free_wr_ctx(&sctx
->wr_ctx
);
363 /* this can happen when scrub is cancelled */
364 if (sctx
->curr
!= -1) {
365 struct scrub_bio
*sbio
= sctx
->bios
[sctx
->curr
];
367 for (i
= 0; i
< sbio
->page_count
; i
++) {
368 WARN_ON(!sbio
->pagev
[i
]->page
);
369 scrub_block_put(sbio
->pagev
[i
]->sblock
);
374 for (i
= 0; i
< SCRUB_BIOS_PER_SCTX
; ++i
) {
375 struct scrub_bio
*sbio
= sctx
->bios
[i
];
382 scrub_free_csums(sctx
);
386 static noinline_for_stack
387 struct scrub_ctx
*scrub_setup_ctx(struct btrfs_device
*dev
, int is_dev_replace
)
389 struct scrub_ctx
*sctx
;
391 struct btrfs_fs_info
*fs_info
= dev
->dev_root
->fs_info
;
392 int pages_per_rd_bio
;
396 * the setting of pages_per_rd_bio is correct for scrub but might
397 * be wrong for the dev_replace code where we might read from
398 * different devices in the initial huge bios. However, that
399 * code is able to correctly handle the case when adding a page
403 pages_per_rd_bio
= min_t(int, SCRUB_PAGES_PER_RD_BIO
,
404 bio_get_nr_vecs(dev
->bdev
));
406 pages_per_rd_bio
= SCRUB_PAGES_PER_RD_BIO
;
407 sctx
= kzalloc(sizeof(*sctx
), GFP_NOFS
);
410 sctx
->is_dev_replace
= is_dev_replace
;
411 sctx
->pages_per_rd_bio
= pages_per_rd_bio
;
413 sctx
->dev_root
= dev
->dev_root
;
414 for (i
= 0; i
< SCRUB_BIOS_PER_SCTX
; ++i
) {
415 struct scrub_bio
*sbio
;
417 sbio
= kzalloc(sizeof(*sbio
), GFP_NOFS
);
420 sctx
->bios
[i
] = sbio
;
424 sbio
->page_count
= 0;
425 btrfs_init_work(&sbio
->work
, btrfs_scrub_helper
,
426 scrub_bio_end_io_worker
, NULL
, NULL
);
428 if (i
!= SCRUB_BIOS_PER_SCTX
- 1)
429 sctx
->bios
[i
]->next_free
= i
+ 1;
431 sctx
->bios
[i
]->next_free
= -1;
433 sctx
->first_free
= 0;
434 sctx
->nodesize
= dev
->dev_root
->nodesize
;
435 sctx
->sectorsize
= dev
->dev_root
->sectorsize
;
436 atomic_set(&sctx
->bios_in_flight
, 0);
437 atomic_set(&sctx
->workers_pending
, 0);
438 atomic_set(&sctx
->cancel_req
, 0);
439 sctx
->csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
440 INIT_LIST_HEAD(&sctx
->csum_list
);
442 spin_lock_init(&sctx
->list_lock
);
443 spin_lock_init(&sctx
->stat_lock
);
444 init_waitqueue_head(&sctx
->list_wait
);
446 ret
= scrub_setup_wr_ctx(sctx
, &sctx
->wr_ctx
, fs_info
,
447 fs_info
->dev_replace
.tgtdev
, is_dev_replace
);
449 scrub_free_ctx(sctx
);
455 scrub_free_ctx(sctx
);
456 return ERR_PTR(-ENOMEM
);
459 static int scrub_print_warning_inode(u64 inum
, u64 offset
, u64 root
,
466 struct extent_buffer
*eb
;
467 struct btrfs_inode_item
*inode_item
;
468 struct scrub_warning
*swarn
= warn_ctx
;
469 struct btrfs_fs_info
*fs_info
= swarn
->dev
->dev_root
->fs_info
;
470 struct inode_fs_paths
*ipath
= NULL
;
471 struct btrfs_root
*local_root
;
472 struct btrfs_key root_key
;
474 root_key
.objectid
= root
;
475 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
476 root_key
.offset
= (u64
)-1;
477 local_root
= btrfs_read_fs_root_no_name(fs_info
, &root_key
);
478 if (IS_ERR(local_root
)) {
479 ret
= PTR_ERR(local_root
);
483 ret
= inode_item_info(inum
, 0, local_root
, swarn
->path
);
485 btrfs_release_path(swarn
->path
);
489 eb
= swarn
->path
->nodes
[0];
490 inode_item
= btrfs_item_ptr(eb
, swarn
->path
->slots
[0],
491 struct btrfs_inode_item
);
492 isize
= btrfs_inode_size(eb
, inode_item
);
493 nlink
= btrfs_inode_nlink(eb
, inode_item
);
494 btrfs_release_path(swarn
->path
);
496 ipath
= init_ipath(4096, local_root
, swarn
->path
);
498 ret
= PTR_ERR(ipath
);
502 ret
= paths_from_inode(inum
, ipath
);
508 * we deliberately ignore the bit ipath might have been too small to
509 * hold all of the paths here
511 for (i
= 0; i
< ipath
->fspath
->elem_cnt
; ++i
)
512 printk_in_rcu(KERN_WARNING
"BTRFS: %s at logical %llu on dev "
513 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
514 "length %llu, links %u (path: %s)\n", swarn
->errstr
,
515 swarn
->logical
, rcu_str_deref(swarn
->dev
->name
),
516 (unsigned long long)swarn
->sector
, root
, inum
, offset
,
517 min(isize
- offset
, (u64
)PAGE_SIZE
), nlink
,
518 (char *)(unsigned long)ipath
->fspath
->val
[i
]);
524 printk_in_rcu(KERN_WARNING
"BTRFS: %s at logical %llu on dev "
525 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
526 "resolving failed with ret=%d\n", swarn
->errstr
,
527 swarn
->logical
, rcu_str_deref(swarn
->dev
->name
),
528 (unsigned long long)swarn
->sector
, root
, inum
, offset
, ret
);
534 static void scrub_print_warning(const char *errstr
, struct scrub_block
*sblock
)
536 struct btrfs_device
*dev
;
537 struct btrfs_fs_info
*fs_info
;
538 struct btrfs_path
*path
;
539 struct btrfs_key found_key
;
540 struct extent_buffer
*eb
;
541 struct btrfs_extent_item
*ei
;
542 struct scrub_warning swarn
;
543 unsigned long ptr
= 0;
551 WARN_ON(sblock
->page_count
< 1);
552 dev
= sblock
->pagev
[0]->dev
;
553 fs_info
= sblock
->sctx
->dev_root
->fs_info
;
555 path
= btrfs_alloc_path();
559 swarn
.sector
= (sblock
->pagev
[0]->physical
) >> 9;
560 swarn
.logical
= sblock
->pagev
[0]->logical
;
561 swarn
.errstr
= errstr
;
564 ret
= extent_from_logical(fs_info
, swarn
.logical
, path
, &found_key
,
569 extent_item_pos
= swarn
.logical
- found_key
.objectid
;
570 swarn
.extent_item_size
= found_key
.offset
;
573 ei
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_extent_item
);
574 item_size
= btrfs_item_size_nr(eb
, path
->slots
[0]);
576 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
578 ret
= tree_backref_for_extent(&ptr
, eb
, &found_key
, ei
,
579 item_size
, &ref_root
,
581 printk_in_rcu(KERN_WARNING
582 "BTRFS: %s at logical %llu on dev %s, "
583 "sector %llu: metadata %s (level %d) in tree "
584 "%llu\n", errstr
, swarn
.logical
,
585 rcu_str_deref(dev
->name
),
586 (unsigned long long)swarn
.sector
,
587 ref_level
? "node" : "leaf",
588 ret
< 0 ? -1 : ref_level
,
589 ret
< 0 ? -1 : ref_root
);
591 btrfs_release_path(path
);
593 btrfs_release_path(path
);
596 iterate_extent_inodes(fs_info
, found_key
.objectid
,
598 scrub_print_warning_inode
, &swarn
);
602 btrfs_free_path(path
);
605 static int scrub_fixup_readpage(u64 inum
, u64 offset
, u64 root
, void *fixup_ctx
)
607 struct page
*page
= NULL
;
609 struct scrub_fixup_nodatasum
*fixup
= fixup_ctx
;
612 struct btrfs_key key
;
613 struct inode
*inode
= NULL
;
614 struct btrfs_fs_info
*fs_info
;
615 u64 end
= offset
+ PAGE_SIZE
- 1;
616 struct btrfs_root
*local_root
;
620 key
.type
= BTRFS_ROOT_ITEM_KEY
;
621 key
.offset
= (u64
)-1;
623 fs_info
= fixup
->root
->fs_info
;
624 srcu_index
= srcu_read_lock(&fs_info
->subvol_srcu
);
626 local_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
627 if (IS_ERR(local_root
)) {
628 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
629 return PTR_ERR(local_root
);
632 key
.type
= BTRFS_INODE_ITEM_KEY
;
635 inode
= btrfs_iget(fs_info
->sb
, &key
, local_root
, NULL
);
636 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
638 return PTR_ERR(inode
);
640 index
= offset
>> PAGE_CACHE_SHIFT
;
642 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_NOFS
);
648 if (PageUptodate(page
)) {
649 if (PageDirty(page
)) {
651 * we need to write the data to the defect sector. the
652 * data that was in that sector is not in memory,
653 * because the page was modified. we must not write the
654 * modified page to that sector.
656 * TODO: what could be done here: wait for the delalloc
657 * runner to write out that page (might involve
658 * COW) and see whether the sector is still
659 * referenced afterwards.
661 * For the meantime, we'll treat this error
662 * incorrectable, although there is a chance that a
663 * later scrub will find the bad sector again and that
664 * there's no dirty page in memory, then.
669 ret
= repair_io_failure(inode
, offset
, PAGE_SIZE
,
670 fixup
->logical
, page
,
671 offset
- page_offset(page
),
677 * we need to get good data first. the general readpage path
678 * will call repair_io_failure for us, we just have to make
679 * sure we read the bad mirror.
681 ret
= set_extent_bits(&BTRFS_I(inode
)->io_tree
, offset
, end
,
682 EXTENT_DAMAGED
, GFP_NOFS
);
684 /* set_extent_bits should give proper error */
691 ret
= extent_read_full_page(&BTRFS_I(inode
)->io_tree
, page
,
694 wait_on_page_locked(page
);
696 corrected
= !test_range_bit(&BTRFS_I(inode
)->io_tree
, offset
,
697 end
, EXTENT_DAMAGED
, 0, NULL
);
699 clear_extent_bits(&BTRFS_I(inode
)->io_tree
, offset
, end
,
700 EXTENT_DAMAGED
, GFP_NOFS
);
712 if (ret
== 0 && corrected
) {
714 * we only need to call readpage for one of the inodes belonging
715 * to this extent. so make iterate_extent_inodes stop
723 static void scrub_fixup_nodatasum(struct btrfs_work
*work
)
726 struct scrub_fixup_nodatasum
*fixup
;
727 struct scrub_ctx
*sctx
;
728 struct btrfs_trans_handle
*trans
= NULL
;
729 struct btrfs_path
*path
;
730 int uncorrectable
= 0;
732 fixup
= container_of(work
, struct scrub_fixup_nodatasum
, work
);
735 path
= btrfs_alloc_path();
737 spin_lock(&sctx
->stat_lock
);
738 ++sctx
->stat
.malloc_errors
;
739 spin_unlock(&sctx
->stat_lock
);
744 trans
= btrfs_join_transaction(fixup
->root
);
751 * the idea is to trigger a regular read through the standard path. we
752 * read a page from the (failed) logical address by specifying the
753 * corresponding copynum of the failed sector. thus, that readpage is
755 * that is the point where on-the-fly error correction will kick in
756 * (once it's finished) and rewrite the failed sector if a good copy
759 ret
= iterate_inodes_from_logical(fixup
->logical
, fixup
->root
->fs_info
,
760 path
, scrub_fixup_readpage
,
768 spin_lock(&sctx
->stat_lock
);
769 ++sctx
->stat
.corrected_errors
;
770 spin_unlock(&sctx
->stat_lock
);
773 if (trans
&& !IS_ERR(trans
))
774 btrfs_end_transaction(trans
, fixup
->root
);
776 spin_lock(&sctx
->stat_lock
);
777 ++sctx
->stat
.uncorrectable_errors
;
778 spin_unlock(&sctx
->stat_lock
);
779 btrfs_dev_replace_stats_inc(
780 &sctx
->dev_root
->fs_info
->dev_replace
.
781 num_uncorrectable_read_errors
);
782 printk_ratelimited_in_rcu(KERN_ERR
"BTRFS: "
783 "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
784 fixup
->logical
, rcu_str_deref(fixup
->dev
->name
));
787 btrfs_free_path(path
);
790 scrub_pending_trans_workers_dec(sctx
);
794 * scrub_handle_errored_block gets called when either verification of the
795 * pages failed or the bio failed to read, e.g. with EIO. In the latter
796 * case, this function handles all pages in the bio, even though only one
798 * The goal of this function is to repair the errored block by using the
799 * contents of one of the mirrors.
801 static int scrub_handle_errored_block(struct scrub_block
*sblock_to_check
)
803 struct scrub_ctx
*sctx
= sblock_to_check
->sctx
;
804 struct btrfs_device
*dev
;
805 struct btrfs_fs_info
*fs_info
;
809 unsigned int failed_mirror_index
;
810 unsigned int is_metadata
;
811 unsigned int have_csum
;
813 struct scrub_block
*sblocks_for_recheck
; /* holds one for each mirror */
814 struct scrub_block
*sblock_bad
;
819 static DEFINE_RATELIMIT_STATE(_rs
, DEFAULT_RATELIMIT_INTERVAL
,
820 DEFAULT_RATELIMIT_BURST
);
822 BUG_ON(sblock_to_check
->page_count
< 1);
823 fs_info
= sctx
->dev_root
->fs_info
;
824 if (sblock_to_check
->pagev
[0]->flags
& BTRFS_EXTENT_FLAG_SUPER
) {
826 * if we find an error in a super block, we just report it.
827 * They will get written with the next transaction commit
830 spin_lock(&sctx
->stat_lock
);
831 ++sctx
->stat
.super_errors
;
832 spin_unlock(&sctx
->stat_lock
);
835 length
= sblock_to_check
->page_count
* PAGE_SIZE
;
836 logical
= sblock_to_check
->pagev
[0]->logical
;
837 generation
= sblock_to_check
->pagev
[0]->generation
;
838 BUG_ON(sblock_to_check
->pagev
[0]->mirror_num
< 1);
839 failed_mirror_index
= sblock_to_check
->pagev
[0]->mirror_num
- 1;
840 is_metadata
= !(sblock_to_check
->pagev
[0]->flags
&
841 BTRFS_EXTENT_FLAG_DATA
);
842 have_csum
= sblock_to_check
->pagev
[0]->have_csum
;
843 csum
= sblock_to_check
->pagev
[0]->csum
;
844 dev
= sblock_to_check
->pagev
[0]->dev
;
846 if (sctx
->is_dev_replace
&& !is_metadata
&& !have_csum
) {
847 sblocks_for_recheck
= NULL
;
852 * read all mirrors one after the other. This includes to
853 * re-read the extent or metadata block that failed (that was
854 * the cause that this fixup code is called) another time,
855 * page by page this time in order to know which pages
856 * caused I/O errors and which ones are good (for all mirrors).
857 * It is the goal to handle the situation when more than one
858 * mirror contains I/O errors, but the errors do not
859 * overlap, i.e. the data can be repaired by selecting the
860 * pages from those mirrors without I/O error on the
861 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
862 * would be that mirror #1 has an I/O error on the first page,
863 * the second page is good, and mirror #2 has an I/O error on
864 * the second page, but the first page is good.
865 * Then the first page of the first mirror can be repaired by
866 * taking the first page of the second mirror, and the
867 * second page of the second mirror can be repaired by
868 * copying the contents of the 2nd page of the 1st mirror.
869 * One more note: if the pages of one mirror contain I/O
870 * errors, the checksum cannot be verified. In order to get
871 * the best data for repairing, the first attempt is to find
872 * a mirror without I/O errors and with a validated checksum.
873 * Only if this is not possible, the pages are picked from
874 * mirrors with I/O errors without considering the checksum.
875 * If the latter is the case, at the end, the checksum of the
876 * repaired area is verified in order to correctly maintain
880 sblocks_for_recheck
= kzalloc(BTRFS_MAX_MIRRORS
*
881 sizeof(*sblocks_for_recheck
),
883 if (!sblocks_for_recheck
) {
884 spin_lock(&sctx
->stat_lock
);
885 sctx
->stat
.malloc_errors
++;
886 sctx
->stat
.read_errors
++;
887 sctx
->stat
.uncorrectable_errors
++;
888 spin_unlock(&sctx
->stat_lock
);
889 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
893 /* setup the context, map the logical blocks and alloc the pages */
894 ret
= scrub_setup_recheck_block(sctx
, fs_info
, sblock_to_check
, length
,
895 logical
, sblocks_for_recheck
);
897 spin_lock(&sctx
->stat_lock
);
898 sctx
->stat
.read_errors
++;
899 sctx
->stat
.uncorrectable_errors
++;
900 spin_unlock(&sctx
->stat_lock
);
901 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
904 BUG_ON(failed_mirror_index
>= BTRFS_MAX_MIRRORS
);
905 sblock_bad
= sblocks_for_recheck
+ failed_mirror_index
;
907 /* build and submit the bios for the failed mirror, check checksums */
908 scrub_recheck_block(fs_info
, sblock_bad
, is_metadata
, have_csum
,
909 csum
, generation
, sctx
->csum_size
);
911 if (!sblock_bad
->header_error
&& !sblock_bad
->checksum_error
&&
912 sblock_bad
->no_io_error_seen
) {
914 * the error disappeared after reading page by page, or
915 * the area was part of a huge bio and other parts of the
916 * bio caused I/O errors, or the block layer merged several
917 * read requests into one and the error is caused by a
918 * different bio (usually one of the two latter cases is
921 spin_lock(&sctx
->stat_lock
);
922 sctx
->stat
.unverified_errors
++;
923 spin_unlock(&sctx
->stat_lock
);
925 if (sctx
->is_dev_replace
)
926 scrub_write_block_to_dev_replace(sblock_bad
);
930 if (!sblock_bad
->no_io_error_seen
) {
931 spin_lock(&sctx
->stat_lock
);
932 sctx
->stat
.read_errors
++;
933 spin_unlock(&sctx
->stat_lock
);
934 if (__ratelimit(&_rs
))
935 scrub_print_warning("i/o error", sblock_to_check
);
936 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
937 } else if (sblock_bad
->checksum_error
) {
938 spin_lock(&sctx
->stat_lock
);
939 sctx
->stat
.csum_errors
++;
940 spin_unlock(&sctx
->stat_lock
);
941 if (__ratelimit(&_rs
))
942 scrub_print_warning("checksum error", sblock_to_check
);
943 btrfs_dev_stat_inc_and_print(dev
,
944 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
945 } else if (sblock_bad
->header_error
) {
946 spin_lock(&sctx
->stat_lock
);
947 sctx
->stat
.verify_errors
++;
948 spin_unlock(&sctx
->stat_lock
);
949 if (__ratelimit(&_rs
))
950 scrub_print_warning("checksum/header error",
952 if (sblock_bad
->generation_error
)
953 btrfs_dev_stat_inc_and_print(dev
,
954 BTRFS_DEV_STAT_GENERATION_ERRS
);
956 btrfs_dev_stat_inc_and_print(dev
,
957 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
960 if (sctx
->readonly
) {
961 ASSERT(!sctx
->is_dev_replace
);
965 if (!is_metadata
&& !have_csum
) {
966 struct scrub_fixup_nodatasum
*fixup_nodatasum
;
969 WARN_ON(sctx
->is_dev_replace
);
972 * !is_metadata and !have_csum, this means that the data
973 * might not be COW'ed, that it might be modified
974 * concurrently. The general strategy to work on the
975 * commit root does not help in the case when COW is not
978 fixup_nodatasum
= kzalloc(sizeof(*fixup_nodatasum
), GFP_NOFS
);
979 if (!fixup_nodatasum
)
980 goto did_not_correct_error
;
981 fixup_nodatasum
->sctx
= sctx
;
982 fixup_nodatasum
->dev
= dev
;
983 fixup_nodatasum
->logical
= logical
;
984 fixup_nodatasum
->root
= fs_info
->extent_root
;
985 fixup_nodatasum
->mirror_num
= failed_mirror_index
+ 1;
986 scrub_pending_trans_workers_inc(sctx
);
987 btrfs_init_work(&fixup_nodatasum
->work
, btrfs_scrub_helper
,
988 scrub_fixup_nodatasum
, NULL
, NULL
);
989 btrfs_queue_work(fs_info
->scrub_workers
,
990 &fixup_nodatasum
->work
);
995 * now build and submit the bios for the other mirrors, check
997 * First try to pick the mirror which is completely without I/O
998 * errors and also does not have a checksum error.
999 * If one is found, and if a checksum is present, the full block
1000 * that is known to contain an error is rewritten. Afterwards
1001 * the block is known to be corrected.
1002 * If a mirror is found which is completely correct, and no
1003 * checksum is present, only those pages are rewritten that had
1004 * an I/O error in the block to be repaired, since it cannot be
1005 * determined, which copy of the other pages is better (and it
1006 * could happen otherwise that a correct page would be
1007 * overwritten by a bad one).
1009 for (mirror_index
= 0;
1010 mirror_index
< BTRFS_MAX_MIRRORS
&&
1011 sblocks_for_recheck
[mirror_index
].page_count
> 0;
1013 struct scrub_block
*sblock_other
;
1015 if (mirror_index
== failed_mirror_index
)
1017 sblock_other
= sblocks_for_recheck
+ mirror_index
;
1019 /* build and submit the bios, check checksums */
1020 scrub_recheck_block(fs_info
, sblock_other
, is_metadata
,
1021 have_csum
, csum
, generation
,
1024 if (!sblock_other
->header_error
&&
1025 !sblock_other
->checksum_error
&&
1026 sblock_other
->no_io_error_seen
) {
1027 if (sctx
->is_dev_replace
) {
1028 scrub_write_block_to_dev_replace(sblock_other
);
1030 int force_write
= is_metadata
|| have_csum
;
1032 ret
= scrub_repair_block_from_good_copy(
1033 sblock_bad
, sblock_other
,
1037 goto corrected_error
;
1042 * for dev_replace, pick good pages and write to the target device.
1044 if (sctx
->is_dev_replace
) {
1046 for (page_num
= 0; page_num
< sblock_bad
->page_count
;
1051 for (mirror_index
= 0;
1052 mirror_index
< BTRFS_MAX_MIRRORS
&&
1053 sblocks_for_recheck
[mirror_index
].page_count
> 0;
1055 struct scrub_block
*sblock_other
=
1056 sblocks_for_recheck
+ mirror_index
;
1057 struct scrub_page
*page_other
=
1058 sblock_other
->pagev
[page_num
];
1060 if (!page_other
->io_error
) {
1061 ret
= scrub_write_page_to_dev_replace(
1062 sblock_other
, page_num
);
1064 /* succeeded for this page */
1068 btrfs_dev_replace_stats_inc(
1070 fs_info
->dev_replace
.
1078 * did not find a mirror to fetch the page
1079 * from. scrub_write_page_to_dev_replace()
1080 * handles this case (page->io_error), by
1081 * filling the block with zeros before
1082 * submitting the write request
1085 ret
= scrub_write_page_to_dev_replace(
1086 sblock_bad
, page_num
);
1088 btrfs_dev_replace_stats_inc(
1089 &sctx
->dev_root
->fs_info
->
1090 dev_replace
.num_write_errors
);
1098 * for regular scrub, repair those pages that are errored.
1099 * In case of I/O errors in the area that is supposed to be
1100 * repaired, continue by picking good copies of those pages.
1101 * Select the good pages from mirrors to rewrite bad pages from
1102 * the area to fix. Afterwards verify the checksum of the block
1103 * that is supposed to be repaired. This verification step is
1104 * only done for the purpose of statistic counting and for the
1105 * final scrub report, whether errors remain.
1106 * A perfect algorithm could make use of the checksum and try
1107 * all possible combinations of pages from the different mirrors
1108 * until the checksum verification succeeds. For example, when
1109 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1110 * of mirror #2 is readable but the final checksum test fails,
1111 * then the 2nd page of mirror #3 could be tried, whether now
1112 * the final checksum succeedes. But this would be a rare
1113 * exception and is therefore not implemented. At least it is
1114 * avoided that the good copy is overwritten.
1115 * A more useful improvement would be to pick the sectors
1116 * without I/O error based on sector sizes (512 bytes on legacy
1117 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1118 * mirror could be repaired by taking 512 byte of a different
1119 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1120 * area are unreadable.
1123 /* can only fix I/O errors from here on */
1124 if (sblock_bad
->no_io_error_seen
)
1125 goto did_not_correct_error
;
1128 for (page_num
= 0; page_num
< sblock_bad
->page_count
; page_num
++) {
1129 struct scrub_page
*page_bad
= sblock_bad
->pagev
[page_num
];
1131 if (!page_bad
->io_error
)
1134 for (mirror_index
= 0;
1135 mirror_index
< BTRFS_MAX_MIRRORS
&&
1136 sblocks_for_recheck
[mirror_index
].page_count
> 0;
1138 struct scrub_block
*sblock_other
= sblocks_for_recheck
+
1140 struct scrub_page
*page_other
= sblock_other
->pagev
[
1143 if (!page_other
->io_error
) {
1144 ret
= scrub_repair_page_from_good_copy(
1145 sblock_bad
, sblock_other
, page_num
, 0);
1147 page_bad
->io_error
= 0;
1148 break; /* succeeded for this page */
1153 if (page_bad
->io_error
) {
1154 /* did not find a mirror to copy the page from */
1160 if (is_metadata
|| have_csum
) {
1162 * need to verify the checksum now that all
1163 * sectors on disk are repaired (the write
1164 * request for data to be repaired is on its way).
1165 * Just be lazy and use scrub_recheck_block()
1166 * which re-reads the data before the checksum
1167 * is verified, but most likely the data comes out
1168 * of the page cache.
1170 scrub_recheck_block(fs_info
, sblock_bad
,
1171 is_metadata
, have_csum
, csum
,
1172 generation
, sctx
->csum_size
);
1173 if (!sblock_bad
->header_error
&&
1174 !sblock_bad
->checksum_error
&&
1175 sblock_bad
->no_io_error_seen
)
1176 goto corrected_error
;
1178 goto did_not_correct_error
;
1181 spin_lock(&sctx
->stat_lock
);
1182 sctx
->stat
.corrected_errors
++;
1183 spin_unlock(&sctx
->stat_lock
);
1184 printk_ratelimited_in_rcu(KERN_ERR
1185 "BTRFS: fixed up error at logical %llu on dev %s\n",
1186 logical
, rcu_str_deref(dev
->name
));
1189 did_not_correct_error
:
1190 spin_lock(&sctx
->stat_lock
);
1191 sctx
->stat
.uncorrectable_errors
++;
1192 spin_unlock(&sctx
->stat_lock
);
1193 printk_ratelimited_in_rcu(KERN_ERR
1194 "BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
1195 logical
, rcu_str_deref(dev
->name
));
1199 if (sblocks_for_recheck
) {
1200 for (mirror_index
= 0; mirror_index
< BTRFS_MAX_MIRRORS
;
1202 struct scrub_block
*sblock
= sblocks_for_recheck
+
1206 for (page_index
= 0; page_index
< sblock
->page_count
;
1208 sblock
->pagev
[page_index
]->sblock
= NULL
;
1209 scrub_page_put(sblock
->pagev
[page_index
]);
1212 kfree(sblocks_for_recheck
);
1218 static int scrub_setup_recheck_block(struct scrub_ctx
*sctx
,
1219 struct btrfs_fs_info
*fs_info
,
1220 struct scrub_block
*original_sblock
,
1221 u64 length
, u64 logical
,
1222 struct scrub_block
*sblocks_for_recheck
)
1229 * note: the two members ref_count and outstanding_pages
1230 * are not used (and not set) in the blocks that are used for
1231 * the recheck procedure
1235 while (length
> 0) {
1236 u64 sublen
= min_t(u64
, length
, PAGE_SIZE
);
1237 u64 mapped_length
= sublen
;
1238 struct btrfs_bio
*bbio
= NULL
;
1241 * with a length of PAGE_SIZE, each returned stripe
1242 * represents one mirror
1244 ret
= btrfs_map_block(fs_info
, REQ_GET_READ_MIRRORS
, logical
,
1245 &mapped_length
, &bbio
, 0);
1246 if (ret
|| !bbio
|| mapped_length
< sublen
) {
1251 BUG_ON(page_index
>= SCRUB_PAGES_PER_RD_BIO
);
1252 for (mirror_index
= 0; mirror_index
< (int)bbio
->num_stripes
;
1254 struct scrub_block
*sblock
;
1255 struct scrub_page
*page
;
1257 if (mirror_index
>= BTRFS_MAX_MIRRORS
)
1260 sblock
= sblocks_for_recheck
+ mirror_index
;
1261 sblock
->sctx
= sctx
;
1262 page
= kzalloc(sizeof(*page
), GFP_NOFS
);
1265 spin_lock(&sctx
->stat_lock
);
1266 sctx
->stat
.malloc_errors
++;
1267 spin_unlock(&sctx
->stat_lock
);
1271 scrub_page_get(page
);
1272 sblock
->pagev
[page_index
] = page
;
1273 page
->logical
= logical
;
1274 page
->physical
= bbio
->stripes
[mirror_index
].physical
;
1275 BUG_ON(page_index
>= original_sblock
->page_count
);
1276 page
->physical_for_dev_replace
=
1277 original_sblock
->pagev
[page_index
]->
1278 physical_for_dev_replace
;
1279 /* for missing devices, dev->bdev is NULL */
1280 page
->dev
= bbio
->stripes
[mirror_index
].dev
;
1281 page
->mirror_num
= mirror_index
+ 1;
1282 sblock
->page_count
++;
1283 page
->page
= alloc_page(GFP_NOFS
);
1297 * this function will check the on disk data for checksum errors, header
1298 * errors and read I/O errors. If any I/O errors happen, the exact pages
1299 * which are errored are marked as being bad. The goal is to enable scrub
1300 * to take those pages that are not errored from all the mirrors so that
1301 * the pages that are errored in the just handled mirror can be repaired.
1303 static void scrub_recheck_block(struct btrfs_fs_info
*fs_info
,
1304 struct scrub_block
*sblock
, int is_metadata
,
1305 int have_csum
, u8
*csum
, u64 generation
,
1310 sblock
->no_io_error_seen
= 1;
1311 sblock
->header_error
= 0;
1312 sblock
->checksum_error
= 0;
1314 for (page_num
= 0; page_num
< sblock
->page_count
; page_num
++) {
1316 struct scrub_page
*page
= sblock
->pagev
[page_num
];
1318 if (page
->dev
->bdev
== NULL
) {
1320 sblock
->no_io_error_seen
= 0;
1324 WARN_ON(!page
->page
);
1325 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 1);
1328 sblock
->no_io_error_seen
= 0;
1331 bio
->bi_bdev
= page
->dev
->bdev
;
1332 bio
->bi_iter
.bi_sector
= page
->physical
>> 9;
1334 bio_add_page(bio
, page
->page
, PAGE_SIZE
, 0);
1335 if (btrfsic_submit_bio_wait(READ
, bio
))
1336 sblock
->no_io_error_seen
= 0;
1341 if (sblock
->no_io_error_seen
)
1342 scrub_recheck_block_checksum(fs_info
, sblock
, is_metadata
,
1343 have_csum
, csum
, generation
,
1349 static inline int scrub_check_fsid(u8 fsid
[],
1350 struct scrub_page
*spage
)
1352 struct btrfs_fs_devices
*fs_devices
= spage
->dev
->fs_devices
;
1355 ret
= memcmp(fsid
, fs_devices
->fsid
, BTRFS_UUID_SIZE
);
1359 static void scrub_recheck_block_checksum(struct btrfs_fs_info
*fs_info
,
1360 struct scrub_block
*sblock
,
1361 int is_metadata
, int have_csum
,
1362 const u8
*csum
, u64 generation
,
1366 u8 calculated_csum
[BTRFS_CSUM_SIZE
];
1368 void *mapped_buffer
;
1370 WARN_ON(!sblock
->pagev
[0]->page
);
1372 struct btrfs_header
*h
;
1374 mapped_buffer
= kmap_atomic(sblock
->pagev
[0]->page
);
1375 h
= (struct btrfs_header
*)mapped_buffer
;
1377 if (sblock
->pagev
[0]->logical
!= btrfs_stack_header_bytenr(h
) ||
1378 !scrub_check_fsid(h
->fsid
, sblock
->pagev
[0]) ||
1379 memcmp(h
->chunk_tree_uuid
, fs_info
->chunk_tree_uuid
,
1381 sblock
->header_error
= 1;
1382 } else if (generation
!= btrfs_stack_header_generation(h
)) {
1383 sblock
->header_error
= 1;
1384 sblock
->generation_error
= 1;
1391 mapped_buffer
= kmap_atomic(sblock
->pagev
[0]->page
);
1394 for (page_num
= 0;;) {
1395 if (page_num
== 0 && is_metadata
)
1396 crc
= btrfs_csum_data(
1397 ((u8
*)mapped_buffer
) + BTRFS_CSUM_SIZE
,
1398 crc
, PAGE_SIZE
- BTRFS_CSUM_SIZE
);
1400 crc
= btrfs_csum_data(mapped_buffer
, crc
, PAGE_SIZE
);
1402 kunmap_atomic(mapped_buffer
);
1404 if (page_num
>= sblock
->page_count
)
1406 WARN_ON(!sblock
->pagev
[page_num
]->page
);
1408 mapped_buffer
= kmap_atomic(sblock
->pagev
[page_num
]->page
);
1411 btrfs_csum_final(crc
, calculated_csum
);
1412 if (memcmp(calculated_csum
, csum
, csum_size
))
1413 sblock
->checksum_error
= 1;
1416 static int scrub_repair_block_from_good_copy(struct scrub_block
*sblock_bad
,
1417 struct scrub_block
*sblock_good
,
1423 for (page_num
= 0; page_num
< sblock_bad
->page_count
; page_num
++) {
1426 ret_sub
= scrub_repair_page_from_good_copy(sblock_bad
,
1437 static int scrub_repair_page_from_good_copy(struct scrub_block
*sblock_bad
,
1438 struct scrub_block
*sblock_good
,
1439 int page_num
, int force_write
)
1441 struct scrub_page
*page_bad
= sblock_bad
->pagev
[page_num
];
1442 struct scrub_page
*page_good
= sblock_good
->pagev
[page_num
];
1444 BUG_ON(page_bad
->page
== NULL
);
1445 BUG_ON(page_good
->page
== NULL
);
1446 if (force_write
|| sblock_bad
->header_error
||
1447 sblock_bad
->checksum_error
|| page_bad
->io_error
) {
1451 if (!page_bad
->dev
->bdev
) {
1452 printk_ratelimited(KERN_WARNING
"BTRFS: "
1453 "scrub_repair_page_from_good_copy(bdev == NULL) "
1454 "is unexpected!\n");
1458 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 1);
1461 bio
->bi_bdev
= page_bad
->dev
->bdev
;
1462 bio
->bi_iter
.bi_sector
= page_bad
->physical
>> 9;
1464 ret
= bio_add_page(bio
, page_good
->page
, PAGE_SIZE
, 0);
1465 if (PAGE_SIZE
!= ret
) {
1470 if (btrfsic_submit_bio_wait(WRITE
, bio
)) {
1471 btrfs_dev_stat_inc_and_print(page_bad
->dev
,
1472 BTRFS_DEV_STAT_WRITE_ERRS
);
1473 btrfs_dev_replace_stats_inc(
1474 &sblock_bad
->sctx
->dev_root
->fs_info
->
1475 dev_replace
.num_write_errors
);
1485 static void scrub_write_block_to_dev_replace(struct scrub_block
*sblock
)
1489 for (page_num
= 0; page_num
< sblock
->page_count
; page_num
++) {
1492 ret
= scrub_write_page_to_dev_replace(sblock
, page_num
);
1494 btrfs_dev_replace_stats_inc(
1495 &sblock
->sctx
->dev_root
->fs_info
->dev_replace
.
1500 static int scrub_write_page_to_dev_replace(struct scrub_block
*sblock
,
1503 struct scrub_page
*spage
= sblock
->pagev
[page_num
];
1505 BUG_ON(spage
->page
== NULL
);
1506 if (spage
->io_error
) {
1507 void *mapped_buffer
= kmap_atomic(spage
->page
);
1509 memset(mapped_buffer
, 0, PAGE_CACHE_SIZE
);
1510 flush_dcache_page(spage
->page
);
1511 kunmap_atomic(mapped_buffer
);
1513 return scrub_add_page_to_wr_bio(sblock
->sctx
, spage
);
1516 static int scrub_add_page_to_wr_bio(struct scrub_ctx
*sctx
,
1517 struct scrub_page
*spage
)
1519 struct scrub_wr_ctx
*wr_ctx
= &sctx
->wr_ctx
;
1520 struct scrub_bio
*sbio
;
1523 mutex_lock(&wr_ctx
->wr_lock
);
1525 if (!wr_ctx
->wr_curr_bio
) {
1526 wr_ctx
->wr_curr_bio
= kzalloc(sizeof(*wr_ctx
->wr_curr_bio
),
1528 if (!wr_ctx
->wr_curr_bio
) {
1529 mutex_unlock(&wr_ctx
->wr_lock
);
1532 wr_ctx
->wr_curr_bio
->sctx
= sctx
;
1533 wr_ctx
->wr_curr_bio
->page_count
= 0;
1535 sbio
= wr_ctx
->wr_curr_bio
;
1536 if (sbio
->page_count
== 0) {
1539 sbio
->physical
= spage
->physical_for_dev_replace
;
1540 sbio
->logical
= spage
->logical
;
1541 sbio
->dev
= wr_ctx
->tgtdev
;
1544 bio
= btrfs_io_bio_alloc(GFP_NOFS
, wr_ctx
->pages_per_wr_bio
);
1546 mutex_unlock(&wr_ctx
->wr_lock
);
1552 bio
->bi_private
= sbio
;
1553 bio
->bi_end_io
= scrub_wr_bio_end_io
;
1554 bio
->bi_bdev
= sbio
->dev
->bdev
;
1555 bio
->bi_iter
.bi_sector
= sbio
->physical
>> 9;
1557 } else if (sbio
->physical
+ sbio
->page_count
* PAGE_SIZE
!=
1558 spage
->physical_for_dev_replace
||
1559 sbio
->logical
+ sbio
->page_count
* PAGE_SIZE
!=
1561 scrub_wr_submit(sctx
);
1565 ret
= bio_add_page(sbio
->bio
, spage
->page
, PAGE_SIZE
, 0);
1566 if (ret
!= PAGE_SIZE
) {
1567 if (sbio
->page_count
< 1) {
1570 mutex_unlock(&wr_ctx
->wr_lock
);
1573 scrub_wr_submit(sctx
);
1577 sbio
->pagev
[sbio
->page_count
] = spage
;
1578 scrub_page_get(spage
);
1580 if (sbio
->page_count
== wr_ctx
->pages_per_wr_bio
)
1581 scrub_wr_submit(sctx
);
1582 mutex_unlock(&wr_ctx
->wr_lock
);
1587 static void scrub_wr_submit(struct scrub_ctx
*sctx
)
1589 struct scrub_wr_ctx
*wr_ctx
= &sctx
->wr_ctx
;
1590 struct scrub_bio
*sbio
;
1592 if (!wr_ctx
->wr_curr_bio
)
1595 sbio
= wr_ctx
->wr_curr_bio
;
1596 wr_ctx
->wr_curr_bio
= NULL
;
1597 WARN_ON(!sbio
->bio
->bi_bdev
);
1598 scrub_pending_bio_inc(sctx
);
1599 /* process all writes in a single worker thread. Then the block layer
1600 * orders the requests before sending them to the driver which
1601 * doubled the write performance on spinning disks when measured
1603 btrfsic_submit_bio(WRITE
, sbio
->bio
);
1606 static void scrub_wr_bio_end_io(struct bio
*bio
, int err
)
1608 struct scrub_bio
*sbio
= bio
->bi_private
;
1609 struct btrfs_fs_info
*fs_info
= sbio
->dev
->dev_root
->fs_info
;
1614 btrfs_init_work(&sbio
->work
, btrfs_scrubwrc_helper
,
1615 scrub_wr_bio_end_io_worker
, NULL
, NULL
);
1616 btrfs_queue_work(fs_info
->scrub_wr_completion_workers
, &sbio
->work
);
1619 static void scrub_wr_bio_end_io_worker(struct btrfs_work
*work
)
1621 struct scrub_bio
*sbio
= container_of(work
, struct scrub_bio
, work
);
1622 struct scrub_ctx
*sctx
= sbio
->sctx
;
1625 WARN_ON(sbio
->page_count
> SCRUB_PAGES_PER_WR_BIO
);
1627 struct btrfs_dev_replace
*dev_replace
=
1628 &sbio
->sctx
->dev_root
->fs_info
->dev_replace
;
1630 for (i
= 0; i
< sbio
->page_count
; i
++) {
1631 struct scrub_page
*spage
= sbio
->pagev
[i
];
1633 spage
->io_error
= 1;
1634 btrfs_dev_replace_stats_inc(&dev_replace
->
1639 for (i
= 0; i
< sbio
->page_count
; i
++)
1640 scrub_page_put(sbio
->pagev
[i
]);
1644 scrub_pending_bio_dec(sctx
);
1647 static int scrub_checksum(struct scrub_block
*sblock
)
1652 WARN_ON(sblock
->page_count
< 1);
1653 flags
= sblock
->pagev
[0]->flags
;
1655 if (flags
& BTRFS_EXTENT_FLAG_DATA
)
1656 ret
= scrub_checksum_data(sblock
);
1657 else if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1658 ret
= scrub_checksum_tree_block(sblock
);
1659 else if (flags
& BTRFS_EXTENT_FLAG_SUPER
)
1660 (void)scrub_checksum_super(sblock
);
1664 scrub_handle_errored_block(sblock
);
1669 static int scrub_checksum_data(struct scrub_block
*sblock
)
1671 struct scrub_ctx
*sctx
= sblock
->sctx
;
1672 u8 csum
[BTRFS_CSUM_SIZE
];
1681 BUG_ON(sblock
->page_count
< 1);
1682 if (!sblock
->pagev
[0]->have_csum
)
1685 on_disk_csum
= sblock
->pagev
[0]->csum
;
1686 page
= sblock
->pagev
[0]->page
;
1687 buffer
= kmap_atomic(page
);
1689 len
= sctx
->sectorsize
;
1692 u64 l
= min_t(u64
, len
, PAGE_SIZE
);
1694 crc
= btrfs_csum_data(buffer
, crc
, l
);
1695 kunmap_atomic(buffer
);
1700 BUG_ON(index
>= sblock
->page_count
);
1701 BUG_ON(!sblock
->pagev
[index
]->page
);
1702 page
= sblock
->pagev
[index
]->page
;
1703 buffer
= kmap_atomic(page
);
1706 btrfs_csum_final(crc
, csum
);
1707 if (memcmp(csum
, on_disk_csum
, sctx
->csum_size
))
1713 static int scrub_checksum_tree_block(struct scrub_block
*sblock
)
1715 struct scrub_ctx
*sctx
= sblock
->sctx
;
1716 struct btrfs_header
*h
;
1717 struct btrfs_root
*root
= sctx
->dev_root
;
1718 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1719 u8 calculated_csum
[BTRFS_CSUM_SIZE
];
1720 u8 on_disk_csum
[BTRFS_CSUM_SIZE
];
1722 void *mapped_buffer
;
1731 BUG_ON(sblock
->page_count
< 1);
1732 page
= sblock
->pagev
[0]->page
;
1733 mapped_buffer
= kmap_atomic(page
);
1734 h
= (struct btrfs_header
*)mapped_buffer
;
1735 memcpy(on_disk_csum
, h
->csum
, sctx
->csum_size
);
1738 * we don't use the getter functions here, as we
1739 * a) don't have an extent buffer and
1740 * b) the page is already kmapped
1743 if (sblock
->pagev
[0]->logical
!= btrfs_stack_header_bytenr(h
))
1746 if (sblock
->pagev
[0]->generation
!= btrfs_stack_header_generation(h
))
1749 if (!scrub_check_fsid(h
->fsid
, sblock
->pagev
[0]))
1752 if (memcmp(h
->chunk_tree_uuid
, fs_info
->chunk_tree_uuid
,
1756 len
= sctx
->nodesize
- BTRFS_CSUM_SIZE
;
1757 mapped_size
= PAGE_SIZE
- BTRFS_CSUM_SIZE
;
1758 p
= ((u8
*)mapped_buffer
) + BTRFS_CSUM_SIZE
;
1761 u64 l
= min_t(u64
, len
, mapped_size
);
1763 crc
= btrfs_csum_data(p
, crc
, l
);
1764 kunmap_atomic(mapped_buffer
);
1769 BUG_ON(index
>= sblock
->page_count
);
1770 BUG_ON(!sblock
->pagev
[index
]->page
);
1771 page
= sblock
->pagev
[index
]->page
;
1772 mapped_buffer
= kmap_atomic(page
);
1773 mapped_size
= PAGE_SIZE
;
1777 btrfs_csum_final(crc
, calculated_csum
);
1778 if (memcmp(calculated_csum
, on_disk_csum
, sctx
->csum_size
))
1781 return fail
|| crc_fail
;
1784 static int scrub_checksum_super(struct scrub_block
*sblock
)
1786 struct btrfs_super_block
*s
;
1787 struct scrub_ctx
*sctx
= sblock
->sctx
;
1788 u8 calculated_csum
[BTRFS_CSUM_SIZE
];
1789 u8 on_disk_csum
[BTRFS_CSUM_SIZE
];
1791 void *mapped_buffer
;
1800 BUG_ON(sblock
->page_count
< 1);
1801 page
= sblock
->pagev
[0]->page
;
1802 mapped_buffer
= kmap_atomic(page
);
1803 s
= (struct btrfs_super_block
*)mapped_buffer
;
1804 memcpy(on_disk_csum
, s
->csum
, sctx
->csum_size
);
1806 if (sblock
->pagev
[0]->logical
!= btrfs_super_bytenr(s
))
1809 if (sblock
->pagev
[0]->generation
!= btrfs_super_generation(s
))
1812 if (!scrub_check_fsid(s
->fsid
, sblock
->pagev
[0]))
1815 len
= BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
;
1816 mapped_size
= PAGE_SIZE
- BTRFS_CSUM_SIZE
;
1817 p
= ((u8
*)mapped_buffer
) + BTRFS_CSUM_SIZE
;
1820 u64 l
= min_t(u64
, len
, mapped_size
);
1822 crc
= btrfs_csum_data(p
, crc
, l
);
1823 kunmap_atomic(mapped_buffer
);
1828 BUG_ON(index
>= sblock
->page_count
);
1829 BUG_ON(!sblock
->pagev
[index
]->page
);
1830 page
= sblock
->pagev
[index
]->page
;
1831 mapped_buffer
= kmap_atomic(page
);
1832 mapped_size
= PAGE_SIZE
;
1836 btrfs_csum_final(crc
, calculated_csum
);
1837 if (memcmp(calculated_csum
, on_disk_csum
, sctx
->csum_size
))
1840 if (fail_cor
+ fail_gen
) {
1842 * if we find an error in a super block, we just report it.
1843 * They will get written with the next transaction commit
1846 spin_lock(&sctx
->stat_lock
);
1847 ++sctx
->stat
.super_errors
;
1848 spin_unlock(&sctx
->stat_lock
);
1850 btrfs_dev_stat_inc_and_print(sblock
->pagev
[0]->dev
,
1851 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
1853 btrfs_dev_stat_inc_and_print(sblock
->pagev
[0]->dev
,
1854 BTRFS_DEV_STAT_GENERATION_ERRS
);
1857 return fail_cor
+ fail_gen
;
1860 static void scrub_block_get(struct scrub_block
*sblock
)
1862 atomic_inc(&sblock
->ref_count
);
1865 static void scrub_block_put(struct scrub_block
*sblock
)
1867 if (atomic_dec_and_test(&sblock
->ref_count
)) {
1870 for (i
= 0; i
< sblock
->page_count
; i
++)
1871 scrub_page_put(sblock
->pagev
[i
]);
1876 static void scrub_page_get(struct scrub_page
*spage
)
1878 atomic_inc(&spage
->ref_count
);
1881 static void scrub_page_put(struct scrub_page
*spage
)
1883 if (atomic_dec_and_test(&spage
->ref_count
)) {
1885 __free_page(spage
->page
);
1890 static void scrub_submit(struct scrub_ctx
*sctx
)
1892 struct scrub_bio
*sbio
;
1894 if (sctx
->curr
== -1)
1897 sbio
= sctx
->bios
[sctx
->curr
];
1899 scrub_pending_bio_inc(sctx
);
1901 if (!sbio
->bio
->bi_bdev
) {
1903 * this case should not happen. If btrfs_map_block() is
1904 * wrong, it could happen for dev-replace operations on
1905 * missing devices when no mirrors are available, but in
1906 * this case it should already fail the mount.
1907 * This case is handled correctly (but _very_ slowly).
1909 printk_ratelimited(KERN_WARNING
1910 "BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
1911 bio_endio(sbio
->bio
, -EIO
);
1913 btrfsic_submit_bio(READ
, sbio
->bio
);
1917 static int scrub_add_page_to_rd_bio(struct scrub_ctx
*sctx
,
1918 struct scrub_page
*spage
)
1920 struct scrub_block
*sblock
= spage
->sblock
;
1921 struct scrub_bio
*sbio
;
1926 * grab a fresh bio or wait for one to become available
1928 while (sctx
->curr
== -1) {
1929 spin_lock(&sctx
->list_lock
);
1930 sctx
->curr
= sctx
->first_free
;
1931 if (sctx
->curr
!= -1) {
1932 sctx
->first_free
= sctx
->bios
[sctx
->curr
]->next_free
;
1933 sctx
->bios
[sctx
->curr
]->next_free
= -1;
1934 sctx
->bios
[sctx
->curr
]->page_count
= 0;
1935 spin_unlock(&sctx
->list_lock
);
1937 spin_unlock(&sctx
->list_lock
);
1938 wait_event(sctx
->list_wait
, sctx
->first_free
!= -1);
1941 sbio
= sctx
->bios
[sctx
->curr
];
1942 if (sbio
->page_count
== 0) {
1945 sbio
->physical
= spage
->physical
;
1946 sbio
->logical
= spage
->logical
;
1947 sbio
->dev
= spage
->dev
;
1950 bio
= btrfs_io_bio_alloc(GFP_NOFS
, sctx
->pages_per_rd_bio
);
1956 bio
->bi_private
= sbio
;
1957 bio
->bi_end_io
= scrub_bio_end_io
;
1958 bio
->bi_bdev
= sbio
->dev
->bdev
;
1959 bio
->bi_iter
.bi_sector
= sbio
->physical
>> 9;
1961 } else if (sbio
->physical
+ sbio
->page_count
* PAGE_SIZE
!=
1963 sbio
->logical
+ sbio
->page_count
* PAGE_SIZE
!=
1965 sbio
->dev
!= spage
->dev
) {
1970 sbio
->pagev
[sbio
->page_count
] = spage
;
1971 ret
= bio_add_page(sbio
->bio
, spage
->page
, PAGE_SIZE
, 0);
1972 if (ret
!= PAGE_SIZE
) {
1973 if (sbio
->page_count
< 1) {
1982 scrub_block_get(sblock
); /* one for the page added to the bio */
1983 atomic_inc(&sblock
->outstanding_pages
);
1985 if (sbio
->page_count
== sctx
->pages_per_rd_bio
)
1991 static int scrub_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
1992 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
1993 u64 gen
, int mirror_num
, u8
*csum
, int force
,
1994 u64 physical_for_dev_replace
)
1996 struct scrub_block
*sblock
;
1999 sblock
= kzalloc(sizeof(*sblock
), GFP_NOFS
);
2001 spin_lock(&sctx
->stat_lock
);
2002 sctx
->stat
.malloc_errors
++;
2003 spin_unlock(&sctx
->stat_lock
);
2007 /* one ref inside this function, plus one for each page added to
2009 atomic_set(&sblock
->ref_count
, 1);
2010 sblock
->sctx
= sctx
;
2011 sblock
->no_io_error_seen
= 1;
2013 for (index
= 0; len
> 0; index
++) {
2014 struct scrub_page
*spage
;
2015 u64 l
= min_t(u64
, len
, PAGE_SIZE
);
2017 spage
= kzalloc(sizeof(*spage
), GFP_NOFS
);
2020 spin_lock(&sctx
->stat_lock
);
2021 sctx
->stat
.malloc_errors
++;
2022 spin_unlock(&sctx
->stat_lock
);
2023 scrub_block_put(sblock
);
2026 BUG_ON(index
>= SCRUB_MAX_PAGES_PER_BLOCK
);
2027 scrub_page_get(spage
);
2028 sblock
->pagev
[index
] = spage
;
2029 spage
->sblock
= sblock
;
2031 spage
->flags
= flags
;
2032 spage
->generation
= gen
;
2033 spage
->logical
= logical
;
2034 spage
->physical
= physical
;
2035 spage
->physical_for_dev_replace
= physical_for_dev_replace
;
2036 spage
->mirror_num
= mirror_num
;
2038 spage
->have_csum
= 1;
2039 memcpy(spage
->csum
, csum
, sctx
->csum_size
);
2041 spage
->have_csum
= 0;
2043 sblock
->page_count
++;
2044 spage
->page
= alloc_page(GFP_NOFS
);
2050 physical_for_dev_replace
+= l
;
2053 WARN_ON(sblock
->page_count
== 0);
2054 for (index
= 0; index
< sblock
->page_count
; index
++) {
2055 struct scrub_page
*spage
= sblock
->pagev
[index
];
2058 ret
= scrub_add_page_to_rd_bio(sctx
, spage
);
2060 scrub_block_put(sblock
);
2068 /* last one frees, either here or in bio completion for last page */
2069 scrub_block_put(sblock
);
2073 static void scrub_bio_end_io(struct bio
*bio
, int err
)
2075 struct scrub_bio
*sbio
= bio
->bi_private
;
2076 struct btrfs_fs_info
*fs_info
= sbio
->dev
->dev_root
->fs_info
;
2081 btrfs_queue_work(fs_info
->scrub_workers
, &sbio
->work
);
2084 static void scrub_bio_end_io_worker(struct btrfs_work
*work
)
2086 struct scrub_bio
*sbio
= container_of(work
, struct scrub_bio
, work
);
2087 struct scrub_ctx
*sctx
= sbio
->sctx
;
2090 BUG_ON(sbio
->page_count
> SCRUB_PAGES_PER_RD_BIO
);
2092 for (i
= 0; i
< sbio
->page_count
; i
++) {
2093 struct scrub_page
*spage
= sbio
->pagev
[i
];
2095 spage
->io_error
= 1;
2096 spage
->sblock
->no_io_error_seen
= 0;
2100 /* now complete the scrub_block items that have all pages completed */
2101 for (i
= 0; i
< sbio
->page_count
; i
++) {
2102 struct scrub_page
*spage
= sbio
->pagev
[i
];
2103 struct scrub_block
*sblock
= spage
->sblock
;
2105 if (atomic_dec_and_test(&sblock
->outstanding_pages
))
2106 scrub_block_complete(sblock
);
2107 scrub_block_put(sblock
);
2112 spin_lock(&sctx
->list_lock
);
2113 sbio
->next_free
= sctx
->first_free
;
2114 sctx
->first_free
= sbio
->index
;
2115 spin_unlock(&sctx
->list_lock
);
2117 if (sctx
->is_dev_replace
&&
2118 atomic_read(&sctx
->wr_ctx
.flush_all_writes
)) {
2119 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
2120 scrub_wr_submit(sctx
);
2121 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
2124 scrub_pending_bio_dec(sctx
);
2127 static void scrub_block_complete(struct scrub_block
*sblock
)
2129 if (!sblock
->no_io_error_seen
) {
2130 scrub_handle_errored_block(sblock
);
2133 * if has checksum error, write via repair mechanism in
2134 * dev replace case, otherwise write here in dev replace
2137 if (!scrub_checksum(sblock
) && sblock
->sctx
->is_dev_replace
)
2138 scrub_write_block_to_dev_replace(sblock
);
2142 static int scrub_find_csum(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
2145 struct btrfs_ordered_sum
*sum
= NULL
;
2146 unsigned long index
;
2147 unsigned long num_sectors
;
2149 while (!list_empty(&sctx
->csum_list
)) {
2150 sum
= list_first_entry(&sctx
->csum_list
,
2151 struct btrfs_ordered_sum
, list
);
2152 if (sum
->bytenr
> logical
)
2154 if (sum
->bytenr
+ sum
->len
> logical
)
2157 ++sctx
->stat
.csum_discards
;
2158 list_del(&sum
->list
);
2165 index
= ((u32
)(logical
- sum
->bytenr
)) / sctx
->sectorsize
;
2166 num_sectors
= sum
->len
/ sctx
->sectorsize
;
2167 memcpy(csum
, sum
->sums
+ index
, sctx
->csum_size
);
2168 if (index
== num_sectors
- 1) {
2169 list_del(&sum
->list
);
2175 /* scrub extent tries to collect up to 64 kB for each bio */
2176 static int scrub_extent(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
2177 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
2178 u64 gen
, int mirror_num
, u64 physical_for_dev_replace
)
2181 u8 csum
[BTRFS_CSUM_SIZE
];
2184 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2185 blocksize
= sctx
->sectorsize
;
2186 spin_lock(&sctx
->stat_lock
);
2187 sctx
->stat
.data_extents_scrubbed
++;
2188 sctx
->stat
.data_bytes_scrubbed
+= len
;
2189 spin_unlock(&sctx
->stat_lock
);
2190 } else if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
2191 blocksize
= sctx
->nodesize
;
2192 spin_lock(&sctx
->stat_lock
);
2193 sctx
->stat
.tree_extents_scrubbed
++;
2194 sctx
->stat
.tree_bytes_scrubbed
+= len
;
2195 spin_unlock(&sctx
->stat_lock
);
2197 blocksize
= sctx
->sectorsize
;
2202 u64 l
= min_t(u64
, len
, blocksize
);
2205 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2206 /* push csums to sbio */
2207 have_csum
= scrub_find_csum(sctx
, logical
, l
, csum
);
2209 ++sctx
->stat
.no_csum
;
2210 if (sctx
->is_dev_replace
&& !have_csum
) {
2211 ret
= copy_nocow_pages(sctx
, logical
, l
,
2213 physical_for_dev_replace
);
2214 goto behind_scrub_pages
;
2217 ret
= scrub_pages(sctx
, logical
, l
, physical
, dev
, flags
, gen
,
2218 mirror_num
, have_csum
? csum
: NULL
, 0,
2219 physical_for_dev_replace
);
2226 physical_for_dev_replace
+= l
;
2232 * Given a physical address, this will calculate it's
2233 * logical offset. if this is a parity stripe, it will return
2234 * the most left data stripe's logical offset.
2236 * return 0 if it is a data stripe, 1 means parity stripe.
2238 static int get_raid56_logic_offset(u64 physical
, int num
,
2239 struct map_lookup
*map
, u64
*offset
)
2248 last_offset
= (physical
- map
->stripes
[num
].physical
) *
2249 nr_data_stripes(map
);
2250 *offset
= last_offset
;
2251 for (i
= 0; i
< nr_data_stripes(map
); i
++) {
2252 *offset
= last_offset
+ i
* map
->stripe_len
;
2254 stripe_nr
= *offset
;
2255 do_div(stripe_nr
, map
->stripe_len
);
2256 do_div(stripe_nr
, nr_data_stripes(map
));
2258 /* Work out the disk rotation on this stripe-set */
2259 rot
= do_div(stripe_nr
, map
->num_stripes
);
2260 /* calculate which stripe this data locates */
2262 stripe_index
= rot
% map
->num_stripes
;
2263 if (stripe_index
== num
)
2265 if (stripe_index
< num
)
2268 *offset
= last_offset
+ j
* map
->stripe_len
;
2272 static noinline_for_stack
int scrub_stripe(struct scrub_ctx
*sctx
,
2273 struct map_lookup
*map
,
2274 struct btrfs_device
*scrub_dev
,
2275 int num
, u64 base
, u64 length
,
2278 struct btrfs_path
*path
;
2279 struct btrfs_fs_info
*fs_info
= sctx
->dev_root
->fs_info
;
2280 struct btrfs_root
*root
= fs_info
->extent_root
;
2281 struct btrfs_root
*csum_root
= fs_info
->csum_root
;
2282 struct btrfs_extent_item
*extent
;
2283 struct blk_plug plug
;
2288 struct extent_buffer
*l
;
2289 struct btrfs_key key
;
2296 struct reada_control
*reada1
;
2297 struct reada_control
*reada2
;
2298 struct btrfs_key key_start
;
2299 struct btrfs_key key_end
;
2300 u64 increment
= map
->stripe_len
;
2303 u64 extent_physical
;
2305 struct btrfs_device
*extent_dev
;
2306 int extent_mirror_num
;
2310 physical
= map
->stripes
[num
].physical
;
2312 do_div(nstripes
, map
->stripe_len
);
2313 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
2314 offset
= map
->stripe_len
* num
;
2315 increment
= map
->stripe_len
* map
->num_stripes
;
2317 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
2318 int factor
= map
->num_stripes
/ map
->sub_stripes
;
2319 offset
= map
->stripe_len
* (num
/ map
->sub_stripes
);
2320 increment
= map
->stripe_len
* factor
;
2321 mirror_num
= num
% map
->sub_stripes
+ 1;
2322 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
2323 increment
= map
->stripe_len
;
2324 mirror_num
= num
% map
->num_stripes
+ 1;
2325 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
2326 increment
= map
->stripe_len
;
2327 mirror_num
= num
% map
->num_stripes
+ 1;
2328 } else if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
|
2329 BTRFS_BLOCK_GROUP_RAID6
)) {
2330 get_raid56_logic_offset(physical
, num
, map
, &offset
);
2331 increment
= map
->stripe_len
* nr_data_stripes(map
);
2334 increment
= map
->stripe_len
;
2338 path
= btrfs_alloc_path();
2343 * work on commit root. The related disk blocks are static as
2344 * long as COW is applied. This means, it is save to rewrite
2345 * them to repair disk errors without any race conditions
2347 path
->search_commit_root
= 1;
2348 path
->skip_locking
= 1;
2351 * trigger the readahead for extent tree csum tree and wait for
2352 * completion. During readahead, the scrub is officially paused
2353 * to not hold off transaction commits
2355 logical
= base
+ offset
;
2356 physical_end
= physical
+ nstripes
* map
->stripe_len
;
2357 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
|
2358 BTRFS_BLOCK_GROUP_RAID6
)) {
2359 get_raid56_logic_offset(physical_end
, num
,
2363 logic_end
= logical
+ increment
* nstripes
;
2365 wait_event(sctx
->list_wait
,
2366 atomic_read(&sctx
->bios_in_flight
) == 0);
2367 scrub_blocked_if_needed(fs_info
);
2369 /* FIXME it might be better to start readahead at commit root */
2370 key_start
.objectid
= logical
;
2371 key_start
.type
= BTRFS_EXTENT_ITEM_KEY
;
2372 key_start
.offset
= (u64
)0;
2373 key_end
.objectid
= logic_end
;
2374 key_end
.type
= BTRFS_METADATA_ITEM_KEY
;
2375 key_end
.offset
= (u64
)-1;
2376 reada1
= btrfs_reada_add(root
, &key_start
, &key_end
);
2378 key_start
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
2379 key_start
.type
= BTRFS_EXTENT_CSUM_KEY
;
2380 key_start
.offset
= logical
;
2381 key_end
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
2382 key_end
.type
= BTRFS_EXTENT_CSUM_KEY
;
2383 key_end
.offset
= logic_end
;
2384 reada2
= btrfs_reada_add(csum_root
, &key_start
, &key_end
);
2386 if (!IS_ERR(reada1
))
2387 btrfs_reada_wait(reada1
);
2388 if (!IS_ERR(reada2
))
2389 btrfs_reada_wait(reada2
);
2393 * collect all data csums for the stripe to avoid seeking during
2394 * the scrub. This might currently (crc32) end up to be about 1MB
2396 blk_start_plug(&plug
);
2399 * now find all extents for each stripe and scrub them
2402 while (physical
< physical_end
) {
2403 /* for raid56, we skip parity stripe */
2404 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
|
2405 BTRFS_BLOCK_GROUP_RAID6
)) {
2406 ret
= get_raid56_logic_offset(physical
, num
,
2415 if (atomic_read(&fs_info
->scrub_cancel_req
) ||
2416 atomic_read(&sctx
->cancel_req
)) {
2421 * check to see if we have to pause
2423 if (atomic_read(&fs_info
->scrub_pause_req
)) {
2424 /* push queued extents */
2425 atomic_set(&sctx
->wr_ctx
.flush_all_writes
, 1);
2427 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
2428 scrub_wr_submit(sctx
);
2429 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
2430 wait_event(sctx
->list_wait
,
2431 atomic_read(&sctx
->bios_in_flight
) == 0);
2432 atomic_set(&sctx
->wr_ctx
.flush_all_writes
, 0);
2433 scrub_blocked_if_needed(fs_info
);
2436 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
2437 key
.type
= BTRFS_METADATA_ITEM_KEY
;
2439 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2440 key
.objectid
= logical
;
2441 key
.offset
= (u64
)-1;
2443 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2448 ret
= btrfs_previous_extent_item(root
, path
, 0);
2452 /* there's no smaller item, so stick with the
2454 btrfs_release_path(path
);
2455 ret
= btrfs_search_slot(NULL
, root
, &key
,
2467 slot
= path
->slots
[0];
2468 if (slot
>= btrfs_header_nritems(l
)) {
2469 ret
= btrfs_next_leaf(root
, path
);
2478 btrfs_item_key_to_cpu(l
, &key
, slot
);
2480 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
2481 bytes
= root
->nodesize
;
2485 if (key
.objectid
+ bytes
<= logical
)
2488 if (key
.type
!= BTRFS_EXTENT_ITEM_KEY
&&
2489 key
.type
!= BTRFS_METADATA_ITEM_KEY
)
2492 if (key
.objectid
>= logical
+ map
->stripe_len
) {
2493 /* out of this device extent */
2494 if (key
.objectid
>= logic_end
)
2499 extent
= btrfs_item_ptr(l
, slot
,
2500 struct btrfs_extent_item
);
2501 flags
= btrfs_extent_flags(l
, extent
);
2502 generation
= btrfs_extent_generation(l
, extent
);
2504 if (key
.objectid
< logical
&&
2505 (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)) {
2507 "scrub: tree block %llu spanning "
2508 "stripes, ignored. logical=%llu",
2509 key
.objectid
, logical
);
2514 extent_logical
= key
.objectid
;
2518 * trim extent to this stripe
2520 if (extent_logical
< logical
) {
2521 extent_len
-= logical
- extent_logical
;
2522 extent_logical
= logical
;
2524 if (extent_logical
+ extent_len
>
2525 logical
+ map
->stripe_len
) {
2526 extent_len
= logical
+ map
->stripe_len
-
2530 extent_physical
= extent_logical
- logical
+ physical
;
2531 extent_dev
= scrub_dev
;
2532 extent_mirror_num
= mirror_num
;
2534 scrub_remap_extent(fs_info
, extent_logical
,
2535 extent_len
, &extent_physical
,
2537 &extent_mirror_num
);
2539 ret
= btrfs_lookup_csums_range(csum_root
, logical
,
2540 logical
+ map
->stripe_len
- 1,
2541 &sctx
->csum_list
, 1);
2545 ret
= scrub_extent(sctx
, extent_logical
, extent_len
,
2546 extent_physical
, extent_dev
, flags
,
2547 generation
, extent_mirror_num
,
2548 extent_logical
- logical
+ physical
);
2552 scrub_free_csums(sctx
);
2553 if (extent_logical
+ extent_len
<
2554 key
.objectid
+ bytes
) {
2555 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID5
|
2556 BTRFS_BLOCK_GROUP_RAID6
)) {
2558 * loop until we find next data stripe
2559 * or we have finished all stripes.
2562 physical
+= map
->stripe_len
;
2563 ret
= get_raid56_logic_offset(
2567 } while (physical
< physical_end
&& ret
);
2569 physical
+= map
->stripe_len
;
2570 logical
+= increment
;
2572 if (logical
< key
.objectid
+ bytes
) {
2577 if (physical
>= physical_end
) {
2585 btrfs_release_path(path
);
2587 logical
+= increment
;
2588 physical
+= map
->stripe_len
;
2589 spin_lock(&sctx
->stat_lock
);
2591 sctx
->stat
.last_physical
= map
->stripes
[num
].physical
+
2594 sctx
->stat
.last_physical
= physical
;
2595 spin_unlock(&sctx
->stat_lock
);
2600 /* push queued extents */
2602 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
2603 scrub_wr_submit(sctx
);
2604 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
2606 blk_finish_plug(&plug
);
2607 btrfs_free_path(path
);
2608 return ret
< 0 ? ret
: 0;
2611 static noinline_for_stack
int scrub_chunk(struct scrub_ctx
*sctx
,
2612 struct btrfs_device
*scrub_dev
,
2613 u64 chunk_tree
, u64 chunk_objectid
,
2614 u64 chunk_offset
, u64 length
,
2615 u64 dev_offset
, int is_dev_replace
)
2617 struct btrfs_mapping_tree
*map_tree
=
2618 &sctx
->dev_root
->fs_info
->mapping_tree
;
2619 struct map_lookup
*map
;
2620 struct extent_map
*em
;
2624 read_lock(&map_tree
->map_tree
.lock
);
2625 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
2626 read_unlock(&map_tree
->map_tree
.lock
);
2631 map
= (struct map_lookup
*)em
->bdev
;
2632 if (em
->start
!= chunk_offset
)
2635 if (em
->len
< length
)
2638 for (i
= 0; i
< map
->num_stripes
; ++i
) {
2639 if (map
->stripes
[i
].dev
->bdev
== scrub_dev
->bdev
&&
2640 map
->stripes
[i
].physical
== dev_offset
) {
2641 ret
= scrub_stripe(sctx
, map
, scrub_dev
, i
,
2642 chunk_offset
, length
,
2649 free_extent_map(em
);
2654 static noinline_for_stack
2655 int scrub_enumerate_chunks(struct scrub_ctx
*sctx
,
2656 struct btrfs_device
*scrub_dev
, u64 start
, u64 end
,
2659 struct btrfs_dev_extent
*dev_extent
= NULL
;
2660 struct btrfs_path
*path
;
2661 struct btrfs_root
*root
= sctx
->dev_root
;
2662 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2669 struct extent_buffer
*l
;
2670 struct btrfs_key key
;
2671 struct btrfs_key found_key
;
2672 struct btrfs_block_group_cache
*cache
;
2673 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
2675 path
= btrfs_alloc_path();
2680 path
->search_commit_root
= 1;
2681 path
->skip_locking
= 1;
2683 key
.objectid
= scrub_dev
->devid
;
2685 key
.type
= BTRFS_DEV_EXTENT_KEY
;
2688 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2692 if (path
->slots
[0] >=
2693 btrfs_header_nritems(path
->nodes
[0])) {
2694 ret
= btrfs_next_leaf(root
, path
);
2701 slot
= path
->slots
[0];
2703 btrfs_item_key_to_cpu(l
, &found_key
, slot
);
2705 if (found_key
.objectid
!= scrub_dev
->devid
)
2708 if (found_key
.type
!= BTRFS_DEV_EXTENT_KEY
)
2711 if (found_key
.offset
>= end
)
2714 if (found_key
.offset
< key
.offset
)
2717 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
2718 length
= btrfs_dev_extent_length(l
, dev_extent
);
2720 if (found_key
.offset
+ length
<= start
)
2723 chunk_tree
= btrfs_dev_extent_chunk_tree(l
, dev_extent
);
2724 chunk_objectid
= btrfs_dev_extent_chunk_objectid(l
, dev_extent
);
2725 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
2728 * get a reference on the corresponding block group to prevent
2729 * the chunk from going away while we scrub it
2731 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
2733 /* some chunks are removed but not committed to disk yet,
2734 * continue scrubbing */
2738 dev_replace
->cursor_right
= found_key
.offset
+ length
;
2739 dev_replace
->cursor_left
= found_key
.offset
;
2740 dev_replace
->item_needs_writeback
= 1;
2741 ret
= scrub_chunk(sctx
, scrub_dev
, chunk_tree
, chunk_objectid
,
2742 chunk_offset
, length
, found_key
.offset
,
2746 * flush, submit all pending read and write bios, afterwards
2748 * Note that in the dev replace case, a read request causes
2749 * write requests that are submitted in the read completion
2750 * worker. Therefore in the current situation, it is required
2751 * that all write requests are flushed, so that all read and
2752 * write requests are really completed when bios_in_flight
2755 atomic_set(&sctx
->wr_ctx
.flush_all_writes
, 1);
2757 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
2758 scrub_wr_submit(sctx
);
2759 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
2761 wait_event(sctx
->list_wait
,
2762 atomic_read(&sctx
->bios_in_flight
) == 0);
2763 atomic_inc(&fs_info
->scrubs_paused
);
2764 wake_up(&fs_info
->scrub_pause_wait
);
2767 * must be called before we decrease @scrub_paused.
2768 * make sure we don't block transaction commit while
2769 * we are waiting pending workers finished.
2771 wait_event(sctx
->list_wait
,
2772 atomic_read(&sctx
->workers_pending
) == 0);
2773 atomic_set(&sctx
->wr_ctx
.flush_all_writes
, 0);
2775 mutex_lock(&fs_info
->scrub_lock
);
2776 __scrub_blocked_if_needed(fs_info
);
2777 atomic_dec(&fs_info
->scrubs_paused
);
2778 mutex_unlock(&fs_info
->scrub_lock
);
2779 wake_up(&fs_info
->scrub_pause_wait
);
2781 btrfs_put_block_group(cache
);
2784 if (is_dev_replace
&&
2785 atomic64_read(&dev_replace
->num_write_errors
) > 0) {
2789 if (sctx
->stat
.malloc_errors
> 0) {
2794 dev_replace
->cursor_left
= dev_replace
->cursor_right
;
2795 dev_replace
->item_needs_writeback
= 1;
2797 key
.offset
= found_key
.offset
+ length
;
2798 btrfs_release_path(path
);
2801 btrfs_free_path(path
);
2804 * ret can still be 1 from search_slot or next_leaf,
2805 * that's not an error
2807 return ret
< 0 ? ret
: 0;
2810 static noinline_for_stack
int scrub_supers(struct scrub_ctx
*sctx
,
2811 struct btrfs_device
*scrub_dev
)
2817 struct btrfs_root
*root
= sctx
->dev_root
;
2819 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
))
2822 /* Seed devices of a new filesystem has their own generation. */
2823 if (scrub_dev
->fs_devices
!= root
->fs_info
->fs_devices
)
2824 gen
= scrub_dev
->generation
;
2826 gen
= root
->fs_info
->last_trans_committed
;
2828 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
2829 bytenr
= btrfs_sb_offset(i
);
2830 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>
2831 scrub_dev
->commit_total_bytes
)
2834 ret
= scrub_pages(sctx
, bytenr
, BTRFS_SUPER_INFO_SIZE
, bytenr
,
2835 scrub_dev
, BTRFS_EXTENT_FLAG_SUPER
, gen
, i
,
2840 wait_event(sctx
->list_wait
, atomic_read(&sctx
->bios_in_flight
) == 0);
2846 * get a reference count on fs_info->scrub_workers. start worker if necessary
2848 static noinline_for_stack
int scrub_workers_get(struct btrfs_fs_info
*fs_info
,
2852 int flags
= WQ_FREEZABLE
| WQ_UNBOUND
;
2853 int max_active
= fs_info
->thread_pool_size
;
2855 if (fs_info
->scrub_workers_refcnt
== 0) {
2857 fs_info
->scrub_workers
=
2858 btrfs_alloc_workqueue("btrfs-scrub", flags
,
2861 fs_info
->scrub_workers
=
2862 btrfs_alloc_workqueue("btrfs-scrub", flags
,
2864 if (!fs_info
->scrub_workers
) {
2868 fs_info
->scrub_wr_completion_workers
=
2869 btrfs_alloc_workqueue("btrfs-scrubwrc", flags
,
2871 if (!fs_info
->scrub_wr_completion_workers
) {
2875 fs_info
->scrub_nocow_workers
=
2876 btrfs_alloc_workqueue("btrfs-scrubnc", flags
, 1, 0);
2877 if (!fs_info
->scrub_nocow_workers
) {
2882 ++fs_info
->scrub_workers_refcnt
;
2887 static noinline_for_stack
void scrub_workers_put(struct btrfs_fs_info
*fs_info
)
2889 if (--fs_info
->scrub_workers_refcnt
== 0) {
2890 btrfs_destroy_workqueue(fs_info
->scrub_workers
);
2891 btrfs_destroy_workqueue(fs_info
->scrub_wr_completion_workers
);
2892 btrfs_destroy_workqueue(fs_info
->scrub_nocow_workers
);
2894 WARN_ON(fs_info
->scrub_workers_refcnt
< 0);
2897 int btrfs_scrub_dev(struct btrfs_fs_info
*fs_info
, u64 devid
, u64 start
,
2898 u64 end
, struct btrfs_scrub_progress
*progress
,
2899 int readonly
, int is_dev_replace
)
2901 struct scrub_ctx
*sctx
;
2903 struct btrfs_device
*dev
;
2904 struct rcu_string
*name
;
2906 if (btrfs_fs_closing(fs_info
))
2909 if (fs_info
->chunk_root
->nodesize
> BTRFS_STRIPE_LEN
) {
2911 * in this case scrub is unable to calculate the checksum
2912 * the way scrub is implemented. Do not handle this
2913 * situation at all because it won't ever happen.
2916 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
2917 fs_info
->chunk_root
->nodesize
, BTRFS_STRIPE_LEN
);
2921 if (fs_info
->chunk_root
->sectorsize
!= PAGE_SIZE
) {
2922 /* not supported for data w/o checksums */
2924 "scrub: size assumption sectorsize != PAGE_SIZE "
2925 "(%d != %lu) fails",
2926 fs_info
->chunk_root
->sectorsize
, PAGE_SIZE
);
2930 if (fs_info
->chunk_root
->nodesize
>
2931 PAGE_SIZE
* SCRUB_MAX_PAGES_PER_BLOCK
||
2932 fs_info
->chunk_root
->sectorsize
>
2933 PAGE_SIZE
* SCRUB_MAX_PAGES_PER_BLOCK
) {
2935 * would exhaust the array bounds of pagev member in
2936 * struct scrub_block
2938 btrfs_err(fs_info
, "scrub: size assumption nodesize and sectorsize "
2939 "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
2940 fs_info
->chunk_root
->nodesize
,
2941 SCRUB_MAX_PAGES_PER_BLOCK
,
2942 fs_info
->chunk_root
->sectorsize
,
2943 SCRUB_MAX_PAGES_PER_BLOCK
);
2948 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2949 dev
= btrfs_find_device(fs_info
, devid
, NULL
, NULL
);
2950 if (!dev
|| (dev
->missing
&& !is_dev_replace
)) {
2951 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2955 if (!is_dev_replace
&& !readonly
&& !dev
->writeable
) {
2956 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2958 name
= rcu_dereference(dev
->name
);
2959 btrfs_err(fs_info
, "scrub: device %s is not writable",
2965 mutex_lock(&fs_info
->scrub_lock
);
2966 if (!dev
->in_fs_metadata
|| dev
->is_tgtdev_for_dev_replace
) {
2967 mutex_unlock(&fs_info
->scrub_lock
);
2968 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2972 btrfs_dev_replace_lock(&fs_info
->dev_replace
);
2973 if (dev
->scrub_device
||
2975 btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
))) {
2976 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
2977 mutex_unlock(&fs_info
->scrub_lock
);
2978 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2979 return -EINPROGRESS
;
2981 btrfs_dev_replace_unlock(&fs_info
->dev_replace
);
2983 ret
= scrub_workers_get(fs_info
, is_dev_replace
);
2985 mutex_unlock(&fs_info
->scrub_lock
);
2986 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2990 sctx
= scrub_setup_ctx(dev
, is_dev_replace
);
2992 mutex_unlock(&fs_info
->scrub_lock
);
2993 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2994 scrub_workers_put(fs_info
);
2995 return PTR_ERR(sctx
);
2997 sctx
->readonly
= readonly
;
2998 dev
->scrub_device
= sctx
;
2999 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3002 * checking @scrub_pause_req here, we can avoid
3003 * race between committing transaction and scrubbing.
3005 __scrub_blocked_if_needed(fs_info
);
3006 atomic_inc(&fs_info
->scrubs_running
);
3007 mutex_unlock(&fs_info
->scrub_lock
);
3009 if (!is_dev_replace
) {
3011 * by holding device list mutex, we can
3012 * kick off writing super in log tree sync.
3014 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
3015 ret
= scrub_supers(sctx
, dev
);
3016 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3020 ret
= scrub_enumerate_chunks(sctx
, dev
, start
, end
,
3023 wait_event(sctx
->list_wait
, atomic_read(&sctx
->bios_in_flight
) == 0);
3024 atomic_dec(&fs_info
->scrubs_running
);
3025 wake_up(&fs_info
->scrub_pause_wait
);
3027 wait_event(sctx
->list_wait
, atomic_read(&sctx
->workers_pending
) == 0);
3030 memcpy(progress
, &sctx
->stat
, sizeof(*progress
));
3032 mutex_lock(&fs_info
->scrub_lock
);
3033 dev
->scrub_device
= NULL
;
3034 scrub_workers_put(fs_info
);
3035 mutex_unlock(&fs_info
->scrub_lock
);
3037 scrub_free_ctx(sctx
);
3042 void btrfs_scrub_pause(struct btrfs_root
*root
)
3044 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3046 mutex_lock(&fs_info
->scrub_lock
);
3047 atomic_inc(&fs_info
->scrub_pause_req
);
3048 while (atomic_read(&fs_info
->scrubs_paused
) !=
3049 atomic_read(&fs_info
->scrubs_running
)) {
3050 mutex_unlock(&fs_info
->scrub_lock
);
3051 wait_event(fs_info
->scrub_pause_wait
,
3052 atomic_read(&fs_info
->scrubs_paused
) ==
3053 atomic_read(&fs_info
->scrubs_running
));
3054 mutex_lock(&fs_info
->scrub_lock
);
3056 mutex_unlock(&fs_info
->scrub_lock
);
3059 void btrfs_scrub_continue(struct btrfs_root
*root
)
3061 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3063 atomic_dec(&fs_info
->scrub_pause_req
);
3064 wake_up(&fs_info
->scrub_pause_wait
);
3067 int btrfs_scrub_cancel(struct btrfs_fs_info
*fs_info
)
3069 mutex_lock(&fs_info
->scrub_lock
);
3070 if (!atomic_read(&fs_info
->scrubs_running
)) {
3071 mutex_unlock(&fs_info
->scrub_lock
);
3075 atomic_inc(&fs_info
->scrub_cancel_req
);
3076 while (atomic_read(&fs_info
->scrubs_running
)) {
3077 mutex_unlock(&fs_info
->scrub_lock
);
3078 wait_event(fs_info
->scrub_pause_wait
,
3079 atomic_read(&fs_info
->scrubs_running
) == 0);
3080 mutex_lock(&fs_info
->scrub_lock
);
3082 atomic_dec(&fs_info
->scrub_cancel_req
);
3083 mutex_unlock(&fs_info
->scrub_lock
);
3088 int btrfs_scrub_cancel_dev(struct btrfs_fs_info
*fs_info
,
3089 struct btrfs_device
*dev
)
3091 struct scrub_ctx
*sctx
;
3093 mutex_lock(&fs_info
->scrub_lock
);
3094 sctx
= dev
->scrub_device
;
3096 mutex_unlock(&fs_info
->scrub_lock
);
3099 atomic_inc(&sctx
->cancel_req
);
3100 while (dev
->scrub_device
) {
3101 mutex_unlock(&fs_info
->scrub_lock
);
3102 wait_event(fs_info
->scrub_pause_wait
,
3103 dev
->scrub_device
== NULL
);
3104 mutex_lock(&fs_info
->scrub_lock
);
3106 mutex_unlock(&fs_info
->scrub_lock
);
3111 int btrfs_scrub_progress(struct btrfs_root
*root
, u64 devid
,
3112 struct btrfs_scrub_progress
*progress
)
3114 struct btrfs_device
*dev
;
3115 struct scrub_ctx
*sctx
= NULL
;
3117 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3118 dev
= btrfs_find_device(root
->fs_info
, devid
, NULL
, NULL
);
3120 sctx
= dev
->scrub_device
;
3122 memcpy(progress
, &sctx
->stat
, sizeof(*progress
));
3123 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3125 return dev
? (sctx
? 0 : -ENOTCONN
) : -ENODEV
;
3128 static void scrub_remap_extent(struct btrfs_fs_info
*fs_info
,
3129 u64 extent_logical
, u64 extent_len
,
3130 u64
*extent_physical
,
3131 struct btrfs_device
**extent_dev
,
3132 int *extent_mirror_num
)
3135 struct btrfs_bio
*bbio
= NULL
;
3138 mapped_length
= extent_len
;
3139 ret
= btrfs_map_block(fs_info
, READ
, extent_logical
,
3140 &mapped_length
, &bbio
, 0);
3141 if (ret
|| !bbio
|| mapped_length
< extent_len
||
3142 !bbio
->stripes
[0].dev
->bdev
) {
3147 *extent_physical
= bbio
->stripes
[0].physical
;
3148 *extent_mirror_num
= bbio
->mirror_num
;
3149 *extent_dev
= bbio
->stripes
[0].dev
;
3153 static int scrub_setup_wr_ctx(struct scrub_ctx
*sctx
,
3154 struct scrub_wr_ctx
*wr_ctx
,
3155 struct btrfs_fs_info
*fs_info
,
3156 struct btrfs_device
*dev
,
3159 WARN_ON(wr_ctx
->wr_curr_bio
!= NULL
);
3161 mutex_init(&wr_ctx
->wr_lock
);
3162 wr_ctx
->wr_curr_bio
= NULL
;
3163 if (!is_dev_replace
)
3166 WARN_ON(!dev
->bdev
);
3167 wr_ctx
->pages_per_wr_bio
= min_t(int, SCRUB_PAGES_PER_WR_BIO
,
3168 bio_get_nr_vecs(dev
->bdev
));
3169 wr_ctx
->tgtdev
= dev
;
3170 atomic_set(&wr_ctx
->flush_all_writes
, 0);
3174 static void scrub_free_wr_ctx(struct scrub_wr_ctx
*wr_ctx
)
3176 mutex_lock(&wr_ctx
->wr_lock
);
3177 kfree(wr_ctx
->wr_curr_bio
);
3178 wr_ctx
->wr_curr_bio
= NULL
;
3179 mutex_unlock(&wr_ctx
->wr_lock
);
3182 static int copy_nocow_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
3183 int mirror_num
, u64 physical_for_dev_replace
)
3185 struct scrub_copy_nocow_ctx
*nocow_ctx
;
3186 struct btrfs_fs_info
*fs_info
= sctx
->dev_root
->fs_info
;
3188 nocow_ctx
= kzalloc(sizeof(*nocow_ctx
), GFP_NOFS
);
3190 spin_lock(&sctx
->stat_lock
);
3191 sctx
->stat
.malloc_errors
++;
3192 spin_unlock(&sctx
->stat_lock
);
3196 scrub_pending_trans_workers_inc(sctx
);
3198 nocow_ctx
->sctx
= sctx
;
3199 nocow_ctx
->logical
= logical
;
3200 nocow_ctx
->len
= len
;
3201 nocow_ctx
->mirror_num
= mirror_num
;
3202 nocow_ctx
->physical_for_dev_replace
= physical_for_dev_replace
;
3203 btrfs_init_work(&nocow_ctx
->work
, btrfs_scrubnc_helper
,
3204 copy_nocow_pages_worker
, NULL
, NULL
);
3205 INIT_LIST_HEAD(&nocow_ctx
->inodes
);
3206 btrfs_queue_work(fs_info
->scrub_nocow_workers
,
3212 static int record_inode_for_nocow(u64 inum
, u64 offset
, u64 root
, void *ctx
)
3214 struct scrub_copy_nocow_ctx
*nocow_ctx
= ctx
;
3215 struct scrub_nocow_inode
*nocow_inode
;
3217 nocow_inode
= kzalloc(sizeof(*nocow_inode
), GFP_NOFS
);
3220 nocow_inode
->inum
= inum
;
3221 nocow_inode
->offset
= offset
;
3222 nocow_inode
->root
= root
;
3223 list_add_tail(&nocow_inode
->list
, &nocow_ctx
->inodes
);
3227 #define COPY_COMPLETE 1
3229 static void copy_nocow_pages_worker(struct btrfs_work
*work
)
3231 struct scrub_copy_nocow_ctx
*nocow_ctx
=
3232 container_of(work
, struct scrub_copy_nocow_ctx
, work
);
3233 struct scrub_ctx
*sctx
= nocow_ctx
->sctx
;
3234 u64 logical
= nocow_ctx
->logical
;
3235 u64 len
= nocow_ctx
->len
;
3236 int mirror_num
= nocow_ctx
->mirror_num
;
3237 u64 physical_for_dev_replace
= nocow_ctx
->physical_for_dev_replace
;
3239 struct btrfs_trans_handle
*trans
= NULL
;
3240 struct btrfs_fs_info
*fs_info
;
3241 struct btrfs_path
*path
;
3242 struct btrfs_root
*root
;
3243 int not_written
= 0;
3245 fs_info
= sctx
->dev_root
->fs_info
;
3246 root
= fs_info
->extent_root
;
3248 path
= btrfs_alloc_path();
3250 spin_lock(&sctx
->stat_lock
);
3251 sctx
->stat
.malloc_errors
++;
3252 spin_unlock(&sctx
->stat_lock
);
3257 trans
= btrfs_join_transaction(root
);
3258 if (IS_ERR(trans
)) {
3263 ret
= iterate_inodes_from_logical(logical
, fs_info
, path
,
3264 record_inode_for_nocow
, nocow_ctx
);
3265 if (ret
!= 0 && ret
!= -ENOENT
) {
3266 btrfs_warn(fs_info
, "iterate_inodes_from_logical() failed: log %llu, "
3267 "phys %llu, len %llu, mir %u, ret %d",
3268 logical
, physical_for_dev_replace
, len
, mirror_num
,
3274 btrfs_end_transaction(trans
, root
);
3276 while (!list_empty(&nocow_ctx
->inodes
)) {
3277 struct scrub_nocow_inode
*entry
;
3278 entry
= list_first_entry(&nocow_ctx
->inodes
,
3279 struct scrub_nocow_inode
,
3281 list_del_init(&entry
->list
);
3282 ret
= copy_nocow_pages_for_inode(entry
->inum
, entry
->offset
,
3283 entry
->root
, nocow_ctx
);
3285 if (ret
== COPY_COMPLETE
) {
3293 while (!list_empty(&nocow_ctx
->inodes
)) {
3294 struct scrub_nocow_inode
*entry
;
3295 entry
= list_first_entry(&nocow_ctx
->inodes
,
3296 struct scrub_nocow_inode
,
3298 list_del_init(&entry
->list
);
3301 if (trans
&& !IS_ERR(trans
))
3302 btrfs_end_transaction(trans
, root
);
3304 btrfs_dev_replace_stats_inc(&fs_info
->dev_replace
.
3305 num_uncorrectable_read_errors
);
3307 btrfs_free_path(path
);
3310 scrub_pending_trans_workers_dec(sctx
);
3313 static int copy_nocow_pages_for_inode(u64 inum
, u64 offset
, u64 root
,
3314 struct scrub_copy_nocow_ctx
*nocow_ctx
)
3316 struct btrfs_fs_info
*fs_info
= nocow_ctx
->sctx
->dev_root
->fs_info
;
3317 struct btrfs_key key
;
3318 struct inode
*inode
;
3320 struct btrfs_root
*local_root
;
3321 struct btrfs_ordered_extent
*ordered
;
3322 struct extent_map
*em
;
3323 struct extent_state
*cached_state
= NULL
;
3324 struct extent_io_tree
*io_tree
;
3325 u64 physical_for_dev_replace
;
3326 u64 len
= nocow_ctx
->len
;
3327 u64 lockstart
= offset
, lockend
= offset
+ len
- 1;
3328 unsigned long index
;
3333 key
.objectid
= root
;
3334 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3335 key
.offset
= (u64
)-1;
3337 srcu_index
= srcu_read_lock(&fs_info
->subvol_srcu
);
3339 local_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
3340 if (IS_ERR(local_root
)) {
3341 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
3342 return PTR_ERR(local_root
);
3345 key
.type
= BTRFS_INODE_ITEM_KEY
;
3346 key
.objectid
= inum
;
3348 inode
= btrfs_iget(fs_info
->sb
, &key
, local_root
, NULL
);
3349 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
3351 return PTR_ERR(inode
);
3353 /* Avoid truncate/dio/punch hole.. */
3354 mutex_lock(&inode
->i_mutex
);
3355 inode_dio_wait(inode
);
3357 physical_for_dev_replace
= nocow_ctx
->physical_for_dev_replace
;
3358 io_tree
= &BTRFS_I(inode
)->io_tree
;
3360 lock_extent_bits(io_tree
, lockstart
, lockend
, 0, &cached_state
);
3361 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
, len
);
3363 btrfs_put_ordered_extent(ordered
);
3367 em
= btrfs_get_extent(inode
, NULL
, 0, lockstart
, len
, 0);
3374 * This extent does not actually cover the logical extent anymore,
3375 * move on to the next inode.
3377 if (em
->block_start
> nocow_ctx
->logical
||
3378 em
->block_start
+ em
->block_len
< nocow_ctx
->logical
+ len
) {
3379 free_extent_map(em
);
3382 free_extent_map(em
);
3384 while (len
>= PAGE_CACHE_SIZE
) {
3385 index
= offset
>> PAGE_CACHE_SHIFT
;
3387 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_NOFS
);
3389 btrfs_err(fs_info
, "find_or_create_page() failed");
3394 if (PageUptodate(page
)) {
3395 if (PageDirty(page
))
3398 ClearPageError(page
);
3399 err
= extent_read_full_page_nolock(io_tree
, page
,
3401 nocow_ctx
->mirror_num
);
3409 * If the page has been remove from the page cache,
3410 * the data on it is meaningless, because it may be
3411 * old one, the new data may be written into the new
3412 * page in the page cache.
3414 if (page
->mapping
!= inode
->i_mapping
) {
3416 page_cache_release(page
);
3419 if (!PageUptodate(page
)) {
3424 err
= write_page_nocow(nocow_ctx
->sctx
,
3425 physical_for_dev_replace
, page
);
3430 page_cache_release(page
);
3435 offset
+= PAGE_CACHE_SIZE
;
3436 physical_for_dev_replace
+= PAGE_CACHE_SIZE
;
3437 len
-= PAGE_CACHE_SIZE
;
3439 ret
= COPY_COMPLETE
;
3441 unlock_extent_cached(io_tree
, lockstart
, lockend
, &cached_state
,
3444 mutex_unlock(&inode
->i_mutex
);
3449 static int write_page_nocow(struct scrub_ctx
*sctx
,
3450 u64 physical_for_dev_replace
, struct page
*page
)
3453 struct btrfs_device
*dev
;
3456 dev
= sctx
->wr_ctx
.tgtdev
;
3460 printk_ratelimited(KERN_WARNING
3461 "BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3464 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 1);
3466 spin_lock(&sctx
->stat_lock
);
3467 sctx
->stat
.malloc_errors
++;
3468 spin_unlock(&sctx
->stat_lock
);
3471 bio
->bi_iter
.bi_size
= 0;
3472 bio
->bi_iter
.bi_sector
= physical_for_dev_replace
>> 9;
3473 bio
->bi_bdev
= dev
->bdev
;
3474 ret
= bio_add_page(bio
, page
, PAGE_CACHE_SIZE
, 0);
3475 if (ret
!= PAGE_CACHE_SIZE
) {
3478 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_WRITE_ERRS
);
3482 if (btrfsic_submit_bio_wait(WRITE_SYNC
, bio
))
3483 goto leave_with_eio
;