1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
5 #include <linux/stat.h>
6 #include <linux/fcntl.h>
7 #include <linux/swap.h>
8 #include <linux/string.h>
9 #include <linux/init.h>
10 #include <linux/pagemap.h>
11 #include <linux/perf_event.h>
12 #include <linux/highmem.h>
13 #include <linux/spinlock.h>
14 #include <linux/key.h>
15 #include <linux/personality.h>
16 #include <linux/binfmts.h>
17 #include <linux/coredump.h>
18 #include <linux/utsname.h>
19 #include <linux/pid_namespace.h>
20 #include <linux/module.h>
21 #include <linux/namei.h>
22 #include <linux/mount.h>
23 #include <linux/security.h>
24 #include <linux/syscalls.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/cn_proc.h>
27 #include <linux/audit.h>
28 #include <linux/tracehook.h>
29 #include <linux/kmod.h>
30 #include <linux/fsnotify.h>
31 #include <linux/fs_struct.h>
32 #include <linux/pipe_fs_i.h>
33 #include <linux/oom.h>
34 #include <linux/compat.h>
35 #include <linux/sched.h>
37 #include <linux/path.h>
39 #include <asm/uaccess.h>
40 #include <asm/mmu_context.h>
44 #include <trace/events/task.h>
47 #include <trace/events/sched.h>
50 unsigned int core_pipe_limit
;
51 char core_pattern
[CORENAME_MAX_SIZE
] = "core";
52 static int core_name_size
= CORENAME_MAX_SIZE
;
59 /* The maximal length of core_pattern is also specified in sysctl.c */
61 static int expand_corename(struct core_name
*cn
, int size
)
63 char *corename
= krealloc(cn
->corename
, size
, GFP_KERNEL
);
68 if (size
> core_name_size
) /* racy but harmless */
69 core_name_size
= size
;
71 cn
->size
= ksize(corename
);
72 cn
->corename
= corename
;
76 static int cn_vprintf(struct core_name
*cn
, const char *fmt
, va_list arg
)
82 free
= cn
->size
- cn
->used
;
84 va_copy(arg_copy
, arg
);
85 need
= vsnprintf(cn
->corename
+ cn
->used
, free
, fmt
, arg_copy
);
93 if (!expand_corename(cn
, cn
->size
+ need
- free
+ 1))
99 static int cn_printf(struct core_name
*cn
, const char *fmt
, ...)
105 ret
= cn_vprintf(cn
, fmt
, arg
);
111 static int cn_esc_printf(struct core_name
*cn
, const char *fmt
, ...)
118 ret
= cn_vprintf(cn
, fmt
, arg
);
121 for (; cur
< cn
->used
; ++cur
) {
122 if (cn
->corename
[cur
] == '/')
123 cn
->corename
[cur
] = '!';
128 static int cn_print_exe_file(struct core_name
*cn
)
130 struct file
*exe_file
;
131 char *pathbuf
, *path
;
134 exe_file
= get_mm_exe_file(current
->mm
);
136 return cn_esc_printf(cn
, "%s (path unknown)", current
->comm
);
138 pathbuf
= kmalloc(PATH_MAX
, GFP_TEMPORARY
);
144 path
= d_path(&exe_file
->f_path
, pathbuf
, PATH_MAX
);
150 ret
= cn_esc_printf(cn
, "%s", path
);
159 /* format_corename will inspect the pattern parameter, and output a
160 * name into corename, which must have space for at least
161 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
163 static int format_corename(struct core_name
*cn
, struct coredump_params
*cprm
)
165 const struct cred
*cred
= current_cred();
166 const char *pat_ptr
= core_pattern
;
167 int ispipe
= (*pat_ptr
== '|');
168 int pid_in_pattern
= 0;
173 if (expand_corename(cn
, core_name_size
))
175 cn
->corename
[0] = '\0';
180 /* Repeat as long as we have more pattern to process and more output
183 if (*pat_ptr
!= '%') {
184 err
= cn_printf(cn
, "%c", *pat_ptr
++);
186 switch (*++pat_ptr
) {
187 /* single % at the end, drop that */
190 /* Double percent, output one percent */
192 err
= cn_printf(cn
, "%c", '%');
197 err
= cn_printf(cn
, "%d",
198 task_tgid_vnr(current
));
202 err
= cn_printf(cn
, "%d",
203 task_tgid_nr(current
));
206 err
= cn_printf(cn
, "%d",
207 task_pid_vnr(current
));
210 err
= cn_printf(cn
, "%d",
211 task_pid_nr(current
));
215 err
= cn_printf(cn
, "%d", cred
->uid
);
219 err
= cn_printf(cn
, "%d", cred
->gid
);
222 err
= cn_printf(cn
, "%d",
223 __get_dumpable(cprm
->mm_flags
));
225 /* signal that caused the coredump */
227 err
= cn_printf(cn
, "%ld", cprm
->siginfo
->si_signo
);
229 /* UNIX time of coredump */
232 do_gettimeofday(&tv
);
233 err
= cn_printf(cn
, "%lu", tv
.tv_sec
);
239 err
= cn_esc_printf(cn
, "%s",
240 utsname()->nodename
);
245 err
= cn_esc_printf(cn
, "%s", current
->comm
);
248 err
= cn_print_exe_file(cn
);
250 /* core limit size */
252 err
= cn_printf(cn
, "%lu",
253 rlimit(RLIMIT_CORE
));
266 /* Backward compatibility with core_uses_pid:
268 * If core_pattern does not include a %p (as is the default)
269 * and core_uses_pid is set, then .%pid will be appended to
270 * the filename. Do not do this for piped commands. */
271 if (!ispipe
&& !pid_in_pattern
&& core_uses_pid
) {
272 err
= cn_printf(cn
, ".%d", task_tgid_vnr(current
));
279 static int zap_process(struct task_struct
*start
, int exit_code
)
281 struct task_struct
*t
;
284 start
->signal
->group_exit_code
= exit_code
;
285 start
->signal
->group_stop_count
= 0;
289 task_clear_jobctl_pending(t
, JOBCTL_PENDING_MASK
);
290 if (t
!= current
&& t
->mm
) {
291 sigaddset(&t
->pending
.signal
, SIGKILL
);
292 signal_wake_up(t
, 1);
295 } while_each_thread(start
, t
);
300 static int zap_threads(struct task_struct
*tsk
, struct mm_struct
*mm
,
301 struct core_state
*core_state
, int exit_code
)
303 struct task_struct
*g
, *p
;
307 spin_lock_irq(&tsk
->sighand
->siglock
);
308 if (!signal_group_exit(tsk
->signal
)) {
309 mm
->core_state
= core_state
;
310 nr
= zap_process(tsk
, exit_code
);
311 tsk
->signal
->group_exit_task
= tsk
;
312 /* ignore all signals except SIGKILL, see prepare_signal() */
313 tsk
->signal
->flags
= SIGNAL_GROUP_COREDUMP
;
314 clear_tsk_thread_flag(tsk
, TIF_SIGPENDING
);
316 spin_unlock_irq(&tsk
->sighand
->siglock
);
317 if (unlikely(nr
< 0))
320 tsk
->flags
|= PF_DUMPCORE
;
321 if (atomic_read(&mm
->mm_users
) == nr
+ 1)
324 * We should find and kill all tasks which use this mm, and we should
325 * count them correctly into ->nr_threads. We don't take tasklist
326 * lock, but this is safe wrt:
329 * None of sub-threads can fork after zap_process(leader). All
330 * processes which were created before this point should be
331 * visible to zap_threads() because copy_process() adds the new
332 * process to the tail of init_task.tasks list, and lock/unlock
333 * of ->siglock provides a memory barrier.
336 * The caller holds mm->mmap_sem. This means that the task which
337 * uses this mm can't pass exit_mm(), so it can't exit or clear
341 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
342 * we must see either old or new leader, this does not matter.
343 * However, it can change p->sighand, so lock_task_sighand(p)
344 * must be used. Since p->mm != NULL and we hold ->mmap_sem
347 * Note also that "g" can be the old leader with ->mm == NULL
348 * and already unhashed and thus removed from ->thread_group.
349 * This is OK, __unhash_process()->list_del_rcu() does not
350 * clear the ->next pointer, we will find the new leader via
354 for_each_process(g
) {
355 if (g
== tsk
->group_leader
)
357 if (g
->flags
& PF_KTHREAD
)
362 if (unlikely(p
->mm
== mm
)) {
363 lock_task_sighand(p
, &flags
);
364 nr
+= zap_process(p
, exit_code
);
365 p
->signal
->flags
= SIGNAL_GROUP_EXIT
;
366 unlock_task_sighand(p
, &flags
);
370 } while_each_thread(g
, p
);
374 atomic_set(&core_state
->nr_threads
, nr
);
378 static int coredump_wait(int exit_code
, struct core_state
*core_state
)
380 struct task_struct
*tsk
= current
;
381 struct mm_struct
*mm
= tsk
->mm
;
382 int core_waiters
= -EBUSY
;
384 init_completion(&core_state
->startup
);
385 core_state
->dumper
.task
= tsk
;
386 core_state
->dumper
.next
= NULL
;
388 down_write(&mm
->mmap_sem
);
390 core_waiters
= zap_threads(tsk
, mm
, core_state
, exit_code
);
391 up_write(&mm
->mmap_sem
);
393 if (core_waiters
> 0) {
394 struct core_thread
*ptr
;
396 wait_for_completion(&core_state
->startup
);
398 * Wait for all the threads to become inactive, so that
399 * all the thread context (extended register state, like
400 * fpu etc) gets copied to the memory.
402 ptr
= core_state
->dumper
.next
;
403 while (ptr
!= NULL
) {
404 wait_task_inactive(ptr
->task
, 0);
412 static void coredump_finish(struct mm_struct
*mm
, bool core_dumped
)
414 struct core_thread
*curr
, *next
;
415 struct task_struct
*task
;
417 spin_lock_irq(¤t
->sighand
->siglock
);
418 if (core_dumped
&& !__fatal_signal_pending(current
))
419 current
->signal
->group_exit_code
|= 0x80;
420 current
->signal
->group_exit_task
= NULL
;
421 current
->signal
->flags
= SIGNAL_GROUP_EXIT
;
422 spin_unlock_irq(¤t
->sighand
->siglock
);
424 next
= mm
->core_state
->dumper
.next
;
425 while ((curr
= next
) != NULL
) {
429 * see exit_mm(), curr->task must not see
430 * ->task == NULL before we read ->next.
434 wake_up_process(task
);
437 mm
->core_state
= NULL
;
440 static bool dump_interrupted(void)
443 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
444 * can do try_to_freeze() and check __fatal_signal_pending(),
445 * but then we need to teach dump_write() to restart and clear
448 return signal_pending(current
);
451 static void wait_for_dump_helpers(struct file
*file
)
453 struct pipe_inode_info
*pipe
= file
->private_data
;
458 wake_up_interruptible_sync(&pipe
->wait
);
459 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
463 * We actually want wait_event_freezable() but then we need
464 * to clear TIF_SIGPENDING and improve dump_interrupted().
466 wait_event_interruptible(pipe
->wait
, pipe
->readers
== 1);
476 * helper function to customize the process used
477 * to collect the core in userspace. Specifically
478 * it sets up a pipe and installs it as fd 0 (stdin)
479 * for the process. Returns 0 on success, or
480 * PTR_ERR on failure.
481 * Note that it also sets the core limit to 1. This
482 * is a special value that we use to trap recursive
485 static int umh_pipe_setup(struct subprocess_info
*info
, struct cred
*new)
487 struct file
*files
[2];
488 struct coredump_params
*cp
= (struct coredump_params
*)info
->data
;
489 int err
= create_pipe_files(files
, 0);
495 err
= replace_fd(0, files
[0], 0);
497 /* and disallow core files too */
498 current
->signal
->rlim
[RLIMIT_CORE
] = (struct rlimit
){1, 1};
503 void do_coredump(const siginfo_t
*siginfo
)
505 struct core_state core_state
;
507 struct mm_struct
*mm
= current
->mm
;
508 struct linux_binfmt
* binfmt
;
509 const struct cred
*old_cred
;
513 struct files_struct
*displaced
;
514 /* require nonrelative corefile path and be extra careful */
515 bool need_suid_safe
= false;
516 bool core_dumped
= false;
517 static atomic_t core_dump_count
= ATOMIC_INIT(0);
518 struct coredump_params cprm
= {
520 .regs
= signal_pt_regs(),
521 .limit
= rlimit(RLIMIT_CORE
),
523 * We must use the same mm->flags while dumping core to avoid
524 * inconsistency of bit flags, since this flag is not protected
527 .mm_flags
= mm
->flags
,
530 audit_core_dumps(siginfo
->si_signo
);
533 if (!binfmt
|| !binfmt
->core_dump
)
535 if (!__get_dumpable(cprm
.mm_flags
))
538 cred
= prepare_creds();
542 * We cannot trust fsuid as being the "true" uid of the process
543 * nor do we know its entire history. We only know it was tainted
544 * so we dump it as root in mode 2, and only into a controlled
545 * environment (pipe handler or fully qualified path).
547 if (__get_dumpable(cprm
.mm_flags
) == SUID_DUMP_ROOT
) {
548 /* Setuid core dump mode */
549 cred
->fsuid
= GLOBAL_ROOT_UID
; /* Dump root private */
550 need_suid_safe
= true;
553 retval
= coredump_wait(siginfo
->si_signo
, &core_state
);
557 old_cred
= override_creds(cred
);
559 ispipe
= format_corename(&cn
, &cprm
);
564 struct subprocess_info
*sub_info
;
567 printk(KERN_WARNING
"format_corename failed\n");
568 printk(KERN_WARNING
"Aborting core\n");
572 if (cprm
.limit
== 1) {
573 /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
575 * Normally core limits are irrelevant to pipes, since
576 * we're not writing to the file system, but we use
577 * cprm.limit of 1 here as a speacial value, this is a
578 * consistent way to catch recursive crashes.
579 * We can still crash if the core_pattern binary sets
580 * RLIM_CORE = !1, but it runs as root, and can do
581 * lots of stupid things.
583 * Note that we use task_tgid_vnr here to grab the pid
584 * of the process group leader. That way we get the
585 * right pid if a thread in a multi-threaded
586 * core_pattern process dies.
589 "Process %d(%s) has RLIMIT_CORE set to 1\n",
590 task_tgid_vnr(current
), current
->comm
);
591 printk(KERN_WARNING
"Aborting core\n");
594 cprm
.limit
= RLIM_INFINITY
;
596 dump_count
= atomic_inc_return(&core_dump_count
);
597 if (core_pipe_limit
&& (core_pipe_limit
< dump_count
)) {
598 printk(KERN_WARNING
"Pid %d(%s) over core_pipe_limit\n",
599 task_tgid_vnr(current
), current
->comm
);
600 printk(KERN_WARNING
"Skipping core dump\n");
604 helper_argv
= argv_split(GFP_KERNEL
, cn
.corename
, NULL
);
606 printk(KERN_WARNING
"%s failed to allocate memory\n",
612 sub_info
= call_usermodehelper_setup(helper_argv
[0],
613 helper_argv
, NULL
, GFP_KERNEL
,
614 umh_pipe_setup
, NULL
, &cprm
);
616 retval
= call_usermodehelper_exec(sub_info
,
619 argv_free(helper_argv
);
621 printk(KERN_INFO
"Core dump to |%s pipe failed\n",
627 int open_flags
= O_CREAT
| O_RDWR
| O_NOFOLLOW
|
628 O_LARGEFILE
| O_EXCL
;
630 if (cprm
.limit
< binfmt
->min_coredump
)
633 if (need_suid_safe
&& cn
.corename
[0] != '/') {
634 printk(KERN_WARNING
"Pid %d(%s) can only dump core "\
635 "to fully qualified path!\n",
636 task_tgid_vnr(current
), current
->comm
);
637 printk(KERN_WARNING
"Skipping core dump\n");
642 * Unlink the file if it exists unless this is a SUID
643 * binary - in that case, we're running around with root
644 * privs and don't want to unlink another user's coredump.
646 if (!need_suid_safe
) {
652 * If it doesn't exist, that's fine. If there's some
653 * other problem, we'll catch it at the filp_open().
655 (void) sys_unlink((const char __user
*)cn
.corename
);
660 * There is a race between unlinking and creating the
661 * file, but if that causes an EEXIST here, that's
662 * fine - another process raced with us while creating
663 * the corefile, and the other process won. To userspace,
664 * what matters is that at least one of the two processes
665 * writes its coredump successfully, not which one.
667 if (need_suid_safe
) {
669 * Using user namespaces, normal user tasks can change
670 * their current->fs->root to point to arbitrary
671 * directories. Since the intention of the "only dump
672 * with a fully qualified path" rule is to control where
673 * coredumps may be placed using root privileges,
674 * current->fs->root must not be used. Instead, use the
675 * root directory of init_task.
679 task_lock(&init_task
);
680 get_fs_root(init_task
.fs
, &root
);
681 task_unlock(&init_task
);
682 cprm
.file
= file_open_root(root
.dentry
, root
.mnt
,
683 cn
.corename
, open_flags
, 0600);
686 cprm
.file
= filp_open(cn
.corename
, open_flags
, 0600);
688 if (IS_ERR(cprm
.file
))
691 inode
= file_inode(cprm
.file
);
692 if (inode
->i_nlink
> 1)
694 if (d_unhashed(cprm
.file
->f_path
.dentry
))
697 * AK: actually i see no reason to not allow this for named
698 * pipes etc, but keep the previous behaviour for now.
700 if (!S_ISREG(inode
->i_mode
))
703 * Dont allow local users get cute and trick others to coredump
704 * into their pre-created files.
706 if (!uid_eq(inode
->i_uid
, current_fsuid()))
708 if (!(cprm
.file
->f_mode
& FMODE_CAN_WRITE
))
710 if (do_truncate(cprm
.file
->f_path
.dentry
, 0, 0, cprm
.file
))
714 /* get us an unshared descriptor table; almost always a no-op */
715 retval
= unshare_files(&displaced
);
719 put_files_struct(displaced
);
720 if (!dump_interrupted()) {
721 file_start_write(cprm
.file
);
722 core_dumped
= binfmt
->core_dump(&cprm
);
723 file_end_write(cprm
.file
);
725 if (ispipe
&& core_pipe_limit
)
726 wait_for_dump_helpers(cprm
.file
);
729 filp_close(cprm
.file
, NULL
);
732 atomic_dec(&core_dump_count
);
735 coredump_finish(mm
, core_dumped
);
736 revert_creds(old_cred
);
744 * Core dumping helper functions. These are the only things you should
745 * do on a core-file: use only these functions to write out all the
748 int dump_emit(struct coredump_params
*cprm
, const void *addr
, int nr
)
750 struct file
*file
= cprm
->file
;
751 loff_t pos
= file
->f_pos
;
753 if (cprm
->written
+ nr
> cprm
->limit
)
756 if (dump_interrupted())
758 n
= __kernel_write(file
, addr
, nr
, &pos
);
767 EXPORT_SYMBOL(dump_emit
);
769 int dump_skip(struct coredump_params
*cprm
, size_t nr
)
771 static char zeroes
[PAGE_SIZE
];
772 struct file
*file
= cprm
->file
;
773 if (file
->f_op
->llseek
&& file
->f_op
->llseek
!= no_llseek
) {
774 if (cprm
->written
+ nr
> cprm
->limit
)
776 if (dump_interrupted() ||
777 file
->f_op
->llseek(file
, nr
, SEEK_CUR
) < 0)
782 while (nr
> PAGE_SIZE
) {
783 if (!dump_emit(cprm
, zeroes
, PAGE_SIZE
))
787 return dump_emit(cprm
, zeroes
, nr
);
790 EXPORT_SYMBOL(dump_skip
);
792 int dump_align(struct coredump_params
*cprm
, int align
)
794 unsigned mod
= cprm
->written
& (align
- 1);
795 if (align
& (align
- 1))
797 return mod
? dump_skip(cprm
, align
- mod
) : 1;
799 EXPORT_SYMBOL(dump_align
);