Bluetooth: vhci: Fix race at creating hci device
[linux/fpc-iii.git] / include / net / sock.h
bloba40bc8c0af4b9ea94685acee6d70841a2106e821
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Definitions for the AF_INET socket handler.
8 * Version: @(#)sock.h 1.0.4 05/13/93
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
40 #ifndef _SOCK_H
41 #define _SOCK_H
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/memcontrol.h>
58 #include <linux/res_counter.h>
59 #include <linux/static_key.h>
60 #include <linux/aio.h>
61 #include <linux/sched.h>
63 #include <linux/filter.h>
64 #include <linux/rculist_nulls.h>
65 #include <linux/poll.h>
67 #include <linux/atomic.h>
68 #include <net/dst.h>
69 #include <net/checksum.h>
70 #include <net/tcp_states.h>
71 #include <linux/net_tstamp.h>
73 struct cgroup;
74 struct cgroup_subsys;
75 #ifdef CONFIG_NET
76 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
77 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
78 #else
79 static inline
80 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
82 return 0;
84 static inline
85 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
88 #endif
90 * This structure really needs to be cleaned up.
91 * Most of it is for TCP, and not used by any of
92 * the other protocols.
95 /* Define this to get the SOCK_DBG debugging facility. */
96 #define SOCK_DEBUGGING
97 #ifdef SOCK_DEBUGGING
98 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
99 printk(KERN_DEBUG msg); } while (0)
100 #else
101 /* Validate arguments and do nothing */
102 static inline __printf(2, 3)
103 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
106 #endif
108 /* This is the per-socket lock. The spinlock provides a synchronization
109 * between user contexts and software interrupt processing, whereas the
110 * mini-semaphore synchronizes multiple users amongst themselves.
112 typedef struct {
113 spinlock_t slock;
114 int owned;
115 wait_queue_head_t wq;
117 * We express the mutex-alike socket_lock semantics
118 * to the lock validator by explicitly managing
119 * the slock as a lock variant (in addition to
120 * the slock itself):
122 #ifdef CONFIG_DEBUG_LOCK_ALLOC
123 struct lockdep_map dep_map;
124 #endif
125 } socket_lock_t;
127 struct sock;
128 struct proto;
129 struct net;
131 typedef __u32 __bitwise __portpair;
132 typedef __u64 __bitwise __addrpair;
135 * struct sock_common - minimal network layer representation of sockets
136 * @skc_daddr: Foreign IPv4 addr
137 * @skc_rcv_saddr: Bound local IPv4 addr
138 * @skc_hash: hash value used with various protocol lookup tables
139 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
140 * @skc_dport: placeholder for inet_dport/tw_dport
141 * @skc_num: placeholder for inet_num/tw_num
142 * @skc_family: network address family
143 * @skc_state: Connection state
144 * @skc_reuse: %SO_REUSEADDR setting
145 * @skc_reuseport: %SO_REUSEPORT setting
146 * @skc_bound_dev_if: bound device index if != 0
147 * @skc_bind_node: bind hash linkage for various protocol lookup tables
148 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
149 * @skc_prot: protocol handlers inside a network family
150 * @skc_net: reference to the network namespace of this socket
151 * @skc_node: main hash linkage for various protocol lookup tables
152 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
153 * @skc_tx_queue_mapping: tx queue number for this connection
154 * @skc_refcnt: reference count
156 * This is the minimal network layer representation of sockets, the header
157 * for struct sock and struct inet_timewait_sock.
159 struct sock_common {
160 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
161 * address on 64bit arches : cf INET_MATCH()
163 union {
164 __addrpair skc_addrpair;
165 struct {
166 __be32 skc_daddr;
167 __be32 skc_rcv_saddr;
170 union {
171 unsigned int skc_hash;
172 __u16 skc_u16hashes[2];
174 /* skc_dport && skc_num must be grouped as well */
175 union {
176 __portpair skc_portpair;
177 struct {
178 __be16 skc_dport;
179 __u16 skc_num;
183 unsigned short skc_family;
184 volatile unsigned char skc_state;
185 unsigned char skc_reuse:4;
186 unsigned char skc_reuseport:1;
187 unsigned char skc_ipv6only:1;
188 int skc_bound_dev_if;
189 union {
190 struct hlist_node skc_bind_node;
191 struct hlist_nulls_node skc_portaddr_node;
193 struct proto *skc_prot;
194 #ifdef CONFIG_NET_NS
195 struct net *skc_net;
196 #endif
198 #if IS_ENABLED(CONFIG_IPV6)
199 struct in6_addr skc_v6_daddr;
200 struct in6_addr skc_v6_rcv_saddr;
201 #endif
204 * fields between dontcopy_begin/dontcopy_end
205 * are not copied in sock_copy()
207 /* private: */
208 int skc_dontcopy_begin[0];
209 /* public: */
210 union {
211 struct hlist_node skc_node;
212 struct hlist_nulls_node skc_nulls_node;
214 int skc_tx_queue_mapping;
215 atomic_t skc_refcnt;
216 /* private: */
217 int skc_dontcopy_end[0];
218 /* public: */
221 struct cg_proto;
223 * struct sock - network layer representation of sockets
224 * @__sk_common: shared layout with inet_timewait_sock
225 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
226 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
227 * @sk_lock: synchronizer
228 * @sk_rcvbuf: size of receive buffer in bytes
229 * @sk_wq: sock wait queue and async head
230 * @sk_rx_dst: receive input route used by early demux
231 * @sk_dst_cache: destination cache
232 * @sk_dst_lock: destination cache lock
233 * @sk_policy: flow policy
234 * @sk_receive_queue: incoming packets
235 * @sk_wmem_alloc: transmit queue bytes committed
236 * @sk_write_queue: Packet sending queue
237 * @sk_omem_alloc: "o" is "option" or "other"
238 * @sk_wmem_queued: persistent queue size
239 * @sk_forward_alloc: space allocated forward
240 * @sk_napi_id: id of the last napi context to receive data for sk
241 * @sk_ll_usec: usecs to busypoll when there is no data
242 * @sk_allocation: allocation mode
243 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
244 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
245 * @sk_sndbuf: size of send buffer in bytes
246 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
247 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
248 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
249 * @sk_no_check_rx: allow zero checksum in RX packets
250 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
251 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
252 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
253 * @sk_gso_max_size: Maximum GSO segment size to build
254 * @sk_gso_max_segs: Maximum number of GSO segments
255 * @sk_lingertime: %SO_LINGER l_linger setting
256 * @sk_backlog: always used with the per-socket spinlock held
257 * @sk_callback_lock: used with the callbacks in the end of this struct
258 * @sk_error_queue: rarely used
259 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
260 * IPV6_ADDRFORM for instance)
261 * @sk_err: last error
262 * @sk_err_soft: errors that don't cause failure but are the cause of a
263 * persistent failure not just 'timed out'
264 * @sk_drops: raw/udp drops counter
265 * @sk_ack_backlog: current listen backlog
266 * @sk_max_ack_backlog: listen backlog set in listen()
267 * @sk_priority: %SO_PRIORITY setting
268 * @sk_cgrp_prioidx: socket group's priority map index
269 * @sk_type: socket type (%SOCK_STREAM, etc)
270 * @sk_protocol: which protocol this socket belongs in this network family
271 * @sk_peer_pid: &struct pid for this socket's peer
272 * @sk_peer_cred: %SO_PEERCRED setting
273 * @sk_rcvlowat: %SO_RCVLOWAT setting
274 * @sk_rcvtimeo: %SO_RCVTIMEO setting
275 * @sk_sndtimeo: %SO_SNDTIMEO setting
276 * @sk_rxhash: flow hash received from netif layer
277 * @sk_txhash: computed flow hash for use on transmit
278 * @sk_filter: socket filtering instructions
279 * @sk_protinfo: private area, net family specific, when not using slab
280 * @sk_timer: sock cleanup timer
281 * @sk_stamp: time stamp of last packet received
282 * @sk_tsflags: SO_TIMESTAMPING socket options
283 * @sk_tskey: counter to disambiguate concurrent tstamp requests
284 * @sk_socket: Identd and reporting IO signals
285 * @sk_user_data: RPC layer private data
286 * @sk_frag: cached page frag
287 * @sk_peek_off: current peek_offset value
288 * @sk_send_head: front of stuff to transmit
289 * @sk_security: used by security modules
290 * @sk_mark: generic packet mark
291 * @sk_classid: this socket's cgroup classid
292 * @sk_cgrp: this socket's cgroup-specific proto data
293 * @sk_write_pending: a write to stream socket waits to start
294 * @sk_state_change: callback to indicate change in the state of the sock
295 * @sk_data_ready: callback to indicate there is data to be processed
296 * @sk_write_space: callback to indicate there is bf sending space available
297 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
298 * @sk_backlog_rcv: callback to process the backlog
299 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
301 struct sock {
303 * Now struct inet_timewait_sock also uses sock_common, so please just
304 * don't add nothing before this first member (__sk_common) --acme
306 struct sock_common __sk_common;
307 #define sk_node __sk_common.skc_node
308 #define sk_nulls_node __sk_common.skc_nulls_node
309 #define sk_refcnt __sk_common.skc_refcnt
310 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
312 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
313 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
314 #define sk_hash __sk_common.skc_hash
315 #define sk_portpair __sk_common.skc_portpair
316 #define sk_num __sk_common.skc_num
317 #define sk_dport __sk_common.skc_dport
318 #define sk_addrpair __sk_common.skc_addrpair
319 #define sk_daddr __sk_common.skc_daddr
320 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
321 #define sk_family __sk_common.skc_family
322 #define sk_state __sk_common.skc_state
323 #define sk_reuse __sk_common.skc_reuse
324 #define sk_reuseport __sk_common.skc_reuseport
325 #define sk_ipv6only __sk_common.skc_ipv6only
326 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
327 #define sk_bind_node __sk_common.skc_bind_node
328 #define sk_prot __sk_common.skc_prot
329 #define sk_net __sk_common.skc_net
330 #define sk_v6_daddr __sk_common.skc_v6_daddr
331 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
333 socket_lock_t sk_lock;
334 struct sk_buff_head sk_receive_queue;
336 * The backlog queue is special, it is always used with
337 * the per-socket spinlock held and requires low latency
338 * access. Therefore we special case it's implementation.
339 * Note : rmem_alloc is in this structure to fill a hole
340 * on 64bit arches, not because its logically part of
341 * backlog.
343 struct {
344 atomic_t rmem_alloc;
345 int len;
346 struct sk_buff *head;
347 struct sk_buff *tail;
348 } sk_backlog;
349 #define sk_rmem_alloc sk_backlog.rmem_alloc
350 int sk_forward_alloc;
351 #ifdef CONFIG_RPS
352 __u32 sk_rxhash;
353 #endif
354 __u32 sk_txhash;
355 #ifdef CONFIG_NET_RX_BUSY_POLL
356 unsigned int sk_napi_id;
357 unsigned int sk_ll_usec;
358 #endif
359 atomic_t sk_drops;
360 int sk_rcvbuf;
362 struct sk_filter __rcu *sk_filter;
363 struct socket_wq __rcu *sk_wq;
365 #ifdef CONFIG_XFRM
366 struct xfrm_policy *sk_policy[2];
367 #endif
368 unsigned long sk_flags;
369 struct dst_entry *sk_rx_dst;
370 struct dst_entry __rcu *sk_dst_cache;
371 spinlock_t sk_dst_lock;
372 atomic_t sk_wmem_alloc;
373 atomic_t sk_omem_alloc;
374 int sk_sndbuf;
375 struct sk_buff_head sk_write_queue;
376 kmemcheck_bitfield_begin(flags);
377 unsigned int sk_shutdown : 2,
378 sk_no_check_tx : 1,
379 sk_no_check_rx : 1,
380 sk_userlocks : 4,
381 sk_protocol : 8,
382 #define SK_PROTOCOL_MAX U8_MAX
383 sk_type : 16;
384 kmemcheck_bitfield_end(flags);
385 int sk_wmem_queued;
386 gfp_t sk_allocation;
387 u32 sk_pacing_rate; /* bytes per second */
388 u32 sk_max_pacing_rate;
389 netdev_features_t sk_route_caps;
390 netdev_features_t sk_route_nocaps;
391 int sk_gso_type;
392 unsigned int sk_gso_max_size;
393 u16 sk_gso_max_segs;
394 int sk_rcvlowat;
395 unsigned long sk_lingertime;
396 struct sk_buff_head sk_error_queue;
397 struct proto *sk_prot_creator;
398 rwlock_t sk_callback_lock;
399 int sk_err,
400 sk_err_soft;
401 unsigned short sk_ack_backlog;
402 unsigned short sk_max_ack_backlog;
403 __u32 sk_priority;
404 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
405 __u32 sk_cgrp_prioidx;
406 #endif
407 struct pid *sk_peer_pid;
408 const struct cred *sk_peer_cred;
409 long sk_rcvtimeo;
410 long sk_sndtimeo;
411 void *sk_protinfo;
412 struct timer_list sk_timer;
413 ktime_t sk_stamp;
414 u16 sk_tsflags;
415 u32 sk_tskey;
416 struct socket *sk_socket;
417 void *sk_user_data;
418 struct page_frag sk_frag;
419 struct sk_buff *sk_send_head;
420 __s32 sk_peek_off;
421 int sk_write_pending;
422 #ifdef CONFIG_SECURITY
423 void *sk_security;
424 #endif
425 __u32 sk_mark;
426 u32 sk_classid;
427 struct cg_proto *sk_cgrp;
428 void (*sk_state_change)(struct sock *sk);
429 void (*sk_data_ready)(struct sock *sk);
430 void (*sk_write_space)(struct sock *sk);
431 void (*sk_error_report)(struct sock *sk);
432 int (*sk_backlog_rcv)(struct sock *sk,
433 struct sk_buff *skb);
434 void (*sk_destruct)(struct sock *sk);
437 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
439 #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk)))
440 #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr)
443 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
444 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
445 * on a socket means that the socket will reuse everybody else's port
446 * without looking at the other's sk_reuse value.
449 #define SK_NO_REUSE 0
450 #define SK_CAN_REUSE 1
451 #define SK_FORCE_REUSE 2
453 static inline int sk_peek_offset(struct sock *sk, int flags)
455 if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
456 return sk->sk_peek_off;
457 else
458 return 0;
461 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
463 if (sk->sk_peek_off >= 0) {
464 if (sk->sk_peek_off >= val)
465 sk->sk_peek_off -= val;
466 else
467 sk->sk_peek_off = 0;
471 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
473 if (sk->sk_peek_off >= 0)
474 sk->sk_peek_off += val;
478 * Hashed lists helper routines
480 static inline struct sock *sk_entry(const struct hlist_node *node)
482 return hlist_entry(node, struct sock, sk_node);
485 static inline struct sock *__sk_head(const struct hlist_head *head)
487 return hlist_entry(head->first, struct sock, sk_node);
490 static inline struct sock *sk_head(const struct hlist_head *head)
492 return hlist_empty(head) ? NULL : __sk_head(head);
495 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
497 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
500 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
502 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
505 static inline struct sock *sk_next(const struct sock *sk)
507 return sk->sk_node.next ?
508 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
511 static inline struct sock *sk_nulls_next(const struct sock *sk)
513 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
514 hlist_nulls_entry(sk->sk_nulls_node.next,
515 struct sock, sk_nulls_node) :
516 NULL;
519 static inline bool sk_unhashed(const struct sock *sk)
521 return hlist_unhashed(&sk->sk_node);
524 static inline bool sk_hashed(const struct sock *sk)
526 return !sk_unhashed(sk);
529 static inline void sk_node_init(struct hlist_node *node)
531 node->pprev = NULL;
534 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
536 node->pprev = NULL;
539 static inline void __sk_del_node(struct sock *sk)
541 __hlist_del(&sk->sk_node);
544 /* NB: equivalent to hlist_del_init_rcu */
545 static inline bool __sk_del_node_init(struct sock *sk)
547 if (sk_hashed(sk)) {
548 __sk_del_node(sk);
549 sk_node_init(&sk->sk_node);
550 return true;
552 return false;
555 /* Grab socket reference count. This operation is valid only
556 when sk is ALREADY grabbed f.e. it is found in hash table
557 or a list and the lookup is made under lock preventing hash table
558 modifications.
561 static inline void sock_hold(struct sock *sk)
563 atomic_inc(&sk->sk_refcnt);
566 /* Ungrab socket in the context, which assumes that socket refcnt
567 cannot hit zero, f.e. it is true in context of any socketcall.
569 static inline void __sock_put(struct sock *sk)
571 atomic_dec(&sk->sk_refcnt);
574 static inline bool sk_del_node_init(struct sock *sk)
576 bool rc = __sk_del_node_init(sk);
578 if (rc) {
579 /* paranoid for a while -acme */
580 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
581 __sock_put(sk);
583 return rc;
585 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
587 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
589 if (sk_hashed(sk)) {
590 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
591 return true;
593 return false;
596 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
598 bool rc = __sk_nulls_del_node_init_rcu(sk);
600 if (rc) {
601 /* paranoid for a while -acme */
602 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
603 __sock_put(sk);
605 return rc;
608 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
610 hlist_add_head(&sk->sk_node, list);
613 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
615 sock_hold(sk);
616 __sk_add_node(sk, list);
619 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
621 sock_hold(sk);
622 hlist_add_head_rcu(&sk->sk_node, list);
625 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
627 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
630 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
632 sock_hold(sk);
633 __sk_nulls_add_node_rcu(sk, list);
636 static inline void __sk_del_bind_node(struct sock *sk)
638 __hlist_del(&sk->sk_bind_node);
641 static inline void sk_add_bind_node(struct sock *sk,
642 struct hlist_head *list)
644 hlist_add_head(&sk->sk_bind_node, list);
647 #define sk_for_each(__sk, list) \
648 hlist_for_each_entry(__sk, list, sk_node)
649 #define sk_for_each_rcu(__sk, list) \
650 hlist_for_each_entry_rcu(__sk, list, sk_node)
651 #define sk_nulls_for_each(__sk, node, list) \
652 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
653 #define sk_nulls_for_each_rcu(__sk, node, list) \
654 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
655 #define sk_for_each_from(__sk) \
656 hlist_for_each_entry_from(__sk, sk_node)
657 #define sk_nulls_for_each_from(__sk, node) \
658 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
659 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
660 #define sk_for_each_safe(__sk, tmp, list) \
661 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
662 #define sk_for_each_bound(__sk, list) \
663 hlist_for_each_entry(__sk, list, sk_bind_node)
666 * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset
667 * @tpos: the type * to use as a loop cursor.
668 * @pos: the &struct hlist_node to use as a loop cursor.
669 * @head: the head for your list.
670 * @offset: offset of hlist_node within the struct.
673 #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset) \
674 for (pos = (head)->first; \
675 (!is_a_nulls(pos)) && \
676 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
677 pos = pos->next)
679 static inline struct user_namespace *sk_user_ns(struct sock *sk)
681 /* Careful only use this in a context where these parameters
682 * can not change and must all be valid, such as recvmsg from
683 * userspace.
685 return sk->sk_socket->file->f_cred->user_ns;
688 /* Sock flags */
689 enum sock_flags {
690 SOCK_DEAD,
691 SOCK_DONE,
692 SOCK_URGINLINE,
693 SOCK_KEEPOPEN,
694 SOCK_LINGER,
695 SOCK_DESTROY,
696 SOCK_BROADCAST,
697 SOCK_TIMESTAMP,
698 SOCK_ZAPPED,
699 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
700 SOCK_DBG, /* %SO_DEBUG setting */
701 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
702 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
703 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
704 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
705 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
706 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
707 SOCK_FASYNC, /* fasync() active */
708 SOCK_RXQ_OVFL,
709 SOCK_ZEROCOPY, /* buffers from userspace */
710 SOCK_WIFI_STATUS, /* push wifi status to userspace */
711 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
712 * Will use last 4 bytes of packet sent from
713 * user-space instead.
715 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
716 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
719 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
721 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
723 nsk->sk_flags = osk->sk_flags;
726 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
728 __set_bit(flag, &sk->sk_flags);
731 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
733 __clear_bit(flag, &sk->sk_flags);
736 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
738 return test_bit(flag, &sk->sk_flags);
741 #ifdef CONFIG_NET
742 extern struct static_key memalloc_socks;
743 static inline int sk_memalloc_socks(void)
745 return static_key_false(&memalloc_socks);
747 #else
749 static inline int sk_memalloc_socks(void)
751 return 0;
754 #endif
756 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
758 return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
761 static inline void sk_acceptq_removed(struct sock *sk)
763 sk->sk_ack_backlog--;
766 static inline void sk_acceptq_added(struct sock *sk)
768 sk->sk_ack_backlog++;
771 static inline bool sk_acceptq_is_full(const struct sock *sk)
773 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
777 * Compute minimal free write space needed to queue new packets.
779 static inline int sk_stream_min_wspace(const struct sock *sk)
781 return sk->sk_wmem_queued >> 1;
784 static inline int sk_stream_wspace(const struct sock *sk)
786 return sk->sk_sndbuf - sk->sk_wmem_queued;
789 void sk_stream_write_space(struct sock *sk);
791 /* OOB backlog add */
792 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
794 /* dont let skb dst not refcounted, we are going to leave rcu lock */
795 skb_dst_force_safe(skb);
797 if (!sk->sk_backlog.tail)
798 sk->sk_backlog.head = skb;
799 else
800 sk->sk_backlog.tail->next = skb;
802 sk->sk_backlog.tail = skb;
803 skb->next = NULL;
807 * Take into account size of receive queue and backlog queue
808 * Do not take into account this skb truesize,
809 * to allow even a single big packet to come.
811 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
813 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
815 return qsize > limit;
818 /* The per-socket spinlock must be held here. */
819 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
820 unsigned int limit)
822 if (sk_rcvqueues_full(sk, limit))
823 return -ENOBUFS;
826 * If the skb was allocated from pfmemalloc reserves, only
827 * allow SOCK_MEMALLOC sockets to use it as this socket is
828 * helping free memory
830 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
831 return -ENOMEM;
833 __sk_add_backlog(sk, skb);
834 sk->sk_backlog.len += skb->truesize;
835 return 0;
838 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
840 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
842 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
843 return __sk_backlog_rcv(sk, skb);
845 return sk->sk_backlog_rcv(sk, skb);
848 static inline void sock_rps_record_flow_hash(__u32 hash)
850 #ifdef CONFIG_RPS
851 struct rps_sock_flow_table *sock_flow_table;
853 rcu_read_lock();
854 sock_flow_table = rcu_dereference(rps_sock_flow_table);
855 rps_record_sock_flow(sock_flow_table, hash);
856 rcu_read_unlock();
857 #endif
860 static inline void sock_rps_reset_flow_hash(__u32 hash)
862 #ifdef CONFIG_RPS
863 struct rps_sock_flow_table *sock_flow_table;
865 rcu_read_lock();
866 sock_flow_table = rcu_dereference(rps_sock_flow_table);
867 rps_reset_sock_flow(sock_flow_table, hash);
868 rcu_read_unlock();
869 #endif
872 static inline void sock_rps_record_flow(const struct sock *sk)
874 #ifdef CONFIG_RPS
875 sock_rps_record_flow_hash(sk->sk_rxhash);
876 #endif
879 static inline void sock_rps_reset_flow(const struct sock *sk)
881 #ifdef CONFIG_RPS
882 sock_rps_reset_flow_hash(sk->sk_rxhash);
883 #endif
886 static inline void sock_rps_save_rxhash(struct sock *sk,
887 const struct sk_buff *skb)
889 #ifdef CONFIG_RPS
890 if (unlikely(sk->sk_rxhash != skb->hash)) {
891 sock_rps_reset_flow(sk);
892 sk->sk_rxhash = skb->hash;
894 #endif
897 static inline void sock_rps_reset_rxhash(struct sock *sk)
899 #ifdef CONFIG_RPS
900 sock_rps_reset_flow(sk);
901 sk->sk_rxhash = 0;
902 #endif
905 #define sk_wait_event(__sk, __timeo, __condition) \
906 ({ int __rc; \
907 release_sock(__sk); \
908 __rc = __condition; \
909 if (!__rc) { \
910 *(__timeo) = schedule_timeout(*(__timeo)); \
912 lock_sock(__sk); \
913 __rc = __condition; \
914 __rc; \
917 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
918 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
919 void sk_stream_wait_close(struct sock *sk, long timeo_p);
920 int sk_stream_error(struct sock *sk, int flags, int err);
921 void sk_stream_kill_queues(struct sock *sk);
922 void sk_set_memalloc(struct sock *sk);
923 void sk_clear_memalloc(struct sock *sk);
925 int sk_wait_data(struct sock *sk, long *timeo);
927 struct request_sock_ops;
928 struct timewait_sock_ops;
929 struct inet_hashinfo;
930 struct raw_hashinfo;
931 struct module;
934 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
935 * un-modified. Special care is taken when initializing object to zero.
937 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
939 if (offsetof(struct sock, sk_node.next) != 0)
940 memset(sk, 0, offsetof(struct sock, sk_node.next));
941 memset(&sk->sk_node.pprev, 0,
942 size - offsetof(struct sock, sk_node.pprev));
945 /* Networking protocol blocks we attach to sockets.
946 * socket layer -> transport layer interface
947 * transport -> network interface is defined by struct inet_proto
949 struct proto {
950 void (*close)(struct sock *sk,
951 long timeout);
952 int (*connect)(struct sock *sk,
953 struct sockaddr *uaddr,
954 int addr_len);
955 int (*disconnect)(struct sock *sk, int flags);
957 struct sock * (*accept)(struct sock *sk, int flags, int *err);
959 int (*ioctl)(struct sock *sk, int cmd,
960 unsigned long arg);
961 int (*init)(struct sock *sk);
962 void (*destroy)(struct sock *sk);
963 void (*shutdown)(struct sock *sk, int how);
964 int (*setsockopt)(struct sock *sk, int level,
965 int optname, char __user *optval,
966 unsigned int optlen);
967 int (*getsockopt)(struct sock *sk, int level,
968 int optname, char __user *optval,
969 int __user *option);
970 #ifdef CONFIG_COMPAT
971 int (*compat_setsockopt)(struct sock *sk,
972 int level,
973 int optname, char __user *optval,
974 unsigned int optlen);
975 int (*compat_getsockopt)(struct sock *sk,
976 int level,
977 int optname, char __user *optval,
978 int __user *option);
979 int (*compat_ioctl)(struct sock *sk,
980 unsigned int cmd, unsigned long arg);
981 #endif
982 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
983 struct msghdr *msg, size_t len);
984 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
985 struct msghdr *msg,
986 size_t len, int noblock, int flags,
987 int *addr_len);
988 int (*sendpage)(struct sock *sk, struct page *page,
989 int offset, size_t size, int flags);
990 int (*bind)(struct sock *sk,
991 struct sockaddr *uaddr, int addr_len);
993 int (*backlog_rcv) (struct sock *sk,
994 struct sk_buff *skb);
996 void (*release_cb)(struct sock *sk);
998 /* Keeping track of sk's, looking them up, and port selection methods. */
999 void (*hash)(struct sock *sk);
1000 void (*unhash)(struct sock *sk);
1001 void (*rehash)(struct sock *sk);
1002 int (*get_port)(struct sock *sk, unsigned short snum);
1003 void (*clear_sk)(struct sock *sk, int size);
1005 /* Keeping track of sockets in use */
1006 #ifdef CONFIG_PROC_FS
1007 unsigned int inuse_idx;
1008 #endif
1010 bool (*stream_memory_free)(const struct sock *sk);
1011 /* Memory pressure */
1012 void (*enter_memory_pressure)(struct sock *sk);
1013 atomic_long_t *memory_allocated; /* Current allocated memory. */
1014 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1016 * Pressure flag: try to collapse.
1017 * Technical note: it is used by multiple contexts non atomically.
1018 * All the __sk_mem_schedule() is of this nature: accounting
1019 * is strict, actions are advisory and have some latency.
1021 int *memory_pressure;
1022 long *sysctl_mem;
1023 int *sysctl_wmem;
1024 int *sysctl_rmem;
1025 int max_header;
1026 bool no_autobind;
1028 struct kmem_cache *slab;
1029 unsigned int obj_size;
1030 int slab_flags;
1032 struct percpu_counter *orphan_count;
1034 struct request_sock_ops *rsk_prot;
1035 struct timewait_sock_ops *twsk_prot;
1037 union {
1038 struct inet_hashinfo *hashinfo;
1039 struct udp_table *udp_table;
1040 struct raw_hashinfo *raw_hash;
1041 } h;
1043 struct module *owner;
1045 char name[32];
1047 struct list_head node;
1048 #ifdef SOCK_REFCNT_DEBUG
1049 atomic_t socks;
1050 #endif
1051 #ifdef CONFIG_MEMCG_KMEM
1053 * cgroup specific init/deinit functions. Called once for all
1054 * protocols that implement it, from cgroups populate function.
1055 * This function has to setup any files the protocol want to
1056 * appear in the kmem cgroup filesystem.
1058 int (*init_cgroup)(struct mem_cgroup *memcg,
1059 struct cgroup_subsys *ss);
1060 void (*destroy_cgroup)(struct mem_cgroup *memcg);
1061 struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
1062 #endif
1066 * Bits in struct cg_proto.flags
1068 enum cg_proto_flags {
1069 /* Currently active and new sockets should be assigned to cgroups */
1070 MEMCG_SOCK_ACTIVE,
1071 /* It was ever activated; we must disarm static keys on destruction */
1072 MEMCG_SOCK_ACTIVATED,
1075 struct cg_proto {
1076 struct res_counter memory_allocated; /* Current allocated memory. */
1077 struct percpu_counter sockets_allocated; /* Current number of sockets. */
1078 int memory_pressure;
1079 long sysctl_mem[3];
1080 unsigned long flags;
1082 * memcg field is used to find which memcg we belong directly
1083 * Each memcg struct can hold more than one cg_proto, so container_of
1084 * won't really cut.
1086 * The elegant solution would be having an inverse function to
1087 * proto_cgroup in struct proto, but that means polluting the structure
1088 * for everybody, instead of just for memcg users.
1090 struct mem_cgroup *memcg;
1093 int proto_register(struct proto *prot, int alloc_slab);
1094 void proto_unregister(struct proto *prot);
1096 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1098 return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1101 static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1103 return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1106 #ifdef SOCK_REFCNT_DEBUG
1107 static inline void sk_refcnt_debug_inc(struct sock *sk)
1109 atomic_inc(&sk->sk_prot->socks);
1112 static inline void sk_refcnt_debug_dec(struct sock *sk)
1114 atomic_dec(&sk->sk_prot->socks);
1115 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1116 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1119 static inline void sk_refcnt_debug_release(const struct sock *sk)
1121 if (atomic_read(&sk->sk_refcnt) != 1)
1122 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1123 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1125 #else /* SOCK_REFCNT_DEBUG */
1126 #define sk_refcnt_debug_inc(sk) do { } while (0)
1127 #define sk_refcnt_debug_dec(sk) do { } while (0)
1128 #define sk_refcnt_debug_release(sk) do { } while (0)
1129 #endif /* SOCK_REFCNT_DEBUG */
1131 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1132 extern struct static_key memcg_socket_limit_enabled;
1133 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1134 struct cg_proto *cg_proto)
1136 return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1138 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1139 #else
1140 #define mem_cgroup_sockets_enabled 0
1141 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1142 struct cg_proto *cg_proto)
1144 return NULL;
1146 #endif
1148 static inline bool sk_stream_memory_free(const struct sock *sk)
1150 if (sk->sk_wmem_queued >= sk->sk_sndbuf)
1151 return false;
1153 return sk->sk_prot->stream_memory_free ?
1154 sk->sk_prot->stream_memory_free(sk) : true;
1157 static inline bool sk_stream_is_writeable(const struct sock *sk)
1159 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1160 sk_stream_memory_free(sk);
1164 static inline bool sk_has_memory_pressure(const struct sock *sk)
1166 return sk->sk_prot->memory_pressure != NULL;
1169 static inline bool sk_under_memory_pressure(const struct sock *sk)
1171 if (!sk->sk_prot->memory_pressure)
1172 return false;
1174 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1175 return !!sk->sk_cgrp->memory_pressure;
1177 return !!*sk->sk_prot->memory_pressure;
1180 static inline void sk_leave_memory_pressure(struct sock *sk)
1182 int *memory_pressure = sk->sk_prot->memory_pressure;
1184 if (!memory_pressure)
1185 return;
1187 if (*memory_pressure)
1188 *memory_pressure = 0;
1190 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1191 struct cg_proto *cg_proto = sk->sk_cgrp;
1192 struct proto *prot = sk->sk_prot;
1194 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1195 cg_proto->memory_pressure = 0;
1200 static inline void sk_enter_memory_pressure(struct sock *sk)
1202 if (!sk->sk_prot->enter_memory_pressure)
1203 return;
1205 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1206 struct cg_proto *cg_proto = sk->sk_cgrp;
1207 struct proto *prot = sk->sk_prot;
1209 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1210 cg_proto->memory_pressure = 1;
1213 sk->sk_prot->enter_memory_pressure(sk);
1216 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1218 long *prot = sk->sk_prot->sysctl_mem;
1219 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1220 prot = sk->sk_cgrp->sysctl_mem;
1221 return prot[index];
1224 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1225 unsigned long amt,
1226 int *parent_status)
1228 struct res_counter *fail;
1229 int ret;
1231 ret = res_counter_charge_nofail(&prot->memory_allocated,
1232 amt << PAGE_SHIFT, &fail);
1233 if (ret < 0)
1234 *parent_status = OVER_LIMIT;
1237 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1238 unsigned long amt)
1240 res_counter_uncharge(&prot->memory_allocated, amt << PAGE_SHIFT);
1243 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1245 u64 ret;
1246 ret = res_counter_read_u64(&prot->memory_allocated, RES_USAGE);
1247 return ret >> PAGE_SHIFT;
1250 static inline long
1251 sk_memory_allocated(const struct sock *sk)
1253 struct proto *prot = sk->sk_prot;
1254 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1255 return memcg_memory_allocated_read(sk->sk_cgrp);
1257 return atomic_long_read(prot->memory_allocated);
1260 static inline long
1261 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1263 struct proto *prot = sk->sk_prot;
1265 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1266 memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1267 /* update the root cgroup regardless */
1268 atomic_long_add_return(amt, prot->memory_allocated);
1269 return memcg_memory_allocated_read(sk->sk_cgrp);
1272 return atomic_long_add_return(amt, prot->memory_allocated);
1275 static inline void
1276 sk_memory_allocated_sub(struct sock *sk, int amt)
1278 struct proto *prot = sk->sk_prot;
1280 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1281 memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1283 atomic_long_sub(amt, prot->memory_allocated);
1286 static inline void sk_sockets_allocated_dec(struct sock *sk)
1288 struct proto *prot = sk->sk_prot;
1290 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1291 struct cg_proto *cg_proto = sk->sk_cgrp;
1293 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1294 percpu_counter_dec(&cg_proto->sockets_allocated);
1297 percpu_counter_dec(prot->sockets_allocated);
1300 static inline void sk_sockets_allocated_inc(struct sock *sk)
1302 struct proto *prot = sk->sk_prot;
1304 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1305 struct cg_proto *cg_proto = sk->sk_cgrp;
1307 for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1308 percpu_counter_inc(&cg_proto->sockets_allocated);
1311 percpu_counter_inc(prot->sockets_allocated);
1314 static inline int
1315 sk_sockets_allocated_read_positive(struct sock *sk)
1317 struct proto *prot = sk->sk_prot;
1319 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1320 return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated);
1322 return percpu_counter_read_positive(prot->sockets_allocated);
1325 static inline int
1326 proto_sockets_allocated_sum_positive(struct proto *prot)
1328 return percpu_counter_sum_positive(prot->sockets_allocated);
1331 static inline long
1332 proto_memory_allocated(struct proto *prot)
1334 return atomic_long_read(prot->memory_allocated);
1337 static inline bool
1338 proto_memory_pressure(struct proto *prot)
1340 if (!prot->memory_pressure)
1341 return false;
1342 return !!*prot->memory_pressure;
1346 #ifdef CONFIG_PROC_FS
1347 /* Called with local bh disabled */
1348 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1349 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1350 #else
1351 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1352 int inc)
1355 #endif
1358 /* With per-bucket locks this operation is not-atomic, so that
1359 * this version is not worse.
1361 static inline void __sk_prot_rehash(struct sock *sk)
1363 sk->sk_prot->unhash(sk);
1364 sk->sk_prot->hash(sk);
1367 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1369 /* About 10 seconds */
1370 #define SOCK_DESTROY_TIME (10*HZ)
1372 /* Sockets 0-1023 can't be bound to unless you are superuser */
1373 #define PROT_SOCK 1024
1375 #define SHUTDOWN_MASK 3
1376 #define RCV_SHUTDOWN 1
1377 #define SEND_SHUTDOWN 2
1379 #define SOCK_SNDBUF_LOCK 1
1380 #define SOCK_RCVBUF_LOCK 2
1381 #define SOCK_BINDADDR_LOCK 4
1382 #define SOCK_BINDPORT_LOCK 8
1384 /* sock_iocb: used to kick off async processing of socket ios */
1385 struct sock_iocb {
1386 struct list_head list;
1388 int flags;
1389 int size;
1390 struct socket *sock;
1391 struct sock *sk;
1392 struct scm_cookie *scm;
1393 struct msghdr *msg, async_msg;
1394 struct kiocb *kiocb;
1397 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1399 return (struct sock_iocb *)iocb->private;
1402 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1404 return si->kiocb;
1407 struct socket_alloc {
1408 struct socket socket;
1409 struct inode vfs_inode;
1412 static inline struct socket *SOCKET_I(struct inode *inode)
1414 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1417 static inline struct inode *SOCK_INODE(struct socket *socket)
1419 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1423 * Functions for memory accounting
1425 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1426 void __sk_mem_reclaim(struct sock *sk);
1428 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1429 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1430 #define SK_MEM_SEND 0
1431 #define SK_MEM_RECV 1
1433 static inline int sk_mem_pages(int amt)
1435 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1438 static inline bool sk_has_account(struct sock *sk)
1440 /* return true if protocol supports memory accounting */
1441 return !!sk->sk_prot->memory_allocated;
1444 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1446 if (!sk_has_account(sk))
1447 return true;
1448 return size <= sk->sk_forward_alloc ||
1449 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1452 static inline bool
1453 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1455 if (!sk_has_account(sk))
1456 return true;
1457 return size<= sk->sk_forward_alloc ||
1458 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1459 skb_pfmemalloc(skb);
1462 static inline void sk_mem_reclaim(struct sock *sk)
1464 if (!sk_has_account(sk))
1465 return;
1466 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1467 __sk_mem_reclaim(sk);
1470 static inline void sk_mem_reclaim_partial(struct sock *sk)
1472 if (!sk_has_account(sk))
1473 return;
1474 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1475 __sk_mem_reclaim(sk);
1478 static inline void sk_mem_charge(struct sock *sk, int size)
1480 if (!sk_has_account(sk))
1481 return;
1482 sk->sk_forward_alloc -= size;
1485 static inline void sk_mem_uncharge(struct sock *sk, int size)
1487 if (!sk_has_account(sk))
1488 return;
1489 sk->sk_forward_alloc += size;
1492 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1494 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1495 sk->sk_wmem_queued -= skb->truesize;
1496 sk_mem_uncharge(sk, skb->truesize);
1497 __kfree_skb(skb);
1500 /* Used by processes to "lock" a socket state, so that
1501 * interrupts and bottom half handlers won't change it
1502 * from under us. It essentially blocks any incoming
1503 * packets, so that we won't get any new data or any
1504 * packets that change the state of the socket.
1506 * While locked, BH processing will add new packets to
1507 * the backlog queue. This queue is processed by the
1508 * owner of the socket lock right before it is released.
1510 * Since ~2.3.5 it is also exclusive sleep lock serializing
1511 * accesses from user process context.
1513 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1515 static inline void sock_release_ownership(struct sock *sk)
1517 sk->sk_lock.owned = 0;
1521 * Macro so as to not evaluate some arguments when
1522 * lockdep is not enabled.
1524 * Mark both the sk_lock and the sk_lock.slock as a
1525 * per-address-family lock class.
1527 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1528 do { \
1529 sk->sk_lock.owned = 0; \
1530 init_waitqueue_head(&sk->sk_lock.wq); \
1531 spin_lock_init(&(sk)->sk_lock.slock); \
1532 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1533 sizeof((sk)->sk_lock)); \
1534 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1535 (skey), (sname)); \
1536 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1537 } while (0)
1539 void lock_sock_nested(struct sock *sk, int subclass);
1541 static inline void lock_sock(struct sock *sk)
1543 lock_sock_nested(sk, 0);
1546 void release_sock(struct sock *sk);
1548 /* BH context may only use the following locking interface. */
1549 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1550 #define bh_lock_sock_nested(__sk) \
1551 spin_lock_nested(&((__sk)->sk_lock.slock), \
1552 SINGLE_DEPTH_NESTING)
1553 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1555 bool lock_sock_fast(struct sock *sk);
1557 * unlock_sock_fast - complement of lock_sock_fast
1558 * @sk: socket
1559 * @slow: slow mode
1561 * fast unlock socket for user context.
1562 * If slow mode is on, we call regular release_sock()
1564 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1566 if (slow)
1567 release_sock(sk);
1568 else
1569 spin_unlock_bh(&sk->sk_lock.slock);
1573 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1574 struct proto *prot);
1575 void sk_free(struct sock *sk);
1576 void sk_release_kernel(struct sock *sk);
1577 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1579 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1580 gfp_t priority);
1581 void sock_wfree(struct sk_buff *skb);
1582 void skb_orphan_partial(struct sk_buff *skb);
1583 void sock_rfree(struct sk_buff *skb);
1584 void sock_efree(struct sk_buff *skb);
1585 #ifdef CONFIG_INET
1586 void sock_edemux(struct sk_buff *skb);
1587 #else
1588 #define sock_edemux(skb) sock_efree(skb)
1589 #endif
1591 int sock_setsockopt(struct socket *sock, int level, int op,
1592 char __user *optval, unsigned int optlen);
1594 int sock_getsockopt(struct socket *sock, int level, int op,
1595 char __user *optval, int __user *optlen);
1596 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1597 int noblock, int *errcode);
1598 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1599 unsigned long data_len, int noblock,
1600 int *errcode, int max_page_order);
1601 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1602 void sock_kfree_s(struct sock *sk, void *mem, int size);
1603 void sk_send_sigurg(struct sock *sk);
1606 * Functions to fill in entries in struct proto_ops when a protocol
1607 * does not implement a particular function.
1609 int sock_no_bind(struct socket *, struct sockaddr *, int);
1610 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1611 int sock_no_socketpair(struct socket *, struct socket *);
1612 int sock_no_accept(struct socket *, struct socket *, int);
1613 int sock_no_getname(struct socket *, struct sockaddr *, int *, int);
1614 unsigned int sock_no_poll(struct file *, struct socket *,
1615 struct poll_table_struct *);
1616 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1617 int sock_no_listen(struct socket *, int);
1618 int sock_no_shutdown(struct socket *, int);
1619 int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *);
1620 int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int);
1621 int sock_no_sendmsg(struct kiocb *, struct socket *, struct msghdr *, size_t);
1622 int sock_no_recvmsg(struct kiocb *, struct socket *, struct msghdr *, size_t,
1623 int);
1624 int sock_no_mmap(struct file *file, struct socket *sock,
1625 struct vm_area_struct *vma);
1626 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1627 size_t size, int flags);
1630 * Functions to fill in entries in struct proto_ops when a protocol
1631 * uses the inet style.
1633 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1634 char __user *optval, int __user *optlen);
1635 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1636 struct msghdr *msg, size_t size, int flags);
1637 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1638 char __user *optval, unsigned int optlen);
1639 int compat_sock_common_getsockopt(struct socket *sock, int level,
1640 int optname, char __user *optval, int __user *optlen);
1641 int compat_sock_common_setsockopt(struct socket *sock, int level,
1642 int optname, char __user *optval, unsigned int optlen);
1644 void sk_common_release(struct sock *sk);
1647 * Default socket callbacks and setup code
1650 /* Initialise core socket variables */
1651 void sock_init_data(struct socket *sock, struct sock *sk);
1654 * Socket reference counting postulates.
1656 * * Each user of socket SHOULD hold a reference count.
1657 * * Each access point to socket (an hash table bucket, reference from a list,
1658 * running timer, skb in flight MUST hold a reference count.
1659 * * When reference count hits 0, it means it will never increase back.
1660 * * When reference count hits 0, it means that no references from
1661 * outside exist to this socket and current process on current CPU
1662 * is last user and may/should destroy this socket.
1663 * * sk_free is called from any context: process, BH, IRQ. When
1664 * it is called, socket has no references from outside -> sk_free
1665 * may release descendant resources allocated by the socket, but
1666 * to the time when it is called, socket is NOT referenced by any
1667 * hash tables, lists etc.
1668 * * Packets, delivered from outside (from network or from another process)
1669 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1670 * when they sit in queue. Otherwise, packets will leak to hole, when
1671 * socket is looked up by one cpu and unhasing is made by another CPU.
1672 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1673 * (leak to backlog). Packet socket does all the processing inside
1674 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1675 * use separate SMP lock, so that they are prone too.
1678 /* Ungrab socket and destroy it, if it was the last reference. */
1679 static inline void sock_put(struct sock *sk)
1681 if (atomic_dec_and_test(&sk->sk_refcnt))
1682 sk_free(sk);
1684 /* Generic version of sock_put(), dealing with all sockets
1685 * (TCP_TIMEWAIT, ESTABLISHED...)
1687 void sock_gen_put(struct sock *sk);
1689 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested);
1691 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1693 sk->sk_tx_queue_mapping = tx_queue;
1696 static inline void sk_tx_queue_clear(struct sock *sk)
1698 sk->sk_tx_queue_mapping = -1;
1701 static inline int sk_tx_queue_get(const struct sock *sk)
1703 return sk ? sk->sk_tx_queue_mapping : -1;
1706 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1708 sk_tx_queue_clear(sk);
1709 sk->sk_socket = sock;
1712 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1714 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1715 return &rcu_dereference_raw(sk->sk_wq)->wait;
1717 /* Detach socket from process context.
1718 * Announce socket dead, detach it from wait queue and inode.
1719 * Note that parent inode held reference count on this struct sock,
1720 * we do not release it in this function, because protocol
1721 * probably wants some additional cleanups or even continuing
1722 * to work with this socket (TCP).
1724 static inline void sock_orphan(struct sock *sk)
1726 write_lock_bh(&sk->sk_callback_lock);
1727 sock_set_flag(sk, SOCK_DEAD);
1728 sk_set_socket(sk, NULL);
1729 sk->sk_wq = NULL;
1730 write_unlock_bh(&sk->sk_callback_lock);
1733 static inline void sock_graft(struct sock *sk, struct socket *parent)
1735 write_lock_bh(&sk->sk_callback_lock);
1736 sk->sk_wq = parent->wq;
1737 parent->sk = sk;
1738 sk_set_socket(sk, parent);
1739 security_sock_graft(sk, parent);
1740 write_unlock_bh(&sk->sk_callback_lock);
1743 kuid_t sock_i_uid(struct sock *sk);
1744 unsigned long sock_i_ino(struct sock *sk);
1746 static inline struct dst_entry *
1747 __sk_dst_get(struct sock *sk)
1749 return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) ||
1750 lockdep_is_held(&sk->sk_lock.slock));
1753 static inline struct dst_entry *
1754 sk_dst_get(struct sock *sk)
1756 struct dst_entry *dst;
1758 rcu_read_lock();
1759 dst = rcu_dereference(sk->sk_dst_cache);
1760 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1761 dst = NULL;
1762 rcu_read_unlock();
1763 return dst;
1766 static inline void dst_negative_advice(struct sock *sk)
1768 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1770 if (dst && dst->ops->negative_advice) {
1771 ndst = dst->ops->negative_advice(dst);
1773 if (ndst != dst) {
1774 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1775 sk_tx_queue_clear(sk);
1780 static inline void
1781 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1783 struct dst_entry *old_dst;
1785 sk_tx_queue_clear(sk);
1787 * This can be called while sk is owned by the caller only,
1788 * with no state that can be checked in a rcu_dereference_check() cond
1790 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1791 rcu_assign_pointer(sk->sk_dst_cache, dst);
1792 dst_release(old_dst);
1795 static inline void
1796 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1798 struct dst_entry *old_dst;
1800 sk_tx_queue_clear(sk);
1801 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1802 dst_release(old_dst);
1805 static inline void
1806 __sk_dst_reset(struct sock *sk)
1808 __sk_dst_set(sk, NULL);
1811 static inline void
1812 sk_dst_reset(struct sock *sk)
1814 sk_dst_set(sk, NULL);
1817 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1819 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1821 bool sk_mc_loop(struct sock *sk);
1823 static inline bool sk_can_gso(const struct sock *sk)
1825 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1828 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1830 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1832 sk->sk_route_nocaps |= flags;
1833 sk->sk_route_caps &= ~flags;
1836 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1837 char __user *from, char *to,
1838 int copy, int offset)
1840 if (skb->ip_summed == CHECKSUM_NONE) {
1841 int err = 0;
1842 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1843 if (err)
1844 return err;
1845 skb->csum = csum_block_add(skb->csum, csum, offset);
1846 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1847 if (!access_ok(VERIFY_READ, from, copy) ||
1848 __copy_from_user_nocache(to, from, copy))
1849 return -EFAULT;
1850 } else if (copy_from_user(to, from, copy))
1851 return -EFAULT;
1853 return 0;
1856 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1857 char __user *from, int copy)
1859 int err, offset = skb->len;
1861 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1862 copy, offset);
1863 if (err)
1864 __skb_trim(skb, offset);
1866 return err;
1869 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1870 struct sk_buff *skb,
1871 struct page *page,
1872 int off, int copy)
1874 int err;
1876 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1877 copy, skb->len);
1878 if (err)
1879 return err;
1881 skb->len += copy;
1882 skb->data_len += copy;
1883 skb->truesize += copy;
1884 sk->sk_wmem_queued += copy;
1885 sk_mem_charge(sk, copy);
1886 return 0;
1889 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1890 struct sk_buff *skb, struct page *page,
1891 int off, int copy)
1893 if (skb->ip_summed == CHECKSUM_NONE) {
1894 int err = 0;
1895 __wsum csum = csum_and_copy_from_user(from,
1896 page_address(page) + off,
1897 copy, 0, &err);
1898 if (err)
1899 return err;
1900 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1901 } else if (copy_from_user(page_address(page) + off, from, copy))
1902 return -EFAULT;
1904 skb->len += copy;
1905 skb->data_len += copy;
1906 skb->truesize += copy;
1907 sk->sk_wmem_queued += copy;
1908 sk_mem_charge(sk, copy);
1909 return 0;
1913 * sk_wmem_alloc_get - returns write allocations
1914 * @sk: socket
1916 * Returns sk_wmem_alloc minus initial offset of one
1918 static inline int sk_wmem_alloc_get(const struct sock *sk)
1920 return atomic_read(&sk->sk_wmem_alloc) - 1;
1924 * sk_rmem_alloc_get - returns read allocations
1925 * @sk: socket
1927 * Returns sk_rmem_alloc
1929 static inline int sk_rmem_alloc_get(const struct sock *sk)
1931 return atomic_read(&sk->sk_rmem_alloc);
1935 * sk_has_allocations - check if allocations are outstanding
1936 * @sk: socket
1938 * Returns true if socket has write or read allocations
1940 static inline bool sk_has_allocations(const struct sock *sk)
1942 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1946 * wq_has_sleeper - check if there are any waiting processes
1947 * @wq: struct socket_wq
1949 * Returns true if socket_wq has waiting processes
1951 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1952 * barrier call. They were added due to the race found within the tcp code.
1954 * Consider following tcp code paths:
1956 * CPU1 CPU2
1958 * sys_select receive packet
1959 * ... ...
1960 * __add_wait_queue update tp->rcv_nxt
1961 * ... ...
1962 * tp->rcv_nxt check sock_def_readable
1963 * ... {
1964 * schedule rcu_read_lock();
1965 * wq = rcu_dereference(sk->sk_wq);
1966 * if (wq && waitqueue_active(&wq->wait))
1967 * wake_up_interruptible(&wq->wait)
1968 * ...
1971 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1972 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1973 * could then endup calling schedule and sleep forever if there are no more
1974 * data on the socket.
1977 static inline bool wq_has_sleeper(struct socket_wq *wq)
1979 /* We need to be sure we are in sync with the
1980 * add_wait_queue modifications to the wait queue.
1982 * This memory barrier is paired in the sock_poll_wait.
1984 smp_mb();
1985 return wq && waitqueue_active(&wq->wait);
1989 * sock_poll_wait - place memory barrier behind the poll_wait call.
1990 * @filp: file
1991 * @wait_address: socket wait queue
1992 * @p: poll_table
1994 * See the comments in the wq_has_sleeper function.
1996 static inline void sock_poll_wait(struct file *filp,
1997 wait_queue_head_t *wait_address, poll_table *p)
1999 if (!poll_does_not_wait(p) && wait_address) {
2000 poll_wait(filp, wait_address, p);
2001 /* We need to be sure we are in sync with the
2002 * socket flags modification.
2004 * This memory barrier is paired in the wq_has_sleeper.
2006 smp_mb();
2010 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2012 if (sk->sk_txhash) {
2013 skb->l4_hash = 1;
2014 skb->hash = sk->sk_txhash;
2019 * Queue a received datagram if it will fit. Stream and sequenced
2020 * protocols can't normally use this as they need to fit buffers in
2021 * and play with them.
2023 * Inlined as it's very short and called for pretty much every
2024 * packet ever received.
2027 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2029 skb_orphan(skb);
2030 skb->sk = sk;
2031 skb->destructor = sock_wfree;
2032 skb_set_hash_from_sk(skb, sk);
2034 * We used to take a refcount on sk, but following operation
2035 * is enough to guarantee sk_free() wont free this sock until
2036 * all in-flight packets are completed
2038 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
2041 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2043 skb_orphan(skb);
2044 skb->sk = sk;
2045 skb->destructor = sock_rfree;
2046 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2047 sk_mem_charge(sk, skb->truesize);
2050 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2051 unsigned long expires);
2053 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2055 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2057 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2058 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2061 * Recover an error report and clear atomically
2064 static inline int sock_error(struct sock *sk)
2066 int err;
2067 if (likely(!sk->sk_err))
2068 return 0;
2069 err = xchg(&sk->sk_err, 0);
2070 return -err;
2073 static inline unsigned long sock_wspace(struct sock *sk)
2075 int amt = 0;
2077 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2078 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
2079 if (amt < 0)
2080 amt = 0;
2082 return amt;
2085 static inline void sk_wake_async(struct sock *sk, int how, int band)
2087 if (sock_flag(sk, SOCK_FASYNC))
2088 sock_wake_async(sk->sk_socket, how, band);
2091 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2092 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2093 * Note: for send buffers, TCP works better if we can build two skbs at
2094 * minimum.
2096 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2098 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2099 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2101 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2103 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2104 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2105 sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2109 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2112 * sk_page_frag - return an appropriate page_frag
2113 * @sk: socket
2115 * If socket allocation mode allows current thread to sleep, it means its
2116 * safe to use the per task page_frag instead of the per socket one.
2118 static inline struct page_frag *sk_page_frag(struct sock *sk)
2120 if (sk->sk_allocation & __GFP_WAIT)
2121 return &current->task_frag;
2123 return &sk->sk_frag;
2126 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2129 * Default write policy as shown to user space via poll/select/SIGIO
2131 static inline bool sock_writeable(const struct sock *sk)
2133 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2136 static inline gfp_t gfp_any(void)
2138 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2141 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2143 return noblock ? 0 : sk->sk_rcvtimeo;
2146 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2148 return noblock ? 0 : sk->sk_sndtimeo;
2151 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2153 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2156 /* Alas, with timeout socket operations are not restartable.
2157 * Compare this to poll().
2159 static inline int sock_intr_errno(long timeo)
2161 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2164 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2165 struct sk_buff *skb);
2166 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2167 struct sk_buff *skb);
2169 static inline void
2170 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2172 ktime_t kt = skb->tstamp;
2173 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2176 * generate control messages if
2177 * - receive time stamping in software requested
2178 * - software time stamp available and wanted
2179 * - hardware time stamps available and wanted
2181 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2182 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2183 (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2184 (hwtstamps->hwtstamp.tv64 &&
2185 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2186 __sock_recv_timestamp(msg, sk, skb);
2187 else
2188 sk->sk_stamp = kt;
2190 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2191 __sock_recv_wifi_status(msg, sk, skb);
2194 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2195 struct sk_buff *skb);
2197 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2198 struct sk_buff *skb)
2200 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2201 (1UL << SOCK_RCVTSTAMP))
2202 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2203 SOF_TIMESTAMPING_RAW_HARDWARE)
2205 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2206 __sock_recv_ts_and_drops(msg, sk, skb);
2207 else
2208 sk->sk_stamp = skb->tstamp;
2211 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags);
2214 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2215 * @sk: socket sending this packet
2216 * @tx_flags: completed with instructions for time stamping
2218 * Note : callers should take care of initial *tx_flags value (usually 0)
2220 static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
2222 if (unlikely(sk->sk_tsflags))
2223 __sock_tx_timestamp(sk, tx_flags);
2224 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2225 *tx_flags |= SKBTX_WIFI_STATUS;
2229 * sk_eat_skb - Release a skb if it is no longer needed
2230 * @sk: socket to eat this skb from
2231 * @skb: socket buffer to eat
2233 * This routine must be called with interrupts disabled or with the socket
2234 * locked so that the sk_buff queue operation is ok.
2236 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2238 __skb_unlink(skb, &sk->sk_receive_queue);
2239 __kfree_skb(skb);
2242 static inline
2243 struct net *sock_net(const struct sock *sk)
2245 return read_pnet(&sk->sk_net);
2248 static inline
2249 void sock_net_set(struct sock *sk, struct net *net)
2251 write_pnet(&sk->sk_net, net);
2255 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2256 * They should not hold a reference to a namespace in order to allow
2257 * to stop it.
2258 * Sockets after sk_change_net should be released using sk_release_kernel
2260 static inline void sk_change_net(struct sock *sk, struct net *net)
2262 struct net *current_net = sock_net(sk);
2264 if (!net_eq(current_net, net)) {
2265 put_net(current_net);
2266 sock_net_set(sk, hold_net(net));
2270 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2272 if (skb->sk) {
2273 struct sock *sk = skb->sk;
2275 skb->destructor = NULL;
2276 skb->sk = NULL;
2277 return sk;
2279 return NULL;
2282 /* This helper checks if a socket is a full socket,
2283 * ie _not_ a timewait or request socket.
2285 static inline bool sk_fullsock(const struct sock *sk)
2287 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2290 void sock_enable_timestamp(struct sock *sk, int flag);
2291 int sock_get_timestamp(struct sock *, struct timeval __user *);
2292 int sock_get_timestampns(struct sock *, struct timespec __user *);
2293 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2294 int type);
2296 bool sk_ns_capable(const struct sock *sk,
2297 struct user_namespace *user_ns, int cap);
2298 bool sk_capable(const struct sock *sk, int cap);
2299 bool sk_net_capable(const struct sock *sk, int cap);
2302 * Enable debug/info messages
2304 extern int net_msg_warn;
2305 #define NETDEBUG(fmt, args...) \
2306 do { if (net_msg_warn) printk(fmt,##args); } while (0)
2308 #define LIMIT_NETDEBUG(fmt, args...) \
2309 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2311 extern __u32 sysctl_wmem_max;
2312 extern __u32 sysctl_rmem_max;
2314 extern int sysctl_optmem_max;
2316 extern __u32 sysctl_wmem_default;
2317 extern __u32 sysctl_rmem_default;
2319 #endif /* _SOCK_H */