Linux 3.15-rc1
[linux/fpc-iii.git] / Documentation / DocBook / writing-an-alsa-driver.tmpl
blobd0056a4e9c53fc9e455ec5eaad518074dbc5b152
1 <?xml version="1.0" encoding="UTF-8"?>
2 <!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
3 "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
5 <!-- ****************************************************** -->
6 <!-- Header -->
7 <!-- ****************************************************** -->
8 <book id="Writing-an-ALSA-Driver">
9 <bookinfo>
10 <title>Writing an ALSA Driver</title>
11 <author>
12 <firstname>Takashi</firstname>
13 <surname>Iwai</surname>
14 <affiliation>
15 <address>
16 <email>tiwai@suse.de</email>
17 </address>
18 </affiliation>
19 </author>
21 <date>Oct 15, 2007</date>
22 <edition>0.3.7</edition>
24 <abstract>
25 <para>
26 This document describes how to write an ALSA (Advanced Linux
27 Sound Architecture) driver.
28 </para>
29 </abstract>
31 <legalnotice>
32 <para>
33 Copyright (c) 2002-2005 Takashi Iwai <email>tiwai@suse.de</email>
34 </para>
36 <para>
37 This document is free; you can redistribute it and/or modify it
38 under the terms of the GNU General Public License as published by
39 the Free Software Foundation; either version 2 of the License, or
40 (at your option) any later version.
41 </para>
43 <para>
44 This document is distributed in the hope that it will be useful,
45 but <emphasis>WITHOUT ANY WARRANTY</emphasis>; without even the
46 implied warranty of <emphasis>MERCHANTABILITY or FITNESS FOR A
47 PARTICULAR PURPOSE</emphasis>. See the GNU General Public License
48 for more details.
49 </para>
51 <para>
52 You should have received a copy of the GNU General Public
53 License along with this program; if not, write to the Free
54 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
55 MA 02111-1307 USA
56 </para>
57 </legalnotice>
59 </bookinfo>
61 <!-- ****************************************************** -->
62 <!-- Preface -->
63 <!-- ****************************************************** -->
64 <preface id="preface">
65 <title>Preface</title>
66 <para>
67 This document describes how to write an
68 <ulink url="http://www.alsa-project.org/"><citetitle>
69 ALSA (Advanced Linux Sound Architecture)</citetitle></ulink>
70 driver. The document focuses mainly on PCI soundcards.
71 In the case of other device types, the API might
72 be different, too. However, at least the ALSA kernel API is
73 consistent, and therefore it would be still a bit help for
74 writing them.
75 </para>
77 <para>
78 This document targets people who already have enough
79 C language skills and have basic linux kernel programming
80 knowledge. This document doesn't explain the general
81 topic of linux kernel coding and doesn't cover low-level
82 driver implementation details. It only describes
83 the standard way to write a PCI sound driver on ALSA.
84 </para>
86 <para>
87 If you are already familiar with the older ALSA ver.0.5.x API, you
88 can check the drivers such as <filename>sound/pci/es1938.c</filename> or
89 <filename>sound/pci/maestro3.c</filename> which have also almost the same
90 code-base in the ALSA 0.5.x tree, so you can compare the differences.
91 </para>
93 <para>
94 This document is still a draft version. Any feedback and
95 corrections, please!!
96 </para>
97 </preface>
100 <!-- ****************************************************** -->
101 <!-- File Tree Structure -->
102 <!-- ****************************************************** -->
103 <chapter id="file-tree">
104 <title>File Tree Structure</title>
106 <section id="file-tree-general">
107 <title>General</title>
108 <para>
109 The ALSA drivers are provided in two ways.
110 </para>
112 <para>
113 One is the trees provided as a tarball or via cvs from the
114 ALSA's ftp site, and another is the 2.6 (or later) Linux kernel
115 tree. To synchronize both, the ALSA driver tree is split into
116 two different trees: alsa-kernel and alsa-driver. The former
117 contains purely the source code for the Linux 2.6 (or later)
118 tree. This tree is designed only for compilation on 2.6 or
119 later environment. The latter, alsa-driver, contains many subtle
120 files for compiling ALSA drivers outside of the Linux kernel tree,
121 wrapper functions for older 2.2 and 2.4 kernels, to adapt the latest kernel API,
122 and additional drivers which are still in development or in
123 tests. The drivers in alsa-driver tree will be moved to
124 alsa-kernel (and eventually to the 2.6 kernel tree) when they are
125 finished and confirmed to work fine.
126 </para>
128 <para>
129 The file tree structure of ALSA driver is depicted below. Both
130 alsa-kernel and alsa-driver have almost the same file
131 structure, except for <quote>core</quote> directory. It's
132 named as <quote>acore</quote> in alsa-driver tree.
134 <example>
135 <title>ALSA File Tree Structure</title>
136 <literallayout>
137 sound
138 /core
139 /oss
140 /seq
141 /oss
142 /instr
143 /ioctl32
144 /include
145 /drivers
146 /mpu401
147 /opl3
148 /i2c
150 /synth
151 /emux
152 /pci
153 /(cards)
154 /isa
155 /(cards)
156 /arm
157 /ppc
158 /sparc
159 /usb
160 /pcmcia /(cards)
161 /oss
162 </literallayout>
163 </example>
164 </para>
165 </section>
167 <section id="file-tree-core-directory">
168 <title>core directory</title>
169 <para>
170 This directory contains the middle layer which is the heart
171 of ALSA drivers. In this directory, the native ALSA modules are
172 stored. The sub-directories contain different modules and are
173 dependent upon the kernel config.
174 </para>
176 <section id="file-tree-core-directory-oss">
177 <title>core/oss</title>
179 <para>
180 The codes for PCM and mixer OSS emulation modules are stored
181 in this directory. The rawmidi OSS emulation is included in
182 the ALSA rawmidi code since it's quite small. The sequencer
183 code is stored in <filename>core/seq/oss</filename> directory (see
184 <link linkend="file-tree-core-directory-seq-oss"><citetitle>
185 below</citetitle></link>).
186 </para>
187 </section>
189 <section id="file-tree-core-directory-ioctl32">
190 <title>core/ioctl32</title>
192 <para>
193 This directory contains the 32bit-ioctl wrappers for 64bit
194 architectures such like x86-64, ppc64 and sparc64. For 32bit
195 and alpha architectures, these are not compiled.
196 </para>
197 </section>
199 <section id="file-tree-core-directory-seq">
200 <title>core/seq</title>
201 <para>
202 This directory and its sub-directories are for the ALSA
203 sequencer. This directory contains the sequencer core and
204 primary sequencer modules such like snd-seq-midi,
205 snd-seq-virmidi, etc. They are compiled only when
206 <constant>CONFIG_SND_SEQUENCER</constant> is set in the kernel
207 config.
208 </para>
209 </section>
211 <section id="file-tree-core-directory-seq-oss">
212 <title>core/seq/oss</title>
213 <para>
214 This contains the OSS sequencer emulation codes.
215 </para>
216 </section>
218 <section id="file-tree-core-directory-deq-instr">
219 <title>core/seq/instr</title>
220 <para>
221 This directory contains the modules for the sequencer
222 instrument layer.
223 </para>
224 </section>
225 </section>
227 <section id="file-tree-include-directory">
228 <title>include directory</title>
229 <para>
230 This is the place for the public header files of ALSA drivers,
231 which are to be exported to user-space, or included by
232 several files at different directories. Basically, the private
233 header files should not be placed in this directory, but you may
234 still find files there, due to historical reasons :)
235 </para>
236 </section>
238 <section id="file-tree-drivers-directory">
239 <title>drivers directory</title>
240 <para>
241 This directory contains code shared among different drivers
242 on different architectures. They are hence supposed not to be
243 architecture-specific.
244 For example, the dummy pcm driver and the serial MIDI
245 driver are found in this directory. In the sub-directories,
246 there is code for components which are independent from
247 bus and cpu architectures.
248 </para>
250 <section id="file-tree-drivers-directory-mpu401">
251 <title>drivers/mpu401</title>
252 <para>
253 The MPU401 and MPU401-UART modules are stored here.
254 </para>
255 </section>
257 <section id="file-tree-drivers-directory-opl3">
258 <title>drivers/opl3 and opl4</title>
259 <para>
260 The OPL3 and OPL4 FM-synth stuff is found here.
261 </para>
262 </section>
263 </section>
265 <section id="file-tree-i2c-directory">
266 <title>i2c directory</title>
267 <para>
268 This contains the ALSA i2c components.
269 </para>
271 <para>
272 Although there is a standard i2c layer on Linux, ALSA has its
273 own i2c code for some cards, because the soundcard needs only a
274 simple operation and the standard i2c API is too complicated for
275 such a purpose.
276 </para>
278 <section id="file-tree-i2c-directory-l3">
279 <title>i2c/l3</title>
280 <para>
281 This is a sub-directory for ARM L3 i2c.
282 </para>
283 </section>
284 </section>
286 <section id="file-tree-synth-directory">
287 <title>synth directory</title>
288 <para>
289 This contains the synth middle-level modules.
290 </para>
292 <para>
293 So far, there is only Emu8000/Emu10k1 synth driver under
294 the <filename>synth/emux</filename> sub-directory.
295 </para>
296 </section>
298 <section id="file-tree-pci-directory">
299 <title>pci directory</title>
300 <para>
301 This directory and its sub-directories hold the top-level card modules
302 for PCI soundcards and the code specific to the PCI BUS.
303 </para>
305 <para>
306 The drivers compiled from a single file are stored directly
307 in the pci directory, while the drivers with several source files are
308 stored on their own sub-directory (e.g. emu10k1, ice1712).
309 </para>
310 </section>
312 <section id="file-tree-isa-directory">
313 <title>isa directory</title>
314 <para>
315 This directory and its sub-directories hold the top-level card modules
316 for ISA soundcards.
317 </para>
318 </section>
320 <section id="file-tree-arm-ppc-sparc-directories">
321 <title>arm, ppc, and sparc directories</title>
322 <para>
323 They are used for top-level card modules which are
324 specific to one of these architectures.
325 </para>
326 </section>
328 <section id="file-tree-usb-directory">
329 <title>usb directory</title>
330 <para>
331 This directory contains the USB-audio driver. In the latest version, the
332 USB MIDI driver is integrated in the usb-audio driver.
333 </para>
334 </section>
336 <section id="file-tree-pcmcia-directory">
337 <title>pcmcia directory</title>
338 <para>
339 The PCMCIA, especially PCCard drivers will go here. CardBus
340 drivers will be in the pci directory, because their API is identical
341 to that of standard PCI cards.
342 </para>
343 </section>
345 <section id="file-tree-oss-directory">
346 <title>oss directory</title>
347 <para>
348 The OSS/Lite source files are stored here in Linux 2.6 (or
349 later) tree. In the ALSA driver tarball, this directory is empty,
350 of course :)
351 </para>
352 </section>
353 </chapter>
356 <!-- ****************************************************** -->
357 <!-- Basic Flow for PCI Drivers -->
358 <!-- ****************************************************** -->
359 <chapter id="basic-flow">
360 <title>Basic Flow for PCI Drivers</title>
362 <section id="basic-flow-outline">
363 <title>Outline</title>
364 <para>
365 The minimum flow for PCI soundcards is as follows:
367 <itemizedlist>
368 <listitem><para>define the PCI ID table (see the section
369 <link linkend="pci-resource-entries"><citetitle>PCI Entries
370 </citetitle></link>).</para></listitem>
371 <listitem><para>create <function>probe()</function> callback.</para></listitem>
372 <listitem><para>create <function>remove()</function> callback.</para></listitem>
373 <listitem><para>create a <structname>pci_driver</structname> structure
374 containing the three pointers above.</para></listitem>
375 <listitem><para>create an <function>init()</function> function just calling
376 the <function>pci_register_driver()</function> to register the pci_driver table
377 defined above.</para></listitem>
378 <listitem><para>create an <function>exit()</function> function to call
379 the <function>pci_unregister_driver()</function> function.</para></listitem>
380 </itemizedlist>
381 </para>
382 </section>
384 <section id="basic-flow-example">
385 <title>Full Code Example</title>
386 <para>
387 The code example is shown below. Some parts are kept
388 unimplemented at this moment but will be filled in the
389 next sections. The numbers in the comment lines of the
390 <function>snd_mychip_probe()</function> function
391 refer to details explained in the following section.
393 <example>
394 <title>Basic Flow for PCI Drivers - Example</title>
395 <programlisting>
396 <![CDATA[
397 #include <linux/init.h>
398 #include <linux/pci.h>
399 #include <linux/slab.h>
400 #include <sound/core.h>
401 #include <sound/initval.h>
403 /* module parameters (see "Module Parameters") */
404 /* SNDRV_CARDS: maximum number of cards supported by this module */
405 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
406 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
407 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
409 /* definition of the chip-specific record */
410 struct mychip {
411 struct snd_card *card;
412 /* the rest of the implementation will be in section
413 * "PCI Resource Management"
417 /* chip-specific destructor
418 * (see "PCI Resource Management")
420 static int snd_mychip_free(struct mychip *chip)
422 .... /* will be implemented later... */
425 /* component-destructor
426 * (see "Management of Cards and Components")
428 static int snd_mychip_dev_free(struct snd_device *device)
430 return snd_mychip_free(device->device_data);
433 /* chip-specific constructor
434 * (see "Management of Cards and Components")
436 static int snd_mychip_create(struct snd_card *card,
437 struct pci_dev *pci,
438 struct mychip **rchip)
440 struct mychip *chip;
441 int err;
442 static struct snd_device_ops ops = {
443 .dev_free = snd_mychip_dev_free,
446 *rchip = NULL;
448 /* check PCI availability here
449 * (see "PCI Resource Management")
451 ....
453 /* allocate a chip-specific data with zero filled */
454 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
455 if (chip == NULL)
456 return -ENOMEM;
458 chip->card = card;
460 /* rest of initialization here; will be implemented
461 * later, see "PCI Resource Management"
463 ....
465 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
466 if (err < 0) {
467 snd_mychip_free(chip);
468 return err;
471 *rchip = chip;
472 return 0;
475 /* constructor -- see "Constructor" sub-section */
476 static int snd_mychip_probe(struct pci_dev *pci,
477 const struct pci_device_id *pci_id)
479 static int dev;
480 struct snd_card *card;
481 struct mychip *chip;
482 int err;
484 /* (1) */
485 if (dev >= SNDRV_CARDS)
486 return -ENODEV;
487 if (!enable[dev]) {
488 dev++;
489 return -ENOENT;
492 /* (2) */
493 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
494 0, &card);
495 if (err < 0)
496 return err;
498 /* (3) */
499 err = snd_mychip_create(card, pci, &chip);
500 if (err < 0) {
501 snd_card_free(card);
502 return err;
505 /* (4) */
506 strcpy(card->driver, "My Chip");
507 strcpy(card->shortname, "My Own Chip 123");
508 sprintf(card->longname, "%s at 0x%lx irq %i",
509 card->shortname, chip->ioport, chip->irq);
511 /* (5) */
512 .... /* implemented later */
514 /* (6) */
515 err = snd_card_register(card);
516 if (err < 0) {
517 snd_card_free(card);
518 return err;
521 /* (7) */
522 pci_set_drvdata(pci, card);
523 dev++;
524 return 0;
527 /* destructor -- see the "Destructor" sub-section */
528 static void snd_mychip_remove(struct pci_dev *pci)
530 snd_card_free(pci_get_drvdata(pci));
531 pci_set_drvdata(pci, NULL);
534 </programlisting>
535 </example>
536 </para>
537 </section>
539 <section id="basic-flow-constructor">
540 <title>Constructor</title>
541 <para>
542 The real constructor of PCI drivers is the <function>probe</function> callback.
543 The <function>probe</function> callback and other component-constructors which are called
544 from the <function>probe</function> callback cannot be used with
545 the <parameter>__init</parameter> prefix
546 because any PCI device could be a hotplug device.
547 </para>
549 <para>
550 In the <function>probe</function> callback, the following scheme is often used.
551 </para>
553 <section id="basic-flow-constructor-device-index">
554 <title>1) Check and increment the device index.</title>
555 <para>
556 <informalexample>
557 <programlisting>
558 <![CDATA[
559 static int dev;
560 ....
561 if (dev >= SNDRV_CARDS)
562 return -ENODEV;
563 if (!enable[dev]) {
564 dev++;
565 return -ENOENT;
568 </programlisting>
569 </informalexample>
571 where enable[dev] is the module option.
572 </para>
574 <para>
575 Each time the <function>probe</function> callback is called, check the
576 availability of the device. If not available, simply increment
577 the device index and returns. dev will be incremented also
578 later (<link
579 linkend="basic-flow-constructor-set-pci"><citetitle>step
580 7</citetitle></link>).
581 </para>
582 </section>
584 <section id="basic-flow-constructor-create-card">
585 <title>2) Create a card instance</title>
586 <para>
587 <informalexample>
588 <programlisting>
589 <![CDATA[
590 struct snd_card *card;
591 int err;
592 ....
593 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
594 0, &card);
596 </programlisting>
597 </informalexample>
598 </para>
600 <para>
601 The details will be explained in the section
602 <link linkend="card-management-card-instance"><citetitle>
603 Management of Cards and Components</citetitle></link>.
604 </para>
605 </section>
607 <section id="basic-flow-constructor-create-main">
608 <title>3) Create a main component</title>
609 <para>
610 In this part, the PCI resources are allocated.
612 <informalexample>
613 <programlisting>
614 <![CDATA[
615 struct mychip *chip;
616 ....
617 err = snd_mychip_create(card, pci, &chip);
618 if (err < 0) {
619 snd_card_free(card);
620 return err;
623 </programlisting>
624 </informalexample>
626 The details will be explained in the section <link
627 linkend="pci-resource"><citetitle>PCI Resource
628 Management</citetitle></link>.
629 </para>
630 </section>
632 <section id="basic-flow-constructor-main-component">
633 <title>4) Set the driver ID and name strings.</title>
634 <para>
635 <informalexample>
636 <programlisting>
637 <![CDATA[
638 strcpy(card->driver, "My Chip");
639 strcpy(card->shortname, "My Own Chip 123");
640 sprintf(card->longname, "%s at 0x%lx irq %i",
641 card->shortname, chip->ioport, chip->irq);
643 </programlisting>
644 </informalexample>
646 The driver field holds the minimal ID string of the
647 chip. This is used by alsa-lib's configurator, so keep it
648 simple but unique.
649 Even the same driver can have different driver IDs to
650 distinguish the functionality of each chip type.
651 </para>
653 <para>
654 The shortname field is a string shown as more verbose
655 name. The longname field contains the information
656 shown in <filename>/proc/asound/cards</filename>.
657 </para>
658 </section>
660 <section id="basic-flow-constructor-create-other">
661 <title>5) Create other components, such as mixer, MIDI, etc.</title>
662 <para>
663 Here you define the basic components such as
664 <link linkend="pcm-interface"><citetitle>PCM</citetitle></link>,
665 mixer (e.g. <link linkend="api-ac97"><citetitle>AC97</citetitle></link>),
666 MIDI (e.g. <link linkend="midi-interface"><citetitle>MPU-401</citetitle></link>),
667 and other interfaces.
668 Also, if you want a <link linkend="proc-interface"><citetitle>proc
669 file</citetitle></link>, define it here, too.
670 </para>
671 </section>
673 <section id="basic-flow-constructor-register-card">
674 <title>6) Register the card instance.</title>
675 <para>
676 <informalexample>
677 <programlisting>
678 <![CDATA[
679 err = snd_card_register(card);
680 if (err < 0) {
681 snd_card_free(card);
682 return err;
685 </programlisting>
686 </informalexample>
687 </para>
689 <para>
690 Will be explained in the section <link
691 linkend="card-management-registration"><citetitle>Management
692 of Cards and Components</citetitle></link>, too.
693 </para>
694 </section>
696 <section id="basic-flow-constructor-set-pci">
697 <title>7) Set the PCI driver data and return zero.</title>
698 <para>
699 <informalexample>
700 <programlisting>
701 <![CDATA[
702 pci_set_drvdata(pci, card);
703 dev++;
704 return 0;
706 </programlisting>
707 </informalexample>
709 In the above, the card record is stored. This pointer is
710 used in the remove callback and power-management
711 callbacks, too.
712 </para>
713 </section>
714 </section>
716 <section id="basic-flow-destructor">
717 <title>Destructor</title>
718 <para>
719 The destructor, remove callback, simply releases the card
720 instance. Then the ALSA middle layer will release all the
721 attached components automatically.
722 </para>
724 <para>
725 It would be typically like the following:
727 <informalexample>
728 <programlisting>
729 <![CDATA[
730 static void snd_mychip_remove(struct pci_dev *pci)
732 snd_card_free(pci_get_drvdata(pci));
733 pci_set_drvdata(pci, NULL);
736 </programlisting>
737 </informalexample>
739 The above code assumes that the card pointer is set to the PCI
740 driver data.
741 </para>
742 </section>
744 <section id="basic-flow-header-files">
745 <title>Header Files</title>
746 <para>
747 For the above example, at least the following include files
748 are necessary.
750 <informalexample>
751 <programlisting>
752 <![CDATA[
753 #include <linux/init.h>
754 #include <linux/pci.h>
755 #include <linux/slab.h>
756 #include <sound/core.h>
757 #include <sound/initval.h>
759 </programlisting>
760 </informalexample>
762 where the last one is necessary only when module options are
763 defined in the source file. If the code is split into several
764 files, the files without module options don't need them.
765 </para>
767 <para>
768 In addition to these headers, you'll need
769 <filename>&lt;linux/interrupt.h&gt;</filename> for interrupt
770 handling, and <filename>&lt;asm/io.h&gt;</filename> for I/O
771 access. If you use the <function>mdelay()</function> or
772 <function>udelay()</function> functions, you'll need to include
773 <filename>&lt;linux/delay.h&gt;</filename> too.
774 </para>
776 <para>
777 The ALSA interfaces like the PCM and control APIs are defined in other
778 <filename>&lt;sound/xxx.h&gt;</filename> header files.
779 They have to be included after
780 <filename>&lt;sound/core.h&gt;</filename>.
781 </para>
783 </section>
784 </chapter>
787 <!-- ****************************************************** -->
788 <!-- Management of Cards and Components -->
789 <!-- ****************************************************** -->
790 <chapter id="card-management">
791 <title>Management of Cards and Components</title>
793 <section id="card-management-card-instance">
794 <title>Card Instance</title>
795 <para>
796 For each soundcard, a <quote>card</quote> record must be allocated.
797 </para>
799 <para>
800 A card record is the headquarters of the soundcard. It manages
801 the whole list of devices (components) on the soundcard, such as
802 PCM, mixers, MIDI, synthesizer, and so on. Also, the card
803 record holds the ID and the name strings of the card, manages
804 the root of proc files, and controls the power-management states
805 and hotplug disconnections. The component list on the card
806 record is used to manage the correct release of resources at
807 destruction.
808 </para>
810 <para>
811 As mentioned above, to create a card instance, call
812 <function>snd_card_new()</function>.
814 <informalexample>
815 <programlisting>
816 <![CDATA[
817 struct snd_card *card;
818 int err;
819 err = snd_card_new(&pci->dev, index, id, module, extra_size, &card);
821 </programlisting>
822 </informalexample>
823 </para>
825 <para>
826 The function takes six arguments: the parent device pointer,
827 the card-index number, the id string, the module pointer (usually
828 <constant>THIS_MODULE</constant>),
829 the size of extra-data space, and the pointer to return the
830 card instance. The extra_size argument is used to
831 allocate card-&gt;private_data for the
832 chip-specific data. Note that these data
833 are allocated by <function>snd_card_new()</function>.
834 </para>
836 <para>
837 The first argument, the pointer of struct
838 <structname>device</structname>, specifies the parent device.
839 For PCI devices, typically &amp;pci-&gt; is passed there.
840 </para>
841 </section>
843 <section id="card-management-component">
844 <title>Components</title>
845 <para>
846 After the card is created, you can attach the components
847 (devices) to the card instance. In an ALSA driver, a component is
848 represented as a struct <structname>snd_device</structname> object.
849 A component can be a PCM instance, a control interface, a raw
850 MIDI interface, etc. Each such instance has one component
851 entry.
852 </para>
854 <para>
855 A component can be created via
856 <function>snd_device_new()</function> function.
858 <informalexample>
859 <programlisting>
860 <![CDATA[
861 snd_device_new(card, SNDRV_DEV_XXX, chip, &ops);
863 </programlisting>
864 </informalexample>
865 </para>
867 <para>
868 This takes the card pointer, the device-level
869 (<constant>SNDRV_DEV_XXX</constant>), the data pointer, and the
870 callback pointers (<parameter>&amp;ops</parameter>). The
871 device-level defines the type of components and the order of
872 registration and de-registration. For most components, the
873 device-level is already defined. For a user-defined component,
874 you can use <constant>SNDRV_DEV_LOWLEVEL</constant>.
875 </para>
877 <para>
878 This function itself doesn't allocate the data space. The data
879 must be allocated manually beforehand, and its pointer is passed
880 as the argument. This pointer (<parameter>chip</parameter> in the
881 above example) is used as the identifier for the instance.
882 </para>
884 <para>
885 Each pre-defined ALSA component such as ac97 and pcm calls
886 <function>snd_device_new()</function> inside its
887 constructor. The destructor for each component is defined in the
888 callback pointers. Hence, you don't need to take care of
889 calling a destructor for such a component.
890 </para>
892 <para>
893 If you wish to create your own component, you need to
894 set the destructor function to the dev_free callback in
895 the <parameter>ops</parameter>, so that it can be released
896 automatically via <function>snd_card_free()</function>.
897 The next example will show an implementation of chip-specific
898 data.
899 </para>
900 </section>
902 <section id="card-management-chip-specific">
903 <title>Chip-Specific Data</title>
904 <para>
905 Chip-specific information, e.g. the I/O port address, its
906 resource pointer, or the irq number, is stored in the
907 chip-specific record.
909 <informalexample>
910 <programlisting>
911 <![CDATA[
912 struct mychip {
913 ....
916 </programlisting>
917 </informalexample>
918 </para>
920 <para>
921 In general, there are two ways of allocating the chip record.
922 </para>
924 <section id="card-management-chip-specific-snd-card-new">
925 <title>1. Allocating via <function>snd_card_new()</function>.</title>
926 <para>
927 As mentioned above, you can pass the extra-data-length
928 to the 5th argument of <function>snd_card_new()</function>, i.e.
930 <informalexample>
931 <programlisting>
932 <![CDATA[
933 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
934 sizeof(struct mychip), &card);
936 </programlisting>
937 </informalexample>
939 struct <structname>mychip</structname> is the type of the chip record.
940 </para>
942 <para>
943 In return, the allocated record can be accessed as
945 <informalexample>
946 <programlisting>
947 <![CDATA[
948 struct mychip *chip = card->private_data;
950 </programlisting>
951 </informalexample>
953 With this method, you don't have to allocate twice.
954 The record is released together with the card instance.
955 </para>
956 </section>
958 <section id="card-management-chip-specific-allocate-extra">
959 <title>2. Allocating an extra device.</title>
961 <para>
962 After allocating a card instance via
963 <function>snd_card_new()</function> (with
964 <constant>0</constant> on the 4th arg), call
965 <function>kzalloc()</function>.
967 <informalexample>
968 <programlisting>
969 <![CDATA[
970 struct snd_card *card;
971 struct mychip *chip;
972 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
973 0, &card);
974 .....
975 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
977 </programlisting>
978 </informalexample>
979 </para>
981 <para>
982 The chip record should have the field to hold the card
983 pointer at least,
985 <informalexample>
986 <programlisting>
987 <![CDATA[
988 struct mychip {
989 struct snd_card *card;
990 ....
993 </programlisting>
994 </informalexample>
995 </para>
997 <para>
998 Then, set the card pointer in the returned chip instance.
1000 <informalexample>
1001 <programlisting>
1002 <![CDATA[
1003 chip->card = card;
1005 </programlisting>
1006 </informalexample>
1007 </para>
1009 <para>
1010 Next, initialize the fields, and register this chip
1011 record as a low-level device with a specified
1012 <parameter>ops</parameter>,
1014 <informalexample>
1015 <programlisting>
1016 <![CDATA[
1017 static struct snd_device_ops ops = {
1018 .dev_free = snd_mychip_dev_free,
1020 ....
1021 snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
1023 </programlisting>
1024 </informalexample>
1026 <function>snd_mychip_dev_free()</function> is the
1027 device-destructor function, which will call the real
1028 destructor.
1029 </para>
1031 <para>
1032 <informalexample>
1033 <programlisting>
1034 <![CDATA[
1035 static int snd_mychip_dev_free(struct snd_device *device)
1037 return snd_mychip_free(device->device_data);
1040 </programlisting>
1041 </informalexample>
1043 where <function>snd_mychip_free()</function> is the real destructor.
1044 </para>
1045 </section>
1046 </section>
1048 <section id="card-management-registration">
1049 <title>Registration and Release</title>
1050 <para>
1051 After all components are assigned, register the card instance
1052 by calling <function>snd_card_register()</function>. Access
1053 to the device files is enabled at this point. That is, before
1054 <function>snd_card_register()</function> is called, the
1055 components are safely inaccessible from external side. If this
1056 call fails, exit the probe function after releasing the card via
1057 <function>snd_card_free()</function>.
1058 </para>
1060 <para>
1061 For releasing the card instance, you can call simply
1062 <function>snd_card_free()</function>. As mentioned earlier, all
1063 components are released automatically by this call.
1064 </para>
1066 <para>
1067 For a device which allows hotplugging, you can use
1068 <function>snd_card_free_when_closed</function>. This one will
1069 postpone the destruction until all devices are closed.
1070 </para>
1072 </section>
1074 </chapter>
1077 <!-- ****************************************************** -->
1078 <!-- PCI Resource Management -->
1079 <!-- ****************************************************** -->
1080 <chapter id="pci-resource">
1081 <title>PCI Resource Management</title>
1083 <section id="pci-resource-example">
1084 <title>Full Code Example</title>
1085 <para>
1086 In this section, we'll complete the chip-specific constructor,
1087 destructor and PCI entries. Example code is shown first,
1088 below.
1090 <example>
1091 <title>PCI Resource Management Example</title>
1092 <programlisting>
1093 <![CDATA[
1094 struct mychip {
1095 struct snd_card *card;
1096 struct pci_dev *pci;
1098 unsigned long port;
1099 int irq;
1102 static int snd_mychip_free(struct mychip *chip)
1104 /* disable hardware here if any */
1105 .... /* (not implemented in this document) */
1107 /* release the irq */
1108 if (chip->irq >= 0)
1109 free_irq(chip->irq, chip);
1110 /* release the I/O ports & memory */
1111 pci_release_regions(chip->pci);
1112 /* disable the PCI entry */
1113 pci_disable_device(chip->pci);
1114 /* release the data */
1115 kfree(chip);
1116 return 0;
1119 /* chip-specific constructor */
1120 static int snd_mychip_create(struct snd_card *card,
1121 struct pci_dev *pci,
1122 struct mychip **rchip)
1124 struct mychip *chip;
1125 int err;
1126 static struct snd_device_ops ops = {
1127 .dev_free = snd_mychip_dev_free,
1130 *rchip = NULL;
1132 /* initialize the PCI entry */
1133 err = pci_enable_device(pci);
1134 if (err < 0)
1135 return err;
1136 /* check PCI availability (28bit DMA) */
1137 if (pci_set_dma_mask(pci, DMA_BIT_MASK(28)) < 0 ||
1138 pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(28)) < 0) {
1139 printk(KERN_ERR "error to set 28bit mask DMA\n");
1140 pci_disable_device(pci);
1141 return -ENXIO;
1144 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1145 if (chip == NULL) {
1146 pci_disable_device(pci);
1147 return -ENOMEM;
1150 /* initialize the stuff */
1151 chip->card = card;
1152 chip->pci = pci;
1153 chip->irq = -1;
1155 /* (1) PCI resource allocation */
1156 err = pci_request_regions(pci, "My Chip");
1157 if (err < 0) {
1158 kfree(chip);
1159 pci_disable_device(pci);
1160 return err;
1162 chip->port = pci_resource_start(pci, 0);
1163 if (request_irq(pci->irq, snd_mychip_interrupt,
1164 IRQF_SHARED, KBUILD_MODNAME, chip)) {
1165 printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
1166 snd_mychip_free(chip);
1167 return -EBUSY;
1169 chip->irq = pci->irq;
1171 /* (2) initialization of the chip hardware */
1172 .... /* (not implemented in this document) */
1174 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
1175 if (err < 0) {
1176 snd_mychip_free(chip);
1177 return err;
1180 *rchip = chip;
1181 return 0;
1184 /* PCI IDs */
1185 static struct pci_device_id snd_mychip_ids[] = {
1186 { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
1187 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
1188 ....
1189 { 0, }
1191 MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
1193 /* pci_driver definition */
1194 static struct pci_driver driver = {
1195 .name = KBUILD_MODNAME,
1196 .id_table = snd_mychip_ids,
1197 .probe = snd_mychip_probe,
1198 .remove = snd_mychip_remove,
1201 /* module initialization */
1202 static int __init alsa_card_mychip_init(void)
1204 return pci_register_driver(&driver);
1207 /* module clean up */
1208 static void __exit alsa_card_mychip_exit(void)
1210 pci_unregister_driver(&driver);
1213 module_init(alsa_card_mychip_init)
1214 module_exit(alsa_card_mychip_exit)
1216 EXPORT_NO_SYMBOLS; /* for old kernels only */
1218 </programlisting>
1219 </example>
1220 </para>
1221 </section>
1223 <section id="pci-resource-some-haftas">
1224 <title>Some Hafta's</title>
1225 <para>
1226 The allocation of PCI resources is done in the
1227 <function>probe()</function> function, and usually an extra
1228 <function>xxx_create()</function> function is written for this
1229 purpose.
1230 </para>
1232 <para>
1233 In the case of PCI devices, you first have to call
1234 the <function>pci_enable_device()</function> function before
1235 allocating resources. Also, you need to set the proper PCI DMA
1236 mask to limit the accessed I/O range. In some cases, you might
1237 need to call <function>pci_set_master()</function> function,
1238 too.
1239 </para>
1241 <para>
1242 Suppose the 28bit mask, and the code to be added would be like:
1244 <informalexample>
1245 <programlisting>
1246 <![CDATA[
1247 err = pci_enable_device(pci);
1248 if (err < 0)
1249 return err;
1250 if (pci_set_dma_mask(pci, DMA_BIT_MASK(28)) < 0 ||
1251 pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(28)) < 0) {
1252 printk(KERN_ERR "error to set 28bit mask DMA\n");
1253 pci_disable_device(pci);
1254 return -ENXIO;
1258 </programlisting>
1259 </informalexample>
1260 </para>
1261 </section>
1263 <section id="pci-resource-resource-allocation">
1264 <title>Resource Allocation</title>
1265 <para>
1266 The allocation of I/O ports and irqs is done via standard kernel
1267 functions. Unlike ALSA ver.0.5.x., there are no helpers for
1268 that. And these resources must be released in the destructor
1269 function (see below). Also, on ALSA 0.9.x, you don't need to
1270 allocate (pseudo-)DMA for PCI like in ALSA 0.5.x.
1271 </para>
1273 <para>
1274 Now assume that the PCI device has an I/O port with 8 bytes
1275 and an interrupt. Then struct <structname>mychip</structname> will have the
1276 following fields:
1278 <informalexample>
1279 <programlisting>
1280 <![CDATA[
1281 struct mychip {
1282 struct snd_card *card;
1284 unsigned long port;
1285 int irq;
1288 </programlisting>
1289 </informalexample>
1290 </para>
1292 <para>
1293 For an I/O port (and also a memory region), you need to have
1294 the resource pointer for the standard resource management. For
1295 an irq, you have to keep only the irq number (integer). But you
1296 need to initialize this number as -1 before actual allocation,
1297 since irq 0 is valid. The port address and its resource pointer
1298 can be initialized as null by
1299 <function>kzalloc()</function> automatically, so you
1300 don't have to take care of resetting them.
1301 </para>
1303 <para>
1304 The allocation of an I/O port is done like this:
1306 <informalexample>
1307 <programlisting>
1308 <![CDATA[
1309 err = pci_request_regions(pci, "My Chip");
1310 if (err < 0) {
1311 kfree(chip);
1312 pci_disable_device(pci);
1313 return err;
1315 chip->port = pci_resource_start(pci, 0);
1317 </programlisting>
1318 </informalexample>
1319 </para>
1321 <para>
1322 <!-- obsolete -->
1323 It will reserve the I/O port region of 8 bytes of the given
1324 PCI device. The returned value, chip-&gt;res_port, is allocated
1325 via <function>kmalloc()</function> by
1326 <function>request_region()</function>. The pointer must be
1327 released via <function>kfree()</function>, but there is a
1328 problem with this. This issue will be explained later.
1329 </para>
1331 <para>
1332 The allocation of an interrupt source is done like this:
1334 <informalexample>
1335 <programlisting>
1336 <![CDATA[
1337 if (request_irq(pci->irq, snd_mychip_interrupt,
1338 IRQF_SHARED, KBUILD_MODNAME, chip)) {
1339 printk(KERN_ERR "cannot grab irq %d\n", pci->irq);
1340 snd_mychip_free(chip);
1341 return -EBUSY;
1343 chip->irq = pci->irq;
1345 </programlisting>
1346 </informalexample>
1348 where <function>snd_mychip_interrupt()</function> is the
1349 interrupt handler defined <link
1350 linkend="pcm-interface-interrupt-handler"><citetitle>later</citetitle></link>.
1351 Note that chip-&gt;irq should be defined
1352 only when <function>request_irq()</function> succeeded.
1353 </para>
1355 <para>
1356 On the PCI bus, interrupts can be shared. Thus,
1357 <constant>IRQF_SHARED</constant> is used as the interrupt flag of
1358 <function>request_irq()</function>.
1359 </para>
1361 <para>
1362 The last argument of <function>request_irq()</function> is the
1363 data pointer passed to the interrupt handler. Usually, the
1364 chip-specific record is used for that, but you can use what you
1365 like, too.
1366 </para>
1368 <para>
1369 I won't give details about the interrupt handler at this
1370 point, but at least its appearance can be explained now. The
1371 interrupt handler looks usually like the following:
1373 <informalexample>
1374 <programlisting>
1375 <![CDATA[
1376 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
1378 struct mychip *chip = dev_id;
1379 ....
1380 return IRQ_HANDLED;
1383 </programlisting>
1384 </informalexample>
1385 </para>
1387 <para>
1388 Now let's write the corresponding destructor for the resources
1389 above. The role of destructor is simple: disable the hardware
1390 (if already activated) and release the resources. So far, we
1391 have no hardware part, so the disabling code is not written here.
1392 </para>
1394 <para>
1395 To release the resources, the <quote>check-and-release</quote>
1396 method is a safer way. For the interrupt, do like this:
1398 <informalexample>
1399 <programlisting>
1400 <![CDATA[
1401 if (chip->irq >= 0)
1402 free_irq(chip->irq, chip);
1404 </programlisting>
1405 </informalexample>
1407 Since the irq number can start from 0, you should initialize
1408 chip-&gt;irq with a negative value (e.g. -1), so that you can
1409 check the validity of the irq number as above.
1410 </para>
1412 <para>
1413 When you requested I/O ports or memory regions via
1414 <function>pci_request_region()</function> or
1415 <function>pci_request_regions()</function> like in this example,
1416 release the resource(s) using the corresponding function,
1417 <function>pci_release_region()</function> or
1418 <function>pci_release_regions()</function>.
1420 <informalexample>
1421 <programlisting>
1422 <![CDATA[
1423 pci_release_regions(chip->pci);
1425 </programlisting>
1426 </informalexample>
1427 </para>
1429 <para>
1430 When you requested manually via <function>request_region()</function>
1431 or <function>request_mem_region</function>, you can release it via
1432 <function>release_resource()</function>. Suppose that you keep
1433 the resource pointer returned from <function>request_region()</function>
1434 in chip-&gt;res_port, the release procedure looks like:
1436 <informalexample>
1437 <programlisting>
1438 <![CDATA[
1439 release_and_free_resource(chip->res_port);
1441 </programlisting>
1442 </informalexample>
1443 </para>
1445 <para>
1446 Don't forget to call <function>pci_disable_device()</function>
1447 before the end.
1448 </para>
1450 <para>
1451 And finally, release the chip-specific record.
1453 <informalexample>
1454 <programlisting>
1455 <![CDATA[
1456 kfree(chip);
1458 </programlisting>
1459 </informalexample>
1460 </para>
1462 <para>
1463 We didn't implement the hardware disabling part in the above.
1464 If you need to do this, please note that the destructor may be
1465 called even before the initialization of the chip is completed.
1466 It would be better to have a flag to skip hardware disabling
1467 if the hardware was not initialized yet.
1468 </para>
1470 <para>
1471 When the chip-data is assigned to the card using
1472 <function>snd_device_new()</function> with
1473 <constant>SNDRV_DEV_LOWLELVEL</constant> , its destructor is
1474 called at the last. That is, it is assured that all other
1475 components like PCMs and controls have already been released.
1476 You don't have to stop PCMs, etc. explicitly, but just
1477 call low-level hardware stopping.
1478 </para>
1480 <para>
1481 The management of a memory-mapped region is almost as same as
1482 the management of an I/O port. You'll need three fields like
1483 the following:
1485 <informalexample>
1486 <programlisting>
1487 <![CDATA[
1488 struct mychip {
1489 ....
1490 unsigned long iobase_phys;
1491 void __iomem *iobase_virt;
1494 </programlisting>
1495 </informalexample>
1497 and the allocation would be like below:
1499 <informalexample>
1500 <programlisting>
1501 <![CDATA[
1502 if ((err = pci_request_regions(pci, "My Chip")) < 0) {
1503 kfree(chip);
1504 return err;
1506 chip->iobase_phys = pci_resource_start(pci, 0);
1507 chip->iobase_virt = ioremap_nocache(chip->iobase_phys,
1508 pci_resource_len(pci, 0));
1510 </programlisting>
1511 </informalexample>
1513 and the corresponding destructor would be:
1515 <informalexample>
1516 <programlisting>
1517 <![CDATA[
1518 static int snd_mychip_free(struct mychip *chip)
1520 ....
1521 if (chip->iobase_virt)
1522 iounmap(chip->iobase_virt);
1523 ....
1524 pci_release_regions(chip->pci);
1525 ....
1528 </programlisting>
1529 </informalexample>
1530 </para>
1532 </section>
1534 <section id="pci-resource-entries">
1535 <title>PCI Entries</title>
1536 <para>
1537 So far, so good. Let's finish the missing PCI
1538 stuff. At first, we need a
1539 <structname>pci_device_id</structname> table for this
1540 chipset. It's a table of PCI vendor/device ID number, and some
1541 masks.
1542 </para>
1544 <para>
1545 For example,
1547 <informalexample>
1548 <programlisting>
1549 <![CDATA[
1550 static struct pci_device_id snd_mychip_ids[] = {
1551 { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR,
1552 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
1553 ....
1554 { 0, }
1556 MODULE_DEVICE_TABLE(pci, snd_mychip_ids);
1558 </programlisting>
1559 </informalexample>
1560 </para>
1562 <para>
1563 The first and second fields of
1564 the <structname>pci_device_id</structname> structure are the vendor and
1565 device IDs. If you have no reason to filter the matching
1566 devices, you can leave the remaining fields as above. The last
1567 field of the <structname>pci_device_id</structname> struct contains
1568 private data for this entry. You can specify any value here, for
1569 example, to define specific operations for supported device IDs.
1570 Such an example is found in the intel8x0 driver.
1571 </para>
1573 <para>
1574 The last entry of this list is the terminator. You must
1575 specify this all-zero entry.
1576 </para>
1578 <para>
1579 Then, prepare the <structname>pci_driver</structname> record:
1581 <informalexample>
1582 <programlisting>
1583 <![CDATA[
1584 static struct pci_driver driver = {
1585 .name = KBUILD_MODNAME,
1586 .id_table = snd_mychip_ids,
1587 .probe = snd_mychip_probe,
1588 .remove = snd_mychip_remove,
1591 </programlisting>
1592 </informalexample>
1593 </para>
1595 <para>
1596 The <structfield>probe</structfield> and
1597 <structfield>remove</structfield> functions have already
1598 been defined in the previous sections.
1599 The <structfield>name</structfield>
1600 field is the name string of this device. Note that you must not
1601 use a slash <quote>/</quote> in this string.
1602 </para>
1604 <para>
1605 And at last, the module entries:
1607 <informalexample>
1608 <programlisting>
1609 <![CDATA[
1610 static int __init alsa_card_mychip_init(void)
1612 return pci_register_driver(&driver);
1615 static void __exit alsa_card_mychip_exit(void)
1617 pci_unregister_driver(&driver);
1620 module_init(alsa_card_mychip_init)
1621 module_exit(alsa_card_mychip_exit)
1623 </programlisting>
1624 </informalexample>
1625 </para>
1627 <para>
1628 Note that these module entries are tagged with
1629 <parameter>__init</parameter> and
1630 <parameter>__exit</parameter> prefixes.
1631 </para>
1633 <para>
1634 Oh, one thing was forgotten. If you have no exported symbols,
1635 you need to declare it in 2.2 or 2.4 kernels (it's not necessary in 2.6 kernels).
1637 <informalexample>
1638 <programlisting>
1639 <![CDATA[
1640 EXPORT_NO_SYMBOLS;
1642 </programlisting>
1643 </informalexample>
1645 That's all!
1646 </para>
1647 </section>
1648 </chapter>
1651 <!-- ****************************************************** -->
1652 <!-- PCM Interface -->
1653 <!-- ****************************************************** -->
1654 <chapter id="pcm-interface">
1655 <title>PCM Interface</title>
1657 <section id="pcm-interface-general">
1658 <title>General</title>
1659 <para>
1660 The PCM middle layer of ALSA is quite powerful and it is only
1661 necessary for each driver to implement the low-level functions
1662 to access its hardware.
1663 </para>
1665 <para>
1666 For accessing to the PCM layer, you need to include
1667 <filename>&lt;sound/pcm.h&gt;</filename> first. In addition,
1668 <filename>&lt;sound/pcm_params.h&gt;</filename> might be needed
1669 if you access to some functions related with hw_param.
1670 </para>
1672 <para>
1673 Each card device can have up to four pcm instances. A pcm
1674 instance corresponds to a pcm device file. The limitation of
1675 number of instances comes only from the available bit size of
1676 the Linux's device numbers. Once when 64bit device number is
1677 used, we'll have more pcm instances available.
1678 </para>
1680 <para>
1681 A pcm instance consists of pcm playback and capture streams,
1682 and each pcm stream consists of one or more pcm substreams. Some
1683 soundcards support multiple playback functions. For example,
1684 emu10k1 has a PCM playback of 32 stereo substreams. In this case, at
1685 each open, a free substream is (usually) automatically chosen
1686 and opened. Meanwhile, when only one substream exists and it was
1687 already opened, the successful open will either block
1688 or error with <constant>EAGAIN</constant> according to the
1689 file open mode. But you don't have to care about such details in your
1690 driver. The PCM middle layer will take care of such work.
1691 </para>
1692 </section>
1694 <section id="pcm-interface-example">
1695 <title>Full Code Example</title>
1696 <para>
1697 The example code below does not include any hardware access
1698 routines but shows only the skeleton, how to build up the PCM
1699 interfaces.
1701 <example>
1702 <title>PCM Example Code</title>
1703 <programlisting>
1704 <![CDATA[
1705 #include <sound/pcm.h>
1706 ....
1708 /* hardware definition */
1709 static struct snd_pcm_hardware snd_mychip_playback_hw = {
1710 .info = (SNDRV_PCM_INFO_MMAP |
1711 SNDRV_PCM_INFO_INTERLEAVED |
1712 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1713 SNDRV_PCM_INFO_MMAP_VALID),
1714 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1715 .rates = SNDRV_PCM_RATE_8000_48000,
1716 .rate_min = 8000,
1717 .rate_max = 48000,
1718 .channels_min = 2,
1719 .channels_max = 2,
1720 .buffer_bytes_max = 32768,
1721 .period_bytes_min = 4096,
1722 .period_bytes_max = 32768,
1723 .periods_min = 1,
1724 .periods_max = 1024,
1727 /* hardware definition */
1728 static struct snd_pcm_hardware snd_mychip_capture_hw = {
1729 .info = (SNDRV_PCM_INFO_MMAP |
1730 SNDRV_PCM_INFO_INTERLEAVED |
1731 SNDRV_PCM_INFO_BLOCK_TRANSFER |
1732 SNDRV_PCM_INFO_MMAP_VALID),
1733 .formats = SNDRV_PCM_FMTBIT_S16_LE,
1734 .rates = SNDRV_PCM_RATE_8000_48000,
1735 .rate_min = 8000,
1736 .rate_max = 48000,
1737 .channels_min = 2,
1738 .channels_max = 2,
1739 .buffer_bytes_max = 32768,
1740 .period_bytes_min = 4096,
1741 .period_bytes_max = 32768,
1742 .periods_min = 1,
1743 .periods_max = 1024,
1746 /* open callback */
1747 static int snd_mychip_playback_open(struct snd_pcm_substream *substream)
1749 struct mychip *chip = snd_pcm_substream_chip(substream);
1750 struct snd_pcm_runtime *runtime = substream->runtime;
1752 runtime->hw = snd_mychip_playback_hw;
1753 /* more hardware-initialization will be done here */
1754 ....
1755 return 0;
1758 /* close callback */
1759 static int snd_mychip_playback_close(struct snd_pcm_substream *substream)
1761 struct mychip *chip = snd_pcm_substream_chip(substream);
1762 /* the hardware-specific codes will be here */
1763 ....
1764 return 0;
1768 /* open callback */
1769 static int snd_mychip_capture_open(struct snd_pcm_substream *substream)
1771 struct mychip *chip = snd_pcm_substream_chip(substream);
1772 struct snd_pcm_runtime *runtime = substream->runtime;
1774 runtime->hw = snd_mychip_capture_hw;
1775 /* more hardware-initialization will be done here */
1776 ....
1777 return 0;
1780 /* close callback */
1781 static int snd_mychip_capture_close(struct snd_pcm_substream *substream)
1783 struct mychip *chip = snd_pcm_substream_chip(substream);
1784 /* the hardware-specific codes will be here */
1785 ....
1786 return 0;
1790 /* hw_params callback */
1791 static int snd_mychip_pcm_hw_params(struct snd_pcm_substream *substream,
1792 struct snd_pcm_hw_params *hw_params)
1794 return snd_pcm_lib_malloc_pages(substream,
1795 params_buffer_bytes(hw_params));
1798 /* hw_free callback */
1799 static int snd_mychip_pcm_hw_free(struct snd_pcm_substream *substream)
1801 return snd_pcm_lib_free_pages(substream);
1804 /* prepare callback */
1805 static int snd_mychip_pcm_prepare(struct snd_pcm_substream *substream)
1807 struct mychip *chip = snd_pcm_substream_chip(substream);
1808 struct snd_pcm_runtime *runtime = substream->runtime;
1810 /* set up the hardware with the current configuration
1811 * for example...
1813 mychip_set_sample_format(chip, runtime->format);
1814 mychip_set_sample_rate(chip, runtime->rate);
1815 mychip_set_channels(chip, runtime->channels);
1816 mychip_set_dma_setup(chip, runtime->dma_addr,
1817 chip->buffer_size,
1818 chip->period_size);
1819 return 0;
1822 /* trigger callback */
1823 static int snd_mychip_pcm_trigger(struct snd_pcm_substream *substream,
1824 int cmd)
1826 switch (cmd) {
1827 case SNDRV_PCM_TRIGGER_START:
1828 /* do something to start the PCM engine */
1829 ....
1830 break;
1831 case SNDRV_PCM_TRIGGER_STOP:
1832 /* do something to stop the PCM engine */
1833 ....
1834 break;
1835 default:
1836 return -EINVAL;
1840 /* pointer callback */
1841 static snd_pcm_uframes_t
1842 snd_mychip_pcm_pointer(struct snd_pcm_substream *substream)
1844 struct mychip *chip = snd_pcm_substream_chip(substream);
1845 unsigned int current_ptr;
1847 /* get the current hardware pointer */
1848 current_ptr = mychip_get_hw_pointer(chip);
1849 return current_ptr;
1852 /* operators */
1853 static struct snd_pcm_ops snd_mychip_playback_ops = {
1854 .open = snd_mychip_playback_open,
1855 .close = snd_mychip_playback_close,
1856 .ioctl = snd_pcm_lib_ioctl,
1857 .hw_params = snd_mychip_pcm_hw_params,
1858 .hw_free = snd_mychip_pcm_hw_free,
1859 .prepare = snd_mychip_pcm_prepare,
1860 .trigger = snd_mychip_pcm_trigger,
1861 .pointer = snd_mychip_pcm_pointer,
1864 /* operators */
1865 static struct snd_pcm_ops snd_mychip_capture_ops = {
1866 .open = snd_mychip_capture_open,
1867 .close = snd_mychip_capture_close,
1868 .ioctl = snd_pcm_lib_ioctl,
1869 .hw_params = snd_mychip_pcm_hw_params,
1870 .hw_free = snd_mychip_pcm_hw_free,
1871 .prepare = snd_mychip_pcm_prepare,
1872 .trigger = snd_mychip_pcm_trigger,
1873 .pointer = snd_mychip_pcm_pointer,
1877 * definitions of capture are omitted here...
1880 /* create a pcm device */
1881 static int snd_mychip_new_pcm(struct mychip *chip)
1883 struct snd_pcm *pcm;
1884 int err;
1886 err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm);
1887 if (err < 0)
1888 return err;
1889 pcm->private_data = chip;
1890 strcpy(pcm->name, "My Chip");
1891 chip->pcm = pcm;
1892 /* set operators */
1893 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1894 &snd_mychip_playback_ops);
1895 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
1896 &snd_mychip_capture_ops);
1897 /* pre-allocation of buffers */
1898 /* NOTE: this may fail */
1899 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1900 snd_dma_pci_data(chip->pci),
1901 64*1024, 64*1024);
1902 return 0;
1905 </programlisting>
1906 </example>
1907 </para>
1908 </section>
1910 <section id="pcm-interface-constructor">
1911 <title>Constructor</title>
1912 <para>
1913 A pcm instance is allocated by the <function>snd_pcm_new()</function>
1914 function. It would be better to create a constructor for pcm,
1915 namely,
1917 <informalexample>
1918 <programlisting>
1919 <![CDATA[
1920 static int snd_mychip_new_pcm(struct mychip *chip)
1922 struct snd_pcm *pcm;
1923 int err;
1925 err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm);
1926 if (err < 0)
1927 return err;
1928 pcm->private_data = chip;
1929 strcpy(pcm->name, "My Chip");
1930 chip->pcm = pcm;
1931 ....
1932 return 0;
1935 </programlisting>
1936 </informalexample>
1937 </para>
1939 <para>
1940 The <function>snd_pcm_new()</function> function takes four
1941 arguments. The first argument is the card pointer to which this
1942 pcm is assigned, and the second is the ID string.
1943 </para>
1945 <para>
1946 The third argument (<parameter>index</parameter>, 0 in the
1947 above) is the index of this new pcm. It begins from zero. If
1948 you create more than one pcm instances, specify the
1949 different numbers in this argument. For example,
1950 <parameter>index</parameter> = 1 for the second PCM device.
1951 </para>
1953 <para>
1954 The fourth and fifth arguments are the number of substreams
1955 for playback and capture, respectively. Here 1 is used for
1956 both arguments. When no playback or capture substreams are available,
1957 pass 0 to the corresponding argument.
1958 </para>
1960 <para>
1961 If a chip supports multiple playbacks or captures, you can
1962 specify more numbers, but they must be handled properly in
1963 open/close, etc. callbacks. When you need to know which
1964 substream you are referring to, then it can be obtained from
1965 struct <structname>snd_pcm_substream</structname> data passed to each callback
1966 as follows:
1968 <informalexample>
1969 <programlisting>
1970 <![CDATA[
1971 struct snd_pcm_substream *substream;
1972 int index = substream->number;
1974 </programlisting>
1975 </informalexample>
1976 </para>
1978 <para>
1979 After the pcm is created, you need to set operators for each
1980 pcm stream.
1982 <informalexample>
1983 <programlisting>
1984 <![CDATA[
1985 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1986 &snd_mychip_playback_ops);
1987 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
1988 &snd_mychip_capture_ops);
1990 </programlisting>
1991 </informalexample>
1992 </para>
1994 <para>
1995 The operators are defined typically like this:
1997 <informalexample>
1998 <programlisting>
1999 <![CDATA[
2000 static struct snd_pcm_ops snd_mychip_playback_ops = {
2001 .open = snd_mychip_pcm_open,
2002 .close = snd_mychip_pcm_close,
2003 .ioctl = snd_pcm_lib_ioctl,
2004 .hw_params = snd_mychip_pcm_hw_params,
2005 .hw_free = snd_mychip_pcm_hw_free,
2006 .prepare = snd_mychip_pcm_prepare,
2007 .trigger = snd_mychip_pcm_trigger,
2008 .pointer = snd_mychip_pcm_pointer,
2011 </programlisting>
2012 </informalexample>
2014 All the callbacks are described in the
2015 <link linkend="pcm-interface-operators"><citetitle>
2016 Operators</citetitle></link> subsection.
2017 </para>
2019 <para>
2020 After setting the operators, you probably will want to
2021 pre-allocate the buffer. For the pre-allocation, simply call
2022 the following:
2024 <informalexample>
2025 <programlisting>
2026 <![CDATA[
2027 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
2028 snd_dma_pci_data(chip->pci),
2029 64*1024, 64*1024);
2031 </programlisting>
2032 </informalexample>
2034 It will allocate a buffer up to 64kB as default.
2035 Buffer management details will be described in the later section <link
2036 linkend="buffer-and-memory"><citetitle>Buffer and Memory
2037 Management</citetitle></link>.
2038 </para>
2040 <para>
2041 Additionally, you can set some extra information for this pcm
2042 in pcm-&gt;info_flags.
2043 The available values are defined as
2044 <constant>SNDRV_PCM_INFO_XXX</constant> in
2045 <filename>&lt;sound/asound.h&gt;</filename>, which is used for
2046 the hardware definition (described later). When your soundchip
2047 supports only half-duplex, specify like this:
2049 <informalexample>
2050 <programlisting>
2051 <![CDATA[
2052 pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
2054 </programlisting>
2055 </informalexample>
2056 </para>
2057 </section>
2059 <section id="pcm-interface-destructor">
2060 <title>... And the Destructor?</title>
2061 <para>
2062 The destructor for a pcm instance is not always
2063 necessary. Since the pcm device will be released by the middle
2064 layer code automatically, you don't have to call the destructor
2065 explicitly.
2066 </para>
2068 <para>
2069 The destructor would be necessary if you created
2070 special records internally and needed to release them. In such a
2071 case, set the destructor function to
2072 pcm-&gt;private_free:
2074 <example>
2075 <title>PCM Instance with a Destructor</title>
2076 <programlisting>
2077 <![CDATA[
2078 static void mychip_pcm_free(struct snd_pcm *pcm)
2080 struct mychip *chip = snd_pcm_chip(pcm);
2081 /* free your own data */
2082 kfree(chip->my_private_pcm_data);
2083 /* do what you like else */
2084 ....
2087 static int snd_mychip_new_pcm(struct mychip *chip)
2089 struct snd_pcm *pcm;
2090 ....
2091 /* allocate your own data */
2092 chip->my_private_pcm_data = kmalloc(...);
2093 /* set the destructor */
2094 pcm->private_data = chip;
2095 pcm->private_free = mychip_pcm_free;
2096 ....
2099 </programlisting>
2100 </example>
2101 </para>
2102 </section>
2104 <section id="pcm-interface-runtime">
2105 <title>Runtime Pointer - The Chest of PCM Information</title>
2106 <para>
2107 When the PCM substream is opened, a PCM runtime instance is
2108 allocated and assigned to the substream. This pointer is
2109 accessible via <constant>substream-&gt;runtime</constant>.
2110 This runtime pointer holds most information you need
2111 to control the PCM: the copy of hw_params and sw_params configurations, the buffer
2112 pointers, mmap records, spinlocks, etc.
2113 </para>
2115 <para>
2116 The definition of runtime instance is found in
2117 <filename>&lt;sound/pcm.h&gt;</filename>. Here are
2118 the contents of this file:
2119 <informalexample>
2120 <programlisting>
2121 <![CDATA[
2122 struct _snd_pcm_runtime {
2123 /* -- Status -- */
2124 struct snd_pcm_substream *trigger_master;
2125 snd_timestamp_t trigger_tstamp; /* trigger timestamp */
2126 int overrange;
2127 snd_pcm_uframes_t avail_max;
2128 snd_pcm_uframes_t hw_ptr_base; /* Position at buffer restart */
2129 snd_pcm_uframes_t hw_ptr_interrupt; /* Position at interrupt time*/
2131 /* -- HW params -- */
2132 snd_pcm_access_t access; /* access mode */
2133 snd_pcm_format_t format; /* SNDRV_PCM_FORMAT_* */
2134 snd_pcm_subformat_t subformat; /* subformat */
2135 unsigned int rate; /* rate in Hz */
2136 unsigned int channels; /* channels */
2137 snd_pcm_uframes_t period_size; /* period size */
2138 unsigned int periods; /* periods */
2139 snd_pcm_uframes_t buffer_size; /* buffer size */
2140 unsigned int tick_time; /* tick time */
2141 snd_pcm_uframes_t min_align; /* Min alignment for the format */
2142 size_t byte_align;
2143 unsigned int frame_bits;
2144 unsigned int sample_bits;
2145 unsigned int info;
2146 unsigned int rate_num;
2147 unsigned int rate_den;
2149 /* -- SW params -- */
2150 struct timespec tstamp_mode; /* mmap timestamp is updated */
2151 unsigned int period_step;
2152 unsigned int sleep_min; /* min ticks to sleep */
2153 snd_pcm_uframes_t start_threshold;
2154 snd_pcm_uframes_t stop_threshold;
2155 snd_pcm_uframes_t silence_threshold; /* Silence filling happens when
2156 noise is nearest than this */
2157 snd_pcm_uframes_t silence_size; /* Silence filling size */
2158 snd_pcm_uframes_t boundary; /* pointers wrap point */
2160 snd_pcm_uframes_t silenced_start;
2161 snd_pcm_uframes_t silenced_size;
2163 snd_pcm_sync_id_t sync; /* hardware synchronization ID */
2165 /* -- mmap -- */
2166 volatile struct snd_pcm_mmap_status *status;
2167 volatile struct snd_pcm_mmap_control *control;
2168 atomic_t mmap_count;
2170 /* -- locking / scheduling -- */
2171 spinlock_t lock;
2172 wait_queue_head_t sleep;
2173 struct timer_list tick_timer;
2174 struct fasync_struct *fasync;
2176 /* -- private section -- */
2177 void *private_data;
2178 void (*private_free)(struct snd_pcm_runtime *runtime);
2180 /* -- hardware description -- */
2181 struct snd_pcm_hardware hw;
2182 struct snd_pcm_hw_constraints hw_constraints;
2184 /* -- interrupt callbacks -- */
2185 void (*transfer_ack_begin)(struct snd_pcm_substream *substream);
2186 void (*transfer_ack_end)(struct snd_pcm_substream *substream);
2188 /* -- timer -- */
2189 unsigned int timer_resolution; /* timer resolution */
2191 /* -- DMA -- */
2192 unsigned char *dma_area; /* DMA area */
2193 dma_addr_t dma_addr; /* physical bus address (not accessible from main CPU) */
2194 size_t dma_bytes; /* size of DMA area */
2196 struct snd_dma_buffer *dma_buffer_p; /* allocated buffer */
2198 #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE)
2199 /* -- OSS things -- */
2200 struct snd_pcm_oss_runtime oss;
2201 #endif
2204 </programlisting>
2205 </informalexample>
2206 </para>
2208 <para>
2209 For the operators (callbacks) of each sound driver, most of
2210 these records are supposed to be read-only. Only the PCM
2211 middle-layer changes / updates them. The exceptions are
2212 the hardware description (hw), interrupt callbacks
2213 (transfer_ack_xxx), DMA buffer information, and the private
2214 data. Besides, if you use the standard buffer allocation
2215 method via <function>snd_pcm_lib_malloc_pages()</function>,
2216 you don't need to set the DMA buffer information by yourself.
2217 </para>
2219 <para>
2220 In the sections below, important records are explained.
2221 </para>
2223 <section id="pcm-interface-runtime-hw">
2224 <title>Hardware Description</title>
2225 <para>
2226 The hardware descriptor (struct <structname>snd_pcm_hardware</structname>)
2227 contains the definitions of the fundamental hardware
2228 configuration. Above all, you'll need to define this in
2229 <link linkend="pcm-interface-operators-open-callback"><citetitle>
2230 the open callback</citetitle></link>.
2231 Note that the runtime instance holds the copy of the
2232 descriptor, not the pointer to the existing descriptor. That
2233 is, in the open callback, you can modify the copied descriptor
2234 (<constant>runtime-&gt;hw</constant>) as you need. For example, if the maximum
2235 number of channels is 1 only on some chip models, you can
2236 still use the same hardware descriptor and change the
2237 channels_max later:
2238 <informalexample>
2239 <programlisting>
2240 <![CDATA[
2241 struct snd_pcm_runtime *runtime = substream->runtime;
2243 runtime->hw = snd_mychip_playback_hw; /* common definition */
2244 if (chip->model == VERY_OLD_ONE)
2245 runtime->hw.channels_max = 1;
2247 </programlisting>
2248 </informalexample>
2249 </para>
2251 <para>
2252 Typically, you'll have a hardware descriptor as below:
2253 <informalexample>
2254 <programlisting>
2255 <![CDATA[
2256 static struct snd_pcm_hardware snd_mychip_playback_hw = {
2257 .info = (SNDRV_PCM_INFO_MMAP |
2258 SNDRV_PCM_INFO_INTERLEAVED |
2259 SNDRV_PCM_INFO_BLOCK_TRANSFER |
2260 SNDRV_PCM_INFO_MMAP_VALID),
2261 .formats = SNDRV_PCM_FMTBIT_S16_LE,
2262 .rates = SNDRV_PCM_RATE_8000_48000,
2263 .rate_min = 8000,
2264 .rate_max = 48000,
2265 .channels_min = 2,
2266 .channels_max = 2,
2267 .buffer_bytes_max = 32768,
2268 .period_bytes_min = 4096,
2269 .period_bytes_max = 32768,
2270 .periods_min = 1,
2271 .periods_max = 1024,
2274 </programlisting>
2275 </informalexample>
2276 </para>
2278 <para>
2279 <itemizedlist>
2280 <listitem><para>
2281 The <structfield>info</structfield> field contains the type and
2282 capabilities of this pcm. The bit flags are defined in
2283 <filename>&lt;sound/asound.h&gt;</filename> as
2284 <constant>SNDRV_PCM_INFO_XXX</constant>. Here, at least, you
2285 have to specify whether the mmap is supported and which
2286 interleaved format is supported.
2287 When the hardware supports mmap, add the
2288 <constant>SNDRV_PCM_INFO_MMAP</constant> flag here. When the
2289 hardware supports the interleaved or the non-interleaved
2290 formats, <constant>SNDRV_PCM_INFO_INTERLEAVED</constant> or
2291 <constant>SNDRV_PCM_INFO_NONINTERLEAVED</constant> flag must
2292 be set, respectively. If both are supported, you can set both,
2293 too.
2294 </para>
2296 <para>
2297 In the above example, <constant>MMAP_VALID</constant> and
2298 <constant>BLOCK_TRANSFER</constant> are specified for the OSS mmap
2299 mode. Usually both are set. Of course,
2300 <constant>MMAP_VALID</constant> is set only if the mmap is
2301 really supported.
2302 </para>
2304 <para>
2305 The other possible flags are
2306 <constant>SNDRV_PCM_INFO_PAUSE</constant> and
2307 <constant>SNDRV_PCM_INFO_RESUME</constant>. The
2308 <constant>PAUSE</constant> bit means that the pcm supports the
2309 <quote>pause</quote> operation, while the
2310 <constant>RESUME</constant> bit means that the pcm supports
2311 the full <quote>suspend/resume</quote> operation.
2312 If the <constant>PAUSE</constant> flag is set,
2313 the <structfield>trigger</structfield> callback below
2314 must handle the corresponding (pause push/release) commands.
2315 The suspend/resume trigger commands can be defined even without
2316 the <constant>RESUME</constant> flag. See <link
2317 linkend="power-management"><citetitle>
2318 Power Management</citetitle></link> section for details.
2319 </para>
2321 <para>
2322 When the PCM substreams can be synchronized (typically,
2323 synchronized start/stop of a playback and a capture streams),
2324 you can give <constant>SNDRV_PCM_INFO_SYNC_START</constant>,
2325 too. In this case, you'll need to check the linked-list of
2326 PCM substreams in the trigger callback. This will be
2327 described in the later section.
2328 </para>
2329 </listitem>
2331 <listitem>
2332 <para>
2333 <structfield>formats</structfield> field contains the bit-flags
2334 of supported formats (<constant>SNDRV_PCM_FMTBIT_XXX</constant>).
2335 If the hardware supports more than one format, give all or'ed
2336 bits. In the example above, the signed 16bit little-endian
2337 format is specified.
2338 </para>
2339 </listitem>
2341 <listitem>
2342 <para>
2343 <structfield>rates</structfield> field contains the bit-flags of
2344 supported rates (<constant>SNDRV_PCM_RATE_XXX</constant>).
2345 When the chip supports continuous rates, pass
2346 <constant>CONTINUOUS</constant> bit additionally.
2347 The pre-defined rate bits are provided only for typical
2348 rates. If your chip supports unconventional rates, you need to add
2349 the <constant>KNOT</constant> bit and set up the hardware
2350 constraint manually (explained later).
2351 </para>
2352 </listitem>
2354 <listitem>
2355 <para>
2356 <structfield>rate_min</structfield> and
2357 <structfield>rate_max</structfield> define the minimum and
2358 maximum sample rate. This should correspond somehow to
2359 <structfield>rates</structfield> bits.
2360 </para>
2361 </listitem>
2363 <listitem>
2364 <para>
2365 <structfield>channel_min</structfield> and
2366 <structfield>channel_max</structfield>
2367 define, as you might already expected, the minimum and maximum
2368 number of channels.
2369 </para>
2370 </listitem>
2372 <listitem>
2373 <para>
2374 <structfield>buffer_bytes_max</structfield> defines the
2375 maximum buffer size in bytes. There is no
2376 <structfield>buffer_bytes_min</structfield> field, since
2377 it can be calculated from the minimum period size and the
2378 minimum number of periods.
2379 Meanwhile, <structfield>period_bytes_min</structfield> and
2380 define the minimum and maximum size of the period in bytes.
2381 <structfield>periods_max</structfield> and
2382 <structfield>periods_min</structfield> define the maximum and
2383 minimum number of periods in the buffer.
2384 </para>
2386 <para>
2387 The <quote>period</quote> is a term that corresponds to
2388 a fragment in the OSS world. The period defines the size at
2389 which a PCM interrupt is generated. This size strongly
2390 depends on the hardware.
2391 Generally, the smaller period size will give you more
2392 interrupts, that is, more controls.
2393 In the case of capture, this size defines the input latency.
2394 On the other hand, the whole buffer size defines the
2395 output latency for the playback direction.
2396 </para>
2397 </listitem>
2399 <listitem>
2400 <para>
2401 There is also a field <structfield>fifo_size</structfield>.
2402 This specifies the size of the hardware FIFO, but currently it
2403 is neither used in the driver nor in the alsa-lib. So, you
2404 can ignore this field.
2405 </para>
2406 </listitem>
2407 </itemizedlist>
2408 </para>
2409 </section>
2411 <section id="pcm-interface-runtime-config">
2412 <title>PCM Configurations</title>
2413 <para>
2414 Ok, let's go back again to the PCM runtime records.
2415 The most frequently referred records in the runtime instance are
2416 the PCM configurations.
2417 The PCM configurations are stored in the runtime instance
2418 after the application sends <type>hw_params</type> data via
2419 alsa-lib. There are many fields copied from hw_params and
2420 sw_params structs. For example,
2421 <structfield>format</structfield> holds the format type
2422 chosen by the application. This field contains the enum value
2423 <constant>SNDRV_PCM_FORMAT_XXX</constant>.
2424 </para>
2426 <para>
2427 One thing to be noted is that the configured buffer and period
2428 sizes are stored in <quote>frames</quote> in the runtime.
2429 In the ALSA world, 1 frame = channels * samples-size.
2430 For conversion between frames and bytes, you can use the
2431 <function>frames_to_bytes()</function> and
2432 <function>bytes_to_frames()</function> helper functions.
2433 <informalexample>
2434 <programlisting>
2435 <![CDATA[
2436 period_bytes = frames_to_bytes(runtime, runtime->period_size);
2438 </programlisting>
2439 </informalexample>
2440 </para>
2442 <para>
2443 Also, many software parameters (sw_params) are
2444 stored in frames, too. Please check the type of the field.
2445 <type>snd_pcm_uframes_t</type> is for the frames as unsigned
2446 integer while <type>snd_pcm_sframes_t</type> is for the frames
2447 as signed integer.
2448 </para>
2449 </section>
2451 <section id="pcm-interface-runtime-dma">
2452 <title>DMA Buffer Information</title>
2453 <para>
2454 The DMA buffer is defined by the following four fields,
2455 <structfield>dma_area</structfield>,
2456 <structfield>dma_addr</structfield>,
2457 <structfield>dma_bytes</structfield> and
2458 <structfield>dma_private</structfield>.
2459 The <structfield>dma_area</structfield> holds the buffer
2460 pointer (the logical address). You can call
2461 <function>memcpy</function> from/to
2462 this pointer. Meanwhile, <structfield>dma_addr</structfield>
2463 holds the physical address of the buffer. This field is
2464 specified only when the buffer is a linear buffer.
2465 <structfield>dma_bytes</structfield> holds the size of buffer
2466 in bytes. <structfield>dma_private</structfield> is used for
2467 the ALSA DMA allocator.
2468 </para>
2470 <para>
2471 If you use a standard ALSA function,
2472 <function>snd_pcm_lib_malloc_pages()</function>, for
2473 allocating the buffer, these fields are set by the ALSA middle
2474 layer, and you should <emphasis>not</emphasis> change them by
2475 yourself. You can read them but not write them.
2476 On the other hand, if you want to allocate the buffer by
2477 yourself, you'll need to manage it in hw_params callback.
2478 At least, <structfield>dma_bytes</structfield> is mandatory.
2479 <structfield>dma_area</structfield> is necessary when the
2480 buffer is mmapped. If your driver doesn't support mmap, this
2481 field is not necessary. <structfield>dma_addr</structfield>
2482 is also optional. You can use
2483 <structfield>dma_private</structfield> as you like, too.
2484 </para>
2485 </section>
2487 <section id="pcm-interface-runtime-status">
2488 <title>Running Status</title>
2489 <para>
2490 The running status can be referred via <constant>runtime-&gt;status</constant>.
2491 This is the pointer to the struct <structname>snd_pcm_mmap_status</structname>
2492 record. For example, you can get the current DMA hardware
2493 pointer via <constant>runtime-&gt;status-&gt;hw_ptr</constant>.
2494 </para>
2496 <para>
2497 The DMA application pointer can be referred via
2498 <constant>runtime-&gt;control</constant>, which points to the
2499 struct <structname>snd_pcm_mmap_control</structname> record.
2500 However, accessing directly to this value is not recommended.
2501 </para>
2502 </section>
2504 <section id="pcm-interface-runtime-private">
2505 <title>Private Data</title>
2506 <para>
2507 You can allocate a record for the substream and store it in
2508 <constant>runtime-&gt;private_data</constant>. Usually, this
2509 is done in
2510 <link linkend="pcm-interface-operators-open-callback"><citetitle>
2511 the open callback</citetitle></link>.
2512 Don't mix this with <constant>pcm-&gt;private_data</constant>.
2513 The <constant>pcm-&gt;private_data</constant> usually points to the
2514 chip instance assigned statically at the creation of PCM, while the
2515 <constant>runtime-&gt;private_data</constant> points to a dynamic
2516 data structure created at the PCM open callback.
2518 <informalexample>
2519 <programlisting>
2520 <![CDATA[
2521 static int snd_xxx_open(struct snd_pcm_substream *substream)
2523 struct my_pcm_data *data;
2524 ....
2525 data = kmalloc(sizeof(*data), GFP_KERNEL);
2526 substream->runtime->private_data = data;
2527 ....
2530 </programlisting>
2531 </informalexample>
2532 </para>
2534 <para>
2535 The allocated object must be released in
2536 <link linkend="pcm-interface-operators-open-callback"><citetitle>
2537 the close callback</citetitle></link>.
2538 </para>
2539 </section>
2541 <section id="pcm-interface-runtime-intr">
2542 <title>Interrupt Callbacks</title>
2543 <para>
2544 The field <structfield>transfer_ack_begin</structfield> and
2545 <structfield>transfer_ack_end</structfield> are called at
2546 the beginning and at the end of
2547 <function>snd_pcm_period_elapsed()</function>, respectively.
2548 </para>
2549 </section>
2551 </section>
2553 <section id="pcm-interface-operators">
2554 <title>Operators</title>
2555 <para>
2556 OK, now let me give details about each pcm callback
2557 (<parameter>ops</parameter>). In general, every callback must
2558 return 0 if successful, or a negative error number
2559 such as <constant>-EINVAL</constant>. To choose an appropriate
2560 error number, it is advised to check what value other parts of
2561 the kernel return when the same kind of request fails.
2562 </para>
2564 <para>
2565 The callback function takes at least the argument with
2566 <structname>snd_pcm_substream</structname> pointer. To retrieve
2567 the chip record from the given substream instance, you can use the
2568 following macro.
2570 <informalexample>
2571 <programlisting>
2572 <![CDATA[
2573 int xxx() {
2574 struct mychip *chip = snd_pcm_substream_chip(substream);
2575 ....
2578 </programlisting>
2579 </informalexample>
2581 The macro reads <constant>substream-&gt;private_data</constant>,
2582 which is a copy of <constant>pcm-&gt;private_data</constant>.
2583 You can override the former if you need to assign different data
2584 records per PCM substream. For example, the cmi8330 driver assigns
2585 different private_data for playback and capture directions,
2586 because it uses two different codecs (SB- and AD-compatible) for
2587 different directions.
2588 </para>
2590 <section id="pcm-interface-operators-open-callback">
2591 <title>open callback</title>
2592 <para>
2593 <informalexample>
2594 <programlisting>
2595 <![CDATA[
2596 static int snd_xxx_open(struct snd_pcm_substream *substream);
2598 </programlisting>
2599 </informalexample>
2601 This is called when a pcm substream is opened.
2602 </para>
2604 <para>
2605 At least, here you have to initialize the runtime-&gt;hw
2606 record. Typically, this is done by like this:
2608 <informalexample>
2609 <programlisting>
2610 <![CDATA[
2611 static int snd_xxx_open(struct snd_pcm_substream *substream)
2613 struct mychip *chip = snd_pcm_substream_chip(substream);
2614 struct snd_pcm_runtime *runtime = substream->runtime;
2616 runtime->hw = snd_mychip_playback_hw;
2617 return 0;
2620 </programlisting>
2621 </informalexample>
2623 where <parameter>snd_mychip_playback_hw</parameter> is the
2624 pre-defined hardware description.
2625 </para>
2627 <para>
2628 You can allocate a private data in this callback, as described
2629 in <link linkend="pcm-interface-runtime-private"><citetitle>
2630 Private Data</citetitle></link> section.
2631 </para>
2633 <para>
2634 If the hardware configuration needs more constraints, set the
2635 hardware constraints here, too.
2636 See <link linkend="pcm-interface-constraints"><citetitle>
2637 Constraints</citetitle></link> for more details.
2638 </para>
2639 </section>
2641 <section id="pcm-interface-operators-close-callback">
2642 <title>close callback</title>
2643 <para>
2644 <informalexample>
2645 <programlisting>
2646 <![CDATA[
2647 static int snd_xxx_close(struct snd_pcm_substream *substream);
2649 </programlisting>
2650 </informalexample>
2652 Obviously, this is called when a pcm substream is closed.
2653 </para>
2655 <para>
2656 Any private instance for a pcm substream allocated in the
2657 open callback will be released here.
2659 <informalexample>
2660 <programlisting>
2661 <![CDATA[
2662 static int snd_xxx_close(struct snd_pcm_substream *substream)
2664 ....
2665 kfree(substream->runtime->private_data);
2666 ....
2669 </programlisting>
2670 </informalexample>
2671 </para>
2672 </section>
2674 <section id="pcm-interface-operators-ioctl-callback">
2675 <title>ioctl callback</title>
2676 <para>
2677 This is used for any special call to pcm ioctls. But
2678 usually you can pass a generic ioctl callback,
2679 <function>snd_pcm_lib_ioctl</function>.
2680 </para>
2681 </section>
2683 <section id="pcm-interface-operators-hw-params-callback">
2684 <title>hw_params callback</title>
2685 <para>
2686 <informalexample>
2687 <programlisting>
2688 <![CDATA[
2689 static int snd_xxx_hw_params(struct snd_pcm_substream *substream,
2690 struct snd_pcm_hw_params *hw_params);
2692 </programlisting>
2693 </informalexample>
2694 </para>
2696 <para>
2697 This is called when the hardware parameter
2698 (<structfield>hw_params</structfield>) is set
2699 up by the application,
2700 that is, once when the buffer size, the period size, the
2701 format, etc. are defined for the pcm substream.
2702 </para>
2704 <para>
2705 Many hardware setups should be done in this callback,
2706 including the allocation of buffers.
2707 </para>
2709 <para>
2710 Parameters to be initialized are retrieved by
2711 <function>params_xxx()</function> macros. To allocate
2712 buffer, you can call a helper function,
2714 <informalexample>
2715 <programlisting>
2716 <![CDATA[
2717 snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
2719 </programlisting>
2720 </informalexample>
2722 <function>snd_pcm_lib_malloc_pages()</function> is available
2723 only when the DMA buffers have been pre-allocated.
2724 See the section <link
2725 linkend="buffer-and-memory-buffer-types"><citetitle>
2726 Buffer Types</citetitle></link> for more details.
2727 </para>
2729 <para>
2730 Note that this and <structfield>prepare</structfield> callbacks
2731 may be called multiple times per initialization.
2732 For example, the OSS emulation may
2733 call these callbacks at each change via its ioctl.
2734 </para>
2736 <para>
2737 Thus, you need to be careful not to allocate the same buffers
2738 many times, which will lead to memory leaks! Calling the
2739 helper function above many times is OK. It will release the
2740 previous buffer automatically when it was already allocated.
2741 </para>
2743 <para>
2744 Another note is that this callback is non-atomic
2745 (schedulable). This is important, because the
2746 <structfield>trigger</structfield> callback
2747 is atomic (non-schedulable). That is, mutexes or any
2748 schedule-related functions are not available in
2749 <structfield>trigger</structfield> callback.
2750 Please see the subsection
2751 <link linkend="pcm-interface-atomicity"><citetitle>
2752 Atomicity</citetitle></link> for details.
2753 </para>
2754 </section>
2756 <section id="pcm-interface-operators-hw-free-callback">
2757 <title>hw_free callback</title>
2758 <para>
2759 <informalexample>
2760 <programlisting>
2761 <![CDATA[
2762 static int snd_xxx_hw_free(struct snd_pcm_substream *substream);
2764 </programlisting>
2765 </informalexample>
2766 </para>
2768 <para>
2769 This is called to release the resources allocated via
2770 <structfield>hw_params</structfield>. For example, releasing the
2771 buffer via
2772 <function>snd_pcm_lib_malloc_pages()</function> is done by
2773 calling the following:
2775 <informalexample>
2776 <programlisting>
2777 <![CDATA[
2778 snd_pcm_lib_free_pages(substream);
2780 </programlisting>
2781 </informalexample>
2782 </para>
2784 <para>
2785 This function is always called before the close callback is called.
2786 Also, the callback may be called multiple times, too.
2787 Keep track whether the resource was already released.
2788 </para>
2789 </section>
2791 <section id="pcm-interface-operators-prepare-callback">
2792 <title>prepare callback</title>
2793 <para>
2794 <informalexample>
2795 <programlisting>
2796 <![CDATA[
2797 static int snd_xxx_prepare(struct snd_pcm_substream *substream);
2799 </programlisting>
2800 </informalexample>
2801 </para>
2803 <para>
2804 This callback is called when the pcm is
2805 <quote>prepared</quote>. You can set the format type, sample
2806 rate, etc. here. The difference from
2807 <structfield>hw_params</structfield> is that the
2808 <structfield>prepare</structfield> callback will be called each
2809 time
2810 <function>snd_pcm_prepare()</function> is called, i.e. when
2811 recovering after underruns, etc.
2812 </para>
2814 <para>
2815 Note that this callback is now non-atomic.
2816 You can use schedule-related functions safely in this callback.
2817 </para>
2819 <para>
2820 In this and the following callbacks, you can refer to the
2821 values via the runtime record,
2822 substream-&gt;runtime.
2823 For example, to get the current
2824 rate, format or channels, access to
2825 runtime-&gt;rate,
2826 runtime-&gt;format or
2827 runtime-&gt;channels, respectively.
2828 The physical address of the allocated buffer is set to
2829 runtime-&gt;dma_area. The buffer and period sizes are
2830 in runtime-&gt;buffer_size and runtime-&gt;period_size,
2831 respectively.
2832 </para>
2834 <para>
2835 Be careful that this callback will be called many times at
2836 each setup, too.
2837 </para>
2838 </section>
2840 <section id="pcm-interface-operators-trigger-callback">
2841 <title>trigger callback</title>
2842 <para>
2843 <informalexample>
2844 <programlisting>
2845 <![CDATA[
2846 static int snd_xxx_trigger(struct snd_pcm_substream *substream, int cmd);
2848 </programlisting>
2849 </informalexample>
2851 This is called when the pcm is started, stopped or paused.
2852 </para>
2854 <para>
2855 Which action is specified in the second argument,
2856 <constant>SNDRV_PCM_TRIGGER_XXX</constant> in
2857 <filename>&lt;sound/pcm.h&gt;</filename>. At least,
2858 the <constant>START</constant> and <constant>STOP</constant>
2859 commands must be defined in this callback.
2861 <informalexample>
2862 <programlisting>
2863 <![CDATA[
2864 switch (cmd) {
2865 case SNDRV_PCM_TRIGGER_START:
2866 /* do something to start the PCM engine */
2867 break;
2868 case SNDRV_PCM_TRIGGER_STOP:
2869 /* do something to stop the PCM engine */
2870 break;
2871 default:
2872 return -EINVAL;
2875 </programlisting>
2876 </informalexample>
2877 </para>
2879 <para>
2880 When the pcm supports the pause operation (given in the info
2881 field of the hardware table), the <constant>PAUSE_PUSH</constant>
2882 and <constant>PAUSE_RELEASE</constant> commands must be
2883 handled here, too. The former is the command to pause the pcm,
2884 and the latter to restart the pcm again.
2885 </para>
2887 <para>
2888 When the pcm supports the suspend/resume operation,
2889 regardless of full or partial suspend/resume support,
2890 the <constant>SUSPEND</constant> and <constant>RESUME</constant>
2891 commands must be handled, too.
2892 These commands are issued when the power-management status is
2893 changed. Obviously, the <constant>SUSPEND</constant> and
2894 <constant>RESUME</constant> commands
2895 suspend and resume the pcm substream, and usually, they
2896 are identical to the <constant>STOP</constant> and
2897 <constant>START</constant> commands, respectively.
2898 See the <link linkend="power-management"><citetitle>
2899 Power Management</citetitle></link> section for details.
2900 </para>
2902 <para>
2903 As mentioned, this callback is atomic. You cannot call
2904 functions which may sleep.
2905 The trigger callback should be as minimal as possible,
2906 just really triggering the DMA. The other stuff should be
2907 initialized hw_params and prepare callbacks properly
2908 beforehand.
2909 </para>
2910 </section>
2912 <section id="pcm-interface-operators-pointer-callback">
2913 <title>pointer callback</title>
2914 <para>
2915 <informalexample>
2916 <programlisting>
2917 <![CDATA[
2918 static snd_pcm_uframes_t snd_xxx_pointer(struct snd_pcm_substream *substream)
2920 </programlisting>
2921 </informalexample>
2923 This callback is called when the PCM middle layer inquires
2924 the current hardware position on the buffer. The position must
2925 be returned in frames,
2926 ranging from 0 to buffer_size - 1.
2927 </para>
2929 <para>
2930 This is called usually from the buffer-update routine in the
2931 pcm middle layer, which is invoked when
2932 <function>snd_pcm_period_elapsed()</function> is called in the
2933 interrupt routine. Then the pcm middle layer updates the
2934 position and calculates the available space, and wakes up the
2935 sleeping poll threads, etc.
2936 </para>
2938 <para>
2939 This callback is also atomic.
2940 </para>
2941 </section>
2943 <section id="pcm-interface-operators-copy-silence">
2944 <title>copy and silence callbacks</title>
2945 <para>
2946 These callbacks are not mandatory, and can be omitted in
2947 most cases. These callbacks are used when the hardware buffer
2948 cannot be in the normal memory space. Some chips have their
2949 own buffer on the hardware which is not mappable. In such a
2950 case, you have to transfer the data manually from the memory
2951 buffer to the hardware buffer. Or, if the buffer is
2952 non-contiguous on both physical and virtual memory spaces,
2953 these callbacks must be defined, too.
2954 </para>
2956 <para>
2957 If these two callbacks are defined, copy and set-silence
2958 operations are done by them. The detailed will be described in
2959 the later section <link
2960 linkend="buffer-and-memory"><citetitle>Buffer and Memory
2961 Management</citetitle></link>.
2962 </para>
2963 </section>
2965 <section id="pcm-interface-operators-ack">
2966 <title>ack callback</title>
2967 <para>
2968 This callback is also not mandatory. This callback is called
2969 when the appl_ptr is updated in read or write operations.
2970 Some drivers like emu10k1-fx and cs46xx need to track the
2971 current appl_ptr for the internal buffer, and this callback
2972 is useful only for such a purpose.
2973 </para>
2974 <para>
2975 This callback is atomic.
2976 </para>
2977 </section>
2979 <section id="pcm-interface-operators-page-callback">
2980 <title>page callback</title>
2982 <para>
2983 This callback is optional too. This callback is used
2984 mainly for non-contiguous buffers. The mmap calls this
2985 callback to get the page address. Some examples will be
2986 explained in the later section <link
2987 linkend="buffer-and-memory"><citetitle>Buffer and Memory
2988 Management</citetitle></link>, too.
2989 </para>
2990 </section>
2991 </section>
2993 <section id="pcm-interface-interrupt-handler">
2994 <title>Interrupt Handler</title>
2995 <para>
2996 The rest of pcm stuff is the PCM interrupt handler. The
2997 role of PCM interrupt handler in the sound driver is to update
2998 the buffer position and to tell the PCM middle layer when the
2999 buffer position goes across the prescribed period size. To
3000 inform this, call the <function>snd_pcm_period_elapsed()</function>
3001 function.
3002 </para>
3004 <para>
3005 There are several types of sound chips to generate the interrupts.
3006 </para>
3008 <section id="pcm-interface-interrupt-handler-boundary">
3009 <title>Interrupts at the period (fragment) boundary</title>
3010 <para>
3011 This is the most frequently found type: the hardware
3012 generates an interrupt at each period boundary.
3013 In this case, you can call
3014 <function>snd_pcm_period_elapsed()</function> at each
3015 interrupt.
3016 </para>
3018 <para>
3019 <function>snd_pcm_period_elapsed()</function> takes the
3020 substream pointer as its argument. Thus, you need to keep the
3021 substream pointer accessible from the chip instance. For
3022 example, define substream field in the chip record to hold the
3023 current running substream pointer, and set the pointer value
3024 at open callback (and reset at close callback).
3025 </para>
3027 <para>
3028 If you acquire a spinlock in the interrupt handler, and the
3029 lock is used in other pcm callbacks, too, then you have to
3030 release the lock before calling
3031 <function>snd_pcm_period_elapsed()</function>, because
3032 <function>snd_pcm_period_elapsed()</function> calls other pcm
3033 callbacks inside.
3034 </para>
3036 <para>
3037 Typical code would be like:
3039 <example>
3040 <title>Interrupt Handler Case #1</title>
3041 <programlisting>
3042 <![CDATA[
3043 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
3045 struct mychip *chip = dev_id;
3046 spin_lock(&chip->lock);
3047 ....
3048 if (pcm_irq_invoked(chip)) {
3049 /* call updater, unlock before it */
3050 spin_unlock(&chip->lock);
3051 snd_pcm_period_elapsed(chip->substream);
3052 spin_lock(&chip->lock);
3053 /* acknowledge the interrupt if necessary */
3055 ....
3056 spin_unlock(&chip->lock);
3057 return IRQ_HANDLED;
3060 </programlisting>
3061 </example>
3062 </para>
3063 </section>
3065 <section id="pcm-interface-interrupt-handler-timer">
3066 <title>High frequency timer interrupts</title>
3067 <para>
3068 This happens when the hardware doesn't generate interrupts
3069 at the period boundary but issues timer interrupts at a fixed
3070 timer rate (e.g. es1968 or ymfpci drivers).
3071 In this case, you need to check the current hardware
3072 position and accumulate the processed sample length at each
3073 interrupt. When the accumulated size exceeds the period
3074 size, call
3075 <function>snd_pcm_period_elapsed()</function> and reset the
3076 accumulator.
3077 </para>
3079 <para>
3080 Typical code would be like the following.
3082 <example>
3083 <title>Interrupt Handler Case #2</title>
3084 <programlisting>
3085 <![CDATA[
3086 static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id)
3088 struct mychip *chip = dev_id;
3089 spin_lock(&chip->lock);
3090 ....
3091 if (pcm_irq_invoked(chip)) {
3092 unsigned int last_ptr, size;
3093 /* get the current hardware pointer (in frames) */
3094 last_ptr = get_hw_ptr(chip);
3095 /* calculate the processed frames since the
3096 * last update
3098 if (last_ptr < chip->last_ptr)
3099 size = runtime->buffer_size + last_ptr
3100 - chip->last_ptr;
3101 else
3102 size = last_ptr - chip->last_ptr;
3103 /* remember the last updated point */
3104 chip->last_ptr = last_ptr;
3105 /* accumulate the size */
3106 chip->size += size;
3107 /* over the period boundary? */
3108 if (chip->size >= runtime->period_size) {
3109 /* reset the accumulator */
3110 chip->size %= runtime->period_size;
3111 /* call updater */
3112 spin_unlock(&chip->lock);
3113 snd_pcm_period_elapsed(substream);
3114 spin_lock(&chip->lock);
3116 /* acknowledge the interrupt if necessary */
3118 ....
3119 spin_unlock(&chip->lock);
3120 return IRQ_HANDLED;
3123 </programlisting>
3124 </example>
3125 </para>
3126 </section>
3128 <section id="pcm-interface-interrupt-handler-both">
3129 <title>On calling <function>snd_pcm_period_elapsed()</function></title>
3130 <para>
3131 In both cases, even if more than one period are elapsed, you
3132 don't have to call
3133 <function>snd_pcm_period_elapsed()</function> many times. Call
3134 only once. And the pcm layer will check the current hardware
3135 pointer and update to the latest status.
3136 </para>
3137 </section>
3138 </section>
3140 <section id="pcm-interface-atomicity">
3141 <title>Atomicity</title>
3142 <para>
3143 One of the most important (and thus difficult to debug) problems
3144 in kernel programming are race conditions.
3145 In the Linux kernel, they are usually avoided via spin-locks, mutexes
3146 or semaphores. In general, if a race condition can happen
3147 in an interrupt handler, it has to be managed atomically, and you
3148 have to use a spinlock to protect the critical session. If the
3149 critical section is not in interrupt handler code and
3150 if taking a relatively long time to execute is acceptable, you
3151 should use mutexes or semaphores instead.
3152 </para>
3154 <para>
3155 As already seen, some pcm callbacks are atomic and some are
3156 not. For example, the <parameter>hw_params</parameter> callback is
3157 non-atomic, while <parameter>trigger</parameter> callback is
3158 atomic. This means, the latter is called already in a spinlock
3159 held by the PCM middle layer. Please take this atomicity into
3160 account when you choose a locking scheme in the callbacks.
3161 </para>
3163 <para>
3164 In the atomic callbacks, you cannot use functions which may call
3165 <function>schedule</function> or go to
3166 <function>sleep</function>. Semaphores and mutexes can sleep,
3167 and hence they cannot be used inside the atomic callbacks
3168 (e.g. <parameter>trigger</parameter> callback).
3169 To implement some delay in such a callback, please use
3170 <function>udelay()</function> or <function>mdelay()</function>.
3171 </para>
3173 <para>
3174 All three atomic callbacks (trigger, pointer, and ack) are
3175 called with local interrupts disabled.
3176 </para>
3178 </section>
3179 <section id="pcm-interface-constraints">
3180 <title>Constraints</title>
3181 <para>
3182 If your chip supports unconventional sample rates, or only the
3183 limited samples, you need to set a constraint for the
3184 condition.
3185 </para>
3187 <para>
3188 For example, in order to restrict the sample rates in the some
3189 supported values, use
3190 <function>snd_pcm_hw_constraint_list()</function>.
3191 You need to call this function in the open callback.
3193 <example>
3194 <title>Example of Hardware Constraints</title>
3195 <programlisting>
3196 <![CDATA[
3197 static unsigned int rates[] =
3198 {4000, 10000, 22050, 44100};
3199 static struct snd_pcm_hw_constraint_list constraints_rates = {
3200 .count = ARRAY_SIZE(rates),
3201 .list = rates,
3202 .mask = 0,
3205 static int snd_mychip_pcm_open(struct snd_pcm_substream *substream)
3207 int err;
3208 ....
3209 err = snd_pcm_hw_constraint_list(substream->runtime, 0,
3210 SNDRV_PCM_HW_PARAM_RATE,
3211 &constraints_rates);
3212 if (err < 0)
3213 return err;
3214 ....
3217 </programlisting>
3218 </example>
3219 </para>
3221 <para>
3222 There are many different constraints.
3223 Look at <filename>sound/pcm.h</filename> for a complete list.
3224 You can even define your own constraint rules.
3225 For example, let's suppose my_chip can manage a substream of 1 channel
3226 if and only if the format is S16_LE, otherwise it supports any format
3227 specified in the <structname>snd_pcm_hardware</structname> structure (or in any
3228 other constraint_list). You can build a rule like this:
3230 <example>
3231 <title>Example of Hardware Constraints for Channels</title>
3232 <programlisting>
3233 <![CDATA[
3234 static int hw_rule_channels_by_format(struct snd_pcm_hw_params *params,
3235 struct snd_pcm_hw_rule *rule)
3237 struct snd_interval *c = hw_param_interval(params,
3238 SNDRV_PCM_HW_PARAM_CHANNELS);
3239 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
3240 struct snd_interval ch;
3242 snd_interval_any(&ch);
3243 if (f->bits[0] == SNDRV_PCM_FMTBIT_S16_LE) {
3244 ch.min = ch.max = 1;
3245 ch.integer = 1;
3246 return snd_interval_refine(c, &ch);
3248 return 0;
3251 </programlisting>
3252 </example>
3253 </para>
3255 <para>
3256 Then you need to call this function to add your rule:
3258 <informalexample>
3259 <programlisting>
3260 <![CDATA[
3261 snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
3262 hw_rule_channels_by_format, NULL,
3263 SNDRV_PCM_HW_PARAM_FORMAT, -1);
3265 </programlisting>
3266 </informalexample>
3267 </para>
3269 <para>
3270 The rule function is called when an application sets the PCM
3271 format, and it refines the number of channels accordingly.
3272 But an application may set the number of channels before
3273 setting the format. Thus you also need to define the inverse rule:
3275 <example>
3276 <title>Example of Hardware Constraints for Formats</title>
3277 <programlisting>
3278 <![CDATA[
3279 static int hw_rule_format_by_channels(struct snd_pcm_hw_params *params,
3280 struct snd_pcm_hw_rule *rule)
3282 struct snd_interval *c = hw_param_interval(params,
3283 SNDRV_PCM_HW_PARAM_CHANNELS);
3284 struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
3285 struct snd_mask fmt;
3287 snd_mask_any(&fmt); /* Init the struct */
3288 if (c->min < 2) {
3289 fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_LE;
3290 return snd_mask_refine(f, &fmt);
3292 return 0;
3295 </programlisting>
3296 </example>
3297 </para>
3299 <para>
3300 ...and in the open callback:
3301 <informalexample>
3302 <programlisting>
3303 <![CDATA[
3304 snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
3305 hw_rule_format_by_channels, NULL,
3306 SNDRV_PCM_HW_PARAM_CHANNELS, -1);
3308 </programlisting>
3309 </informalexample>
3310 </para>
3312 <para>
3313 I won't give more details here, rather I
3314 would like to say, <quote>Luke, use the source.</quote>
3315 </para>
3316 </section>
3318 </chapter>
3321 <!-- ****************************************************** -->
3322 <!-- Control Interface -->
3323 <!-- ****************************************************** -->
3324 <chapter id="control-interface">
3325 <title>Control Interface</title>
3327 <section id="control-interface-general">
3328 <title>General</title>
3329 <para>
3330 The control interface is used widely for many switches,
3331 sliders, etc. which are accessed from user-space. Its most
3332 important use is the mixer interface. In other words, since ALSA
3333 0.9.x, all the mixer stuff is implemented on the control kernel API.
3334 </para>
3336 <para>
3337 ALSA has a well-defined AC97 control module. If your chip
3338 supports only the AC97 and nothing else, you can skip this
3339 section.
3340 </para>
3342 <para>
3343 The control API is defined in
3344 <filename>&lt;sound/control.h&gt;</filename>.
3345 Include this file if you want to add your own controls.
3346 </para>
3347 </section>
3349 <section id="control-interface-definition">
3350 <title>Definition of Controls</title>
3351 <para>
3352 To create a new control, you need to define the
3353 following three
3354 callbacks: <structfield>info</structfield>,
3355 <structfield>get</structfield> and
3356 <structfield>put</structfield>. Then, define a
3357 struct <structname>snd_kcontrol_new</structname> record, such as:
3359 <example>
3360 <title>Definition of a Control</title>
3361 <programlisting>
3362 <![CDATA[
3363 static struct snd_kcontrol_new my_control = {
3364 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
3365 .name = "PCM Playback Switch",
3366 .index = 0,
3367 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
3368 .private_value = 0xffff,
3369 .info = my_control_info,
3370 .get = my_control_get,
3371 .put = my_control_put
3374 </programlisting>
3375 </example>
3376 </para>
3378 <para>
3379 The <structfield>iface</structfield> field specifies the control
3380 type, <constant>SNDRV_CTL_ELEM_IFACE_XXX</constant>, which
3381 is usually <constant>MIXER</constant>.
3382 Use <constant>CARD</constant> for global controls that are not
3383 logically part of the mixer.
3384 If the control is closely associated with some specific device on
3385 the sound card, use <constant>HWDEP</constant>,
3386 <constant>PCM</constant>, <constant>RAWMIDI</constant>,
3387 <constant>TIMER</constant>, or <constant>SEQUENCER</constant>, and
3388 specify the device number with the
3389 <structfield>device</structfield> and
3390 <structfield>subdevice</structfield> fields.
3391 </para>
3393 <para>
3394 The <structfield>name</structfield> is the name identifier
3395 string. Since ALSA 0.9.x, the control name is very important,
3396 because its role is classified from its name. There are
3397 pre-defined standard control names. The details are described in
3398 the <link linkend="control-interface-control-names"><citetitle>
3399 Control Names</citetitle></link> subsection.
3400 </para>
3402 <para>
3403 The <structfield>index</structfield> field holds the index number
3404 of this control. If there are several different controls with
3405 the same name, they can be distinguished by the index
3406 number. This is the case when
3407 several codecs exist on the card. If the index is zero, you can
3408 omit the definition above.
3409 </para>
3411 <para>
3412 The <structfield>access</structfield> field contains the access
3413 type of this control. Give the combination of bit masks,
3414 <constant>SNDRV_CTL_ELEM_ACCESS_XXX</constant>, there.
3415 The details will be explained in
3416 the <link linkend="control-interface-access-flags"><citetitle>
3417 Access Flags</citetitle></link> subsection.
3418 </para>
3420 <para>
3421 The <structfield>private_value</structfield> field contains
3422 an arbitrary long integer value for this record. When using
3423 the generic <structfield>info</structfield>,
3424 <structfield>get</structfield> and
3425 <structfield>put</structfield> callbacks, you can pass a value
3426 through this field. If several small numbers are necessary, you can
3427 combine them in bitwise. Or, it's possible to give a pointer
3428 (casted to unsigned long) of some record to this field, too.
3429 </para>
3431 <para>
3432 The <structfield>tlv</structfield> field can be used to provide
3433 metadata about the control; see the
3434 <link linkend="control-interface-tlv">
3435 <citetitle>Metadata</citetitle></link> subsection.
3436 </para>
3438 <para>
3439 The other three are
3440 <link linkend="control-interface-callbacks"><citetitle>
3441 callback functions</citetitle></link>.
3442 </para>
3443 </section>
3445 <section id="control-interface-control-names">
3446 <title>Control Names</title>
3447 <para>
3448 There are some standards to define the control names. A
3449 control is usually defined from the three parts as
3450 <quote>SOURCE DIRECTION FUNCTION</quote>.
3451 </para>
3453 <para>
3454 The first, <constant>SOURCE</constant>, specifies the source
3455 of the control, and is a string such as <quote>Master</quote>,
3456 <quote>PCM</quote>, <quote>CD</quote> and
3457 <quote>Line</quote>. There are many pre-defined sources.
3458 </para>
3460 <para>
3461 The second, <constant>DIRECTION</constant>, is one of the
3462 following strings according to the direction of the control:
3463 <quote>Playback</quote>, <quote>Capture</quote>, <quote>Bypass
3464 Playback</quote> and <quote>Bypass Capture</quote>. Or, it can
3465 be omitted, meaning both playback and capture directions.
3466 </para>
3468 <para>
3469 The third, <constant>FUNCTION</constant>, is one of the
3470 following strings according to the function of the control:
3471 <quote>Switch</quote>, <quote>Volume</quote> and
3472 <quote>Route</quote>.
3473 </para>
3475 <para>
3476 The example of control names are, thus, <quote>Master Capture
3477 Switch</quote> or <quote>PCM Playback Volume</quote>.
3478 </para>
3480 <para>
3481 There are some exceptions:
3482 </para>
3484 <section id="control-interface-control-names-global">
3485 <title>Global capture and playback</title>
3486 <para>
3487 <quote>Capture Source</quote>, <quote>Capture Switch</quote>
3488 and <quote>Capture Volume</quote> are used for the global
3489 capture (input) source, switch and volume. Similarly,
3490 <quote>Playback Switch</quote> and <quote>Playback
3491 Volume</quote> are used for the global output gain switch and
3492 volume.
3493 </para>
3494 </section>
3496 <section id="control-interface-control-names-tone">
3497 <title>Tone-controls</title>
3498 <para>
3499 tone-control switch and volumes are specified like
3500 <quote>Tone Control - XXX</quote>, e.g. <quote>Tone Control -
3501 Switch</quote>, <quote>Tone Control - Bass</quote>,
3502 <quote>Tone Control - Center</quote>.
3503 </para>
3504 </section>
3506 <section id="control-interface-control-names-3d">
3507 <title>3D controls</title>
3508 <para>
3509 3D-control switches and volumes are specified like <quote>3D
3510 Control - XXX</quote>, e.g. <quote>3D Control -
3511 Switch</quote>, <quote>3D Control - Center</quote>, <quote>3D
3512 Control - Space</quote>.
3513 </para>
3514 </section>
3516 <section id="control-interface-control-names-mic">
3517 <title>Mic boost</title>
3518 <para>
3519 Mic-boost switch is set as <quote>Mic Boost</quote> or
3520 <quote>Mic Boost (6dB)</quote>.
3521 </para>
3523 <para>
3524 More precise information can be found in
3525 <filename>Documentation/sound/alsa/ControlNames.txt</filename>.
3526 </para>
3527 </section>
3528 </section>
3530 <section id="control-interface-access-flags">
3531 <title>Access Flags</title>
3533 <para>
3534 The access flag is the bitmask which specifies the access type
3535 of the given control. The default access type is
3536 <constant>SNDRV_CTL_ELEM_ACCESS_READWRITE</constant>,
3537 which means both read and write are allowed to this control.
3538 When the access flag is omitted (i.e. = 0), it is
3539 considered as <constant>READWRITE</constant> access as default.
3540 </para>
3542 <para>
3543 When the control is read-only, pass
3544 <constant>SNDRV_CTL_ELEM_ACCESS_READ</constant> instead.
3545 In this case, you don't have to define
3546 the <structfield>put</structfield> callback.
3547 Similarly, when the control is write-only (although it's a rare
3548 case), you can use the <constant>WRITE</constant> flag instead, and
3549 you don't need the <structfield>get</structfield> callback.
3550 </para>
3552 <para>
3553 If the control value changes frequently (e.g. the VU meter),
3554 <constant>VOLATILE</constant> flag should be given. This means
3555 that the control may be changed without
3556 <link linkend="control-interface-change-notification"><citetitle>
3557 notification</citetitle></link>. Applications should poll such
3558 a control constantly.
3559 </para>
3561 <para>
3562 When the control is inactive, set
3563 the <constant>INACTIVE</constant> flag, too.
3564 There are <constant>LOCK</constant> and
3565 <constant>OWNER</constant> flags to change the write
3566 permissions.
3567 </para>
3569 </section>
3571 <section id="control-interface-callbacks">
3572 <title>Callbacks</title>
3574 <section id="control-interface-callbacks-info">
3575 <title>info callback</title>
3576 <para>
3577 The <structfield>info</structfield> callback is used to get
3578 detailed information on this control. This must store the
3579 values of the given struct <structname>snd_ctl_elem_info</structname>
3580 object. For example, for a boolean control with a single
3581 element:
3583 <example>
3584 <title>Example of info callback</title>
3585 <programlisting>
3586 <![CDATA[
3587 static int snd_myctl_mono_info(struct snd_kcontrol *kcontrol,
3588 struct snd_ctl_elem_info *uinfo)
3590 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
3591 uinfo->count = 1;
3592 uinfo->value.integer.min = 0;
3593 uinfo->value.integer.max = 1;
3594 return 0;
3597 </programlisting>
3598 </example>
3599 </para>
3601 <para>
3602 The <structfield>type</structfield> field specifies the type
3603 of the control. There are <constant>BOOLEAN</constant>,
3604 <constant>INTEGER</constant>, <constant>ENUMERATED</constant>,
3605 <constant>BYTES</constant>, <constant>IEC958</constant> and
3606 <constant>INTEGER64</constant>. The
3607 <structfield>count</structfield> field specifies the
3608 number of elements in this control. For example, a stereo
3609 volume would have count = 2. The
3610 <structfield>value</structfield> field is a union, and
3611 the values stored are depending on the type. The boolean and
3612 integer types are identical.
3613 </para>
3615 <para>
3616 The enumerated type is a bit different from others. You'll
3617 need to set the string for the currently given item index.
3619 <informalexample>
3620 <programlisting>
3621 <![CDATA[
3622 static int snd_myctl_enum_info(struct snd_kcontrol *kcontrol,
3623 struct snd_ctl_elem_info *uinfo)
3625 static char *texts[4] = {
3626 "First", "Second", "Third", "Fourth"
3628 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
3629 uinfo->count = 1;
3630 uinfo->value.enumerated.items = 4;
3631 if (uinfo->value.enumerated.item > 3)
3632 uinfo->value.enumerated.item = 3;
3633 strcpy(uinfo->value.enumerated.name,
3634 texts[uinfo->value.enumerated.item]);
3635 return 0;
3638 </programlisting>
3639 </informalexample>
3640 </para>
3642 <para>
3643 Some common info callbacks are available for your convenience:
3644 <function>snd_ctl_boolean_mono_info()</function> and
3645 <function>snd_ctl_boolean_stereo_info()</function>.
3646 Obviously, the former is an info callback for a mono channel
3647 boolean item, just like <function>snd_myctl_mono_info</function>
3648 above, and the latter is for a stereo channel boolean item.
3649 </para>
3651 </section>
3653 <section id="control-interface-callbacks-get">
3654 <title>get callback</title>
3656 <para>
3657 This callback is used to read the current value of the
3658 control and to return to user-space.
3659 </para>
3661 <para>
3662 For example,
3664 <example>
3665 <title>Example of get callback</title>
3666 <programlisting>
3667 <![CDATA[
3668 static int snd_myctl_get(struct snd_kcontrol *kcontrol,
3669 struct snd_ctl_elem_value *ucontrol)
3671 struct mychip *chip = snd_kcontrol_chip(kcontrol);
3672 ucontrol->value.integer.value[0] = get_some_value(chip);
3673 return 0;
3676 </programlisting>
3677 </example>
3678 </para>
3680 <para>
3681 The <structfield>value</structfield> field depends on
3682 the type of control as well as on the info callback. For example,
3683 the sb driver uses this field to store the register offset,
3684 the bit-shift and the bit-mask. The
3685 <structfield>private_value</structfield> field is set as follows:
3686 <informalexample>
3687 <programlisting>
3688 <![CDATA[
3689 .private_value = reg | (shift << 16) | (mask << 24)
3691 </programlisting>
3692 </informalexample>
3693 and is retrieved in callbacks like
3694 <informalexample>
3695 <programlisting>
3696 <![CDATA[
3697 static int snd_sbmixer_get_single(struct snd_kcontrol *kcontrol,
3698 struct snd_ctl_elem_value *ucontrol)
3700 int reg = kcontrol->private_value & 0xff;
3701 int shift = (kcontrol->private_value >> 16) & 0xff;
3702 int mask = (kcontrol->private_value >> 24) & 0xff;
3703 ....
3706 </programlisting>
3707 </informalexample>
3708 </para>
3710 <para>
3711 In the <structfield>get</structfield> callback,
3712 you have to fill all the elements if the
3713 control has more than one elements,
3714 i.e. <structfield>count</structfield> &gt; 1.
3715 In the example above, we filled only one element
3716 (<structfield>value.integer.value[0]</structfield>) since it's
3717 assumed as <structfield>count</structfield> = 1.
3718 </para>
3719 </section>
3721 <section id="control-interface-callbacks-put">
3722 <title>put callback</title>
3724 <para>
3725 This callback is used to write a value from user-space.
3726 </para>
3728 <para>
3729 For example,
3731 <example>
3732 <title>Example of put callback</title>
3733 <programlisting>
3734 <![CDATA[
3735 static int snd_myctl_put(struct snd_kcontrol *kcontrol,
3736 struct snd_ctl_elem_value *ucontrol)
3738 struct mychip *chip = snd_kcontrol_chip(kcontrol);
3739 int changed = 0;
3740 if (chip->current_value !=
3741 ucontrol->value.integer.value[0]) {
3742 change_current_value(chip,
3743 ucontrol->value.integer.value[0]);
3744 changed = 1;
3746 return changed;
3749 </programlisting>
3750 </example>
3752 As seen above, you have to return 1 if the value is
3753 changed. If the value is not changed, return 0 instead.
3754 If any fatal error happens, return a negative error code as
3755 usual.
3756 </para>
3758 <para>
3759 As in the <structfield>get</structfield> callback,
3760 when the control has more than one elements,
3761 all elements must be evaluated in this callback, too.
3762 </para>
3763 </section>
3765 <section id="control-interface-callbacks-all">
3766 <title>Callbacks are not atomic</title>
3767 <para>
3768 All these three callbacks are basically not atomic.
3769 </para>
3770 </section>
3771 </section>
3773 <section id="control-interface-constructor">
3774 <title>Constructor</title>
3775 <para>
3776 When everything is ready, finally we can create a new
3777 control. To create a control, there are two functions to be
3778 called, <function>snd_ctl_new1()</function> and
3779 <function>snd_ctl_add()</function>.
3780 </para>
3782 <para>
3783 In the simplest way, you can do like this:
3785 <informalexample>
3786 <programlisting>
3787 <![CDATA[
3788 err = snd_ctl_add(card, snd_ctl_new1(&my_control, chip));
3789 if (err < 0)
3790 return err;
3792 </programlisting>
3793 </informalexample>
3795 where <parameter>my_control</parameter> is the
3796 struct <structname>snd_kcontrol_new</structname> object defined above, and chip
3797 is the object pointer to be passed to
3798 kcontrol-&gt;private_data
3799 which can be referred to in callbacks.
3800 </para>
3802 <para>
3803 <function>snd_ctl_new1()</function> allocates a new
3804 <structname>snd_kcontrol</structname> instance,
3805 and <function>snd_ctl_add</function> assigns the given
3806 control component to the card.
3807 </para>
3808 </section>
3810 <section id="control-interface-change-notification">
3811 <title>Change Notification</title>
3812 <para>
3813 If you need to change and update a control in the interrupt
3814 routine, you can call <function>snd_ctl_notify()</function>. For
3815 example,
3817 <informalexample>
3818 <programlisting>
3819 <![CDATA[
3820 snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE, id_pointer);
3822 </programlisting>
3823 </informalexample>
3825 This function takes the card pointer, the event-mask, and the
3826 control id pointer for the notification. The event-mask
3827 specifies the types of notification, for example, in the above
3828 example, the change of control values is notified.
3829 The id pointer is the pointer of struct <structname>snd_ctl_elem_id</structname>
3830 to be notified.
3831 You can find some examples in <filename>es1938.c</filename> or
3832 <filename>es1968.c</filename> for hardware volume interrupts.
3833 </para>
3834 </section>
3836 <section id="control-interface-tlv">
3837 <title>Metadata</title>
3838 <para>
3839 To provide information about the dB values of a mixer control, use
3840 on of the <constant>DECLARE_TLV_xxx</constant> macros from
3841 <filename>&lt;sound/tlv.h&gt;</filename> to define a variable
3842 containing this information, set the<structfield>tlv.p
3843 </structfield> field to point to this variable, and include the
3844 <constant>SNDRV_CTL_ELEM_ACCESS_TLV_READ</constant> flag in the
3845 <structfield>access</structfield> field; like this:
3846 <informalexample>
3847 <programlisting>
3848 <![CDATA[
3849 static DECLARE_TLV_DB_SCALE(db_scale_my_control, -4050, 150, 0);
3851 static struct snd_kcontrol_new my_control = {
3853 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
3854 SNDRV_CTL_ELEM_ACCESS_TLV_READ,
3856 .tlv.p = db_scale_my_control,
3859 </programlisting>
3860 </informalexample>
3861 </para>
3863 <para>
3864 The <function>DECLARE_TLV_DB_SCALE</function> macro defines
3865 information about a mixer control where each step in the control's
3866 value changes the dB value by a constant dB amount.
3867 The first parameter is the name of the variable to be defined.
3868 The second parameter is the minimum value, in units of 0.01 dB.
3869 The third parameter is the step size, in units of 0.01 dB.
3870 Set the fourth parameter to 1 if the minimum value actually mutes
3871 the control.
3872 </para>
3874 <para>
3875 The <function>DECLARE_TLV_DB_LINEAR</function> macro defines
3876 information about a mixer control where the control's value affects
3877 the output linearly.
3878 The first parameter is the name of the variable to be defined.
3879 The second parameter is the minimum value, in units of 0.01 dB.
3880 The third parameter is the maximum value, in units of 0.01 dB.
3881 If the minimum value mutes the control, set the second parameter to
3882 <constant>TLV_DB_GAIN_MUTE</constant>.
3883 </para>
3884 </section>
3886 </chapter>
3889 <!-- ****************************************************** -->
3890 <!-- API for AC97 Codec -->
3891 <!-- ****************************************************** -->
3892 <chapter id="api-ac97">
3893 <title>API for AC97 Codec</title>
3895 <section>
3896 <title>General</title>
3897 <para>
3898 The ALSA AC97 codec layer is a well-defined one, and you don't
3899 have to write much code to control it. Only low-level control
3900 routines are necessary. The AC97 codec API is defined in
3901 <filename>&lt;sound/ac97_codec.h&gt;</filename>.
3902 </para>
3903 </section>
3905 <section id="api-ac97-example">
3906 <title>Full Code Example</title>
3907 <para>
3908 <example>
3909 <title>Example of AC97 Interface</title>
3910 <programlisting>
3911 <![CDATA[
3912 struct mychip {
3913 ....
3914 struct snd_ac97 *ac97;
3915 ....
3918 static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
3919 unsigned short reg)
3921 struct mychip *chip = ac97->private_data;
3922 ....
3923 /* read a register value here from the codec */
3924 return the_register_value;
3927 static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
3928 unsigned short reg, unsigned short val)
3930 struct mychip *chip = ac97->private_data;
3931 ....
3932 /* write the given register value to the codec */
3935 static int snd_mychip_ac97(struct mychip *chip)
3937 struct snd_ac97_bus *bus;
3938 struct snd_ac97_template ac97;
3939 int err;
3940 static struct snd_ac97_bus_ops ops = {
3941 .write = snd_mychip_ac97_write,
3942 .read = snd_mychip_ac97_read,
3945 err = snd_ac97_bus(chip->card, 0, &ops, NULL, &bus);
3946 if (err < 0)
3947 return err;
3948 memset(&ac97, 0, sizeof(ac97));
3949 ac97.private_data = chip;
3950 return snd_ac97_mixer(bus, &ac97, &chip->ac97);
3954 </programlisting>
3955 </example>
3956 </para>
3957 </section>
3959 <section id="api-ac97-constructor">
3960 <title>Constructor</title>
3961 <para>
3962 To create an ac97 instance, first call <function>snd_ac97_bus</function>
3963 with an <type>ac97_bus_ops_t</type> record with callback functions.
3965 <informalexample>
3966 <programlisting>
3967 <![CDATA[
3968 struct snd_ac97_bus *bus;
3969 static struct snd_ac97_bus_ops ops = {
3970 .write = snd_mychip_ac97_write,
3971 .read = snd_mychip_ac97_read,
3974 snd_ac97_bus(card, 0, &ops, NULL, &pbus);
3976 </programlisting>
3977 </informalexample>
3979 The bus record is shared among all belonging ac97 instances.
3980 </para>
3982 <para>
3983 And then call <function>snd_ac97_mixer()</function> with an
3984 struct <structname>snd_ac97_template</structname>
3985 record together with the bus pointer created above.
3987 <informalexample>
3988 <programlisting>
3989 <![CDATA[
3990 struct snd_ac97_template ac97;
3991 int err;
3993 memset(&ac97, 0, sizeof(ac97));
3994 ac97.private_data = chip;
3995 snd_ac97_mixer(bus, &ac97, &chip->ac97);
3997 </programlisting>
3998 </informalexample>
4000 where chip-&gt;ac97 is a pointer to a newly created
4001 <type>ac97_t</type> instance.
4002 In this case, the chip pointer is set as the private data, so that
4003 the read/write callback functions can refer to this chip instance.
4004 This instance is not necessarily stored in the chip
4005 record. If you need to change the register values from the
4006 driver, or need the suspend/resume of ac97 codecs, keep this
4007 pointer to pass to the corresponding functions.
4008 </para>
4009 </section>
4011 <section id="api-ac97-callbacks">
4012 <title>Callbacks</title>
4013 <para>
4014 The standard callbacks are <structfield>read</structfield> and
4015 <structfield>write</structfield>. Obviously they
4016 correspond to the functions for read and write accesses to the
4017 hardware low-level codes.
4018 </para>
4020 <para>
4021 The <structfield>read</structfield> callback returns the
4022 register value specified in the argument.
4024 <informalexample>
4025 <programlisting>
4026 <![CDATA[
4027 static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97,
4028 unsigned short reg)
4030 struct mychip *chip = ac97->private_data;
4031 ....
4032 return the_register_value;
4035 </programlisting>
4036 </informalexample>
4038 Here, the chip can be cast from ac97-&gt;private_data.
4039 </para>
4041 <para>
4042 Meanwhile, the <structfield>write</structfield> callback is
4043 used to set the register value.
4045 <informalexample>
4046 <programlisting>
4047 <![CDATA[
4048 static void snd_mychip_ac97_write(struct snd_ac97 *ac97,
4049 unsigned short reg, unsigned short val)
4051 </programlisting>
4052 </informalexample>
4053 </para>
4055 <para>
4056 These callbacks are non-atomic like the control API callbacks.
4057 </para>
4059 <para>
4060 There are also other callbacks:
4061 <structfield>reset</structfield>,
4062 <structfield>wait</structfield> and
4063 <structfield>init</structfield>.
4064 </para>
4066 <para>
4067 The <structfield>reset</structfield> callback is used to reset
4068 the codec. If the chip requires a special kind of reset, you can
4069 define this callback.
4070 </para>
4072 <para>
4073 The <structfield>wait</structfield> callback is used to
4074 add some waiting time in the standard initialization of the codec. If the
4075 chip requires the extra waiting time, define this callback.
4076 </para>
4078 <para>
4079 The <structfield>init</structfield> callback is used for
4080 additional initialization of the codec.
4081 </para>
4082 </section>
4084 <section id="api-ac97-updating-registers">
4085 <title>Updating Registers in The Driver</title>
4086 <para>
4087 If you need to access to the codec from the driver, you can
4088 call the following functions:
4089 <function>snd_ac97_write()</function>,
4090 <function>snd_ac97_read()</function>,
4091 <function>snd_ac97_update()</function> and
4092 <function>snd_ac97_update_bits()</function>.
4093 </para>
4095 <para>
4096 Both <function>snd_ac97_write()</function> and
4097 <function>snd_ac97_update()</function> functions are used to
4098 set a value to the given register
4099 (<constant>AC97_XXX</constant>). The difference between them is
4100 that <function>snd_ac97_update()</function> doesn't write a
4101 value if the given value has been already set, while
4102 <function>snd_ac97_write()</function> always rewrites the
4103 value.
4105 <informalexample>
4106 <programlisting>
4107 <![CDATA[
4108 snd_ac97_write(ac97, AC97_MASTER, 0x8080);
4109 snd_ac97_update(ac97, AC97_MASTER, 0x8080);
4111 </programlisting>
4112 </informalexample>
4113 </para>
4115 <para>
4116 <function>snd_ac97_read()</function> is used to read the value
4117 of the given register. For example,
4119 <informalexample>
4120 <programlisting>
4121 <![CDATA[
4122 value = snd_ac97_read(ac97, AC97_MASTER);
4124 </programlisting>
4125 </informalexample>
4126 </para>
4128 <para>
4129 <function>snd_ac97_update_bits()</function> is used to update
4130 some bits in the given register.
4132 <informalexample>
4133 <programlisting>
4134 <![CDATA[
4135 snd_ac97_update_bits(ac97, reg, mask, value);
4137 </programlisting>
4138 </informalexample>
4139 </para>
4141 <para>
4142 Also, there is a function to change the sample rate (of a
4143 given register such as
4144 <constant>AC97_PCM_FRONT_DAC_RATE</constant>) when VRA or
4145 DRA is supported by the codec:
4146 <function>snd_ac97_set_rate()</function>.
4148 <informalexample>
4149 <programlisting>
4150 <![CDATA[
4151 snd_ac97_set_rate(ac97, AC97_PCM_FRONT_DAC_RATE, 44100);
4153 </programlisting>
4154 </informalexample>
4155 </para>
4157 <para>
4158 The following registers are available to set the rate:
4159 <constant>AC97_PCM_MIC_ADC_RATE</constant>,
4160 <constant>AC97_PCM_FRONT_DAC_RATE</constant>,
4161 <constant>AC97_PCM_LR_ADC_RATE</constant>,
4162 <constant>AC97_SPDIF</constant>. When
4163 <constant>AC97_SPDIF</constant> is specified, the register is
4164 not really changed but the corresponding IEC958 status bits will
4165 be updated.
4166 </para>
4167 </section>
4169 <section id="api-ac97-clock-adjustment">
4170 <title>Clock Adjustment</title>
4171 <para>
4172 In some chips, the clock of the codec isn't 48000 but using a
4173 PCI clock (to save a quartz!). In this case, change the field
4174 bus-&gt;clock to the corresponding
4175 value. For example, intel8x0
4176 and es1968 drivers have their own function to read from the clock.
4177 </para>
4178 </section>
4180 <section id="api-ac97-proc-files">
4181 <title>Proc Files</title>
4182 <para>
4183 The ALSA AC97 interface will create a proc file such as
4184 <filename>/proc/asound/card0/codec97#0/ac97#0-0</filename> and
4185 <filename>ac97#0-0+regs</filename>. You can refer to these files to
4186 see the current status and registers of the codec.
4187 </para>
4188 </section>
4190 <section id="api-ac97-multiple-codecs">
4191 <title>Multiple Codecs</title>
4192 <para>
4193 When there are several codecs on the same card, you need to
4194 call <function>snd_ac97_mixer()</function> multiple times with
4195 ac97.num=1 or greater. The <structfield>num</structfield> field
4196 specifies the codec number.
4197 </para>
4199 <para>
4200 If you set up multiple codecs, you either need to write
4201 different callbacks for each codec or check
4202 ac97-&gt;num in the callback routines.
4203 </para>
4204 </section>
4206 </chapter>
4209 <!-- ****************************************************** -->
4210 <!-- MIDI (MPU401-UART) Interface -->
4211 <!-- ****************************************************** -->
4212 <chapter id="midi-interface">
4213 <title>MIDI (MPU401-UART) Interface</title>
4215 <section id="midi-interface-general">
4216 <title>General</title>
4217 <para>
4218 Many soundcards have built-in MIDI (MPU401-UART)
4219 interfaces. When the soundcard supports the standard MPU401-UART
4220 interface, most likely you can use the ALSA MPU401-UART API. The
4221 MPU401-UART API is defined in
4222 <filename>&lt;sound/mpu401.h&gt;</filename>.
4223 </para>
4225 <para>
4226 Some soundchips have a similar but slightly different
4227 implementation of mpu401 stuff. For example, emu10k1 has its own
4228 mpu401 routines.
4229 </para>
4230 </section>
4232 <section id="midi-interface-constructor">
4233 <title>Constructor</title>
4234 <para>
4235 To create a rawmidi object, call
4236 <function>snd_mpu401_uart_new()</function>.
4238 <informalexample>
4239 <programlisting>
4240 <![CDATA[
4241 struct snd_rawmidi *rmidi;
4242 snd_mpu401_uart_new(card, 0, MPU401_HW_MPU401, port, info_flags,
4243 irq, &rmidi);
4245 </programlisting>
4246 </informalexample>
4247 </para>
4249 <para>
4250 The first argument is the card pointer, and the second is the
4251 index of this component. You can create up to 8 rawmidi
4252 devices.
4253 </para>
4255 <para>
4256 The third argument is the type of the hardware,
4257 <constant>MPU401_HW_XXX</constant>. If it's not a special one,
4258 you can use <constant>MPU401_HW_MPU401</constant>.
4259 </para>
4261 <para>
4262 The 4th argument is the I/O port address. Many
4263 backward-compatible MPU401 have an I/O port such as 0x330. Or, it
4264 might be a part of its own PCI I/O region. It depends on the
4265 chip design.
4266 </para>
4268 <para>
4269 The 5th argument is a bitflag for additional information.
4270 When the I/O port address above is part of the PCI I/O
4271 region, the MPU401 I/O port might have been already allocated
4272 (reserved) by the driver itself. In such a case, pass a bit flag
4273 <constant>MPU401_INFO_INTEGRATED</constant>,
4274 and the mpu401-uart layer will allocate the I/O ports by itself.
4275 </para>
4277 <para>
4278 When the controller supports only the input or output MIDI stream,
4279 pass the <constant>MPU401_INFO_INPUT</constant> or
4280 <constant>MPU401_INFO_OUTPUT</constant> bitflag, respectively.
4281 Then the rawmidi instance is created as a single stream.
4282 </para>
4284 <para>
4285 <constant>MPU401_INFO_MMIO</constant> bitflag is used to change
4286 the access method to MMIO (via readb and writeb) instead of
4287 iob and outb. In this case, you have to pass the iomapped address
4288 to <function>snd_mpu401_uart_new()</function>.
4289 </para>
4291 <para>
4292 When <constant>MPU401_INFO_TX_IRQ</constant> is set, the output
4293 stream isn't checked in the default interrupt handler. The driver
4294 needs to call <function>snd_mpu401_uart_interrupt_tx()</function>
4295 by itself to start processing the output stream in the irq handler.
4296 </para>
4298 <para>
4299 If the MPU-401 interface shares its interrupt with the other logical
4300 devices on the card, set <constant>MPU401_INFO_IRQ_HOOK</constant>
4301 (see <link linkend="midi-interface-interrupt-handler"><citetitle>
4302 below</citetitle></link>).
4303 </para>
4305 <para>
4306 Usually, the port address corresponds to the command port and
4307 port + 1 corresponds to the data port. If not, you may change
4308 the <structfield>cport</structfield> field of
4309 struct <structname>snd_mpu401</structname> manually
4310 afterward. However, <structname>snd_mpu401</structname> pointer is not
4311 returned explicitly by
4312 <function>snd_mpu401_uart_new()</function>. You need to cast
4313 rmidi-&gt;private_data to
4314 <structname>snd_mpu401</structname> explicitly,
4316 <informalexample>
4317 <programlisting>
4318 <![CDATA[
4319 struct snd_mpu401 *mpu;
4320 mpu = rmidi->private_data;
4322 </programlisting>
4323 </informalexample>
4325 and reset the cport as you like:
4327 <informalexample>
4328 <programlisting>
4329 <![CDATA[
4330 mpu->cport = my_own_control_port;
4332 </programlisting>
4333 </informalexample>
4334 </para>
4336 <para>
4337 The 6th argument specifies the ISA irq number that will be
4338 allocated. If no interrupt is to be allocated (because your
4339 code is already allocating a shared interrupt, or because the
4340 device does not use interrupts), pass -1 instead.
4341 For a MPU-401 device without an interrupt, a polling timer
4342 will be used instead.
4343 </para>
4344 </section>
4346 <section id="midi-interface-interrupt-handler">
4347 <title>Interrupt Handler</title>
4348 <para>
4349 When the interrupt is allocated in
4350 <function>snd_mpu401_uart_new()</function>, an exclusive ISA
4351 interrupt handler is automatically used, hence you don't have
4352 anything else to do than creating the mpu401 stuff. Otherwise, you
4353 have to set <constant>MPU401_INFO_IRQ_HOOK</constant>, and call
4354 <function>snd_mpu401_uart_interrupt()</function> explicitly from your
4355 own interrupt handler when it has determined that a UART interrupt
4356 has occurred.
4357 </para>
4359 <para>
4360 In this case, you need to pass the private_data of the
4361 returned rawmidi object from
4362 <function>snd_mpu401_uart_new()</function> as the second
4363 argument of <function>snd_mpu401_uart_interrupt()</function>.
4365 <informalexample>
4366 <programlisting>
4367 <![CDATA[
4368 snd_mpu401_uart_interrupt(irq, rmidi->private_data, regs);
4370 </programlisting>
4371 </informalexample>
4372 </para>
4373 </section>
4375 </chapter>
4378 <!-- ****************************************************** -->
4379 <!-- RawMIDI Interface -->
4380 <!-- ****************************************************** -->
4381 <chapter id="rawmidi-interface">
4382 <title>RawMIDI Interface</title>
4384 <section id="rawmidi-interface-overview">
4385 <title>Overview</title>
4387 <para>
4388 The raw MIDI interface is used for hardware MIDI ports that can
4389 be accessed as a byte stream. It is not used for synthesizer
4390 chips that do not directly understand MIDI.
4391 </para>
4393 <para>
4394 ALSA handles file and buffer management. All you have to do is
4395 to write some code to move data between the buffer and the
4396 hardware.
4397 </para>
4399 <para>
4400 The rawmidi API is defined in
4401 <filename>&lt;sound/rawmidi.h&gt;</filename>.
4402 </para>
4403 </section>
4405 <section id="rawmidi-interface-constructor">
4406 <title>Constructor</title>
4408 <para>
4409 To create a rawmidi device, call the
4410 <function>snd_rawmidi_new</function> function:
4411 <informalexample>
4412 <programlisting>
4413 <![CDATA[
4414 struct snd_rawmidi *rmidi;
4415 err = snd_rawmidi_new(chip->card, "MyMIDI", 0, outs, ins, &rmidi);
4416 if (err < 0)
4417 return err;
4418 rmidi->private_data = chip;
4419 strcpy(rmidi->name, "My MIDI");
4420 rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT |
4421 SNDRV_RAWMIDI_INFO_INPUT |
4422 SNDRV_RAWMIDI_INFO_DUPLEX;
4424 </programlisting>
4425 </informalexample>
4426 </para>
4428 <para>
4429 The first argument is the card pointer, the second argument is
4430 the ID string.
4431 </para>
4433 <para>
4434 The third argument is the index of this component. You can
4435 create up to 8 rawmidi devices.
4436 </para>
4438 <para>
4439 The fourth and fifth arguments are the number of output and
4440 input substreams, respectively, of this device (a substream is
4441 the equivalent of a MIDI port).
4442 </para>
4444 <para>
4445 Set the <structfield>info_flags</structfield> field to specify
4446 the capabilities of the device.
4447 Set <constant>SNDRV_RAWMIDI_INFO_OUTPUT</constant> if there is
4448 at least one output port,
4449 <constant>SNDRV_RAWMIDI_INFO_INPUT</constant> if there is at
4450 least one input port,
4451 and <constant>SNDRV_RAWMIDI_INFO_DUPLEX</constant> if the device
4452 can handle output and input at the same time.
4453 </para>
4455 <para>
4456 After the rawmidi device is created, you need to set the
4457 operators (callbacks) for each substream. There are helper
4458 functions to set the operators for all the substreams of a device:
4459 <informalexample>
4460 <programlisting>
4461 <![CDATA[
4462 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_mymidi_output_ops);
4463 snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_mymidi_input_ops);
4465 </programlisting>
4466 </informalexample>
4467 </para>
4469 <para>
4470 The operators are usually defined like this:
4471 <informalexample>
4472 <programlisting>
4473 <![CDATA[
4474 static struct snd_rawmidi_ops snd_mymidi_output_ops = {
4475 .open = snd_mymidi_output_open,
4476 .close = snd_mymidi_output_close,
4477 .trigger = snd_mymidi_output_trigger,
4480 </programlisting>
4481 </informalexample>
4482 These callbacks are explained in the <link
4483 linkend="rawmidi-interface-callbacks"><citetitle>Callbacks</citetitle></link>
4484 section.
4485 </para>
4487 <para>
4488 If there are more than one substream, you should give a
4489 unique name to each of them:
4490 <informalexample>
4491 <programlisting>
4492 <![CDATA[
4493 struct snd_rawmidi_substream *substream;
4494 list_for_each_entry(substream,
4495 &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams,
4496 list {
4497 sprintf(substream->name, "My MIDI Port %d", substream->number + 1);
4499 /* same for SNDRV_RAWMIDI_STREAM_INPUT */
4501 </programlisting>
4502 </informalexample>
4503 </para>
4504 </section>
4506 <section id="rawmidi-interface-callbacks">
4507 <title>Callbacks</title>
4509 <para>
4510 In all the callbacks, the private data that you've set for the
4511 rawmidi device can be accessed as
4512 substream-&gt;rmidi-&gt;private_data.
4513 <!-- <code> isn't available before DocBook 4.3 -->
4514 </para>
4516 <para>
4517 If there is more than one port, your callbacks can determine the
4518 port index from the struct snd_rawmidi_substream data passed to each
4519 callback:
4520 <informalexample>
4521 <programlisting>
4522 <![CDATA[
4523 struct snd_rawmidi_substream *substream;
4524 int index = substream->number;
4526 </programlisting>
4527 </informalexample>
4528 </para>
4530 <section id="rawmidi-interface-op-open">
4531 <title><function>open</function> callback</title>
4533 <informalexample>
4534 <programlisting>
4535 <![CDATA[
4536 static int snd_xxx_open(struct snd_rawmidi_substream *substream);
4538 </programlisting>
4539 </informalexample>
4541 <para>
4542 This is called when a substream is opened.
4543 You can initialize the hardware here, but you shouldn't
4544 start transmitting/receiving data yet.
4545 </para>
4546 </section>
4548 <section id="rawmidi-interface-op-close">
4549 <title><function>close</function> callback</title>
4551 <informalexample>
4552 <programlisting>
4553 <![CDATA[
4554 static int snd_xxx_close(struct snd_rawmidi_substream *substream);
4556 </programlisting>
4557 </informalexample>
4559 <para>
4560 Guess what.
4561 </para>
4563 <para>
4564 The <function>open</function> and <function>close</function>
4565 callbacks of a rawmidi device are serialized with a mutex,
4566 and can sleep.
4567 </para>
4568 </section>
4570 <section id="rawmidi-interface-op-trigger-out">
4571 <title><function>trigger</function> callback for output
4572 substreams</title>
4574 <informalexample>
4575 <programlisting>
4576 <![CDATA[
4577 static void snd_xxx_output_trigger(struct snd_rawmidi_substream *substream, int up);
4579 </programlisting>
4580 </informalexample>
4582 <para>
4583 This is called with a nonzero <parameter>up</parameter>
4584 parameter when there is some data in the substream buffer that
4585 must be transmitted.
4586 </para>
4588 <para>
4589 To read data from the buffer, call
4590 <function>snd_rawmidi_transmit_peek</function>. It will
4591 return the number of bytes that have been read; this will be
4592 less than the number of bytes requested when there are no more
4593 data in the buffer.
4594 After the data have been transmitted successfully, call
4595 <function>snd_rawmidi_transmit_ack</function> to remove the
4596 data from the substream buffer:
4597 <informalexample>
4598 <programlisting>
4599 <![CDATA[
4600 unsigned char data;
4601 while (snd_rawmidi_transmit_peek(substream, &data, 1) == 1) {
4602 if (snd_mychip_try_to_transmit(data))
4603 snd_rawmidi_transmit_ack(substream, 1);
4604 else
4605 break; /* hardware FIFO full */
4608 </programlisting>
4609 </informalexample>
4610 </para>
4612 <para>
4613 If you know beforehand that the hardware will accept data, you
4614 can use the <function>snd_rawmidi_transmit</function> function
4615 which reads some data and removes them from the buffer at once:
4616 <informalexample>
4617 <programlisting>
4618 <![CDATA[
4619 while (snd_mychip_transmit_possible()) {
4620 unsigned char data;
4621 if (snd_rawmidi_transmit(substream, &data, 1) != 1)
4622 break; /* no more data */
4623 snd_mychip_transmit(data);
4626 </programlisting>
4627 </informalexample>
4628 </para>
4630 <para>
4631 If you know beforehand how many bytes you can accept, you can
4632 use a buffer size greater than one with the
4633 <function>snd_rawmidi_transmit*</function> functions.
4634 </para>
4636 <para>
4637 The <function>trigger</function> callback must not sleep. If
4638 the hardware FIFO is full before the substream buffer has been
4639 emptied, you have to continue transmitting data later, either
4640 in an interrupt handler, or with a timer if the hardware
4641 doesn't have a MIDI transmit interrupt.
4642 </para>
4644 <para>
4645 The <function>trigger</function> callback is called with a
4646 zero <parameter>up</parameter> parameter when the transmission
4647 of data should be aborted.
4648 </para>
4649 </section>
4651 <section id="rawmidi-interface-op-trigger-in">
4652 <title><function>trigger</function> callback for input
4653 substreams</title>
4655 <informalexample>
4656 <programlisting>
4657 <![CDATA[
4658 static void snd_xxx_input_trigger(struct snd_rawmidi_substream *substream, int up);
4660 </programlisting>
4661 </informalexample>
4663 <para>
4664 This is called with a nonzero <parameter>up</parameter>
4665 parameter to enable receiving data, or with a zero
4666 <parameter>up</parameter> parameter do disable receiving data.
4667 </para>
4669 <para>
4670 The <function>trigger</function> callback must not sleep; the
4671 actual reading of data from the device is usually done in an
4672 interrupt handler.
4673 </para>
4675 <para>
4676 When data reception is enabled, your interrupt handler should
4677 call <function>snd_rawmidi_receive</function> for all received
4678 data:
4679 <informalexample>
4680 <programlisting>
4681 <![CDATA[
4682 void snd_mychip_midi_interrupt(...)
4684 while (mychip_midi_available()) {
4685 unsigned char data;
4686 data = mychip_midi_read();
4687 snd_rawmidi_receive(substream, &data, 1);
4691 </programlisting>
4692 </informalexample>
4693 </para>
4694 </section>
4696 <section id="rawmidi-interface-op-drain">
4697 <title><function>drain</function> callback</title>
4699 <informalexample>
4700 <programlisting>
4701 <![CDATA[
4702 static void snd_xxx_drain(struct snd_rawmidi_substream *substream);
4704 </programlisting>
4705 </informalexample>
4707 <para>
4708 This is only used with output substreams. This function should wait
4709 until all data read from the substream buffer have been transmitted.
4710 This ensures that the device can be closed and the driver unloaded
4711 without losing data.
4712 </para>
4714 <para>
4715 This callback is optional. If you do not set
4716 <structfield>drain</structfield> in the struct snd_rawmidi_ops
4717 structure, ALSA will simply wait for 50&nbsp;milliseconds
4718 instead.
4719 </para>
4720 </section>
4721 </section>
4723 </chapter>
4726 <!-- ****************************************************** -->
4727 <!-- Miscellaneous Devices -->
4728 <!-- ****************************************************** -->
4729 <chapter id="misc-devices">
4730 <title>Miscellaneous Devices</title>
4732 <section id="misc-devices-opl3">
4733 <title>FM OPL3</title>
4734 <para>
4735 The FM OPL3 is still used in many chips (mainly for backward
4736 compatibility). ALSA has a nice OPL3 FM control layer, too. The
4737 OPL3 API is defined in
4738 <filename>&lt;sound/opl3.h&gt;</filename>.
4739 </para>
4741 <para>
4742 FM registers can be directly accessed through the direct-FM API,
4743 defined in <filename>&lt;sound/asound_fm.h&gt;</filename>. In
4744 ALSA native mode, FM registers are accessed through
4745 the Hardware-Dependent Device direct-FM extension API, whereas in
4746 OSS compatible mode, FM registers can be accessed with the OSS
4747 direct-FM compatible API in <filename>/dev/dmfmX</filename> device.
4748 </para>
4750 <para>
4751 To create the OPL3 component, you have two functions to
4752 call. The first one is a constructor for the <type>opl3_t</type>
4753 instance.
4755 <informalexample>
4756 <programlisting>
4757 <![CDATA[
4758 struct snd_opl3 *opl3;
4759 snd_opl3_create(card, lport, rport, OPL3_HW_OPL3_XXX,
4760 integrated, &opl3);
4762 </programlisting>
4763 </informalexample>
4764 </para>
4766 <para>
4767 The first argument is the card pointer, the second one is the
4768 left port address, and the third is the right port address. In
4769 most cases, the right port is placed at the left port + 2.
4770 </para>
4772 <para>
4773 The fourth argument is the hardware type.
4774 </para>
4776 <para>
4777 When the left and right ports have been already allocated by
4778 the card driver, pass non-zero to the fifth argument
4779 (<parameter>integrated</parameter>). Otherwise, the opl3 module will
4780 allocate the specified ports by itself.
4781 </para>
4783 <para>
4784 When the accessing the hardware requires special method
4785 instead of the standard I/O access, you can create opl3 instance
4786 separately with <function>snd_opl3_new()</function>.
4788 <informalexample>
4789 <programlisting>
4790 <![CDATA[
4791 struct snd_opl3 *opl3;
4792 snd_opl3_new(card, OPL3_HW_OPL3_XXX, &opl3);
4794 </programlisting>
4795 </informalexample>
4796 </para>
4798 <para>
4799 Then set <structfield>command</structfield>,
4800 <structfield>private_data</structfield> and
4801 <structfield>private_free</structfield> for the private
4802 access function, the private data and the destructor.
4803 The l_port and r_port are not necessarily set. Only the
4804 command must be set properly. You can retrieve the data
4805 from the opl3-&gt;private_data field.
4806 </para>
4808 <para>
4809 After creating the opl3 instance via <function>snd_opl3_new()</function>,
4810 call <function>snd_opl3_init()</function> to initialize the chip to the
4811 proper state. Note that <function>snd_opl3_create()</function> always
4812 calls it internally.
4813 </para>
4815 <para>
4816 If the opl3 instance is created successfully, then create a
4817 hwdep device for this opl3.
4819 <informalexample>
4820 <programlisting>
4821 <![CDATA[
4822 struct snd_hwdep *opl3hwdep;
4823 snd_opl3_hwdep_new(opl3, 0, 1, &opl3hwdep);
4825 </programlisting>
4826 </informalexample>
4827 </para>
4829 <para>
4830 The first argument is the <type>opl3_t</type> instance you
4831 created, and the second is the index number, usually 0.
4832 </para>
4834 <para>
4835 The third argument is the index-offset for the sequencer
4836 client assigned to the OPL3 port. When there is an MPU401-UART,
4837 give 1 for here (UART always takes 0).
4838 </para>
4839 </section>
4841 <section id="misc-devices-hardware-dependent">
4842 <title>Hardware-Dependent Devices</title>
4843 <para>
4844 Some chips need user-space access for special
4845 controls or for loading the micro code. In such a case, you can
4846 create a hwdep (hardware-dependent) device. The hwdep API is
4847 defined in <filename>&lt;sound/hwdep.h&gt;</filename>. You can
4848 find examples in opl3 driver or
4849 <filename>isa/sb/sb16_csp.c</filename>.
4850 </para>
4852 <para>
4853 The creation of the <type>hwdep</type> instance is done via
4854 <function>snd_hwdep_new()</function>.
4856 <informalexample>
4857 <programlisting>
4858 <![CDATA[
4859 struct snd_hwdep *hw;
4860 snd_hwdep_new(card, "My HWDEP", 0, &hw);
4862 </programlisting>
4863 </informalexample>
4865 where the third argument is the index number.
4866 </para>
4868 <para>
4869 You can then pass any pointer value to the
4870 <parameter>private_data</parameter>.
4871 If you assign a private data, you should define the
4872 destructor, too. The destructor function is set in
4873 the <structfield>private_free</structfield> field.
4875 <informalexample>
4876 <programlisting>
4877 <![CDATA[
4878 struct mydata *p = kmalloc(sizeof(*p), GFP_KERNEL);
4879 hw->private_data = p;
4880 hw->private_free = mydata_free;
4882 </programlisting>
4883 </informalexample>
4885 and the implementation of the destructor would be:
4887 <informalexample>
4888 <programlisting>
4889 <![CDATA[
4890 static void mydata_free(struct snd_hwdep *hw)
4892 struct mydata *p = hw->private_data;
4893 kfree(p);
4896 </programlisting>
4897 </informalexample>
4898 </para>
4900 <para>
4901 The arbitrary file operations can be defined for this
4902 instance. The file operators are defined in
4903 the <parameter>ops</parameter> table. For example, assume that
4904 this chip needs an ioctl.
4906 <informalexample>
4907 <programlisting>
4908 <![CDATA[
4909 hw->ops.open = mydata_open;
4910 hw->ops.ioctl = mydata_ioctl;
4911 hw->ops.release = mydata_release;
4913 </programlisting>
4914 </informalexample>
4916 And implement the callback functions as you like.
4917 </para>
4918 </section>
4920 <section id="misc-devices-IEC958">
4921 <title>IEC958 (S/PDIF)</title>
4922 <para>
4923 Usually the controls for IEC958 devices are implemented via
4924 the control interface. There is a macro to compose a name string for
4925 IEC958 controls, <function>SNDRV_CTL_NAME_IEC958()</function>
4926 defined in <filename>&lt;include/asound.h&gt;</filename>.
4927 </para>
4929 <para>
4930 There are some standard controls for IEC958 status bits. These
4931 controls use the type <type>SNDRV_CTL_ELEM_TYPE_IEC958</type>,
4932 and the size of element is fixed as 4 bytes array
4933 (value.iec958.status[x]). For the <structfield>info</structfield>
4934 callback, you don't specify
4935 the value field for this type (the count field must be set,
4936 though).
4937 </para>
4939 <para>
4940 <quote>IEC958 Playback Con Mask</quote> is used to return the
4941 bit-mask for the IEC958 status bits of consumer mode. Similarly,
4942 <quote>IEC958 Playback Pro Mask</quote> returns the bitmask for
4943 professional mode. They are read-only controls, and are defined
4944 as MIXER controls (iface =
4945 <constant>SNDRV_CTL_ELEM_IFACE_MIXER</constant>).
4946 </para>
4948 <para>
4949 Meanwhile, <quote>IEC958 Playback Default</quote> control is
4950 defined for getting and setting the current default IEC958
4951 bits. Note that this one is usually defined as a PCM control
4952 (iface = <constant>SNDRV_CTL_ELEM_IFACE_PCM</constant>),
4953 although in some places it's defined as a MIXER control.
4954 </para>
4956 <para>
4957 In addition, you can define the control switches to
4958 enable/disable or to set the raw bit mode. The implementation
4959 will depend on the chip, but the control should be named as
4960 <quote>IEC958 xxx</quote>, preferably using
4961 the <function>SNDRV_CTL_NAME_IEC958()</function> macro.
4962 </para>
4964 <para>
4965 You can find several cases, for example,
4966 <filename>pci/emu10k1</filename>,
4967 <filename>pci/ice1712</filename>, or
4968 <filename>pci/cmipci.c</filename>.
4969 </para>
4970 </section>
4972 </chapter>
4975 <!-- ****************************************************** -->
4976 <!-- Buffer and Memory Management -->
4977 <!-- ****************************************************** -->
4978 <chapter id="buffer-and-memory">
4979 <title>Buffer and Memory Management</title>
4981 <section id="buffer-and-memory-buffer-types">
4982 <title>Buffer Types</title>
4983 <para>
4984 ALSA provides several different buffer allocation functions
4985 depending on the bus and the architecture. All these have a
4986 consistent API. The allocation of physically-contiguous pages is
4987 done via
4988 <function>snd_malloc_xxx_pages()</function> function, where xxx
4989 is the bus type.
4990 </para>
4992 <para>
4993 The allocation of pages with fallback is
4994 <function>snd_malloc_xxx_pages_fallback()</function>. This
4995 function tries to allocate the specified pages but if the pages
4996 are not available, it tries to reduce the page sizes until
4997 enough space is found.
4998 </para>
5000 <para>
5001 The release the pages, call
5002 <function>snd_free_xxx_pages()</function> function.
5003 </para>
5005 <para>
5006 Usually, ALSA drivers try to allocate and reserve
5007 a large contiguous physical space
5008 at the time the module is loaded for the later use.
5009 This is called <quote>pre-allocation</quote>.
5010 As already written, you can call the following function at
5011 pcm instance construction time (in the case of PCI bus).
5013 <informalexample>
5014 <programlisting>
5015 <![CDATA[
5016 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
5017 snd_dma_pci_data(pci), size, max);
5019 </programlisting>
5020 </informalexample>
5022 where <parameter>size</parameter> is the byte size to be
5023 pre-allocated and the <parameter>max</parameter> is the maximum
5024 size to be changed via the <filename>prealloc</filename> proc file.
5025 The allocator will try to get an area as large as possible
5026 within the given size.
5027 </para>
5029 <para>
5030 The second argument (type) and the third argument (device pointer)
5031 are dependent on the bus.
5032 In the case of the ISA bus, pass <function>snd_dma_isa_data()</function>
5033 as the third argument with <constant>SNDRV_DMA_TYPE_DEV</constant> type.
5034 For the continuous buffer unrelated to the bus can be pre-allocated
5035 with <constant>SNDRV_DMA_TYPE_CONTINUOUS</constant> type and the
5036 <function>snd_dma_continuous_data(GFP_KERNEL)</function> device pointer,
5037 where <constant>GFP_KERNEL</constant> is the kernel allocation flag to
5038 use.
5039 For the PCI scatter-gather buffers, use
5040 <constant>SNDRV_DMA_TYPE_DEV_SG</constant> with
5041 <function>snd_dma_pci_data(pci)</function>
5042 (see the
5043 <link linkend="buffer-and-memory-non-contiguous"><citetitle>Non-Contiguous Buffers
5044 </citetitle></link> section).
5045 </para>
5047 <para>
5048 Once the buffer is pre-allocated, you can use the
5049 allocator in the <structfield>hw_params</structfield> callback:
5051 <informalexample>
5052 <programlisting>
5053 <![CDATA[
5054 snd_pcm_lib_malloc_pages(substream, size);
5056 </programlisting>
5057 </informalexample>
5059 Note that you have to pre-allocate to use this function.
5060 </para>
5061 </section>
5063 <section id="buffer-and-memory-external-hardware">
5064 <title>External Hardware Buffers</title>
5065 <para>
5066 Some chips have their own hardware buffers and the DMA
5067 transfer from the host memory is not available. In such a case,
5068 you need to either 1) copy/set the audio data directly to the
5069 external hardware buffer, or 2) make an intermediate buffer and
5070 copy/set the data from it to the external hardware buffer in
5071 interrupts (or in tasklets, preferably).
5072 </para>
5074 <para>
5075 The first case works fine if the external hardware buffer is large
5076 enough. This method doesn't need any extra buffers and thus is
5077 more effective. You need to define the
5078 <structfield>copy</structfield> and
5079 <structfield>silence</structfield> callbacks for
5080 the data transfer. However, there is a drawback: it cannot
5081 be mmapped. The examples are GUS's GF1 PCM or emu8000's
5082 wavetable PCM.
5083 </para>
5085 <para>
5086 The second case allows for mmap on the buffer, although you have
5087 to handle an interrupt or a tasklet to transfer the data
5088 from the intermediate buffer to the hardware buffer. You can find an
5089 example in the vxpocket driver.
5090 </para>
5092 <para>
5093 Another case is when the chip uses a PCI memory-map
5094 region for the buffer instead of the host memory. In this case,
5095 mmap is available only on certain architectures like the Intel one.
5096 In non-mmap mode, the data cannot be transferred as in the normal
5097 way. Thus you need to define the <structfield>copy</structfield> and
5098 <structfield>silence</structfield> callbacks as well,
5099 as in the cases above. The examples are found in
5100 <filename>rme32.c</filename> and <filename>rme96.c</filename>.
5101 </para>
5103 <para>
5104 The implementation of the <structfield>copy</structfield> and
5105 <structfield>silence</structfield> callbacks depends upon
5106 whether the hardware supports interleaved or non-interleaved
5107 samples. The <structfield>copy</structfield> callback is
5108 defined like below, a bit
5109 differently depending whether the direction is playback or
5110 capture:
5112 <informalexample>
5113 <programlisting>
5114 <![CDATA[
5115 static int playback_copy(struct snd_pcm_substream *substream, int channel,
5116 snd_pcm_uframes_t pos, void *src, snd_pcm_uframes_t count);
5117 static int capture_copy(struct snd_pcm_substream *substream, int channel,
5118 snd_pcm_uframes_t pos, void *dst, snd_pcm_uframes_t count);
5120 </programlisting>
5121 </informalexample>
5122 </para>
5124 <para>
5125 In the case of interleaved samples, the second argument
5126 (<parameter>channel</parameter>) is not used. The third argument
5127 (<parameter>pos</parameter>) points the
5128 current position offset in frames.
5129 </para>
5131 <para>
5132 The meaning of the fourth argument is different between
5133 playback and capture. For playback, it holds the source data
5134 pointer, and for capture, it's the destination data pointer.
5135 </para>
5137 <para>
5138 The last argument is the number of frames to be copied.
5139 </para>
5141 <para>
5142 What you have to do in this callback is again different
5143 between playback and capture directions. In the
5144 playback case, you copy the given amount of data
5145 (<parameter>count</parameter>) at the specified pointer
5146 (<parameter>src</parameter>) to the specified offset
5147 (<parameter>pos</parameter>) on the hardware buffer. When
5148 coded like memcpy-like way, the copy would be like:
5150 <informalexample>
5151 <programlisting>
5152 <![CDATA[
5153 my_memcpy(my_buffer + frames_to_bytes(runtime, pos), src,
5154 frames_to_bytes(runtime, count));
5156 </programlisting>
5157 </informalexample>
5158 </para>
5160 <para>
5161 For the capture direction, you copy the given amount of
5162 data (<parameter>count</parameter>) at the specified offset
5163 (<parameter>pos</parameter>) on the hardware buffer to the
5164 specified pointer (<parameter>dst</parameter>).
5166 <informalexample>
5167 <programlisting>
5168 <![CDATA[
5169 my_memcpy(dst, my_buffer + frames_to_bytes(runtime, pos),
5170 frames_to_bytes(runtime, count));
5172 </programlisting>
5173 </informalexample>
5175 Note that both the position and the amount of data are given
5176 in frames.
5177 </para>
5179 <para>
5180 In the case of non-interleaved samples, the implementation
5181 will be a bit more complicated.
5182 </para>
5184 <para>
5185 You need to check the channel argument, and if it's -1, copy
5186 the whole channels. Otherwise, you have to copy only the
5187 specified channel. Please check
5188 <filename>isa/gus/gus_pcm.c</filename> as an example.
5189 </para>
5191 <para>
5192 The <structfield>silence</structfield> callback is also
5193 implemented in a similar way.
5195 <informalexample>
5196 <programlisting>
5197 <![CDATA[
5198 static int silence(struct snd_pcm_substream *substream, int channel,
5199 snd_pcm_uframes_t pos, snd_pcm_uframes_t count);
5201 </programlisting>
5202 </informalexample>
5203 </para>
5205 <para>
5206 The meanings of arguments are the same as in the
5207 <structfield>copy</structfield>
5208 callback, although there is no <parameter>src/dst</parameter>
5209 argument. In the case of interleaved samples, the channel
5210 argument has no meaning, as well as on
5211 <structfield>copy</structfield> callback.
5212 </para>
5214 <para>
5215 The role of <structfield>silence</structfield> callback is to
5216 set the given amount
5217 (<parameter>count</parameter>) of silence data at the
5218 specified offset (<parameter>pos</parameter>) on the hardware
5219 buffer. Suppose that the data format is signed (that is, the
5220 silent-data is 0), and the implementation using a memset-like
5221 function would be like:
5223 <informalexample>
5224 <programlisting>
5225 <![CDATA[
5226 my_memcpy(my_buffer + frames_to_bytes(runtime, pos), 0,
5227 frames_to_bytes(runtime, count));
5229 </programlisting>
5230 </informalexample>
5231 </para>
5233 <para>
5234 In the case of non-interleaved samples, again, the
5235 implementation becomes a bit more complicated. See, for example,
5236 <filename>isa/gus/gus_pcm.c</filename>.
5237 </para>
5238 </section>
5240 <section id="buffer-and-memory-non-contiguous">
5241 <title>Non-Contiguous Buffers</title>
5242 <para>
5243 If your hardware supports the page table as in emu10k1 or the
5244 buffer descriptors as in via82xx, you can use the scatter-gather
5245 (SG) DMA. ALSA provides an interface for handling SG-buffers.
5246 The API is provided in <filename>&lt;sound/pcm.h&gt;</filename>.
5247 </para>
5249 <para>
5250 For creating the SG-buffer handler, call
5251 <function>snd_pcm_lib_preallocate_pages()</function> or
5252 <function>snd_pcm_lib_preallocate_pages_for_all()</function>
5253 with <constant>SNDRV_DMA_TYPE_DEV_SG</constant>
5254 in the PCM constructor like other PCI pre-allocator.
5255 You need to pass <function>snd_dma_pci_data(pci)</function>,
5256 where pci is the struct <structname>pci_dev</structname> pointer
5257 of the chip as well.
5258 The <type>struct snd_sg_buf</type> instance is created as
5259 substream-&gt;dma_private. You can cast
5260 the pointer like:
5262 <informalexample>
5263 <programlisting>
5264 <![CDATA[
5265 struct snd_sg_buf *sgbuf = (struct snd_sg_buf *)substream->dma_private;
5267 </programlisting>
5268 </informalexample>
5269 </para>
5271 <para>
5272 Then call <function>snd_pcm_lib_malloc_pages()</function>
5273 in the <structfield>hw_params</structfield> callback
5274 as well as in the case of normal PCI buffer.
5275 The SG-buffer handler will allocate the non-contiguous kernel
5276 pages of the given size and map them onto the virtually contiguous
5277 memory. The virtual pointer is addressed in runtime-&gt;dma_area.
5278 The physical address (runtime-&gt;dma_addr) is set to zero,
5279 because the buffer is physically non-contiguous.
5280 The physical address table is set up in sgbuf-&gt;table.
5281 You can get the physical address at a certain offset via
5282 <function>snd_pcm_sgbuf_get_addr()</function>.
5283 </para>
5285 <para>
5286 When a SG-handler is used, you need to set
5287 <function>snd_pcm_sgbuf_ops_page</function> as
5288 the <structfield>page</structfield> callback.
5289 (See <link linkend="pcm-interface-operators-page-callback">
5290 <citetitle>page callback section</citetitle></link>.)
5291 </para>
5293 <para>
5294 To release the data, call
5295 <function>snd_pcm_lib_free_pages()</function> in the
5296 <structfield>hw_free</structfield> callback as usual.
5297 </para>
5298 </section>
5300 <section id="buffer-and-memory-vmalloced">
5301 <title>Vmalloc'ed Buffers</title>
5302 <para>
5303 It's possible to use a buffer allocated via
5304 <function>vmalloc</function>, for example, for an intermediate
5305 buffer. Since the allocated pages are not contiguous, you need
5306 to set the <structfield>page</structfield> callback to obtain
5307 the physical address at every offset.
5308 </para>
5310 <para>
5311 The implementation of <structfield>page</structfield> callback
5312 would be like this:
5314 <informalexample>
5315 <programlisting>
5316 <![CDATA[
5317 #include <linux/vmalloc.h>
5319 /* get the physical page pointer on the given offset */
5320 static struct page *mychip_page(struct snd_pcm_substream *substream,
5321 unsigned long offset)
5323 void *pageptr = substream->runtime->dma_area + offset;
5324 return vmalloc_to_page(pageptr);
5327 </programlisting>
5328 </informalexample>
5329 </para>
5330 </section>
5332 </chapter>
5335 <!-- ****************************************************** -->
5336 <!-- Proc Interface -->
5337 <!-- ****************************************************** -->
5338 <chapter id="proc-interface">
5339 <title>Proc Interface</title>
5340 <para>
5341 ALSA provides an easy interface for procfs. The proc files are
5342 very useful for debugging. I recommend you set up proc files if
5343 you write a driver and want to get a running status or register
5344 dumps. The API is found in
5345 <filename>&lt;sound/info.h&gt;</filename>.
5346 </para>
5348 <para>
5349 To create a proc file, call
5350 <function>snd_card_proc_new()</function>.
5352 <informalexample>
5353 <programlisting>
5354 <![CDATA[
5355 struct snd_info_entry *entry;
5356 int err = snd_card_proc_new(card, "my-file", &entry);
5358 </programlisting>
5359 </informalexample>
5361 where the second argument specifies the name of the proc file to be
5362 created. The above example will create a file
5363 <filename>my-file</filename> under the card directory,
5364 e.g. <filename>/proc/asound/card0/my-file</filename>.
5365 </para>
5367 <para>
5368 Like other components, the proc entry created via
5369 <function>snd_card_proc_new()</function> will be registered and
5370 released automatically in the card registration and release
5371 functions.
5372 </para>
5374 <para>
5375 When the creation is successful, the function stores a new
5376 instance in the pointer given in the third argument.
5377 It is initialized as a text proc file for read only. To use
5378 this proc file as a read-only text file as it is, set the read
5379 callback with a private data via
5380 <function>snd_info_set_text_ops()</function>.
5382 <informalexample>
5383 <programlisting>
5384 <![CDATA[
5385 snd_info_set_text_ops(entry, chip, my_proc_read);
5387 </programlisting>
5388 </informalexample>
5390 where the second argument (<parameter>chip</parameter>) is the
5391 private data to be used in the callbacks. The third parameter
5392 specifies the read buffer size and the fourth
5393 (<parameter>my_proc_read</parameter>) is the callback function, which
5394 is defined like
5396 <informalexample>
5397 <programlisting>
5398 <![CDATA[
5399 static void my_proc_read(struct snd_info_entry *entry,
5400 struct snd_info_buffer *buffer);
5402 </programlisting>
5403 </informalexample>
5405 </para>
5407 <para>
5408 In the read callback, use <function>snd_iprintf()</function> for
5409 output strings, which works just like normal
5410 <function>printf()</function>. For example,
5412 <informalexample>
5413 <programlisting>
5414 <![CDATA[
5415 static void my_proc_read(struct snd_info_entry *entry,
5416 struct snd_info_buffer *buffer)
5418 struct my_chip *chip = entry->private_data;
5420 snd_iprintf(buffer, "This is my chip!\n");
5421 snd_iprintf(buffer, "Port = %ld\n", chip->port);
5424 </programlisting>
5425 </informalexample>
5426 </para>
5428 <para>
5429 The file permissions can be changed afterwards. As default, it's
5430 set as read only for all users. If you want to add write
5431 permission for the user (root as default), do as follows:
5433 <informalexample>
5434 <programlisting>
5435 <![CDATA[
5436 entry->mode = S_IFREG | S_IRUGO | S_IWUSR;
5438 </programlisting>
5439 </informalexample>
5441 and set the write buffer size and the callback
5443 <informalexample>
5444 <programlisting>
5445 <![CDATA[
5446 entry->c.text.write = my_proc_write;
5448 </programlisting>
5449 </informalexample>
5450 </para>
5452 <para>
5453 For the write callback, you can use
5454 <function>snd_info_get_line()</function> to get a text line, and
5455 <function>snd_info_get_str()</function> to retrieve a string from
5456 the line. Some examples are found in
5457 <filename>core/oss/mixer_oss.c</filename>, core/oss/and
5458 <filename>pcm_oss.c</filename>.
5459 </para>
5461 <para>
5462 For a raw-data proc-file, set the attributes as follows:
5464 <informalexample>
5465 <programlisting>
5466 <![CDATA[
5467 static struct snd_info_entry_ops my_file_io_ops = {
5468 .read = my_file_io_read,
5471 entry->content = SNDRV_INFO_CONTENT_DATA;
5472 entry->private_data = chip;
5473 entry->c.ops = &my_file_io_ops;
5474 entry->size = 4096;
5475 entry->mode = S_IFREG | S_IRUGO;
5477 </programlisting>
5478 </informalexample>
5480 For the raw data, <structfield>size</structfield> field must be
5481 set properly. This specifies the maximum size of the proc file access.
5482 </para>
5484 <para>
5485 The read/write callbacks of raw mode are more direct than the text mode.
5486 You need to use a low-level I/O functions such as
5487 <function>copy_from/to_user()</function> to transfer the
5488 data.
5490 <informalexample>
5491 <programlisting>
5492 <![CDATA[
5493 static ssize_t my_file_io_read(struct snd_info_entry *entry,
5494 void *file_private_data,
5495 struct file *file,
5496 char *buf,
5497 size_t count,
5498 loff_t pos)
5500 if (copy_to_user(buf, local_data + pos, count))
5501 return -EFAULT;
5502 return count;
5505 </programlisting>
5506 </informalexample>
5508 If the size of the info entry has been set up properly,
5509 <structfield>count</structfield> and <structfield>pos</structfield> are
5510 guaranteed to fit within 0 and the given size.
5511 You don't have to check the range in the callbacks unless any
5512 other condition is required.
5514 </para>
5516 </chapter>
5519 <!-- ****************************************************** -->
5520 <!-- Power Management -->
5521 <!-- ****************************************************** -->
5522 <chapter id="power-management">
5523 <title>Power Management</title>
5524 <para>
5525 If the chip is supposed to work with suspend/resume
5526 functions, you need to add power-management code to the
5527 driver. The additional code for power-management should be
5528 <function>ifdef</function>'ed with
5529 <constant>CONFIG_PM</constant>.
5530 </para>
5532 <para>
5533 If the driver <emphasis>fully</emphasis> supports suspend/resume
5534 that is, the device can be
5535 properly resumed to its state when suspend was called,
5536 you can set the <constant>SNDRV_PCM_INFO_RESUME</constant> flag
5537 in the pcm info field. Usually, this is possible when the
5538 registers of the chip can be safely saved and restored to
5539 RAM. If this is set, the trigger callback is called with
5540 <constant>SNDRV_PCM_TRIGGER_RESUME</constant> after the resume
5541 callback completes.
5542 </para>
5544 <para>
5545 Even if the driver doesn't support PM fully but
5546 partial suspend/resume is still possible, it's still worthy to
5547 implement suspend/resume callbacks. In such a case, applications
5548 would reset the status by calling
5549 <function>snd_pcm_prepare()</function> and restart the stream
5550 appropriately. Hence, you can define suspend/resume callbacks
5551 below but don't set <constant>SNDRV_PCM_INFO_RESUME</constant>
5552 info flag to the PCM.
5553 </para>
5555 <para>
5556 Note that the trigger with SUSPEND can always be called when
5557 <function>snd_pcm_suspend_all</function> is called,
5558 regardless of the <constant>SNDRV_PCM_INFO_RESUME</constant> flag.
5559 The <constant>RESUME</constant> flag affects only the behavior
5560 of <function>snd_pcm_resume()</function>.
5561 (Thus, in theory,
5562 <constant>SNDRV_PCM_TRIGGER_RESUME</constant> isn't needed
5563 to be handled in the trigger callback when no
5564 <constant>SNDRV_PCM_INFO_RESUME</constant> flag is set. But,
5565 it's better to keep it for compatibility reasons.)
5566 </para>
5567 <para>
5568 In the earlier version of ALSA drivers, a common
5569 power-management layer was provided, but it has been removed.
5570 The driver needs to define the suspend/resume hooks according to
5571 the bus the device is connected to. In the case of PCI drivers, the
5572 callbacks look like below:
5574 <informalexample>
5575 <programlisting>
5576 <![CDATA[
5577 #ifdef CONFIG_PM
5578 static int snd_my_suspend(struct pci_dev *pci, pm_message_t state)
5580 .... /* do things for suspend */
5581 return 0;
5583 static int snd_my_resume(struct pci_dev *pci)
5585 .... /* do things for suspend */
5586 return 0;
5588 #endif
5590 </programlisting>
5591 </informalexample>
5592 </para>
5594 <para>
5595 The scheme of the real suspend job is as follows.
5597 <orderedlist>
5598 <listitem><para>Retrieve the card and the chip data.</para></listitem>
5599 <listitem><para>Call <function>snd_power_change_state()</function> with
5600 <constant>SNDRV_CTL_POWER_D3hot</constant> to change the
5601 power status.</para></listitem>
5602 <listitem><para>Call <function>snd_pcm_suspend_all()</function> to suspend the running PCM streams.</para></listitem>
5603 <listitem><para>If AC97 codecs are used, call
5604 <function>snd_ac97_suspend()</function> for each codec.</para></listitem>
5605 <listitem><para>Save the register values if necessary.</para></listitem>
5606 <listitem><para>Stop the hardware if necessary.</para></listitem>
5607 <listitem><para>Disable the PCI device by calling
5608 <function>pci_disable_device()</function>. Then, call
5609 <function>pci_save_state()</function> at last.</para></listitem>
5610 </orderedlist>
5611 </para>
5613 <para>
5614 A typical code would be like:
5616 <informalexample>
5617 <programlisting>
5618 <![CDATA[
5619 static int mychip_suspend(struct pci_dev *pci, pm_message_t state)
5621 /* (1) */
5622 struct snd_card *card = pci_get_drvdata(pci);
5623 struct mychip *chip = card->private_data;
5624 /* (2) */
5625 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
5626 /* (3) */
5627 snd_pcm_suspend_all(chip->pcm);
5628 /* (4) */
5629 snd_ac97_suspend(chip->ac97);
5630 /* (5) */
5631 snd_mychip_save_registers(chip);
5632 /* (6) */
5633 snd_mychip_stop_hardware(chip);
5634 /* (7) */
5635 pci_disable_device(pci);
5636 pci_save_state(pci);
5637 return 0;
5640 </programlisting>
5641 </informalexample>
5642 </para>
5644 <para>
5645 The scheme of the real resume job is as follows.
5647 <orderedlist>
5648 <listitem><para>Retrieve the card and the chip data.</para></listitem>
5649 <listitem><para>Set up PCI. First, call <function>pci_restore_state()</function>.
5650 Then enable the pci device again by calling <function>pci_enable_device()</function>.
5651 Call <function>pci_set_master()</function> if necessary, too.</para></listitem>
5652 <listitem><para>Re-initialize the chip.</para></listitem>
5653 <listitem><para>Restore the saved registers if necessary.</para></listitem>
5654 <listitem><para>Resume the mixer, e.g. calling
5655 <function>snd_ac97_resume()</function>.</para></listitem>
5656 <listitem><para>Restart the hardware (if any).</para></listitem>
5657 <listitem><para>Call <function>snd_power_change_state()</function> with
5658 <constant>SNDRV_CTL_POWER_D0</constant> to notify the processes.</para></listitem>
5659 </orderedlist>
5660 </para>
5662 <para>
5663 A typical code would be like:
5665 <informalexample>
5666 <programlisting>
5667 <![CDATA[
5668 static int mychip_resume(struct pci_dev *pci)
5670 /* (1) */
5671 struct snd_card *card = pci_get_drvdata(pci);
5672 struct mychip *chip = card->private_data;
5673 /* (2) */
5674 pci_restore_state(pci);
5675 pci_enable_device(pci);
5676 pci_set_master(pci);
5677 /* (3) */
5678 snd_mychip_reinit_chip(chip);
5679 /* (4) */
5680 snd_mychip_restore_registers(chip);
5681 /* (5) */
5682 snd_ac97_resume(chip->ac97);
5683 /* (6) */
5684 snd_mychip_restart_chip(chip);
5685 /* (7) */
5686 snd_power_change_state(card, SNDRV_CTL_POWER_D0);
5687 return 0;
5690 </programlisting>
5691 </informalexample>
5692 </para>
5694 <para>
5695 As shown in the above, it's better to save registers after
5696 suspending the PCM operations via
5697 <function>snd_pcm_suspend_all()</function> or
5698 <function>snd_pcm_suspend()</function>. It means that the PCM
5699 streams are already stoppped when the register snapshot is
5700 taken. But, remember that you don't have to restart the PCM
5701 stream in the resume callback. It'll be restarted via
5702 trigger call with <constant>SNDRV_PCM_TRIGGER_RESUME</constant>
5703 when necessary.
5704 </para>
5706 <para>
5707 OK, we have all callbacks now. Let's set them up. In the
5708 initialization of the card, make sure that you can get the chip
5709 data from the card instance, typically via
5710 <structfield>private_data</structfield> field, in case you
5711 created the chip data individually.
5713 <informalexample>
5714 <programlisting>
5715 <![CDATA[
5716 static int snd_mychip_probe(struct pci_dev *pci,
5717 const struct pci_device_id *pci_id)
5719 ....
5720 struct snd_card *card;
5721 struct mychip *chip;
5722 int err;
5723 ....
5724 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
5725 0, &card);
5726 ....
5727 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
5728 ....
5729 card->private_data = chip;
5730 ....
5733 </programlisting>
5734 </informalexample>
5736 When you created the chip data with
5737 <function>snd_card_new()</function>, it's anyway accessible
5738 via <structfield>private_data</structfield> field.
5740 <informalexample>
5741 <programlisting>
5742 <![CDATA[
5743 static int snd_mychip_probe(struct pci_dev *pci,
5744 const struct pci_device_id *pci_id)
5746 ....
5747 struct snd_card *card;
5748 struct mychip *chip;
5749 int err;
5750 ....
5751 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
5752 sizeof(struct mychip), &card);
5753 ....
5754 chip = card->private_data;
5755 ....
5758 </programlisting>
5759 </informalexample>
5761 </para>
5763 <para>
5764 If you need a space to save the registers, allocate the
5765 buffer for it here, too, since it would be fatal
5766 if you cannot allocate a memory in the suspend phase.
5767 The allocated buffer should be released in the corresponding
5768 destructor.
5769 </para>
5771 <para>
5772 And next, set suspend/resume callbacks to the pci_driver.
5774 <informalexample>
5775 <programlisting>
5776 <![CDATA[
5777 static struct pci_driver driver = {
5778 .name = KBUILD_MODNAME,
5779 .id_table = snd_my_ids,
5780 .probe = snd_my_probe,
5781 .remove = snd_my_remove,
5782 #ifdef CONFIG_PM
5783 .suspend = snd_my_suspend,
5784 .resume = snd_my_resume,
5785 #endif
5788 </programlisting>
5789 </informalexample>
5790 </para>
5792 </chapter>
5795 <!-- ****************************************************** -->
5796 <!-- Module Parameters -->
5797 <!-- ****************************************************** -->
5798 <chapter id="module-parameters">
5799 <title>Module Parameters</title>
5800 <para>
5801 There are standard module options for ALSA. At least, each
5802 module should have the <parameter>index</parameter>,
5803 <parameter>id</parameter> and <parameter>enable</parameter>
5804 options.
5805 </para>
5807 <para>
5808 If the module supports multiple cards (usually up to
5809 8 = <constant>SNDRV_CARDS</constant> cards), they should be
5810 arrays. The default initial values are defined already as
5811 constants for easier programming:
5813 <informalexample>
5814 <programlisting>
5815 <![CDATA[
5816 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
5817 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
5818 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
5820 </programlisting>
5821 </informalexample>
5822 </para>
5824 <para>
5825 If the module supports only a single card, they could be single
5826 variables, instead. <parameter>enable</parameter> option is not
5827 always necessary in this case, but it would be better to have a
5828 dummy option for compatibility.
5829 </para>
5831 <para>
5832 The module parameters must be declared with the standard
5833 <function>module_param()()</function>,
5834 <function>module_param_array()()</function> and
5835 <function>MODULE_PARM_DESC()</function> macros.
5836 </para>
5838 <para>
5839 The typical coding would be like below:
5841 <informalexample>
5842 <programlisting>
5843 <![CDATA[
5844 #define CARD_NAME "My Chip"
5846 module_param_array(index, int, NULL, 0444);
5847 MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard.");
5848 module_param_array(id, charp, NULL, 0444);
5849 MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard.");
5850 module_param_array(enable, bool, NULL, 0444);
5851 MODULE_PARM_DESC(enable, "Enable " CARD_NAME " soundcard.");
5853 </programlisting>
5854 </informalexample>
5855 </para>
5857 <para>
5858 Also, don't forget to define the module description, classes,
5859 license and devices. Especially, the recent modprobe requires to
5860 define the module license as GPL, etc., otherwise the system is
5861 shown as <quote>tainted</quote>.
5863 <informalexample>
5864 <programlisting>
5865 <![CDATA[
5866 MODULE_DESCRIPTION("My Chip");
5867 MODULE_LICENSE("GPL");
5868 MODULE_SUPPORTED_DEVICE("{{Vendor,My Chip Name}}");
5870 </programlisting>
5871 </informalexample>
5872 </para>
5874 </chapter>
5877 <!-- ****************************************************** -->
5878 <!-- How To Put Your Driver -->
5879 <!-- ****************************************************** -->
5880 <chapter id="how-to-put-your-driver">
5881 <title>How To Put Your Driver Into ALSA Tree</title>
5882 <section>
5883 <title>General</title>
5884 <para>
5885 So far, you've learned how to write the driver codes.
5886 And you might have a question now: how to put my own
5887 driver into the ALSA driver tree?
5888 Here (finally :) the standard procedure is described briefly.
5889 </para>
5891 <para>
5892 Suppose that you create a new PCI driver for the card
5893 <quote>xyz</quote>. The card module name would be
5894 snd-xyz. The new driver is usually put into the alsa-driver
5895 tree, <filename>alsa-driver/pci</filename> directory in
5896 the case of PCI cards.
5897 Then the driver is evaluated, audited and tested
5898 by developers and users. After a certain time, the driver
5899 will go to the alsa-kernel tree (to the corresponding directory,
5900 such as <filename>alsa-kernel/pci</filename>) and eventually
5901 will be integrated into the Linux 2.6 tree (the directory would be
5902 <filename>linux/sound/pci</filename>).
5903 </para>
5905 <para>
5906 In the following sections, the driver code is supposed
5907 to be put into alsa-driver tree. The two cases are covered:
5908 a driver consisting of a single source file and one consisting
5909 of several source files.
5910 </para>
5911 </section>
5913 <section>
5914 <title>Driver with A Single Source File</title>
5915 <para>
5916 <orderedlist>
5917 <listitem>
5918 <para>
5919 Modify alsa-driver/pci/Makefile
5920 </para>
5922 <para>
5923 Suppose you have a file xyz.c. Add the following
5924 two lines
5925 <informalexample>
5926 <programlisting>
5927 <![CDATA[
5928 snd-xyz-objs := xyz.o
5929 obj-$(CONFIG_SND_XYZ) += snd-xyz.o
5931 </programlisting>
5932 </informalexample>
5933 </para>
5934 </listitem>
5936 <listitem>
5937 <para>
5938 Create the Kconfig entry
5939 </para>
5941 <para>
5942 Add the new entry of Kconfig for your xyz driver.
5943 <informalexample>
5944 <programlisting>
5945 <![CDATA[
5946 config SND_XYZ
5947 tristate "Foobar XYZ"
5948 depends on SND
5949 select SND_PCM
5950 help
5951 Say Y here to include support for Foobar XYZ soundcard.
5953 To compile this driver as a module, choose M here: the module
5954 will be called snd-xyz.
5956 </programlisting>
5957 </informalexample>
5959 the line, select SND_PCM, specifies that the driver xyz supports
5960 PCM. In addition to SND_PCM, the following components are
5961 supported for select command:
5962 SND_RAWMIDI, SND_TIMER, SND_HWDEP, SND_MPU401_UART,
5963 SND_OPL3_LIB, SND_OPL4_LIB, SND_VX_LIB, SND_AC97_CODEC.
5964 Add the select command for each supported component.
5965 </para>
5967 <para>
5968 Note that some selections imply the lowlevel selections.
5969 For example, PCM includes TIMER, MPU401_UART includes RAWMIDI,
5970 AC97_CODEC includes PCM, and OPL3_LIB includes HWDEP.
5971 You don't need to give the lowlevel selections again.
5972 </para>
5974 <para>
5975 For the details of Kconfig script, refer to the kbuild
5976 documentation.
5977 </para>
5979 </listitem>
5981 <listitem>
5982 <para>
5983 Run cvscompile script to re-generate the configure script and
5984 build the whole stuff again.
5985 </para>
5986 </listitem>
5987 </orderedlist>
5988 </para>
5989 </section>
5991 <section>
5992 <title>Drivers with Several Source Files</title>
5993 <para>
5994 Suppose that the driver snd-xyz have several source files.
5995 They are located in the new subdirectory,
5996 pci/xyz.
5998 <orderedlist>
5999 <listitem>
6000 <para>
6001 Add a new directory (<filename>xyz</filename>) in
6002 <filename>alsa-driver/pci/Makefile</filename> as below
6004 <informalexample>
6005 <programlisting>
6006 <![CDATA[
6007 obj-$(CONFIG_SND) += xyz/
6009 </programlisting>
6010 </informalexample>
6011 </para>
6012 </listitem>
6014 <listitem>
6015 <para>
6016 Under the directory <filename>xyz</filename>, create a Makefile
6018 <example>
6019 <title>Sample Makefile for a driver xyz</title>
6020 <programlisting>
6021 <![CDATA[
6022 ifndef SND_TOPDIR
6023 SND_TOPDIR=../..
6024 endif
6026 include $(SND_TOPDIR)/toplevel.config
6027 include $(SND_TOPDIR)/Makefile.conf
6029 snd-xyz-objs := xyz.o abc.o def.o
6031 obj-$(CONFIG_SND_XYZ) += snd-xyz.o
6033 include $(SND_TOPDIR)/Rules.make
6035 </programlisting>
6036 </example>
6037 </para>
6038 </listitem>
6040 <listitem>
6041 <para>
6042 Create the Kconfig entry
6043 </para>
6045 <para>
6046 This procedure is as same as in the last section.
6047 </para>
6048 </listitem>
6050 <listitem>
6051 <para>
6052 Run cvscompile script to re-generate the configure script and
6053 build the whole stuff again.
6054 </para>
6055 </listitem>
6056 </orderedlist>
6057 </para>
6058 </section>
6060 </chapter>
6062 <!-- ****************************************************** -->
6063 <!-- Useful Functions -->
6064 <!-- ****************************************************** -->
6065 <chapter id="useful-functions">
6066 <title>Useful Functions</title>
6068 <section id="useful-functions-snd-printk">
6069 <title><function>snd_printk()</function> and friends</title>
6070 <para>
6071 ALSA provides a verbose version of the
6072 <function>printk()</function> function. If a kernel config
6073 <constant>CONFIG_SND_VERBOSE_PRINTK</constant> is set, this
6074 function prints the given message together with the file name
6075 and the line of the caller. The <constant>KERN_XXX</constant>
6076 prefix is processed as
6077 well as the original <function>printk()</function> does, so it's
6078 recommended to add this prefix, e.g.
6080 <informalexample>
6081 <programlisting>
6082 <![CDATA[
6083 snd_printk(KERN_ERR "Oh my, sorry, it's extremely bad!\n");
6085 </programlisting>
6086 </informalexample>
6087 </para>
6089 <para>
6090 There are also <function>printk()</function>'s for
6091 debugging. <function>snd_printd()</function> can be used for
6092 general debugging purposes. If
6093 <constant>CONFIG_SND_DEBUG</constant> is set, this function is
6094 compiled, and works just like
6095 <function>snd_printk()</function>. If the ALSA is compiled
6096 without the debugging flag, it's ignored.
6097 </para>
6099 <para>
6100 <function>snd_printdd()</function> is compiled in only when
6101 <constant>CONFIG_SND_DEBUG_VERBOSE</constant> is set. Please note
6102 that <constant>CONFIG_SND_DEBUG_VERBOSE</constant> is not set as default
6103 even if you configure the alsa-driver with
6104 <option>--with-debug=full</option> option. You need to give
6105 explicitly <option>--with-debug=detect</option> option instead.
6106 </para>
6107 </section>
6109 <section id="useful-functions-snd-bug">
6110 <title><function>snd_BUG()</function></title>
6111 <para>
6112 It shows the <computeroutput>BUG?</computeroutput> message and
6113 stack trace as well as <function>snd_BUG_ON</function> at the point.
6114 It's useful to show that a fatal error happens there.
6115 </para>
6116 <para>
6117 When no debug flag is set, this macro is ignored.
6118 </para>
6119 </section>
6121 <section id="useful-functions-snd-bug-on">
6122 <title><function>snd_BUG_ON()</function></title>
6123 <para>
6124 <function>snd_BUG_ON()</function> macro is similar with
6125 <function>WARN_ON()</function> macro. For example,
6127 <informalexample>
6128 <programlisting>
6129 <![CDATA[
6130 snd_BUG_ON(!pointer);
6132 </programlisting>
6133 </informalexample>
6135 or it can be used as the condition,
6136 <informalexample>
6137 <programlisting>
6138 <![CDATA[
6139 if (snd_BUG_ON(non_zero_is_bug))
6140 return -EINVAL;
6142 </programlisting>
6143 </informalexample>
6145 </para>
6147 <para>
6148 The macro takes an conditional expression to evaluate.
6149 When <constant>CONFIG_SND_DEBUG</constant>, is set, if the
6150 expression is non-zero, it shows the warning message such as
6151 <computeroutput>BUG? (xxx)</computeroutput>
6152 normally followed by stack trace.
6154 In both cases it returns the evaluated value.
6155 </para>
6157 </section>
6159 </chapter>
6162 <!-- ****************************************************** -->
6163 <!-- Acknowledgments -->
6164 <!-- ****************************************************** -->
6165 <chapter id="acknowledgments">
6166 <title>Acknowledgments</title>
6167 <para>
6168 I would like to thank Phil Kerr for his help for improvement and
6169 corrections of this document.
6170 </para>
6171 <para>
6172 Kevin Conder reformatted the original plain-text to the
6173 DocBook format.
6174 </para>
6175 <para>
6176 Giuliano Pochini corrected typos and contributed the example codes
6177 in the hardware constraints section.
6178 </para>
6179 </chapter>
6180 </book>