2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 2007 by Ralf Baechle
7 * Copyright (C) 2009, 2012 Cavium, Inc.
9 #include <linux/clocksource.h>
10 #include <linux/export.h>
11 #include <linux/init.h>
12 #include <linux/smp.h>
14 #include <asm/cpu-info.h>
15 #include <asm/cpu-type.h>
18 #include <asm/octeon/octeon.h>
19 #include <asm/octeon/cvmx-ipd-defs.h>
20 #include <asm/octeon/cvmx-mio-defs.h>
26 static u64 octeon_udelay_factor
;
27 static u64 octeon_ndelay_factor
;
29 void __init
octeon_setup_delays(void)
31 octeon_udelay_factor
= octeon_get_clock_rate() / 1000000;
33 * For __ndelay we divide by 2^16, so the factor is multiplied
36 octeon_ndelay_factor
= (octeon_udelay_factor
* 0x10000ull
) / 1000ull;
38 preset_lpj
= octeon_get_clock_rate() / HZ
;
40 if (current_cpu_type() == CPU_CAVIUM_OCTEON2
) {
41 union cvmx_mio_rst_boot rst_boot
;
42 rst_boot
.u64
= cvmx_read_csr(CVMX_MIO_RST_BOOT
);
43 rdiv
= rst_boot
.s
.c_mul
; /* CPU clock */
44 sdiv
= rst_boot
.s
.pnr_mul
; /* I/O clock */
45 f
= (0x8000000000000000ull
/ sdiv
) * 2;
50 * Set the current core's cvmcount counter to the value of the
51 * IPD_CLK_COUNT. We do this on all cores as they are brought
52 * on-line. This allows for a read from a local cpu register to
53 * access a synchronized counter.
55 * On CPU_CAVIUM_OCTEON2 the IPD_CLK_COUNT is scaled by rdiv/sdiv.
57 void octeon_init_cvmcount(void)
62 /* Clobber loops so GCC will not unroll the following while loop. */
63 asm("" : "+r" (loops
));
65 local_irq_save(flags
);
67 * Loop several times so we are executing from the cache,
68 * which should give more deterministic timing.
71 u64 ipd_clk_count
= cvmx_read_csr(CVMX_IPD_CLK_COUNT
);
73 ipd_clk_count
*= rdiv
;
75 asm("dmultu\t%[cnt],%[f]\n\t"
77 : [cnt
] "+r" (ipd_clk_count
)
82 write_c0_cvmcount(ipd_clk_count
);
84 local_irq_restore(flags
);
87 static cycle_t
octeon_cvmcount_read(struct clocksource
*cs
)
89 return read_c0_cvmcount();
92 static struct clocksource clocksource_mips
= {
93 .name
= "OCTEON_CVMCOUNT",
94 .read
= octeon_cvmcount_read
,
95 .mask
= CLOCKSOURCE_MASK(64),
96 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
99 unsigned long long notrace
sched_clock(void)
101 /* 64-bit arithmatic can overflow, so use 128-bit. */
103 unsigned long long rv
;
104 u64 mult
= clocksource_mips
.mult
;
105 u64 shift
= clocksource_mips
.shift
;
106 u64 cnt
= read_c0_cvmcount();
109 "dmultu\t%[cnt],%[mult]\n\t"
110 "nor\t%[t1],$0,%[shift]\n\t"
113 "dsll\t%[t2],%[t2],1\n\t"
114 "dsrlv\t%[rv],%[t3],%[shift]\n\t"
115 "dsllv\t%[t1],%[t2],%[t1]\n\t"
116 "or\t%[rv],%[t1],%[rv]\n\t"
117 : [rv
] "=&r" (rv
), [t1
] "=&r" (t1
), [t2
] "=&r" (t2
), [t3
] "=&r" (t3
)
118 : [cnt
] "r" (cnt
), [mult
] "r" (mult
), [shift
] "r" (shift
)
123 void __init
plat_time_init(void)
125 clocksource_mips
.rating
= 300;
126 clocksource_register_hz(&clocksource_mips
, octeon_get_clock_rate());
129 void __udelay(unsigned long us
)
133 cur
= read_c0_cvmcount();
135 inc
= us
* octeon_udelay_factor
;
139 cur
= read_c0_cvmcount();
141 EXPORT_SYMBOL(__udelay
);
143 void __ndelay(unsigned long ns
)
147 cur
= read_c0_cvmcount();
149 inc
= ((ns
* octeon_ndelay_factor
) >> 16);
153 cur
= read_c0_cvmcount();
155 EXPORT_SYMBOL(__ndelay
);
157 void __delay(unsigned long loops
)
161 cur
= read_c0_cvmcount();
165 cur
= read_c0_cvmcount();
167 EXPORT_SYMBOL(__delay
);
171 * octeon_io_clk_delay - wait for a given number of io clock cycles to pass.
173 * We scale the wait by the clock ratio, and then wait for the
174 * corresponding number of core clocks.
176 * @count: The number of clocks to wait.
178 void octeon_io_clk_delay(unsigned long count
)
182 cur
= read_c0_cvmcount();
186 asm("dmultu\t%[cnt],%[f]\n\t"
197 cur
= read_c0_cvmcount();
199 EXPORT_SYMBOL(octeon_io_clk_delay
);