2 * Linux performance counter support for MIPS.
4 * Copyright (C) 2010 MIPS Technologies, Inc.
5 * Copyright (C) 2011 Cavium Networks, Inc.
6 * Author: Deng-Cheng Zhu
8 * This code is based on the implementation for ARM, which is in turn
9 * based on the sparc64 perf event code and the x86 code. Performance
10 * counter access is based on the MIPS Oprofile code. And the callchain
11 * support references the code of MIPS stacktrace.c.
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
18 #include <linux/cpumask.h>
19 #include <linux/interrupt.h>
20 #include <linux/smp.h>
21 #include <linux/kernel.h>
22 #include <linux/perf_event.h>
23 #include <linux/uaccess.h>
26 #include <asm/irq_regs.h>
27 #include <asm/stacktrace.h>
28 #include <asm/time.h> /* For perf_irq */
30 #define MIPS_MAX_HWEVENTS 4
31 #define MIPS_TCS_PER_COUNTER 2
32 #define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
34 struct cpu_hw_events
{
35 /* Array of events on this cpu. */
36 struct perf_event
*events
[MIPS_MAX_HWEVENTS
];
39 * Set the bit (indexed by the counter number) when the counter
40 * is used for an event.
42 unsigned long used_mask
[BITS_TO_LONGS(MIPS_MAX_HWEVENTS
)];
45 * Software copy of the control register for each performance counter.
46 * MIPS CPUs vary in performance counters. They use this differently,
47 * and even may not use it.
49 unsigned int saved_ctrl
[MIPS_MAX_HWEVENTS
];
51 DEFINE_PER_CPU(struct cpu_hw_events
, cpu_hw_events
) = {
55 /* The description of MIPS performance events. */
56 struct mips_perf_event
{
57 unsigned int event_id
;
59 * MIPS performance counters are indexed starting from 0.
60 * CNTR_EVEN indicates the indexes of the counters to be used are
63 unsigned int cntr_mask
;
64 #define CNTR_EVEN 0x55555555
65 #define CNTR_ODD 0xaaaaaaaa
66 #define CNTR_ALL 0xffffffff
67 #ifdef CONFIG_MIPS_MT_SMP
80 static struct mips_perf_event raw_event
;
81 static DEFINE_MUTEX(raw_event_mutex
);
83 #define C(x) PERF_COUNT_HW_CACHE_##x
91 u64 (*read_counter
)(unsigned int idx
);
92 void (*write_counter
)(unsigned int idx
, u64 val
);
93 const struct mips_perf_event
*(*map_raw_event
)(u64 config
);
94 const struct mips_perf_event (*general_event_map
)[PERF_COUNT_HW_MAX
];
95 const struct mips_perf_event (*cache_event_map
)
96 [PERF_COUNT_HW_CACHE_MAX
]
97 [PERF_COUNT_HW_CACHE_OP_MAX
]
98 [PERF_COUNT_HW_CACHE_RESULT_MAX
];
99 unsigned int num_counters
;
102 static struct mips_pmu mipspmu
;
104 #define M_CONFIG1_PC (1 << 4)
106 #define M_PERFCTL_EXL (1 << 0)
107 #define M_PERFCTL_KERNEL (1 << 1)
108 #define M_PERFCTL_SUPERVISOR (1 << 2)
109 #define M_PERFCTL_USER (1 << 3)
110 #define M_PERFCTL_INTERRUPT_ENABLE (1 << 4)
111 #define M_PERFCTL_EVENT(event) (((event) & 0x3ff) << 5)
112 #define M_PERFCTL_VPEID(vpe) ((vpe) << 16)
114 #ifdef CONFIG_CPU_BMIPS5000
115 #define M_PERFCTL_MT_EN(filter) 0
116 #else /* !CONFIG_CPU_BMIPS5000 */
117 #define M_PERFCTL_MT_EN(filter) ((filter) << 20)
118 #endif /* CONFIG_CPU_BMIPS5000 */
120 #define M_TC_EN_ALL M_PERFCTL_MT_EN(0)
121 #define M_TC_EN_VPE M_PERFCTL_MT_EN(1)
122 #define M_TC_EN_TC M_PERFCTL_MT_EN(2)
123 #define M_PERFCTL_TCID(tcid) ((tcid) << 22)
124 #define M_PERFCTL_WIDE (1 << 30)
125 #define M_PERFCTL_MORE (1 << 31)
126 #define M_PERFCTL_TC (1 << 30)
128 #define M_PERFCTL_COUNT_EVENT_WHENEVER (M_PERFCTL_EXL | \
131 M_PERFCTL_SUPERVISOR | \
132 M_PERFCTL_INTERRUPT_ENABLE)
134 #ifdef CONFIG_MIPS_MT_SMP
135 #define M_PERFCTL_CONFIG_MASK 0x3fff801f
137 #define M_PERFCTL_CONFIG_MASK 0x1f
139 #define M_PERFCTL_EVENT_MASK 0xfe0
142 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
143 static int cpu_has_mipsmt_pertccounters
;
145 static DEFINE_RWLOCK(pmuint_rwlock
);
147 #if defined(CONFIG_CPU_BMIPS5000)
148 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
149 0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
152 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
153 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
155 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
156 0 : smp_processor_id())
159 /* Copied from op_model_mipsxx.c */
160 static unsigned int vpe_shift(void)
162 if (num_possible_cpus() > 1)
168 static unsigned int counters_total_to_per_cpu(unsigned int counters
)
170 return counters
>> vpe_shift();
173 #else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
176 #endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
178 static void resume_local_counters(void);
179 static void pause_local_counters(void);
180 static irqreturn_t
mipsxx_pmu_handle_irq(int, void *);
181 static int mipsxx_pmu_handle_shared_irq(void);
183 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx
)
190 static u64
mipsxx_pmu_read_counter(unsigned int idx
)
192 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
197 * The counters are unsigned, we must cast to truncate
200 return (u32
)read_c0_perfcntr0();
202 return (u32
)read_c0_perfcntr1();
204 return (u32
)read_c0_perfcntr2();
206 return (u32
)read_c0_perfcntr3();
208 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx
);
213 static u64
mipsxx_pmu_read_counter_64(unsigned int idx
)
215 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
219 return read_c0_perfcntr0_64();
221 return read_c0_perfcntr1_64();
223 return read_c0_perfcntr2_64();
225 return read_c0_perfcntr3_64();
227 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx
);
232 static void mipsxx_pmu_write_counter(unsigned int idx
, u64 val
)
234 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
238 write_c0_perfcntr0(val
);
241 write_c0_perfcntr1(val
);
244 write_c0_perfcntr2(val
);
247 write_c0_perfcntr3(val
);
252 static void mipsxx_pmu_write_counter_64(unsigned int idx
, u64 val
)
254 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
258 write_c0_perfcntr0_64(val
);
261 write_c0_perfcntr1_64(val
);
264 write_c0_perfcntr2_64(val
);
267 write_c0_perfcntr3_64(val
);
272 static unsigned int mipsxx_pmu_read_control(unsigned int idx
)
274 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
278 return read_c0_perfctrl0();
280 return read_c0_perfctrl1();
282 return read_c0_perfctrl2();
284 return read_c0_perfctrl3();
286 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx
);
291 static void mipsxx_pmu_write_control(unsigned int idx
, unsigned int val
)
293 idx
= mipsxx_pmu_swizzle_perf_idx(idx
);
297 write_c0_perfctrl0(val
);
300 write_c0_perfctrl1(val
);
303 write_c0_perfctrl2(val
);
306 write_c0_perfctrl3(val
);
311 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events
*cpuc
,
312 struct hw_perf_event
*hwc
)
317 * We only need to care the counter mask. The range has been
318 * checked definitely.
320 unsigned long cntr_mask
= (hwc
->event_base
>> 8) & 0xffff;
322 for (i
= mipspmu
.num_counters
- 1; i
>= 0; i
--) {
324 * Note that some MIPS perf events can be counted by both
325 * even and odd counters, wheresas many other are only by
326 * even _or_ odd counters. This introduces an issue that
327 * when the former kind of event takes the counter the
328 * latter kind of event wants to use, then the "counter
329 * allocation" for the latter event will fail. In fact if
330 * they can be dynamically swapped, they both feel happy.
331 * But here we leave this issue alone for now.
333 if (test_bit(i
, &cntr_mask
) &&
334 !test_and_set_bit(i
, cpuc
->used_mask
))
341 static void mipsxx_pmu_enable_event(struct hw_perf_event
*evt
, int idx
)
343 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
345 WARN_ON(idx
< 0 || idx
>= mipspmu
.num_counters
);
347 cpuc
->saved_ctrl
[idx
] = M_PERFCTL_EVENT(evt
->event_base
& 0xff) |
348 (evt
->config_base
& M_PERFCTL_CONFIG_MASK
) |
349 /* Make sure interrupt enabled. */
350 M_PERFCTL_INTERRUPT_ENABLE
;
351 if (IS_ENABLED(CONFIG_CPU_BMIPS5000
))
352 /* enable the counter for the calling thread */
353 cpuc
->saved_ctrl
[idx
] |=
354 (1 << (12 + vpe_id())) | M_PERFCTL_TC
;
357 * We do not actually let the counter run. Leave it until start().
361 static void mipsxx_pmu_disable_event(int idx
)
363 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
366 WARN_ON(idx
< 0 || idx
>= mipspmu
.num_counters
);
368 local_irq_save(flags
);
369 cpuc
->saved_ctrl
[idx
] = mipsxx_pmu_read_control(idx
) &
370 ~M_PERFCTL_COUNT_EVENT_WHENEVER
;
371 mipsxx_pmu_write_control(idx
, cpuc
->saved_ctrl
[idx
]);
372 local_irq_restore(flags
);
375 static int mipspmu_event_set_period(struct perf_event
*event
,
376 struct hw_perf_event
*hwc
,
379 u64 left
= local64_read(&hwc
->period_left
);
380 u64 period
= hwc
->sample_period
;
383 if (unlikely((left
+ period
) & (1ULL << 63))) {
384 /* left underflowed by more than period. */
386 local64_set(&hwc
->period_left
, left
);
387 hwc
->last_period
= period
;
389 } else if (unlikely((left
+ period
) <= period
)) {
390 /* left underflowed by less than period. */
392 local64_set(&hwc
->period_left
, left
);
393 hwc
->last_period
= period
;
397 if (left
> mipspmu
.max_period
) {
398 left
= mipspmu
.max_period
;
399 local64_set(&hwc
->period_left
, left
);
402 local64_set(&hwc
->prev_count
, mipspmu
.overflow
- left
);
404 mipspmu
.write_counter(idx
, mipspmu
.overflow
- left
);
406 perf_event_update_userpage(event
);
411 static void mipspmu_event_update(struct perf_event
*event
,
412 struct hw_perf_event
*hwc
,
415 u64 prev_raw_count
, new_raw_count
;
419 prev_raw_count
= local64_read(&hwc
->prev_count
);
420 new_raw_count
= mipspmu
.read_counter(idx
);
422 if (local64_cmpxchg(&hwc
->prev_count
, prev_raw_count
,
423 new_raw_count
) != prev_raw_count
)
426 delta
= new_raw_count
- prev_raw_count
;
428 local64_add(delta
, &event
->count
);
429 local64_sub(delta
, &hwc
->period_left
);
432 static void mipspmu_start(struct perf_event
*event
, int flags
)
434 struct hw_perf_event
*hwc
= &event
->hw
;
436 if (flags
& PERF_EF_RELOAD
)
437 WARN_ON_ONCE(!(hwc
->state
& PERF_HES_UPTODATE
));
441 /* Set the period for the event. */
442 mipspmu_event_set_period(event
, hwc
, hwc
->idx
);
444 /* Enable the event. */
445 mipsxx_pmu_enable_event(hwc
, hwc
->idx
);
448 static void mipspmu_stop(struct perf_event
*event
, int flags
)
450 struct hw_perf_event
*hwc
= &event
->hw
;
452 if (!(hwc
->state
& PERF_HES_STOPPED
)) {
453 /* We are working on a local event. */
454 mipsxx_pmu_disable_event(hwc
->idx
);
456 mipspmu_event_update(event
, hwc
, hwc
->idx
);
457 hwc
->state
|= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
461 static int mipspmu_add(struct perf_event
*event
, int flags
)
463 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
464 struct hw_perf_event
*hwc
= &event
->hw
;
468 perf_pmu_disable(event
->pmu
);
470 /* To look for a free counter for this event. */
471 idx
= mipsxx_pmu_alloc_counter(cpuc
, hwc
);
478 * If there is an event in the counter we are going to use then
479 * make sure it is disabled.
482 mipsxx_pmu_disable_event(idx
);
483 cpuc
->events
[idx
] = event
;
485 hwc
->state
= PERF_HES_STOPPED
| PERF_HES_UPTODATE
;
486 if (flags
& PERF_EF_START
)
487 mipspmu_start(event
, PERF_EF_RELOAD
);
489 /* Propagate our changes to the userspace mapping. */
490 perf_event_update_userpage(event
);
493 perf_pmu_enable(event
->pmu
);
497 static void mipspmu_del(struct perf_event
*event
, int flags
)
499 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
500 struct hw_perf_event
*hwc
= &event
->hw
;
503 WARN_ON(idx
< 0 || idx
>= mipspmu
.num_counters
);
505 mipspmu_stop(event
, PERF_EF_UPDATE
);
506 cpuc
->events
[idx
] = NULL
;
507 clear_bit(idx
, cpuc
->used_mask
);
509 perf_event_update_userpage(event
);
512 static void mipspmu_read(struct perf_event
*event
)
514 struct hw_perf_event
*hwc
= &event
->hw
;
516 /* Don't read disabled counters! */
520 mipspmu_event_update(event
, hwc
, hwc
->idx
);
523 static void mipspmu_enable(struct pmu
*pmu
)
525 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
526 write_unlock(&pmuint_rwlock
);
528 resume_local_counters();
532 * MIPS performance counters can be per-TC. The control registers can
533 * not be directly accessed accross CPUs. Hence if we want to do global
534 * control, we need cross CPU calls. on_each_cpu() can help us, but we
535 * can not make sure this function is called with interrupts enabled. So
536 * here we pause local counters and then grab a rwlock and leave the
537 * counters on other CPUs alone. If any counter interrupt raises while
538 * we own the write lock, simply pause local counters on that CPU and
539 * spin in the handler. Also we know we won't be switched to another
540 * CPU after pausing local counters and before grabbing the lock.
542 static void mipspmu_disable(struct pmu
*pmu
)
544 pause_local_counters();
545 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
546 write_lock(&pmuint_rwlock
);
550 static atomic_t active_events
= ATOMIC_INIT(0);
551 static DEFINE_MUTEX(pmu_reserve_mutex
);
552 static int (*save_perf_irq
)(void);
554 static int mipspmu_get_irq(void)
558 if (mipspmu
.irq
>= 0) {
559 /* Request my own irq handler. */
560 err
= request_irq(mipspmu
.irq
, mipsxx_pmu_handle_irq
,
561 IRQF_PERCPU
| IRQF_NOBALANCING
,
562 "mips_perf_pmu", NULL
);
564 pr_warning("Unable to request IRQ%d for MIPS "
565 "performance counters!\n", mipspmu
.irq
);
567 } else if (cp0_perfcount_irq
< 0) {
569 * We are sharing the irq number with the timer interrupt.
571 save_perf_irq
= perf_irq
;
572 perf_irq
= mipsxx_pmu_handle_shared_irq
;
575 pr_warning("The platform hasn't properly defined its "
576 "interrupt controller.\n");
583 static void mipspmu_free_irq(void)
585 if (mipspmu
.irq
>= 0)
586 free_irq(mipspmu
.irq
, NULL
);
587 else if (cp0_perfcount_irq
< 0)
588 perf_irq
= save_perf_irq
;
592 * mipsxx/rm9000/loongson2 have different performance counters, they have
593 * specific low-level init routines.
595 static void reset_counters(void *arg
);
596 static int __hw_perf_event_init(struct perf_event
*event
);
598 static void hw_perf_event_destroy(struct perf_event
*event
)
600 if (atomic_dec_and_mutex_lock(&active_events
,
601 &pmu_reserve_mutex
)) {
603 * We must not call the destroy function with interrupts
606 on_each_cpu(reset_counters
,
607 (void *)(long)mipspmu
.num_counters
, 1);
609 mutex_unlock(&pmu_reserve_mutex
);
613 static int mipspmu_event_init(struct perf_event
*event
)
617 /* does not support taken branch sampling */
618 if (has_branch_stack(event
))
621 switch (event
->attr
.type
) {
623 case PERF_TYPE_HARDWARE
:
624 case PERF_TYPE_HW_CACHE
:
631 if (event
->cpu
>= nr_cpumask_bits
||
632 (event
->cpu
>= 0 && !cpu_online(event
->cpu
)))
635 if (!atomic_inc_not_zero(&active_events
)) {
636 mutex_lock(&pmu_reserve_mutex
);
637 if (atomic_read(&active_events
) == 0)
638 err
= mipspmu_get_irq();
641 atomic_inc(&active_events
);
642 mutex_unlock(&pmu_reserve_mutex
);
648 return __hw_perf_event_init(event
);
651 static struct pmu pmu
= {
652 .pmu_enable
= mipspmu_enable
,
653 .pmu_disable
= mipspmu_disable
,
654 .event_init
= mipspmu_event_init
,
657 .start
= mipspmu_start
,
658 .stop
= mipspmu_stop
,
659 .read
= mipspmu_read
,
662 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event
*pev
)
665 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
668 #ifdef CONFIG_MIPS_MT_SMP
669 return ((unsigned int)pev
->range
<< 24) |
670 (pev
->cntr_mask
& 0xffff00) |
671 (pev
->event_id
& 0xff);
673 return (pev
->cntr_mask
& 0xffff00) |
674 (pev
->event_id
& 0xff);
678 static const struct mips_perf_event
*mipspmu_map_general_event(int idx
)
681 if ((*mipspmu
.general_event_map
)[idx
].cntr_mask
== 0)
682 return ERR_PTR(-EOPNOTSUPP
);
683 return &(*mipspmu
.general_event_map
)[idx
];
686 static const struct mips_perf_event
*mipspmu_map_cache_event(u64 config
)
688 unsigned int cache_type
, cache_op
, cache_result
;
689 const struct mips_perf_event
*pev
;
691 cache_type
= (config
>> 0) & 0xff;
692 if (cache_type
>= PERF_COUNT_HW_CACHE_MAX
)
693 return ERR_PTR(-EINVAL
);
695 cache_op
= (config
>> 8) & 0xff;
696 if (cache_op
>= PERF_COUNT_HW_CACHE_OP_MAX
)
697 return ERR_PTR(-EINVAL
);
699 cache_result
= (config
>> 16) & 0xff;
700 if (cache_result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
701 return ERR_PTR(-EINVAL
);
703 pev
= &((*mipspmu
.cache_event_map
)
708 if (pev
->cntr_mask
== 0)
709 return ERR_PTR(-EOPNOTSUPP
);
715 static int validate_group(struct perf_event
*event
)
717 struct perf_event
*sibling
, *leader
= event
->group_leader
;
718 struct cpu_hw_events fake_cpuc
;
720 memset(&fake_cpuc
, 0, sizeof(fake_cpuc
));
722 if (mipsxx_pmu_alloc_counter(&fake_cpuc
, &leader
->hw
) < 0)
725 list_for_each_entry(sibling
, &leader
->sibling_list
, group_entry
) {
726 if (mipsxx_pmu_alloc_counter(&fake_cpuc
, &sibling
->hw
) < 0)
730 if (mipsxx_pmu_alloc_counter(&fake_cpuc
, &event
->hw
) < 0)
736 /* This is needed by specific irq handlers in perf_event_*.c */
737 static void handle_associated_event(struct cpu_hw_events
*cpuc
,
738 int idx
, struct perf_sample_data
*data
,
739 struct pt_regs
*regs
)
741 struct perf_event
*event
= cpuc
->events
[idx
];
742 struct hw_perf_event
*hwc
= &event
->hw
;
744 mipspmu_event_update(event
, hwc
, idx
);
745 data
->period
= event
->hw
.last_period
;
746 if (!mipspmu_event_set_period(event
, hwc
, idx
))
749 if (perf_event_overflow(event
, data
, regs
))
750 mipsxx_pmu_disable_event(idx
);
754 static int __n_counters(void)
756 if (!(read_c0_config1() & M_CONFIG1_PC
))
758 if (!(read_c0_perfctrl0() & M_PERFCTL_MORE
))
760 if (!(read_c0_perfctrl1() & M_PERFCTL_MORE
))
762 if (!(read_c0_perfctrl2() & M_PERFCTL_MORE
))
768 static int n_counters(void)
772 switch (current_cpu_type()) {
783 counters
= __n_counters();
789 static void reset_counters(void *arg
)
791 int counters
= (int)(long)arg
;
794 mipsxx_pmu_write_control(3, 0);
795 mipspmu
.write_counter(3, 0);
797 mipsxx_pmu_write_control(2, 0);
798 mipspmu
.write_counter(2, 0);
800 mipsxx_pmu_write_control(1, 0);
801 mipspmu
.write_counter(1, 0);
803 mipsxx_pmu_write_control(0, 0);
804 mipspmu
.write_counter(0, 0);
808 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
809 static const struct mips_perf_event mipsxxcore_event_map
810 [PERF_COUNT_HW_MAX
] = {
811 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_EVEN
| CNTR_ODD
, P
},
812 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x01, CNTR_EVEN
| CNTR_ODD
, T
},
813 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x02, CNTR_EVEN
, T
},
814 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x02, CNTR_ODD
, T
},
817 /* 74K/proAptiv core has different branch event code. */
818 static const struct mips_perf_event mipsxxcore_event_map2
819 [PERF_COUNT_HW_MAX
] = {
820 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_EVEN
| CNTR_ODD
, P
},
821 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x01, CNTR_EVEN
| CNTR_ODD
, T
},
822 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x27, CNTR_EVEN
, T
},
823 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x27, CNTR_ODD
, T
},
826 static const struct mips_perf_event octeon_event_map
[PERF_COUNT_HW_MAX
] = {
827 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x01, CNTR_ALL
},
828 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x03, CNTR_ALL
},
829 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0x2b, CNTR_ALL
},
830 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x2e, CNTR_ALL
},
831 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x08, CNTR_ALL
},
832 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x09, CNTR_ALL
},
833 [PERF_COUNT_HW_BUS_CYCLES
] = { 0x25, CNTR_ALL
},
836 static const struct mips_perf_event bmips5000_event_map
837 [PERF_COUNT_HW_MAX
] = {
838 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x00, CNTR_EVEN
| CNTR_ODD
, T
},
839 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x01, CNTR_EVEN
| CNTR_ODD
, T
},
840 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x02, CNTR_ODD
, T
},
843 static const struct mips_perf_event xlp_event_map
[PERF_COUNT_HW_MAX
] = {
844 [PERF_COUNT_HW_CPU_CYCLES
] = { 0x01, CNTR_ALL
},
845 [PERF_COUNT_HW_INSTRUCTIONS
] = { 0x18, CNTR_ALL
}, /* PAPI_TOT_INS */
846 [PERF_COUNT_HW_CACHE_REFERENCES
] = { 0x04, CNTR_ALL
}, /* PAPI_L1_ICA */
847 [PERF_COUNT_HW_CACHE_MISSES
] = { 0x07, CNTR_ALL
}, /* PAPI_L1_ICM */
848 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS
] = { 0x1b, CNTR_ALL
}, /* PAPI_BR_CN */
849 [PERF_COUNT_HW_BRANCH_MISSES
] = { 0x1c, CNTR_ALL
}, /* PAPI_BR_MSP */
852 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
853 static const struct mips_perf_event mipsxxcore_cache_map
854 [PERF_COUNT_HW_CACHE_MAX
]
855 [PERF_COUNT_HW_CACHE_OP_MAX
]
856 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
859 * Like some other architectures (e.g. ARM), the performance
860 * counters don't differentiate between read and write
861 * accesses/misses, so this isn't strictly correct, but it's the
862 * best we can do. Writes and reads get combined.
865 [C(RESULT_ACCESS
)] = { 0x0a, CNTR_EVEN
, T
},
866 [C(RESULT_MISS
)] = { 0x0b, CNTR_EVEN
| CNTR_ODD
, T
},
869 [C(RESULT_ACCESS
)] = { 0x0a, CNTR_EVEN
, T
},
870 [C(RESULT_MISS
)] = { 0x0b, CNTR_EVEN
| CNTR_ODD
, T
},
875 [C(RESULT_ACCESS
)] = { 0x09, CNTR_EVEN
, T
},
876 [C(RESULT_MISS
)] = { 0x09, CNTR_ODD
, T
},
879 [C(RESULT_ACCESS
)] = { 0x09, CNTR_EVEN
, T
},
880 [C(RESULT_MISS
)] = { 0x09, CNTR_ODD
, T
},
883 [C(RESULT_ACCESS
)] = { 0x14, CNTR_EVEN
, T
},
885 * Note that MIPS has only "hit" events countable for
886 * the prefetch operation.
892 [C(RESULT_ACCESS
)] = { 0x15, CNTR_ODD
, P
},
893 [C(RESULT_MISS
)] = { 0x16, CNTR_EVEN
, P
},
896 [C(RESULT_ACCESS
)] = { 0x15, CNTR_ODD
, P
},
897 [C(RESULT_MISS
)] = { 0x16, CNTR_EVEN
, P
},
902 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
903 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
906 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
907 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
912 [C(RESULT_ACCESS
)] = { 0x05, CNTR_EVEN
, T
},
913 [C(RESULT_MISS
)] = { 0x05, CNTR_ODD
, T
},
916 [C(RESULT_ACCESS
)] = { 0x05, CNTR_EVEN
, T
},
917 [C(RESULT_MISS
)] = { 0x05, CNTR_ODD
, T
},
921 /* Using the same code for *HW_BRANCH* */
923 [C(RESULT_ACCESS
)] = { 0x02, CNTR_EVEN
, T
},
924 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
, T
},
927 [C(RESULT_ACCESS
)] = { 0x02, CNTR_EVEN
, T
},
928 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
, T
},
933 /* 74K/proAptiv core has completely different cache event map. */
934 static const struct mips_perf_event mipsxxcore_cache_map2
935 [PERF_COUNT_HW_CACHE_MAX
]
936 [PERF_COUNT_HW_CACHE_OP_MAX
]
937 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
940 * Like some other architectures (e.g. ARM), the performance
941 * counters don't differentiate between read and write
942 * accesses/misses, so this isn't strictly correct, but it's the
943 * best we can do. Writes and reads get combined.
946 [C(RESULT_ACCESS
)] = { 0x17, CNTR_ODD
, T
},
947 [C(RESULT_MISS
)] = { 0x18, CNTR_ODD
, T
},
950 [C(RESULT_ACCESS
)] = { 0x17, CNTR_ODD
, T
},
951 [C(RESULT_MISS
)] = { 0x18, CNTR_ODD
, T
},
956 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
957 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
960 [C(RESULT_ACCESS
)] = { 0x06, CNTR_EVEN
, T
},
961 [C(RESULT_MISS
)] = { 0x06, CNTR_ODD
, T
},
964 [C(RESULT_ACCESS
)] = { 0x34, CNTR_EVEN
, T
},
966 * Note that MIPS has only "hit" events countable for
967 * the prefetch operation.
973 [C(RESULT_ACCESS
)] = { 0x1c, CNTR_ODD
, P
},
974 [C(RESULT_MISS
)] = { 0x1d, CNTR_EVEN
, P
},
977 [C(RESULT_ACCESS
)] = { 0x1c, CNTR_ODD
, P
},
978 [C(RESULT_MISS
)] = { 0x1d, CNTR_EVEN
, P
},
982 * 74K core does not have specific DTLB events. proAptiv core has
983 * "speculative" DTLB events which are numbered 0x63 (even/odd) and
984 * not included here. One can use raw events if really needed.
988 [C(RESULT_ACCESS
)] = { 0x04, CNTR_EVEN
, T
},
989 [C(RESULT_MISS
)] = { 0x04, CNTR_ODD
, T
},
992 [C(RESULT_ACCESS
)] = { 0x04, CNTR_EVEN
, T
},
993 [C(RESULT_MISS
)] = { 0x04, CNTR_ODD
, T
},
997 /* Using the same code for *HW_BRANCH* */
999 [C(RESULT_ACCESS
)] = { 0x27, CNTR_EVEN
, T
},
1000 [C(RESULT_MISS
)] = { 0x27, CNTR_ODD
, T
},
1003 [C(RESULT_ACCESS
)] = { 0x27, CNTR_EVEN
, T
},
1004 [C(RESULT_MISS
)] = { 0x27, CNTR_ODD
, T
},
1010 static const struct mips_perf_event bmips5000_cache_map
1011 [PERF_COUNT_HW_CACHE_MAX
]
1012 [PERF_COUNT_HW_CACHE_OP_MAX
]
1013 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1016 * Like some other architectures (e.g. ARM), the performance
1017 * counters don't differentiate between read and write
1018 * accesses/misses, so this isn't strictly correct, but it's the
1019 * best we can do. Writes and reads get combined.
1022 [C(RESULT_ACCESS
)] = { 12, CNTR_EVEN
, T
},
1023 [C(RESULT_MISS
)] = { 12, CNTR_ODD
, T
},
1026 [C(RESULT_ACCESS
)] = { 12, CNTR_EVEN
, T
},
1027 [C(RESULT_MISS
)] = { 12, CNTR_ODD
, T
},
1032 [C(RESULT_ACCESS
)] = { 10, CNTR_EVEN
, T
},
1033 [C(RESULT_MISS
)] = { 10, CNTR_ODD
, T
},
1036 [C(RESULT_ACCESS
)] = { 10, CNTR_EVEN
, T
},
1037 [C(RESULT_MISS
)] = { 10, CNTR_ODD
, T
},
1039 [C(OP_PREFETCH
)] = {
1040 [C(RESULT_ACCESS
)] = { 23, CNTR_EVEN
, T
},
1042 * Note that MIPS has only "hit" events countable for
1043 * the prefetch operation.
1049 [C(RESULT_ACCESS
)] = { 28, CNTR_EVEN
, P
},
1050 [C(RESULT_MISS
)] = { 28, CNTR_ODD
, P
},
1053 [C(RESULT_ACCESS
)] = { 28, CNTR_EVEN
, P
},
1054 [C(RESULT_MISS
)] = { 28, CNTR_ODD
, P
},
1058 /* Using the same code for *HW_BRANCH* */
1060 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
, T
},
1063 [C(RESULT_MISS
)] = { 0x02, CNTR_ODD
, T
},
1069 static const struct mips_perf_event octeon_cache_map
1070 [PERF_COUNT_HW_CACHE_MAX
]
1071 [PERF_COUNT_HW_CACHE_OP_MAX
]
1072 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1075 [C(RESULT_ACCESS
)] = { 0x2b, CNTR_ALL
},
1076 [C(RESULT_MISS
)] = { 0x2e, CNTR_ALL
},
1079 [C(RESULT_ACCESS
)] = { 0x30, CNTR_ALL
},
1084 [C(RESULT_ACCESS
)] = { 0x18, CNTR_ALL
},
1086 [C(OP_PREFETCH
)] = {
1087 [C(RESULT_ACCESS
)] = { 0x19, CNTR_ALL
},
1092 * Only general DTLB misses are counted use the same event for
1096 [C(RESULT_MISS
)] = { 0x35, CNTR_ALL
},
1099 [C(RESULT_MISS
)] = { 0x35, CNTR_ALL
},
1104 [C(RESULT_MISS
)] = { 0x37, CNTR_ALL
},
1109 static const struct mips_perf_event xlp_cache_map
1110 [PERF_COUNT_HW_CACHE_MAX
]
1111 [PERF_COUNT_HW_CACHE_OP_MAX
]
1112 [PERF_COUNT_HW_CACHE_RESULT_MAX
] = {
1115 [C(RESULT_ACCESS
)] = { 0x31, CNTR_ALL
}, /* PAPI_L1_DCR */
1116 [C(RESULT_MISS
)] = { 0x30, CNTR_ALL
}, /* PAPI_L1_LDM */
1119 [C(RESULT_ACCESS
)] = { 0x2f, CNTR_ALL
}, /* PAPI_L1_DCW */
1120 [C(RESULT_MISS
)] = { 0x2e, CNTR_ALL
}, /* PAPI_L1_STM */
1125 [C(RESULT_ACCESS
)] = { 0x04, CNTR_ALL
}, /* PAPI_L1_ICA */
1126 [C(RESULT_MISS
)] = { 0x07, CNTR_ALL
}, /* PAPI_L1_ICM */
1131 [C(RESULT_ACCESS
)] = { 0x35, CNTR_ALL
}, /* PAPI_L2_DCR */
1132 [C(RESULT_MISS
)] = { 0x37, CNTR_ALL
}, /* PAPI_L2_LDM */
1135 [C(RESULT_ACCESS
)] = { 0x34, CNTR_ALL
}, /* PAPI_L2_DCA */
1136 [C(RESULT_MISS
)] = { 0x36, CNTR_ALL
}, /* PAPI_L2_DCM */
1141 * Only general DTLB misses are counted use the same event for
1145 [C(RESULT_MISS
)] = { 0x2d, CNTR_ALL
}, /* PAPI_TLB_DM */
1148 [C(RESULT_MISS
)] = { 0x2d, CNTR_ALL
}, /* PAPI_TLB_DM */
1153 [C(RESULT_MISS
)] = { 0x08, CNTR_ALL
}, /* PAPI_TLB_IM */
1156 [C(RESULT_MISS
)] = { 0x08, CNTR_ALL
}, /* PAPI_TLB_IM */
1161 [C(RESULT_MISS
)] = { 0x25, CNTR_ALL
},
1166 #ifdef CONFIG_MIPS_MT_SMP
1167 static void check_and_calc_range(struct perf_event
*event
,
1168 const struct mips_perf_event
*pev
)
1170 struct hw_perf_event
*hwc
= &event
->hw
;
1172 if (event
->cpu
>= 0) {
1173 if (pev
->range
> V
) {
1175 * The user selected an event that is processor
1176 * wide, while expecting it to be VPE wide.
1178 hwc
->config_base
|= M_TC_EN_ALL
;
1181 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1184 hwc
->config_base
|= M_PERFCTL_VPEID(event
->cpu
);
1185 hwc
->config_base
|= M_TC_EN_VPE
;
1188 hwc
->config_base
|= M_TC_EN_ALL
;
1191 static void check_and_calc_range(struct perf_event
*event
,
1192 const struct mips_perf_event
*pev
)
1197 static int __hw_perf_event_init(struct perf_event
*event
)
1199 struct perf_event_attr
*attr
= &event
->attr
;
1200 struct hw_perf_event
*hwc
= &event
->hw
;
1201 const struct mips_perf_event
*pev
;
1204 /* Returning MIPS event descriptor for generic perf event. */
1205 if (PERF_TYPE_HARDWARE
== event
->attr
.type
) {
1206 if (event
->attr
.config
>= PERF_COUNT_HW_MAX
)
1208 pev
= mipspmu_map_general_event(event
->attr
.config
);
1209 } else if (PERF_TYPE_HW_CACHE
== event
->attr
.type
) {
1210 pev
= mipspmu_map_cache_event(event
->attr
.config
);
1211 } else if (PERF_TYPE_RAW
== event
->attr
.type
) {
1212 /* We are working on the global raw event. */
1213 mutex_lock(&raw_event_mutex
);
1214 pev
= mipspmu
.map_raw_event(event
->attr
.config
);
1216 /* The event type is not (yet) supported. */
1221 if (PERF_TYPE_RAW
== event
->attr
.type
)
1222 mutex_unlock(&raw_event_mutex
);
1223 return PTR_ERR(pev
);
1227 * We allow max flexibility on how each individual counter shared
1228 * by the single CPU operates (the mode exclusion and the range).
1230 hwc
->config_base
= M_PERFCTL_INTERRUPT_ENABLE
;
1232 /* Calculate range bits and validate it. */
1233 if (num_possible_cpus() > 1)
1234 check_and_calc_range(event
, pev
);
1236 hwc
->event_base
= mipspmu_perf_event_encode(pev
);
1237 if (PERF_TYPE_RAW
== event
->attr
.type
)
1238 mutex_unlock(&raw_event_mutex
);
1240 if (!attr
->exclude_user
)
1241 hwc
->config_base
|= M_PERFCTL_USER
;
1242 if (!attr
->exclude_kernel
) {
1243 hwc
->config_base
|= M_PERFCTL_KERNEL
;
1244 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1245 hwc
->config_base
|= M_PERFCTL_EXL
;
1247 if (!attr
->exclude_hv
)
1248 hwc
->config_base
|= M_PERFCTL_SUPERVISOR
;
1250 hwc
->config_base
&= M_PERFCTL_CONFIG_MASK
;
1252 * The event can belong to another cpu. We do not assign a local
1253 * counter for it for now.
1258 if (!hwc
->sample_period
) {
1259 hwc
->sample_period
= mipspmu
.max_period
;
1260 hwc
->last_period
= hwc
->sample_period
;
1261 local64_set(&hwc
->period_left
, hwc
->sample_period
);
1265 if (event
->group_leader
!= event
)
1266 err
= validate_group(event
);
1268 event
->destroy
= hw_perf_event_destroy
;
1271 event
->destroy(event
);
1276 static void pause_local_counters(void)
1278 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1279 int ctr
= mipspmu
.num_counters
;
1280 unsigned long flags
;
1282 local_irq_save(flags
);
1285 cpuc
->saved_ctrl
[ctr
] = mipsxx_pmu_read_control(ctr
);
1286 mipsxx_pmu_write_control(ctr
, cpuc
->saved_ctrl
[ctr
] &
1287 ~M_PERFCTL_COUNT_EVENT_WHENEVER
);
1289 local_irq_restore(flags
);
1292 static void resume_local_counters(void)
1294 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1295 int ctr
= mipspmu
.num_counters
;
1299 mipsxx_pmu_write_control(ctr
, cpuc
->saved_ctrl
[ctr
]);
1303 static int mipsxx_pmu_handle_shared_irq(void)
1305 struct cpu_hw_events
*cpuc
= &__get_cpu_var(cpu_hw_events
);
1306 struct perf_sample_data data
;
1307 unsigned int counters
= mipspmu
.num_counters
;
1309 int handled
= IRQ_NONE
;
1310 struct pt_regs
*regs
;
1312 if (cpu_has_perf_cntr_intr_bit
&& !(read_c0_cause() & CAUSEF_PCI
))
1315 * First we pause the local counters, so that when we are locked
1316 * here, the counters are all paused. When it gets locked due to
1317 * perf_disable(), the timer interrupt handler will be delayed.
1319 * See also mipsxx_pmu_start().
1321 pause_local_counters();
1322 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1323 read_lock(&pmuint_rwlock
);
1326 regs
= get_irq_regs();
1328 perf_sample_data_init(&data
, 0, 0);
1331 #define HANDLE_COUNTER(n) \
1333 if (test_bit(n, cpuc->used_mask)) { \
1334 counter = mipspmu.read_counter(n); \
1335 if (counter & mipspmu.overflow) { \
1336 handle_associated_event(cpuc, n, &data, regs); \
1337 handled = IRQ_HANDLED; \
1347 * Do all the work for the pending perf events. We can do this
1348 * in here because the performance counter interrupt is a regular
1349 * interrupt, not NMI.
1351 if (handled
== IRQ_HANDLED
)
1354 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1355 read_unlock(&pmuint_rwlock
);
1357 resume_local_counters();
1361 static irqreturn_t
mipsxx_pmu_handle_irq(int irq
, void *dev
)
1363 return mipsxx_pmu_handle_shared_irq();
1367 #define IS_BOTH_COUNTERS_24K_EVENT(b) \
1368 ((b) == 0 || (b) == 1 || (b) == 11)
1371 #define IS_BOTH_COUNTERS_34K_EVENT(b) \
1372 ((b) == 0 || (b) == 1 || (b) == 11)
1373 #ifdef CONFIG_MIPS_MT_SMP
1374 #define IS_RANGE_P_34K_EVENT(r, b) \
1375 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1376 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
1377 (r) == 176 || ((b) >= 50 && (b) <= 55) || \
1378 ((b) >= 64 && (b) <= 67))
1379 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1383 #define IS_BOTH_COUNTERS_74K_EVENT(b) \
1384 ((b) == 0 || (b) == 1)
1387 #define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b) \
1388 ((b) == 0 || (b) == 1)
1391 #define IS_BOTH_COUNTERS_1004K_EVENT(b) \
1392 ((b) == 0 || (b) == 1 || (b) == 11)
1393 #ifdef CONFIG_MIPS_MT_SMP
1394 #define IS_RANGE_P_1004K_EVENT(r, b) \
1395 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1396 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
1397 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
1398 (r) == 188 || (b) == 61 || (b) == 62 || \
1399 ((b) >= 64 && (b) <= 67))
1400 #define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
1404 #define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b) \
1405 ((b) == 0 || (b) == 1 || (b) == 11)
1406 #ifdef CONFIG_MIPS_MT_SMP
1407 /* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1408 #define IS_RANGE_P_INTERAPTIV_EVENT(r, b) \
1409 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1410 (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 || \
1411 (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 && \
1412 (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 || \
1413 ((b) >= 64 && (b) <= 67))
1414 #define IS_RANGE_V_INTERAPTIV_EVENT(r) ((r) == 47 || (r) == 175)
1418 #define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b) \
1419 ((b) == 0 || (b) == 1)
1423 * User can use 0-255 raw events, where 0-127 for the events of even
1424 * counters, and 128-255 for odd counters. Note that bit 7 is used to
1425 * indicate the parity. So, for example, when user wants to take the
1426 * Event Num of 15 for odd counters (by referring to the user manual),
1427 * then 128 needs to be added to 15 as the input for the event config,
1428 * i.e., 143 (0x8F) to be used.
1430 static const struct mips_perf_event
*mipsxx_pmu_map_raw_event(u64 config
)
1432 unsigned int raw_id
= config
& 0xff;
1433 unsigned int base_id
= raw_id
& 0x7f;
1435 raw_event
.event_id
= base_id
;
1437 switch (current_cpu_type()) {
1439 if (IS_BOTH_COUNTERS_24K_EVENT(base_id
))
1440 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1442 raw_event
.cntr_mask
=
1443 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1444 #ifdef CONFIG_MIPS_MT_SMP
1446 * This is actually doing nothing. Non-multithreading
1447 * CPUs will not check and calculate the range.
1449 raw_event
.range
= P
;
1453 if (IS_BOTH_COUNTERS_34K_EVENT(base_id
))
1454 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1456 raw_event
.cntr_mask
=
1457 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1458 #ifdef CONFIG_MIPS_MT_SMP
1459 if (IS_RANGE_P_34K_EVENT(raw_id
, base_id
))
1460 raw_event
.range
= P
;
1461 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id
)))
1462 raw_event
.range
= V
;
1464 raw_event
.range
= T
;
1469 if (IS_BOTH_COUNTERS_74K_EVENT(base_id
))
1470 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1472 raw_event
.cntr_mask
=
1473 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1474 #ifdef CONFIG_MIPS_MT_SMP
1475 raw_event
.range
= P
;
1479 if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id
))
1480 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1482 raw_event
.cntr_mask
=
1483 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1484 #ifdef CONFIG_MIPS_MT_SMP
1485 raw_event
.range
= P
;
1489 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id
))
1490 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1492 raw_event
.cntr_mask
=
1493 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1494 #ifdef CONFIG_MIPS_MT_SMP
1495 if (IS_RANGE_P_1004K_EVENT(raw_id
, base_id
))
1496 raw_event
.range
= P
;
1497 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id
)))
1498 raw_event
.range
= V
;
1500 raw_event
.range
= T
;
1503 case CPU_INTERAPTIV
:
1504 if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id
))
1505 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1507 raw_event
.cntr_mask
=
1508 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1509 #ifdef CONFIG_MIPS_MT_SMP
1510 if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id
, base_id
))
1511 raw_event
.range
= P
;
1512 else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id
)))
1513 raw_event
.range
= V
;
1515 raw_event
.range
= T
;
1519 if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id
))
1520 raw_event
.cntr_mask
= CNTR_EVEN
| CNTR_ODD
;
1522 raw_event
.cntr_mask
=
1523 raw_id
> 127 ? CNTR_ODD
: CNTR_EVEN
;
1529 static const struct mips_perf_event
*octeon_pmu_map_raw_event(u64 config
)
1531 unsigned int raw_id
= config
& 0xff;
1532 unsigned int base_id
= raw_id
& 0x7f;
1535 raw_event
.cntr_mask
= CNTR_ALL
;
1536 raw_event
.event_id
= base_id
;
1538 if (current_cpu_type() == CPU_CAVIUM_OCTEON2
) {
1540 return ERR_PTR(-EOPNOTSUPP
);
1543 return ERR_PTR(-EOPNOTSUPP
);
1554 return ERR_PTR(-EOPNOTSUPP
);
1562 static const struct mips_perf_event
*xlp_pmu_map_raw_event(u64 config
)
1564 unsigned int raw_id
= config
& 0xff;
1566 /* Only 1-63 are defined */
1567 if ((raw_id
< 0x01) || (raw_id
> 0x3f))
1568 return ERR_PTR(-EOPNOTSUPP
);
1570 raw_event
.cntr_mask
= CNTR_ALL
;
1571 raw_event
.event_id
= raw_id
;
1577 init_hw_perf_events(void)
1582 pr_info("Performance counters: ");
1584 counters
= n_counters();
1585 if (counters
== 0) {
1586 pr_cont("No available PMU.\n");
1590 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1591 cpu_has_mipsmt_pertccounters
= read_c0_config7() & (1<<19);
1592 if (!cpu_has_mipsmt_pertccounters
)
1593 counters
= counters_total_to_per_cpu(counters
);
1596 #ifdef MSC01E_INT_BASE
1599 * Using platform specific interrupt controller defines.
1601 irq
= MSC01E_INT_BASE
+ MSC01E_INT_PERFCTR
;
1604 if ((cp0_perfcount_irq
>= 0) &&
1605 (cp0_compare_irq
!= cp0_perfcount_irq
))
1606 irq
= MIPS_CPU_IRQ_BASE
+ cp0_perfcount_irq
;
1609 #ifdef MSC01E_INT_BASE
1613 mipspmu
.map_raw_event
= mipsxx_pmu_map_raw_event
;
1615 switch (current_cpu_type()) {
1617 mipspmu
.name
= "mips/24K";
1618 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1619 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1622 mipspmu
.name
= "mips/34K";
1623 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1624 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1627 mipspmu
.name
= "mips/74K";
1628 mipspmu
.general_event_map
= &mipsxxcore_event_map2
;
1629 mipspmu
.cache_event_map
= &mipsxxcore_cache_map2
;
1632 mipspmu
.name
= "mips/proAptiv";
1633 mipspmu
.general_event_map
= &mipsxxcore_event_map2
;
1634 mipspmu
.cache_event_map
= &mipsxxcore_cache_map2
;
1637 mipspmu
.name
= "mips/1004K";
1638 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1639 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1642 mipspmu
.name
= "mips/1074K";
1643 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1644 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1646 case CPU_INTERAPTIV
:
1647 mipspmu
.name
= "mips/interAptiv";
1648 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1649 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1652 mipspmu
.name
= "mips/loongson1";
1653 mipspmu
.general_event_map
= &mipsxxcore_event_map
;
1654 mipspmu
.cache_event_map
= &mipsxxcore_cache_map
;
1656 case CPU_CAVIUM_OCTEON
:
1657 case CPU_CAVIUM_OCTEON_PLUS
:
1658 case CPU_CAVIUM_OCTEON2
:
1659 mipspmu
.name
= "octeon";
1660 mipspmu
.general_event_map
= &octeon_event_map
;
1661 mipspmu
.cache_event_map
= &octeon_cache_map
;
1662 mipspmu
.map_raw_event
= octeon_pmu_map_raw_event
;
1665 mipspmu
.name
= "BMIPS5000";
1666 mipspmu
.general_event_map
= &bmips5000_event_map
;
1667 mipspmu
.cache_event_map
= &bmips5000_cache_map
;
1670 mipspmu
.name
= "xlp";
1671 mipspmu
.general_event_map
= &xlp_event_map
;
1672 mipspmu
.cache_event_map
= &xlp_cache_map
;
1673 mipspmu
.map_raw_event
= xlp_pmu_map_raw_event
;
1676 pr_cont("Either hardware does not support performance "
1677 "counters, or not yet implemented.\n");
1681 mipspmu
.num_counters
= counters
;
1684 if (read_c0_perfctrl0() & M_PERFCTL_WIDE
) {
1685 mipspmu
.max_period
= (1ULL << 63) - 1;
1686 mipspmu
.valid_count
= (1ULL << 63) - 1;
1687 mipspmu
.overflow
= 1ULL << 63;
1688 mipspmu
.read_counter
= mipsxx_pmu_read_counter_64
;
1689 mipspmu
.write_counter
= mipsxx_pmu_write_counter_64
;
1692 mipspmu
.max_period
= (1ULL << 31) - 1;
1693 mipspmu
.valid_count
= (1ULL << 31) - 1;
1694 mipspmu
.overflow
= 1ULL << 31;
1695 mipspmu
.read_counter
= mipsxx_pmu_read_counter
;
1696 mipspmu
.write_counter
= mipsxx_pmu_write_counter
;
1700 on_each_cpu(reset_counters
, (void *)(long)counters
, 1);
1702 pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1703 "CPU, irq %d%s\n", mipspmu
.name
, counters
, counter_bits
, irq
,
1704 irq
< 0 ? " (share with timer interrupt)" : "");
1706 perf_pmu_register(&pmu
, "cpu", PERF_TYPE_RAW
);
1710 early_initcall(init_hw_perf_events
);