2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
15 #include <linux/bug.h>
16 #include <linux/compiler.h>
17 #include <linux/context_tracking.h>
18 #include <linux/kexec.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
23 #include <linux/sched.h>
24 #include <linux/smp.h>
25 #include <linux/spinlock.h>
26 #include <linux/kallsyms.h>
27 #include <linux/bootmem.h>
28 #include <linux/interrupt.h>
29 #include <linux/ptrace.h>
30 #include <linux/kgdb.h>
31 #include <linux/kdebug.h>
32 #include <linux/kprobes.h>
33 #include <linux/notifier.h>
34 #include <linux/kdb.h>
35 #include <linux/irq.h>
36 #include <linux/perf_event.h>
38 #include <asm/bootinfo.h>
39 #include <asm/branch.h>
40 #include <asm/break.h>
43 #include <asm/cpu-type.h>
46 #include <asm/fpu_emulator.h>
48 #include <asm/mipsregs.h>
49 #include <asm/mipsmtregs.h>
50 #include <asm/module.h>
52 #include <asm/pgtable.h>
53 #include <asm/ptrace.h>
54 #include <asm/sections.h>
55 #include <asm/tlbdebug.h>
56 #include <asm/traps.h>
57 #include <asm/uaccess.h>
58 #include <asm/watch.h>
59 #include <asm/mmu_context.h>
60 #include <asm/types.h>
61 #include <asm/stacktrace.h>
64 extern void check_wait(void);
65 extern asmlinkage
void rollback_handle_int(void);
66 extern asmlinkage
void handle_int(void);
67 extern u32 handle_tlbl
[];
68 extern u32 handle_tlbs
[];
69 extern u32 handle_tlbm
[];
70 extern asmlinkage
void handle_adel(void);
71 extern asmlinkage
void handle_ades(void);
72 extern asmlinkage
void handle_ibe(void);
73 extern asmlinkage
void handle_dbe(void);
74 extern asmlinkage
void handle_sys(void);
75 extern asmlinkage
void handle_bp(void);
76 extern asmlinkage
void handle_ri(void);
77 extern asmlinkage
void handle_ri_rdhwr_vivt(void);
78 extern asmlinkage
void handle_ri_rdhwr(void);
79 extern asmlinkage
void handle_cpu(void);
80 extern asmlinkage
void handle_ov(void);
81 extern asmlinkage
void handle_tr(void);
82 extern asmlinkage
void handle_msa_fpe(void);
83 extern asmlinkage
void handle_fpe(void);
84 extern asmlinkage
void handle_ftlb(void);
85 extern asmlinkage
void handle_msa(void);
86 extern asmlinkage
void handle_mdmx(void);
87 extern asmlinkage
void handle_watch(void);
88 extern asmlinkage
void handle_mt(void);
89 extern asmlinkage
void handle_dsp(void);
90 extern asmlinkage
void handle_mcheck(void);
91 extern asmlinkage
void handle_reserved(void);
93 void (*board_be_init
)(void);
94 int (*board_be_handler
)(struct pt_regs
*regs
, int is_fixup
);
95 void (*board_nmi_handler_setup
)(void);
96 void (*board_ejtag_handler_setup
)(void);
97 void (*board_bind_eic_interrupt
)(int irq
, int regset
);
98 void (*board_ebase_setup
)(void);
99 void(*board_cache_error_setup
)(void);
101 static void show_raw_backtrace(unsigned long reg29
)
103 unsigned long *sp
= (unsigned long *)(reg29
& ~3);
106 printk("Call Trace:");
107 #ifdef CONFIG_KALLSYMS
110 while (!kstack_end(sp
)) {
111 unsigned long __user
*p
=
112 (unsigned long __user
*)(unsigned long)sp
++;
113 if (__get_user(addr
, p
)) {
114 printk(" (Bad stack address)");
117 if (__kernel_text_address(addr
))
123 #ifdef CONFIG_KALLSYMS
125 static int __init
set_raw_show_trace(char *str
)
130 __setup("raw_show_trace", set_raw_show_trace
);
133 static void show_backtrace(struct task_struct
*task
, const struct pt_regs
*regs
)
135 unsigned long sp
= regs
->regs
[29];
136 unsigned long ra
= regs
->regs
[31];
137 unsigned long pc
= regs
->cp0_epc
;
142 if (raw_show_trace
|| !__kernel_text_address(pc
)) {
143 show_raw_backtrace(sp
);
146 printk("Call Trace:\n");
149 pc
= unwind_stack(task
, &sp
, pc
, &ra
);
155 * This routine abuses get_user()/put_user() to reference pointers
156 * with at least a bit of error checking ...
158 static void show_stacktrace(struct task_struct
*task
,
159 const struct pt_regs
*regs
)
161 const int field
= 2 * sizeof(unsigned long);
164 unsigned long __user
*sp
= (unsigned long __user
*)regs
->regs
[29];
168 while ((unsigned long) sp
& (PAGE_SIZE
- 1)) {
169 if (i
&& ((i
% (64 / field
)) == 0))
176 if (__get_user(stackdata
, sp
++)) {
177 printk(" (Bad stack address)");
181 printk(" %0*lx", field
, stackdata
);
185 show_backtrace(task
, regs
);
188 void show_stack(struct task_struct
*task
, unsigned long *sp
)
192 regs
.regs
[29] = (unsigned long)sp
;
196 if (task
&& task
!= current
) {
197 regs
.regs
[29] = task
->thread
.reg29
;
199 regs
.cp0_epc
= task
->thread
.reg31
;
200 #ifdef CONFIG_KGDB_KDB
201 } else if (atomic_read(&kgdb_active
) != -1 &&
203 memcpy(®s
, kdb_current_regs
, sizeof(regs
));
204 #endif /* CONFIG_KGDB_KDB */
206 prepare_frametrace(®s
);
209 show_stacktrace(task
, ®s
);
212 static void show_code(unsigned int __user
*pc
)
215 unsigned short __user
*pc16
= NULL
;
219 if ((unsigned long)pc
& 1)
220 pc16
= (unsigned short __user
*)((unsigned long)pc
& ~1);
221 for(i
= -3 ; i
< 6 ; i
++) {
223 if (pc16
? __get_user(insn
, pc16
+ i
) : __get_user(insn
, pc
+ i
)) {
224 printk(" (Bad address in epc)\n");
227 printk("%c%0*x%c", (i
?' ':'<'), pc16
? 4 : 8, insn
, (i
?' ':'>'));
231 static void __show_regs(const struct pt_regs
*regs
)
233 const int field
= 2 * sizeof(unsigned long);
234 unsigned int cause
= regs
->cp0_cause
;
237 show_regs_print_info(KERN_DEFAULT
);
240 * Saved main processor registers
242 for (i
= 0; i
< 32; ) {
246 printk(" %0*lx", field
, 0UL);
247 else if (i
== 26 || i
== 27)
248 printk(" %*s", field
, "");
250 printk(" %0*lx", field
, regs
->regs
[i
]);
257 #ifdef CONFIG_CPU_HAS_SMARTMIPS
258 printk("Acx : %0*lx\n", field
, regs
->acx
);
260 printk("Hi : %0*lx\n", field
, regs
->hi
);
261 printk("Lo : %0*lx\n", field
, regs
->lo
);
264 * Saved cp0 registers
266 printk("epc : %0*lx %pS\n", field
, regs
->cp0_epc
,
267 (void *) regs
->cp0_epc
);
268 printk(" %s\n", print_tainted());
269 printk("ra : %0*lx %pS\n", field
, regs
->regs
[31],
270 (void *) regs
->regs
[31]);
272 printk("Status: %08x ", (uint32_t) regs
->cp0_status
);
275 if (regs
->cp0_status
& ST0_KUO
)
277 if (regs
->cp0_status
& ST0_IEO
)
279 if (regs
->cp0_status
& ST0_KUP
)
281 if (regs
->cp0_status
& ST0_IEP
)
283 if (regs
->cp0_status
& ST0_KUC
)
285 if (regs
->cp0_status
& ST0_IEC
)
287 } else if (cpu_has_4kex
) {
288 if (regs
->cp0_status
& ST0_KX
)
290 if (regs
->cp0_status
& ST0_SX
)
292 if (regs
->cp0_status
& ST0_UX
)
294 switch (regs
->cp0_status
& ST0_KSU
) {
299 printk("SUPERVISOR ");
308 if (regs
->cp0_status
& ST0_ERL
)
310 if (regs
->cp0_status
& ST0_EXL
)
312 if (regs
->cp0_status
& ST0_IE
)
317 printk("Cause : %08x\n", cause
);
319 cause
= (cause
& CAUSEF_EXCCODE
) >> CAUSEB_EXCCODE
;
320 if (1 <= cause
&& cause
<= 5)
321 printk("BadVA : %0*lx\n", field
, regs
->cp0_badvaddr
);
323 printk("PrId : %08x (%s)\n", read_c0_prid(),
328 * FIXME: really the generic show_regs should take a const pointer argument.
330 void show_regs(struct pt_regs
*regs
)
332 __show_regs((struct pt_regs
*)regs
);
335 void show_registers(struct pt_regs
*regs
)
337 const int field
= 2 * sizeof(unsigned long);
338 mm_segment_t old_fs
= get_fs();
342 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
343 current
->comm
, current
->pid
, current_thread_info(), current
,
344 field
, current_thread_info()->tp_value
);
345 if (cpu_has_userlocal
) {
348 tls
= read_c0_userlocal();
349 if (tls
!= current_thread_info()->tp_value
)
350 printk("*HwTLS: %0*lx\n", field
, tls
);
353 if (!user_mode(regs
))
354 /* Necessary for getting the correct stack content */
356 show_stacktrace(current
, regs
);
357 show_code((unsigned int __user
*) regs
->cp0_epc
);
362 static int regs_to_trapnr(struct pt_regs
*regs
)
364 return (regs
->cp0_cause
>> 2) & 0x1f;
367 static DEFINE_RAW_SPINLOCK(die_lock
);
369 void __noreturn
die(const char *str
, struct pt_regs
*regs
)
371 static int die_counter
;
373 #ifdef CONFIG_MIPS_MT_SMTC
374 unsigned long dvpret
;
375 #endif /* CONFIG_MIPS_MT_SMTC */
379 if (notify_die(DIE_OOPS
, str
, regs
, 0, regs_to_trapnr(regs
),
380 SIGSEGV
) == NOTIFY_STOP
)
384 raw_spin_lock_irq(&die_lock
);
385 #ifdef CONFIG_MIPS_MT_SMTC
387 #endif /* CONFIG_MIPS_MT_SMTC */
389 #ifdef CONFIG_MIPS_MT_SMTC
390 mips_mt_regdump(dvpret
);
391 #endif /* CONFIG_MIPS_MT_SMTC */
393 printk("%s[#%d]:\n", str
, ++die_counter
);
394 show_registers(regs
);
395 add_taint(TAINT_DIE
, LOCKDEP_NOW_UNRELIABLE
);
396 raw_spin_unlock_irq(&die_lock
);
401 panic("Fatal exception in interrupt");
404 printk(KERN_EMERG
"Fatal exception: panic in 5 seconds");
406 panic("Fatal exception");
409 if (regs
&& kexec_should_crash(current
))
415 extern struct exception_table_entry __start___dbe_table
[];
416 extern struct exception_table_entry __stop___dbe_table
[];
419 " .section __dbe_table, \"a\"\n"
422 /* Given an address, look for it in the exception tables. */
423 static const struct exception_table_entry
*search_dbe_tables(unsigned long addr
)
425 const struct exception_table_entry
*e
;
427 e
= search_extable(__start___dbe_table
, __stop___dbe_table
- 1, addr
);
429 e
= search_module_dbetables(addr
);
433 asmlinkage
void do_be(struct pt_regs
*regs
)
435 const int field
= 2 * sizeof(unsigned long);
436 const struct exception_table_entry
*fixup
= NULL
;
437 int data
= regs
->cp0_cause
& 4;
438 int action
= MIPS_BE_FATAL
;
439 enum ctx_state prev_state
;
441 prev_state
= exception_enter();
442 /* XXX For now. Fixme, this searches the wrong table ... */
443 if (data
&& !user_mode(regs
))
444 fixup
= search_dbe_tables(exception_epc(regs
));
447 action
= MIPS_BE_FIXUP
;
449 if (board_be_handler
)
450 action
= board_be_handler(regs
, fixup
!= NULL
);
453 case MIPS_BE_DISCARD
:
457 regs
->cp0_epc
= fixup
->nextinsn
;
466 * Assume it would be too dangerous to continue ...
468 printk(KERN_ALERT
"%s bus error, epc == %0*lx, ra == %0*lx\n",
469 data
? "Data" : "Instruction",
470 field
, regs
->cp0_epc
, field
, regs
->regs
[31]);
471 if (notify_die(DIE_OOPS
, "bus error", regs
, 0, regs_to_trapnr(regs
),
472 SIGBUS
) == NOTIFY_STOP
)
475 die_if_kernel("Oops", regs
);
476 force_sig(SIGBUS
, current
);
479 exception_exit(prev_state
);
483 * ll/sc, rdhwr, sync emulation
486 #define OPCODE 0xfc000000
487 #define BASE 0x03e00000
488 #define RT 0x001f0000
489 #define OFFSET 0x0000ffff
490 #define LL 0xc0000000
491 #define SC 0xe0000000
492 #define SPEC0 0x00000000
493 #define SPEC3 0x7c000000
494 #define RD 0x0000f800
495 #define FUNC 0x0000003f
496 #define SYNC 0x0000000f
497 #define RDHWR 0x0000003b
499 /* microMIPS definitions */
500 #define MM_POOL32A_FUNC 0xfc00ffff
501 #define MM_RDHWR 0x00006b3c
502 #define MM_RS 0x001f0000
503 #define MM_RT 0x03e00000
506 * The ll_bit is cleared by r*_switch.S
510 struct task_struct
*ll_task
;
512 static inline int simulate_ll(struct pt_regs
*regs
, unsigned int opcode
)
514 unsigned long value
, __user
*vaddr
;
518 * analyse the ll instruction that just caused a ri exception
519 * and put the referenced address to addr.
522 /* sign extend offset */
523 offset
= opcode
& OFFSET
;
527 vaddr
= (unsigned long __user
*)
528 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
530 if ((unsigned long)vaddr
& 3)
532 if (get_user(value
, vaddr
))
537 if (ll_task
== NULL
|| ll_task
== current
) {
546 regs
->regs
[(opcode
& RT
) >> 16] = value
;
551 static inline int simulate_sc(struct pt_regs
*regs
, unsigned int opcode
)
553 unsigned long __user
*vaddr
;
558 * analyse the sc instruction that just caused a ri exception
559 * and put the referenced address to addr.
562 /* sign extend offset */
563 offset
= opcode
& OFFSET
;
567 vaddr
= (unsigned long __user
*)
568 ((unsigned long)(regs
->regs
[(opcode
& BASE
) >> 21]) + offset
);
569 reg
= (opcode
& RT
) >> 16;
571 if ((unsigned long)vaddr
& 3)
576 if (ll_bit
== 0 || ll_task
!= current
) {
584 if (put_user(regs
->regs
[reg
], vaddr
))
593 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
594 * opcodes are supposed to result in coprocessor unusable exceptions if
595 * executed on ll/sc-less processors. That's the theory. In practice a
596 * few processors such as NEC's VR4100 throw reserved instruction exceptions
597 * instead, so we're doing the emulation thing in both exception handlers.
599 static int simulate_llsc(struct pt_regs
*regs
, unsigned int opcode
)
601 if ((opcode
& OPCODE
) == LL
) {
602 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
604 return simulate_ll(regs
, opcode
);
606 if ((opcode
& OPCODE
) == SC
) {
607 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
609 return simulate_sc(regs
, opcode
);
612 return -1; /* Must be something else ... */
616 * Simulate trapping 'rdhwr' instructions to provide user accessible
617 * registers not implemented in hardware.
619 static int simulate_rdhwr(struct pt_regs
*regs
, int rd
, int rt
)
621 struct thread_info
*ti
= task_thread_info(current
);
623 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
626 case 0: /* CPU number */
627 regs
->regs
[rt
] = smp_processor_id();
629 case 1: /* SYNCI length */
630 regs
->regs
[rt
] = min(current_cpu_data
.dcache
.linesz
,
631 current_cpu_data
.icache
.linesz
);
633 case 2: /* Read count register */
634 regs
->regs
[rt
] = read_c0_count();
636 case 3: /* Count register resolution */
637 switch (current_cpu_type()) {
647 regs
->regs
[rt
] = ti
->tp_value
;
654 static int simulate_rdhwr_normal(struct pt_regs
*regs
, unsigned int opcode
)
656 if ((opcode
& OPCODE
) == SPEC3
&& (opcode
& FUNC
) == RDHWR
) {
657 int rd
= (opcode
& RD
) >> 11;
658 int rt
= (opcode
& RT
) >> 16;
660 simulate_rdhwr(regs
, rd
, rt
);
668 static int simulate_rdhwr_mm(struct pt_regs
*regs
, unsigned short opcode
)
670 if ((opcode
& MM_POOL32A_FUNC
) == MM_RDHWR
) {
671 int rd
= (opcode
& MM_RS
) >> 16;
672 int rt
= (opcode
& MM_RT
) >> 21;
673 simulate_rdhwr(regs
, rd
, rt
);
681 static int simulate_sync(struct pt_regs
*regs
, unsigned int opcode
)
683 if ((opcode
& OPCODE
) == SPEC0
&& (opcode
& FUNC
) == SYNC
) {
684 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
,
689 return -1; /* Must be something else ... */
692 asmlinkage
void do_ov(struct pt_regs
*regs
)
694 enum ctx_state prev_state
;
697 prev_state
= exception_enter();
698 die_if_kernel("Integer overflow", regs
);
700 info
.si_code
= FPE_INTOVF
;
701 info
.si_signo
= SIGFPE
;
703 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
704 force_sig_info(SIGFPE
, &info
, current
);
705 exception_exit(prev_state
);
708 int process_fpemu_return(int sig
, void __user
*fault_addr
)
710 if (sig
== SIGSEGV
|| sig
== SIGBUS
) {
711 struct siginfo si
= {0};
712 si
.si_addr
= fault_addr
;
714 if (sig
== SIGSEGV
) {
715 if (find_vma(current
->mm
, (unsigned long)fault_addr
))
716 si
.si_code
= SEGV_ACCERR
;
718 si
.si_code
= SEGV_MAPERR
;
720 si
.si_code
= BUS_ADRERR
;
722 force_sig_info(sig
, &si
, current
);
725 force_sig(sig
, current
);
733 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
735 asmlinkage
void do_fpe(struct pt_regs
*regs
, unsigned long fcr31
)
737 enum ctx_state prev_state
;
738 siginfo_t info
= {0};
740 prev_state
= exception_enter();
741 if (notify_die(DIE_FP
, "FP exception", regs
, 0, regs_to_trapnr(regs
),
742 SIGFPE
) == NOTIFY_STOP
)
744 die_if_kernel("FP exception in kernel code", regs
);
746 if (fcr31
& FPU_CSR_UNI_X
) {
748 void __user
*fault_addr
= NULL
;
751 * Unimplemented operation exception. If we've got the full
752 * software emulator on-board, let's use it...
754 * Force FPU to dump state into task/thread context. We're
755 * moving a lot of data here for what is probably a single
756 * instruction, but the alternative is to pre-decode the FP
757 * register operands before invoking the emulator, which seems
758 * a bit extreme for what should be an infrequent event.
760 /* Ensure 'resume' not overwrite saved fp context again. */
763 /* Run the emulator */
764 sig
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 1,
768 * We can't allow the emulated instruction to leave any of
769 * the cause bit set in $fcr31.
771 current
->thread
.fpu
.fcr31
&= ~FPU_CSR_ALL_X
;
773 /* Restore the hardware register state */
774 own_fpu(1); /* Using the FPU again. */
776 /* If something went wrong, signal */
777 process_fpemu_return(sig
, fault_addr
);
780 } else if (fcr31
& FPU_CSR_INV_X
)
781 info
.si_code
= FPE_FLTINV
;
782 else if (fcr31
& FPU_CSR_DIV_X
)
783 info
.si_code
= FPE_FLTDIV
;
784 else if (fcr31
& FPU_CSR_OVF_X
)
785 info
.si_code
= FPE_FLTOVF
;
786 else if (fcr31
& FPU_CSR_UDF_X
)
787 info
.si_code
= FPE_FLTUND
;
788 else if (fcr31
& FPU_CSR_INE_X
)
789 info
.si_code
= FPE_FLTRES
;
791 info
.si_code
= __SI_FAULT
;
792 info
.si_signo
= SIGFPE
;
794 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
795 force_sig_info(SIGFPE
, &info
, current
);
798 exception_exit(prev_state
);
801 static void do_trap_or_bp(struct pt_regs
*regs
, unsigned int code
,
807 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
808 if (kgdb_ll_trap(DIE_TRAP
, str
, regs
, code
, regs_to_trapnr(regs
), SIGTRAP
) == NOTIFY_STOP
)
810 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
812 if (notify_die(DIE_TRAP
, str
, regs
, code
, regs_to_trapnr(regs
),
813 SIGTRAP
) == NOTIFY_STOP
)
817 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
818 * insns, even for trap and break codes that indicate arithmetic
819 * failures. Weird ...
820 * But should we continue the brokenness??? --macro
825 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
826 die_if_kernel(b
, regs
);
827 if (code
== BRK_DIVZERO
)
828 info
.si_code
= FPE_INTDIV
;
830 info
.si_code
= FPE_INTOVF
;
831 info
.si_signo
= SIGFPE
;
833 info
.si_addr
= (void __user
*) regs
->cp0_epc
;
834 force_sig_info(SIGFPE
, &info
, current
);
837 die_if_kernel("Kernel bug detected", regs
);
838 force_sig(SIGTRAP
, current
);
842 * Address errors may be deliberately induced by the FPU
843 * emulator to retake control of the CPU after executing the
844 * instruction in the delay slot of an emulated branch.
846 * Terminate if exception was recognized as a delay slot return
847 * otherwise handle as normal.
849 if (do_dsemulret(regs
))
852 die_if_kernel("Math emu break/trap", regs
);
853 force_sig(SIGTRAP
, current
);
856 scnprintf(b
, sizeof(b
), "%s instruction in kernel code", str
);
857 die_if_kernel(b
, regs
);
858 force_sig(SIGTRAP
, current
);
862 asmlinkage
void do_bp(struct pt_regs
*regs
)
864 unsigned int opcode
, bcode
;
865 enum ctx_state prev_state
;
871 if (!user_mode(regs
))
874 prev_state
= exception_enter();
875 if (get_isa16_mode(regs
->cp0_epc
)) {
877 epc
= exception_epc(regs
);
879 if ((__get_user(instr
[0], (u16 __user
*)msk_isa16_mode(epc
)) ||
880 (__get_user(instr
[1], (u16 __user
*)msk_isa16_mode(epc
+ 2)))))
882 opcode
= (instr
[0] << 16) | instr
[1];
885 if (__get_user(instr
[0],
886 (u16 __user
*)msk_isa16_mode(epc
)))
888 bcode
= (instr
[0] >> 6) & 0x3f;
889 do_trap_or_bp(regs
, bcode
, "Break");
893 if (__get_user(opcode
,
894 (unsigned int __user
*) exception_epc(regs
)))
899 * There is the ancient bug in the MIPS assemblers that the break
900 * code starts left to bit 16 instead to bit 6 in the opcode.
901 * Gas is bug-compatible, but not always, grrr...
902 * We handle both cases with a simple heuristics. --macro
904 bcode
= ((opcode
>> 6) & ((1 << 20) - 1));
905 if (bcode
>= (1 << 10))
909 * notify the kprobe handlers, if instruction is likely to
914 if (notify_die(DIE_BREAK
, "debug", regs
, bcode
,
915 regs_to_trapnr(regs
), SIGTRAP
) == NOTIFY_STOP
)
919 case BRK_KPROBE_SSTEPBP
:
920 if (notify_die(DIE_SSTEPBP
, "single_step", regs
, bcode
,
921 regs_to_trapnr(regs
), SIGTRAP
) == NOTIFY_STOP
)
929 do_trap_or_bp(regs
, bcode
, "Break");
933 exception_exit(prev_state
);
937 force_sig(SIGSEGV
, current
);
941 asmlinkage
void do_tr(struct pt_regs
*regs
)
943 u32 opcode
, tcode
= 0;
944 enum ctx_state prev_state
;
947 unsigned long epc
= msk_isa16_mode(exception_epc(regs
));
950 if (!user_mode(regs
))
953 prev_state
= exception_enter();
954 if (get_isa16_mode(regs
->cp0_epc
)) {
955 if (__get_user(instr
[0], (u16 __user
*)(epc
+ 0)) ||
956 __get_user(instr
[1], (u16 __user
*)(epc
+ 2)))
958 opcode
= (instr
[0] << 16) | instr
[1];
959 /* Immediate versions don't provide a code. */
960 if (!(opcode
& OPCODE
))
961 tcode
= (opcode
>> 12) & ((1 << 4) - 1);
963 if (__get_user(opcode
, (u32 __user
*)epc
))
965 /* Immediate versions don't provide a code. */
966 if (!(opcode
& OPCODE
))
967 tcode
= (opcode
>> 6) & ((1 << 10) - 1);
970 do_trap_or_bp(regs
, tcode
, "Trap");
974 exception_exit(prev_state
);
978 force_sig(SIGSEGV
, current
);
982 asmlinkage
void do_ri(struct pt_regs
*regs
)
984 unsigned int __user
*epc
= (unsigned int __user
*)exception_epc(regs
);
985 unsigned long old_epc
= regs
->cp0_epc
;
986 unsigned long old31
= regs
->regs
[31];
987 enum ctx_state prev_state
;
988 unsigned int opcode
= 0;
991 prev_state
= exception_enter();
992 if (notify_die(DIE_RI
, "RI Fault", regs
, 0, regs_to_trapnr(regs
),
993 SIGILL
) == NOTIFY_STOP
)
996 die_if_kernel("Reserved instruction in kernel code", regs
);
998 if (unlikely(compute_return_epc(regs
) < 0))
1001 if (get_isa16_mode(regs
->cp0_epc
)) {
1002 unsigned short mmop
[2] = { 0 };
1004 if (unlikely(get_user(mmop
[0], epc
) < 0))
1006 if (unlikely(get_user(mmop
[1], epc
) < 0))
1008 opcode
= (mmop
[0] << 16) | mmop
[1];
1011 status
= simulate_rdhwr_mm(regs
, opcode
);
1013 if (unlikely(get_user(opcode
, epc
) < 0))
1016 if (!cpu_has_llsc
&& status
< 0)
1017 status
= simulate_llsc(regs
, opcode
);
1020 status
= simulate_rdhwr_normal(regs
, opcode
);
1023 status
= simulate_sync(regs
, opcode
);
1029 if (unlikely(status
> 0)) {
1030 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
1031 regs
->regs
[31] = old31
;
1032 force_sig(status
, current
);
1036 exception_exit(prev_state
);
1040 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1041 * emulated more than some threshold number of instructions, force migration to
1042 * a "CPU" that has FP support.
1044 static void mt_ase_fp_affinity(void)
1046 #ifdef CONFIG_MIPS_MT_FPAFF
1047 if (mt_fpemul_threshold
> 0 &&
1048 ((current
->thread
.emulated_fp
++ > mt_fpemul_threshold
))) {
1050 * If there's no FPU present, or if the application has already
1051 * restricted the allowed set to exclude any CPUs with FPUs,
1052 * we'll skip the procedure.
1054 if (cpus_intersects(current
->cpus_allowed
, mt_fpu_cpumask
)) {
1057 current
->thread
.user_cpus_allowed
1058 = current
->cpus_allowed
;
1059 cpus_and(tmask
, current
->cpus_allowed
,
1061 set_cpus_allowed_ptr(current
, &tmask
);
1062 set_thread_flag(TIF_FPUBOUND
);
1065 #endif /* CONFIG_MIPS_MT_FPAFF */
1069 * No lock; only written during early bootup by CPU 0.
1071 static RAW_NOTIFIER_HEAD(cu2_chain
);
1073 int __ref
register_cu2_notifier(struct notifier_block
*nb
)
1075 return raw_notifier_chain_register(&cu2_chain
, nb
);
1078 int cu2_notifier_call_chain(unsigned long val
, void *v
)
1080 return raw_notifier_call_chain(&cu2_chain
, val
, v
);
1083 static int default_cu2_call(struct notifier_block
*nfb
, unsigned long action
,
1086 struct pt_regs
*regs
= data
;
1088 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1089 "instruction", regs
);
1090 force_sig(SIGILL
, current
);
1095 static int enable_restore_fp_context(int msa
)
1097 int err
, was_fpu_owner
;
1100 /* First time FP context user. */
1110 * This task has formerly used the FP context.
1112 * If this thread has no live MSA vector context then we can simply
1113 * restore the scalar FP context. If it has live MSA vector context
1114 * (that is, it has or may have used MSA since last performing a
1115 * function call) then we'll need to restore the vector context. This
1116 * applies even if we're currently only executing a scalar FP
1117 * instruction. This is because if we were to later execute an MSA
1118 * instruction then we'd either have to:
1120 * - Restore the vector context & clobber any registers modified by
1121 * scalar FP instructions between now & then.
1125 * - Not restore the vector context & lose the most significant bits
1126 * of all vector registers.
1128 * Neither of those options is acceptable. We cannot restore the least
1129 * significant bits of the registers now & only restore the most
1130 * significant bits later because the most significant bits of any
1131 * vector registers whose aliased FP register is modified now will have
1132 * been zeroed. We'd have no way to know that when restoring the vector
1133 * context & thus may load an outdated value for the most significant
1134 * bits of a vector register.
1136 if (!msa
&& !thread_msa_context_live())
1140 * This task is using or has previously used MSA. Thus we require
1141 * that Status.FR == 1.
1143 was_fpu_owner
= is_fpu_owner();
1149 write_msa_csr(current
->thread
.fpu
.msacsr
);
1150 set_thread_flag(TIF_USEDMSA
);
1153 * If this is the first time that the task is using MSA and it has
1154 * previously used scalar FP in this time slice then we already nave
1155 * FP context which we shouldn't clobber.
1157 if (!test_and_set_thread_flag(TIF_MSA_CTX_LIVE
) && was_fpu_owner
)
1160 /* We need to restore the vector context. */
1161 restore_msa(current
);
1165 asmlinkage
void do_cpu(struct pt_regs
*regs
)
1167 enum ctx_state prev_state
;
1168 unsigned int __user
*epc
;
1169 unsigned long old_epc
, old31
;
1170 unsigned int opcode
;
1173 unsigned long __maybe_unused flags
;
1175 prev_state
= exception_enter();
1176 cpid
= (regs
->cp0_cause
>> CAUSEB_CE
) & 3;
1179 die_if_kernel("do_cpu invoked from kernel context!", regs
);
1183 epc
= (unsigned int __user
*)exception_epc(regs
);
1184 old_epc
= regs
->cp0_epc
;
1185 old31
= regs
->regs
[31];
1189 if (unlikely(compute_return_epc(regs
) < 0))
1192 if (get_isa16_mode(regs
->cp0_epc
)) {
1193 unsigned short mmop
[2] = { 0 };
1195 if (unlikely(get_user(mmop
[0], epc
) < 0))
1197 if (unlikely(get_user(mmop
[1], epc
) < 0))
1199 opcode
= (mmop
[0] << 16) | mmop
[1];
1202 status
= simulate_rdhwr_mm(regs
, opcode
);
1204 if (unlikely(get_user(opcode
, epc
) < 0))
1207 if (!cpu_has_llsc
&& status
< 0)
1208 status
= simulate_llsc(regs
, opcode
);
1211 status
= simulate_rdhwr_normal(regs
, opcode
);
1217 if (unlikely(status
> 0)) {
1218 regs
->cp0_epc
= old_epc
; /* Undo skip-over. */
1219 regs
->regs
[31] = old31
;
1220 force_sig(status
, current
);
1227 * Old (MIPS I and MIPS II) processors will set this code
1228 * for COP1X opcode instructions that replaced the original
1229 * COP3 space. We don't limit COP1 space instructions in
1230 * the emulator according to the CPU ISA, so we want to
1231 * treat COP1X instructions consistently regardless of which
1232 * code the CPU chose. Therefore we redirect this trap to
1233 * the FP emulator too.
1235 * Then some newer FPU-less processors use this code
1236 * erroneously too, so they are covered by this choice
1239 if (raw_cpu_has_fpu
)
1244 err
= enable_restore_fp_context(0);
1246 if (!raw_cpu_has_fpu
|| err
) {
1248 void __user
*fault_addr
= NULL
;
1249 sig
= fpu_emulator_cop1Handler(regs
,
1250 ¤t
->thread
.fpu
,
1252 if (!process_fpemu_return(sig
, fault_addr
) && !err
)
1253 mt_ase_fp_affinity();
1259 raw_notifier_call_chain(&cu2_chain
, CU2_EXCEPTION
, regs
);
1263 force_sig(SIGILL
, current
);
1266 exception_exit(prev_state
);
1269 asmlinkage
void do_msa_fpe(struct pt_regs
*regs
)
1271 enum ctx_state prev_state
;
1273 prev_state
= exception_enter();
1274 die_if_kernel("do_msa_fpe invoked from kernel context!", regs
);
1275 force_sig(SIGFPE
, current
);
1276 exception_exit(prev_state
);
1279 asmlinkage
void do_msa(struct pt_regs
*regs
)
1281 enum ctx_state prev_state
;
1284 prev_state
= exception_enter();
1286 if (!cpu_has_msa
|| test_thread_flag(TIF_32BIT_FPREGS
)) {
1287 force_sig(SIGILL
, current
);
1291 die_if_kernel("do_msa invoked from kernel context!", regs
);
1293 err
= enable_restore_fp_context(1);
1295 force_sig(SIGILL
, current
);
1297 exception_exit(prev_state
);
1300 asmlinkage
void do_mdmx(struct pt_regs
*regs
)
1302 enum ctx_state prev_state
;
1304 prev_state
= exception_enter();
1305 force_sig(SIGILL
, current
);
1306 exception_exit(prev_state
);
1310 * Called with interrupts disabled.
1312 asmlinkage
void do_watch(struct pt_regs
*regs
)
1314 enum ctx_state prev_state
;
1317 prev_state
= exception_enter();
1319 * Clear WP (bit 22) bit of cause register so we don't loop
1322 cause
= read_c0_cause();
1323 cause
&= ~(1 << 22);
1324 write_c0_cause(cause
);
1327 * If the current thread has the watch registers loaded, save
1328 * their values and send SIGTRAP. Otherwise another thread
1329 * left the registers set, clear them and continue.
1331 if (test_tsk_thread_flag(current
, TIF_LOAD_WATCH
)) {
1332 mips_read_watch_registers();
1334 force_sig(SIGTRAP
, current
);
1336 mips_clear_watch_registers();
1339 exception_exit(prev_state
);
1342 asmlinkage
void do_mcheck(struct pt_regs
*regs
)
1344 const int field
= 2 * sizeof(unsigned long);
1345 int multi_match
= regs
->cp0_status
& ST0_TS
;
1346 enum ctx_state prev_state
;
1348 prev_state
= exception_enter();
1352 printk("Index : %0x\n", read_c0_index());
1353 printk("Pagemask: %0x\n", read_c0_pagemask());
1354 printk("EntryHi : %0*lx\n", field
, read_c0_entryhi());
1355 printk("EntryLo0: %0*lx\n", field
, read_c0_entrylo0());
1356 printk("EntryLo1: %0*lx\n", field
, read_c0_entrylo1());
1361 show_code((unsigned int __user
*) regs
->cp0_epc
);
1364 * Some chips may have other causes of machine check (e.g. SB1
1367 panic("Caught Machine Check exception - %scaused by multiple "
1368 "matching entries in the TLB.",
1369 (multi_match
) ? "" : "not ");
1372 asmlinkage
void do_mt(struct pt_regs
*regs
)
1376 subcode
= (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT
)
1377 >> VPECONTROL_EXCPT_SHIFT
;
1380 printk(KERN_DEBUG
"Thread Underflow\n");
1383 printk(KERN_DEBUG
"Thread Overflow\n");
1386 printk(KERN_DEBUG
"Invalid YIELD Qualifier\n");
1389 printk(KERN_DEBUG
"Gating Storage Exception\n");
1392 printk(KERN_DEBUG
"YIELD Scheduler Exception\n");
1395 printk(KERN_DEBUG
"Gating Storage Scheduler Exception\n");
1398 printk(KERN_DEBUG
"*** UNKNOWN THREAD EXCEPTION %d ***\n",
1402 die_if_kernel("MIPS MT Thread exception in kernel", regs
);
1404 force_sig(SIGILL
, current
);
1408 asmlinkage
void do_dsp(struct pt_regs
*regs
)
1411 panic("Unexpected DSP exception");
1413 force_sig(SIGILL
, current
);
1416 asmlinkage
void do_reserved(struct pt_regs
*regs
)
1419 * Game over - no way to handle this if it ever occurs. Most probably
1420 * caused by a new unknown cpu type or after another deadly
1421 * hard/software error.
1424 panic("Caught reserved exception %ld - should not happen.",
1425 (regs
->cp0_cause
& 0x7f) >> 2);
1428 static int __initdata l1parity
= 1;
1429 static int __init
nol1parity(char *s
)
1434 __setup("nol1par", nol1parity
);
1435 static int __initdata l2parity
= 1;
1436 static int __init
nol2parity(char *s
)
1441 __setup("nol2par", nol2parity
);
1444 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1445 * it different ways.
1447 static inline void parity_protection_init(void)
1449 switch (current_cpu_type()) {
1455 case CPU_INTERAPTIV
:
1459 #define ERRCTL_PE 0x80000000
1460 #define ERRCTL_L2P 0x00800000
1461 unsigned long errctl
;
1462 unsigned int l1parity_present
, l2parity_present
;
1464 errctl
= read_c0_ecc();
1465 errctl
&= ~(ERRCTL_PE
|ERRCTL_L2P
);
1467 /* probe L1 parity support */
1468 write_c0_ecc(errctl
| ERRCTL_PE
);
1469 back_to_back_c0_hazard();
1470 l1parity_present
= (read_c0_ecc() & ERRCTL_PE
);
1472 /* probe L2 parity support */
1473 write_c0_ecc(errctl
|ERRCTL_L2P
);
1474 back_to_back_c0_hazard();
1475 l2parity_present
= (read_c0_ecc() & ERRCTL_L2P
);
1477 if (l1parity_present
&& l2parity_present
) {
1479 errctl
|= ERRCTL_PE
;
1480 if (l1parity
^ l2parity
)
1481 errctl
|= ERRCTL_L2P
;
1482 } else if (l1parity_present
) {
1484 errctl
|= ERRCTL_PE
;
1485 } else if (l2parity_present
) {
1487 errctl
|= ERRCTL_L2P
;
1489 /* No parity available */
1492 printk(KERN_INFO
"Writing ErrCtl register=%08lx\n", errctl
);
1494 write_c0_ecc(errctl
);
1495 back_to_back_c0_hazard();
1496 errctl
= read_c0_ecc();
1497 printk(KERN_INFO
"Readback ErrCtl register=%08lx\n", errctl
);
1499 if (l1parity_present
)
1500 printk(KERN_INFO
"Cache parity protection %sabled\n",
1501 (errctl
& ERRCTL_PE
) ? "en" : "dis");
1503 if (l2parity_present
) {
1504 if (l1parity_present
&& l1parity
)
1505 errctl
^= ERRCTL_L2P
;
1506 printk(KERN_INFO
"L2 cache parity protection %sabled\n",
1507 (errctl
& ERRCTL_L2P
) ? "en" : "dis");
1515 write_c0_ecc(0x80000000);
1516 back_to_back_c0_hazard();
1517 /* Set the PE bit (bit 31) in the c0_errctl register. */
1518 printk(KERN_INFO
"Cache parity protection %sabled\n",
1519 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1523 /* Clear the DE bit (bit 16) in the c0_status register. */
1524 printk(KERN_INFO
"Enable cache parity protection for "
1525 "MIPS 20KC/25KF CPUs.\n");
1526 clear_c0_status(ST0_DE
);
1533 asmlinkage
void cache_parity_error(void)
1535 const int field
= 2 * sizeof(unsigned long);
1536 unsigned int reg_val
;
1538 /* For the moment, report the problem and hang. */
1539 printk("Cache error exception:\n");
1540 printk("cp0_errorepc == %0*lx\n", field
, read_c0_errorepc());
1541 reg_val
= read_c0_cacheerr();
1542 printk("c0_cacheerr == %08x\n", reg_val
);
1544 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1545 reg_val
& (1<<30) ? "secondary" : "primary",
1546 reg_val
& (1<<31) ? "data" : "insn");
1547 if (cpu_has_mips_r2
&&
1548 ((current_cpu_data
.processor_id
&& 0xff0000) == PRID_COMP_MIPS
)) {
1549 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1550 reg_val
& (1<<29) ? "ED " : "",
1551 reg_val
& (1<<28) ? "ET " : "",
1552 reg_val
& (1<<27) ? "ES " : "",
1553 reg_val
& (1<<26) ? "EE " : "",
1554 reg_val
& (1<<25) ? "EB " : "",
1555 reg_val
& (1<<24) ? "EI " : "",
1556 reg_val
& (1<<23) ? "E1 " : "",
1557 reg_val
& (1<<22) ? "E0 " : "");
1559 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1560 reg_val
& (1<<29) ? "ED " : "",
1561 reg_val
& (1<<28) ? "ET " : "",
1562 reg_val
& (1<<26) ? "EE " : "",
1563 reg_val
& (1<<25) ? "EB " : "",
1564 reg_val
& (1<<24) ? "EI " : "",
1565 reg_val
& (1<<23) ? "E1 " : "",
1566 reg_val
& (1<<22) ? "E0 " : "");
1568 printk("IDX: 0x%08x\n", reg_val
& ((1<<22)-1));
1570 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1571 if (reg_val
& (1<<22))
1572 printk("DErrAddr0: 0x%0*lx\n", field
, read_c0_derraddr0());
1574 if (reg_val
& (1<<23))
1575 printk("DErrAddr1: 0x%0*lx\n", field
, read_c0_derraddr1());
1578 panic("Can't handle the cache error!");
1581 asmlinkage
void do_ftlb(void)
1583 const int field
= 2 * sizeof(unsigned long);
1584 unsigned int reg_val
;
1586 /* For the moment, report the problem and hang. */
1587 if (cpu_has_mips_r2
&&
1588 ((current_cpu_data
.processor_id
&& 0xff0000) == PRID_COMP_MIPS
)) {
1589 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1591 pr_err("cp0_errorepc == %0*lx\n", field
, read_c0_errorepc());
1592 reg_val
= read_c0_cacheerr();
1593 pr_err("c0_cacheerr == %08x\n", reg_val
);
1595 if ((reg_val
& 0xc0000000) == 0xc0000000) {
1596 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1598 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1599 reg_val
& (1<<30) ? "secondary" : "primary",
1600 reg_val
& (1<<31) ? "data" : "insn");
1603 pr_err("FTLB error exception\n");
1605 /* Just print the cacheerr bits for now */
1606 cache_parity_error();
1610 * SDBBP EJTAG debug exception handler.
1611 * We skip the instruction and return to the next instruction.
1613 void ejtag_exception_handler(struct pt_regs
*regs
)
1615 const int field
= 2 * sizeof(unsigned long);
1616 unsigned long depc
, old_epc
, old_ra
;
1619 printk(KERN_DEBUG
"SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1620 depc
= read_c0_depc();
1621 debug
= read_c0_debug();
1622 printk(KERN_DEBUG
"c0_depc = %0*lx, DEBUG = %08x\n", field
, depc
, debug
);
1623 if (debug
& 0x80000000) {
1625 * In branch delay slot.
1626 * We cheat a little bit here and use EPC to calculate the
1627 * debug return address (DEPC). EPC is restored after the
1630 old_epc
= regs
->cp0_epc
;
1631 old_ra
= regs
->regs
[31];
1632 regs
->cp0_epc
= depc
;
1633 compute_return_epc(regs
);
1634 depc
= regs
->cp0_epc
;
1635 regs
->cp0_epc
= old_epc
;
1636 regs
->regs
[31] = old_ra
;
1639 write_c0_depc(depc
);
1642 printk(KERN_DEBUG
"\n\n----- Enable EJTAG single stepping ----\n\n");
1643 write_c0_debug(debug
| 0x100);
1648 * NMI exception handler.
1649 * No lock; only written during early bootup by CPU 0.
1651 static RAW_NOTIFIER_HEAD(nmi_chain
);
1653 int register_nmi_notifier(struct notifier_block
*nb
)
1655 return raw_notifier_chain_register(&nmi_chain
, nb
);
1658 void __noreturn
nmi_exception_handler(struct pt_regs
*regs
)
1662 raw_notifier_call_chain(&nmi_chain
, 0, regs
);
1664 snprintf(str
, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1665 smp_processor_id(), regs
->cp0_epc
);
1666 regs
->cp0_epc
= read_c0_errorepc();
1670 #define VECTORSPACING 0x100 /* for EI/VI mode */
1672 unsigned long ebase
;
1673 unsigned long exception_handlers
[32];
1674 unsigned long vi_handlers
[64];
1676 void __init
*set_except_vector(int n
, void *addr
)
1678 unsigned long handler
= (unsigned long) addr
;
1679 unsigned long old_handler
;
1681 #ifdef CONFIG_CPU_MICROMIPS
1683 * Only the TLB handlers are cache aligned with an even
1684 * address. All other handlers are on an odd address and
1685 * require no modification. Otherwise, MIPS32 mode will
1686 * be entered when handling any TLB exceptions. That
1687 * would be bad...since we must stay in microMIPS mode.
1689 if (!(handler
& 0x1))
1692 old_handler
= xchg(&exception_handlers
[n
], handler
);
1694 if (n
== 0 && cpu_has_divec
) {
1695 #ifdef CONFIG_CPU_MICROMIPS
1696 unsigned long jump_mask
= ~((1 << 27) - 1);
1698 unsigned long jump_mask
= ~((1 << 28) - 1);
1700 u32
*buf
= (u32
*)(ebase
+ 0x200);
1701 unsigned int k0
= 26;
1702 if ((handler
& jump_mask
) == ((ebase
+ 0x200) & jump_mask
)) {
1703 uasm_i_j(&buf
, handler
& ~jump_mask
);
1706 UASM_i_LA(&buf
, k0
, handler
);
1707 uasm_i_jr(&buf
, k0
);
1710 local_flush_icache_range(ebase
+ 0x200, (unsigned long)buf
);
1712 return (void *)old_handler
;
1715 static void do_default_vi(void)
1717 show_regs(get_irq_regs());
1718 panic("Caught unexpected vectored interrupt.");
1721 static void *set_vi_srs_handler(int n
, vi_handler_t addr
, int srs
)
1723 unsigned long handler
;
1724 unsigned long old_handler
= vi_handlers
[n
];
1725 int srssets
= current_cpu_data
.srsets
;
1729 BUG_ON(!cpu_has_veic
&& !cpu_has_vint
);
1732 handler
= (unsigned long) do_default_vi
;
1735 handler
= (unsigned long) addr
;
1736 vi_handlers
[n
] = handler
;
1738 b
= (unsigned char *)(ebase
+ 0x200 + n
*VECTORSPACING
);
1741 panic("Shadow register set %d not supported", srs
);
1744 if (board_bind_eic_interrupt
)
1745 board_bind_eic_interrupt(n
, srs
);
1746 } else if (cpu_has_vint
) {
1747 /* SRSMap is only defined if shadow sets are implemented */
1749 change_c0_srsmap(0xf << n
*4, srs
<< n
*4);
1754 * If no shadow set is selected then use the default handler
1755 * that does normal register saving and standard interrupt exit
1757 extern char except_vec_vi
, except_vec_vi_lui
;
1758 extern char except_vec_vi_ori
, except_vec_vi_end
;
1759 extern char rollback_except_vec_vi
;
1760 char *vec_start
= using_rollback_handler() ?
1761 &rollback_except_vec_vi
: &except_vec_vi
;
1762 #ifdef CONFIG_MIPS_MT_SMTC
1764 * We need to provide the SMTC vectored interrupt handler
1765 * not only with the address of the handler, but with the
1766 * Status.IM bit to be masked before going there.
1768 extern char except_vec_vi_mori
;
1769 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1770 const int mori_offset
= &except_vec_vi_mori
- vec_start
+ 2;
1772 const int mori_offset
= &except_vec_vi_mori
- vec_start
;
1774 #endif /* CONFIG_MIPS_MT_SMTC */
1775 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1776 const int lui_offset
= &except_vec_vi_lui
- vec_start
+ 2;
1777 const int ori_offset
= &except_vec_vi_ori
- vec_start
+ 2;
1779 const int lui_offset
= &except_vec_vi_lui
- vec_start
;
1780 const int ori_offset
= &except_vec_vi_ori
- vec_start
;
1782 const int handler_len
= &except_vec_vi_end
- vec_start
;
1784 if (handler_len
> VECTORSPACING
) {
1786 * Sigh... panicing won't help as the console
1787 * is probably not configured :(
1789 panic("VECTORSPACING too small");
1792 set_handler(((unsigned long)b
- ebase
), vec_start
,
1793 #ifdef CONFIG_CPU_MICROMIPS
1798 #ifdef CONFIG_MIPS_MT_SMTC
1799 BUG_ON(n
> 7); /* Vector index %d exceeds SMTC maximum. */
1801 h
= (u16
*)(b
+ mori_offset
);
1803 #endif /* CONFIG_MIPS_MT_SMTC */
1804 h
= (u16
*)(b
+ lui_offset
);
1805 *h
= (handler
>> 16) & 0xffff;
1806 h
= (u16
*)(b
+ ori_offset
);
1807 *h
= (handler
& 0xffff);
1808 local_flush_icache_range((unsigned long)b
,
1809 (unsigned long)(b
+handler_len
));
1813 * In other cases jump directly to the interrupt handler. It
1814 * is the handler's responsibility to save registers if required
1815 * (eg hi/lo) and return from the exception using "eret".
1821 #ifdef CONFIG_CPU_MICROMIPS
1822 insn
= 0xd4000000 | (((u32
)handler
& 0x07ffffff) >> 1);
1824 insn
= 0x08000000 | (((u32
)handler
& 0x0fffffff) >> 2);
1826 h
[0] = (insn
>> 16) & 0xffff;
1827 h
[1] = insn
& 0xffff;
1830 local_flush_icache_range((unsigned long)b
,
1831 (unsigned long)(b
+8));
1834 return (void *)old_handler
;
1837 void *set_vi_handler(int n
, vi_handler_t addr
)
1839 return set_vi_srs_handler(n
, addr
, 0);
1842 extern void tlb_init(void);
1847 int cp0_compare_irq
;
1848 EXPORT_SYMBOL_GPL(cp0_compare_irq
);
1849 int cp0_compare_irq_shift
;
1852 * Performance counter IRQ or -1 if shared with timer
1854 int cp0_perfcount_irq
;
1855 EXPORT_SYMBOL_GPL(cp0_perfcount_irq
);
1859 static int __init
ulri_disable(char *s
)
1861 pr_info("Disabling ulri\n");
1866 __setup("noulri", ulri_disable
);
1868 void per_cpu_trap_init(bool is_boot_cpu
)
1870 unsigned int cpu
= smp_processor_id();
1871 unsigned int status_set
= ST0_CU0
;
1872 unsigned int hwrena
= cpu_hwrena_impl_bits
;
1873 #ifdef CONFIG_MIPS_MT_SMTC
1874 int secondaryTC
= 0;
1875 int bootTC
= (cpu
== 0);
1878 * Only do per_cpu_trap_init() for first TC of Each VPE.
1879 * Note that this hack assumes that the SMTC init code
1880 * assigns TCs consecutively and in ascending order.
1883 if (((read_c0_tcbind() & TCBIND_CURTC
) != 0) &&
1884 ((read_c0_tcbind() & TCBIND_CURVPE
) == cpu_data
[cpu
- 1].vpe_id
))
1886 #endif /* CONFIG_MIPS_MT_SMTC */
1889 * Disable coprocessors and select 32-bit or 64-bit addressing
1890 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1891 * flag that some firmware may have left set and the TS bit (for
1892 * IP27). Set XX for ISA IV code to work.
1895 status_set
|= ST0_FR
|ST0_KX
|ST0_SX
|ST0_UX
;
1897 if (current_cpu_data
.isa_level
& MIPS_CPU_ISA_IV
)
1898 status_set
|= ST0_XX
;
1900 status_set
|= ST0_MX
;
1902 change_c0_status(ST0_CU
|ST0_MX
|ST0_RE
|ST0_FR
|ST0_BEV
|ST0_TS
|ST0_KX
|ST0_SX
|ST0_UX
,
1905 if (cpu_has_mips_r2
)
1906 hwrena
|= 0x0000000f;
1908 if (!noulri
&& cpu_has_userlocal
)
1909 hwrena
|= (1 << 29);
1912 write_c0_hwrena(hwrena
);
1914 #ifdef CONFIG_MIPS_MT_SMTC
1916 #endif /* CONFIG_MIPS_MT_SMTC */
1918 if (cpu_has_veic
|| cpu_has_vint
) {
1919 unsigned long sr
= set_c0_status(ST0_BEV
);
1920 write_c0_ebase(ebase
);
1921 write_c0_status(sr
);
1922 /* Setting vector spacing enables EI/VI mode */
1923 change_c0_intctl(0x3e0, VECTORSPACING
);
1925 if (cpu_has_divec
) {
1926 if (cpu_has_mipsmt
) {
1927 unsigned int vpflags
= dvpe();
1928 set_c0_cause(CAUSEF_IV
);
1931 set_c0_cause(CAUSEF_IV
);
1935 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1937 * o read IntCtl.IPTI to determine the timer interrupt
1938 * o read IntCtl.IPPCI to determine the performance counter interrupt
1940 if (cpu_has_mips_r2
) {
1941 cp0_compare_irq_shift
= CAUSEB_TI
- CAUSEB_IP
;
1942 cp0_compare_irq
= (read_c0_intctl() >> INTCTLB_IPTI
) & 7;
1943 cp0_perfcount_irq
= (read_c0_intctl() >> INTCTLB_IPPCI
) & 7;
1944 if (cp0_perfcount_irq
== cp0_compare_irq
)
1945 cp0_perfcount_irq
= -1;
1947 cp0_compare_irq
= CP0_LEGACY_COMPARE_IRQ
;
1948 cp0_compare_irq_shift
= CP0_LEGACY_PERFCNT_IRQ
;
1949 cp0_perfcount_irq
= -1;
1952 #ifdef CONFIG_MIPS_MT_SMTC
1954 #endif /* CONFIG_MIPS_MT_SMTC */
1956 if (!cpu_data
[cpu
].asid_cache
)
1957 cpu_data
[cpu
].asid_cache
= ASID_FIRST_VERSION
;
1959 atomic_inc(&init_mm
.mm_count
);
1960 current
->active_mm
= &init_mm
;
1961 BUG_ON(current
->mm
);
1962 enter_lazy_tlb(&init_mm
, current
);
1964 #ifdef CONFIG_MIPS_MT_SMTC
1966 #endif /* CONFIG_MIPS_MT_SMTC */
1967 /* Boot CPU's cache setup in setup_arch(). */
1971 #ifdef CONFIG_MIPS_MT_SMTC
1972 } else if (!secondaryTC
) {
1974 * First TC in non-boot VPE must do subset of tlb_init()
1975 * for MMU countrol registers.
1977 write_c0_pagemask(PM_DEFAULT_MASK
);
1980 #endif /* CONFIG_MIPS_MT_SMTC */
1981 TLBMISS_HANDLER_SETUP();
1984 /* Install CPU exception handler */
1985 void set_handler(unsigned long offset
, void *addr
, unsigned long size
)
1987 #ifdef CONFIG_CPU_MICROMIPS
1988 memcpy((void *)(ebase
+ offset
), ((unsigned char *)addr
- 1), size
);
1990 memcpy((void *)(ebase
+ offset
), addr
, size
);
1992 local_flush_icache_range(ebase
+ offset
, ebase
+ offset
+ size
);
1995 static char panic_null_cerr
[] =
1996 "Trying to set NULL cache error exception handler";
1999 * Install uncached CPU exception handler.
2000 * This is suitable only for the cache error exception which is the only
2001 * exception handler that is being run uncached.
2003 void set_uncached_handler(unsigned long offset
, void *addr
,
2006 unsigned long uncached_ebase
= CKSEG1ADDR(ebase
);
2009 panic(panic_null_cerr
);
2011 memcpy((void *)(uncached_ebase
+ offset
), addr
, size
);
2014 static int __initdata rdhwr_noopt
;
2015 static int __init
set_rdhwr_noopt(char *str
)
2021 __setup("rdhwr_noopt", set_rdhwr_noopt
);
2023 void __init
trap_init(void)
2025 extern char except_vec3_generic
;
2026 extern char except_vec4
;
2027 extern char except_vec3_r4000
;
2032 #if defined(CONFIG_KGDB)
2033 if (kgdb_early_setup
)
2034 return; /* Already done */
2037 if (cpu_has_veic
|| cpu_has_vint
) {
2038 unsigned long size
= 0x200 + VECTORSPACING
*64;
2039 ebase
= (unsigned long)
2040 __alloc_bootmem(size
, 1 << fls(size
), 0);
2042 #ifdef CONFIG_KVM_GUEST
2043 #define KVM_GUEST_KSEG0 0x40000000
2044 ebase
= KVM_GUEST_KSEG0
;
2048 if (cpu_has_mips_r2
)
2049 ebase
+= (read_c0_ebase() & 0x3ffff000);
2052 if (cpu_has_mmips
) {
2053 unsigned int config3
= read_c0_config3();
2055 if (IS_ENABLED(CONFIG_CPU_MICROMIPS
))
2056 write_c0_config3(config3
| MIPS_CONF3_ISA_OE
);
2058 write_c0_config3(config3
& ~MIPS_CONF3_ISA_OE
);
2061 if (board_ebase_setup
)
2062 board_ebase_setup();
2063 per_cpu_trap_init(true);
2066 * Copy the generic exception handlers to their final destination.
2067 * This will be overriden later as suitable for a particular
2070 set_handler(0x180, &except_vec3_generic
, 0x80);
2073 * Setup default vectors
2075 for (i
= 0; i
<= 31; i
++)
2076 set_except_vector(i
, handle_reserved
);
2079 * Copy the EJTAG debug exception vector handler code to it's final
2082 if (cpu_has_ejtag
&& board_ejtag_handler_setup
)
2083 board_ejtag_handler_setup();
2086 * Only some CPUs have the watch exceptions.
2089 set_except_vector(23, handle_watch
);
2092 * Initialise interrupt handlers
2094 if (cpu_has_veic
|| cpu_has_vint
) {
2095 int nvec
= cpu_has_veic
? 64 : 8;
2096 for (i
= 0; i
< nvec
; i
++)
2097 set_vi_handler(i
, NULL
);
2099 else if (cpu_has_divec
)
2100 set_handler(0x200, &except_vec4
, 0x8);
2103 * Some CPUs can enable/disable for cache parity detection, but does
2104 * it different ways.
2106 parity_protection_init();
2109 * The Data Bus Errors / Instruction Bus Errors are signaled
2110 * by external hardware. Therefore these two exceptions
2111 * may have board specific handlers.
2116 set_except_vector(0, using_rollback_handler() ? rollback_handle_int
2118 set_except_vector(1, handle_tlbm
);
2119 set_except_vector(2, handle_tlbl
);
2120 set_except_vector(3, handle_tlbs
);
2122 set_except_vector(4, handle_adel
);
2123 set_except_vector(5, handle_ades
);
2125 set_except_vector(6, handle_ibe
);
2126 set_except_vector(7, handle_dbe
);
2128 set_except_vector(8, handle_sys
);
2129 set_except_vector(9, handle_bp
);
2130 set_except_vector(10, rdhwr_noopt
? handle_ri
:
2131 (cpu_has_vtag_icache
?
2132 handle_ri_rdhwr_vivt
: handle_ri_rdhwr
));
2133 set_except_vector(11, handle_cpu
);
2134 set_except_vector(12, handle_ov
);
2135 set_except_vector(13, handle_tr
);
2136 set_except_vector(14, handle_msa_fpe
);
2138 if (current_cpu_type() == CPU_R6000
||
2139 current_cpu_type() == CPU_R6000A
) {
2141 * The R6000 is the only R-series CPU that features a machine
2142 * check exception (similar to the R4000 cache error) and
2143 * unaligned ldc1/sdc1 exception. The handlers have not been
2144 * written yet. Well, anyway there is no R6000 machine on the
2145 * current list of targets for Linux/MIPS.
2146 * (Duh, crap, there is someone with a triple R6k machine)
2148 //set_except_vector(14, handle_mc);
2149 //set_except_vector(15, handle_ndc);
2153 if (board_nmi_handler_setup
)
2154 board_nmi_handler_setup();
2156 if (cpu_has_fpu
&& !cpu_has_nofpuex
)
2157 set_except_vector(15, handle_fpe
);
2159 set_except_vector(16, handle_ftlb
);
2160 set_except_vector(21, handle_msa
);
2161 set_except_vector(22, handle_mdmx
);
2164 set_except_vector(24, handle_mcheck
);
2167 set_except_vector(25, handle_mt
);
2169 set_except_vector(26, handle_dsp
);
2171 if (board_cache_error_setup
)
2172 board_cache_error_setup();
2175 /* Special exception: R4[04]00 uses also the divec space. */
2176 set_handler(0x180, &except_vec3_r4000
, 0x100);
2177 else if (cpu_has_4kex
)
2178 set_handler(0x180, &except_vec3_generic
, 0x80);
2180 set_handler(0x080, &except_vec3_generic
, 0x80);
2182 local_flush_icache_range(ebase
, ebase
+ 0x400);
2184 sort_extable(__start___dbe_table
, __stop___dbe_table
);
2186 cu2_notifier(default_cu2_call
, 0x80000000); /* Run last */