Linux 3.15-rc1
[linux/fpc-iii.git] / arch / mips / mm / dma-default.c
blob44b6dff5aba2a09e92715aab976c2ac37619e729
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
7 * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org>
8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
9 */
11 #include <linux/types.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/scatterlist.h>
16 #include <linux/string.h>
17 #include <linux/gfp.h>
18 #include <linux/highmem.h>
20 #include <asm/cache.h>
21 #include <asm/cpu-type.h>
22 #include <asm/io.h>
24 #include <dma-coherence.h>
26 #ifdef CONFIG_DMA_MAYBE_COHERENT
27 int coherentio = 0; /* User defined DMA coherency from command line. */
28 EXPORT_SYMBOL_GPL(coherentio);
29 int hw_coherentio = 0; /* Actual hardware supported DMA coherency setting. */
31 static int __init setcoherentio(char *str)
33 coherentio = 1;
34 pr_info("Hardware DMA cache coherency (command line)\n");
35 return 0;
37 early_param("coherentio", setcoherentio);
39 static int __init setnocoherentio(char *str)
41 coherentio = 0;
42 pr_info("Software DMA cache coherency (command line)\n");
43 return 0;
45 early_param("nocoherentio", setnocoherentio);
46 #endif
48 static inline struct page *dma_addr_to_page(struct device *dev,
49 dma_addr_t dma_addr)
51 return pfn_to_page(
52 plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
56 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
57 * speculatively fill random cachelines with stale data at any time,
58 * requiring an extra flush post-DMA.
60 * Warning on the terminology - Linux calls an uncached area coherent;
61 * MIPS terminology calls memory areas with hardware maintained coherency
62 * coherent.
64 static inline int cpu_needs_post_dma_flush(struct device *dev)
66 return !plat_device_is_coherent(dev) &&
67 (boot_cpu_type() == CPU_R10000 ||
68 boot_cpu_type() == CPU_R12000 ||
69 boot_cpu_type() == CPU_BMIPS5000);
72 static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
74 gfp_t dma_flag;
76 /* ignore region specifiers */
77 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
79 #ifdef CONFIG_ISA
80 if (dev == NULL)
81 dma_flag = __GFP_DMA;
82 else
83 #endif
84 #if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
85 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
86 dma_flag = __GFP_DMA;
87 else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
88 dma_flag = __GFP_DMA32;
89 else
90 #endif
91 #if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
92 if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
93 dma_flag = __GFP_DMA32;
94 else
95 #endif
96 #if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
97 if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
98 dma_flag = __GFP_DMA;
99 else
100 #endif
101 dma_flag = 0;
103 /* Don't invoke OOM killer */
104 gfp |= __GFP_NORETRY;
106 return gfp | dma_flag;
109 void *dma_alloc_noncoherent(struct device *dev, size_t size,
110 dma_addr_t * dma_handle, gfp_t gfp)
112 void *ret;
114 gfp = massage_gfp_flags(dev, gfp);
116 ret = (void *) __get_free_pages(gfp, get_order(size));
118 if (ret != NULL) {
119 memset(ret, 0, size);
120 *dma_handle = plat_map_dma_mem(dev, ret, size);
123 return ret;
125 EXPORT_SYMBOL(dma_alloc_noncoherent);
127 static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
128 dma_addr_t * dma_handle, gfp_t gfp, struct dma_attrs *attrs)
130 void *ret;
132 if (dma_alloc_from_coherent(dev, size, dma_handle, &ret))
133 return ret;
135 gfp = massage_gfp_flags(dev, gfp);
137 ret = (void *) __get_free_pages(gfp, get_order(size));
139 if (ret) {
140 memset(ret, 0, size);
141 *dma_handle = plat_map_dma_mem(dev, ret, size);
143 if (!plat_device_is_coherent(dev)) {
144 dma_cache_wback_inv((unsigned long) ret, size);
145 if (!hw_coherentio)
146 ret = UNCAC_ADDR(ret);
150 return ret;
154 void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
155 dma_addr_t dma_handle)
157 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
158 free_pages((unsigned long) vaddr, get_order(size));
160 EXPORT_SYMBOL(dma_free_noncoherent);
162 static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
163 dma_addr_t dma_handle, struct dma_attrs *attrs)
165 unsigned long addr = (unsigned long) vaddr;
166 int order = get_order(size);
168 if (dma_release_from_coherent(dev, order, vaddr))
169 return;
171 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
173 if (!plat_device_is_coherent(dev) && !hw_coherentio)
174 addr = CAC_ADDR(addr);
176 free_pages(addr, get_order(size));
179 static inline void __dma_sync_virtual(void *addr, size_t size,
180 enum dma_data_direction direction)
182 switch (direction) {
183 case DMA_TO_DEVICE:
184 dma_cache_wback((unsigned long)addr, size);
185 break;
187 case DMA_FROM_DEVICE:
188 dma_cache_inv((unsigned long)addr, size);
189 break;
191 case DMA_BIDIRECTIONAL:
192 dma_cache_wback_inv((unsigned long)addr, size);
193 break;
195 default:
196 BUG();
201 * A single sg entry may refer to multiple physically contiguous
202 * pages. But we still need to process highmem pages individually.
203 * If highmem is not configured then the bulk of this loop gets
204 * optimized out.
206 static inline void __dma_sync(struct page *page,
207 unsigned long offset, size_t size, enum dma_data_direction direction)
209 size_t left = size;
211 do {
212 size_t len = left;
214 if (PageHighMem(page)) {
215 void *addr;
217 if (offset + len > PAGE_SIZE) {
218 if (offset >= PAGE_SIZE) {
219 page += offset >> PAGE_SHIFT;
220 offset &= ~PAGE_MASK;
222 len = PAGE_SIZE - offset;
225 addr = kmap_atomic(page);
226 __dma_sync_virtual(addr + offset, len, direction);
227 kunmap_atomic(addr);
228 } else
229 __dma_sync_virtual(page_address(page) + offset,
230 size, direction);
231 offset = 0;
232 page++;
233 left -= len;
234 } while (left);
237 static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
238 size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
240 if (cpu_needs_post_dma_flush(dev))
241 __dma_sync(dma_addr_to_page(dev, dma_addr),
242 dma_addr & ~PAGE_MASK, size, direction);
244 plat_unmap_dma_mem(dev, dma_addr, size, direction);
247 static int mips_dma_map_sg(struct device *dev, struct scatterlist *sg,
248 int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
250 int i;
252 for (i = 0; i < nents; i++, sg++) {
253 if (!plat_device_is_coherent(dev))
254 __dma_sync(sg_page(sg), sg->offset, sg->length,
255 direction);
256 #ifdef CONFIG_NEED_SG_DMA_LENGTH
257 sg->dma_length = sg->length;
258 #endif
259 sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
260 sg->offset;
263 return nents;
266 static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
267 unsigned long offset, size_t size, enum dma_data_direction direction,
268 struct dma_attrs *attrs)
270 if (!plat_device_is_coherent(dev))
271 __dma_sync(page, offset, size, direction);
273 return plat_map_dma_mem_page(dev, page) + offset;
276 static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
277 int nhwentries, enum dma_data_direction direction,
278 struct dma_attrs *attrs)
280 int i;
282 for (i = 0; i < nhwentries; i++, sg++) {
283 if (!plat_device_is_coherent(dev) &&
284 direction != DMA_TO_DEVICE)
285 __dma_sync(sg_page(sg), sg->offset, sg->length,
286 direction);
287 plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
291 static void mips_dma_sync_single_for_cpu(struct device *dev,
292 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
294 if (cpu_needs_post_dma_flush(dev))
295 __dma_sync(dma_addr_to_page(dev, dma_handle),
296 dma_handle & ~PAGE_MASK, size, direction);
299 static void mips_dma_sync_single_for_device(struct device *dev,
300 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
302 if (!plat_device_is_coherent(dev))
303 __dma_sync(dma_addr_to_page(dev, dma_handle),
304 dma_handle & ~PAGE_MASK, size, direction);
307 static void mips_dma_sync_sg_for_cpu(struct device *dev,
308 struct scatterlist *sg, int nelems, enum dma_data_direction direction)
310 int i;
312 if (cpu_needs_post_dma_flush(dev))
313 for (i = 0; i < nelems; i++, sg++)
314 __dma_sync(sg_page(sg), sg->offset, sg->length,
315 direction);
318 static void mips_dma_sync_sg_for_device(struct device *dev,
319 struct scatterlist *sg, int nelems, enum dma_data_direction direction)
321 int i;
323 if (!plat_device_is_coherent(dev))
324 for (i = 0; i < nelems; i++, sg++)
325 __dma_sync(sg_page(sg), sg->offset, sg->length,
326 direction);
329 int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
331 return 0;
334 int mips_dma_supported(struct device *dev, u64 mask)
336 return plat_dma_supported(dev, mask);
339 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
340 enum dma_data_direction direction)
342 BUG_ON(direction == DMA_NONE);
344 if (!plat_device_is_coherent(dev))
345 __dma_sync_virtual(vaddr, size, direction);
348 EXPORT_SYMBOL(dma_cache_sync);
350 static struct dma_map_ops mips_default_dma_map_ops = {
351 .alloc = mips_dma_alloc_coherent,
352 .free = mips_dma_free_coherent,
353 .map_page = mips_dma_map_page,
354 .unmap_page = mips_dma_unmap_page,
355 .map_sg = mips_dma_map_sg,
356 .unmap_sg = mips_dma_unmap_sg,
357 .sync_single_for_cpu = mips_dma_sync_single_for_cpu,
358 .sync_single_for_device = mips_dma_sync_single_for_device,
359 .sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
360 .sync_sg_for_device = mips_dma_sync_sg_for_device,
361 .mapping_error = mips_dma_mapping_error,
362 .dma_supported = mips_dma_supported
365 struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
366 EXPORT_SYMBOL(mips_dma_map_ops);
368 #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
370 static int __init mips_dma_init(void)
372 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
374 return 0;
376 fs_initcall(mips_dma_init);