2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Synthesize TLB refill handlers at runtime.
8 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
10 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011 MIPS Technologies, Inc.
14 * ... and the days got worse and worse and now you see
15 * I've gone completly out of my mind.
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
21 * (Condolences to Napoleon XIV)
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26 #include <linux/types.h>
27 #include <linux/smp.h>
28 #include <linux/string.h>
29 #include <linux/cache.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpu-type.h>
33 #include <asm/pgtable.h>
36 #include <asm/setup.h>
39 * TLB load/store/modify handlers.
41 * Only the fastpath gets synthesized at runtime, the slowpath for
42 * do_page_fault remains normal asm.
44 extern void tlb_do_page_fault_0(void);
45 extern void tlb_do_page_fault_1(void);
47 struct work_registers
{
56 } ____cacheline_aligned_in_smp
;
58 static struct tlb_reg_save handler_reg_save
[NR_CPUS
];
60 static inline int r45k_bvahwbug(void)
62 /* XXX: We should probe for the presence of this bug, but we don't. */
66 static inline int r4k_250MHZhwbug(void)
68 /* XXX: We should probe for the presence of this bug, but we don't. */
72 static inline int __maybe_unused
bcm1250_m3_war(void)
74 return BCM1250_M3_WAR
;
77 static inline int __maybe_unused
r10000_llsc_war(void)
79 return R10000_LLSC_WAR
;
82 static int use_bbit_insns(void)
84 switch (current_cpu_type()) {
85 case CPU_CAVIUM_OCTEON
:
86 case CPU_CAVIUM_OCTEON_PLUS
:
87 case CPU_CAVIUM_OCTEON2
:
88 case CPU_CAVIUM_OCTEON3
:
95 static int use_lwx_insns(void)
97 switch (current_cpu_type()) {
98 case CPU_CAVIUM_OCTEON2
:
99 case CPU_CAVIUM_OCTEON3
:
105 #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
106 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
107 static bool scratchpad_available(void)
111 static int scratchpad_offset(int i
)
114 * CVMSEG starts at address -32768 and extends for
115 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
117 i
+= 1; /* Kernel use starts at the top and works down. */
118 return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE
* 128 - (8 * i
) - 32768;
121 static bool scratchpad_available(void)
125 static int scratchpad_offset(int i
)
128 /* Really unreachable, but evidently some GCC want this. */
133 * Found by experiment: At least some revisions of the 4kc throw under
134 * some circumstances a machine check exception, triggered by invalid
135 * values in the index register. Delaying the tlbp instruction until
136 * after the next branch, plus adding an additional nop in front of
137 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
138 * why; it's not an issue caused by the core RTL.
141 static int m4kc_tlbp_war(void)
143 return (current_cpu_data
.processor_id
& 0xffff00) ==
144 (PRID_COMP_MIPS
| PRID_IMP_4KC
);
147 /* Handle labels (which must be positive integers). */
149 label_second_part
= 1,
154 label_split
= label_tlbw_hazard_0
+ 8,
155 label_tlbl_goaround1
,
156 label_tlbl_goaround2
,
160 label_smp_pgtable_change
,
161 label_r3000_write_probe_fail
,
162 label_large_segbits_fault
,
163 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
164 label_tlb_huge_update
,
168 UASM_L_LA(_second_part
)
171 UASM_L_LA(_vmalloc_done
)
172 /* _tlbw_hazard_x is handled differently. */
174 UASM_L_LA(_tlbl_goaround1
)
175 UASM_L_LA(_tlbl_goaround2
)
176 UASM_L_LA(_nopage_tlbl
)
177 UASM_L_LA(_nopage_tlbs
)
178 UASM_L_LA(_nopage_tlbm
)
179 UASM_L_LA(_smp_pgtable_change
)
180 UASM_L_LA(_r3000_write_probe_fail
)
181 UASM_L_LA(_large_segbits_fault
)
182 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
183 UASM_L_LA(_tlb_huge_update
)
186 static int hazard_instance
;
188 static void uasm_bgezl_hazard(u32
**p
, struct uasm_reloc
**r
, int instance
)
192 uasm_il_bgezl(p
, r
, 0, label_tlbw_hazard_0
+ instance
);
199 static void uasm_bgezl_label(struct uasm_label
**l
, u32
**p
, int instance
)
203 uasm_build_label(l
, *p
, label_tlbw_hazard_0
+ instance
);
211 * pgtable bits are assigned dynamically depending on processor feature
212 * and statically based on kernel configuration. This spits out the actual
213 * values the kernel is using. Required to make sense from disassembled
214 * TLB exception handlers.
216 static void output_pgtable_bits_defines(void)
218 #define pr_define(fmt, ...) \
219 pr_debug("#define " fmt, ##__VA_ARGS__)
221 pr_debug("#include <asm/asm.h>\n");
222 pr_debug("#include <asm/regdef.h>\n");
225 pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT
);
226 pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT
);
227 pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT
);
228 pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT
);
229 pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT
);
230 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
231 pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT
);
232 pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT
);
235 #ifdef _PAGE_NO_EXEC_SHIFT
236 pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT
);
238 #ifdef _PAGE_NO_READ_SHIFT
239 pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT
);
242 pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT
);
243 pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT
);
244 pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT
);
245 pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT
);
249 static inline void dump_handler(const char *symbol
, const u32
*handler
, int count
)
253 pr_debug("LEAF(%s)\n", symbol
);
255 pr_debug("\t.set push\n");
256 pr_debug("\t.set noreorder\n");
258 for (i
= 0; i
< count
; i
++)
259 pr_debug("\t.word\t0x%08x\t\t# %p\n", handler
[i
], &handler
[i
]);
261 pr_debug("\t.set\tpop\n");
263 pr_debug("\tEND(%s)\n", symbol
);
266 /* The only general purpose registers allowed in TLB handlers. */
270 /* Some CP0 registers */
271 #define C0_INDEX 0, 0
272 #define C0_ENTRYLO0 2, 0
273 #define C0_TCBIND 2, 2
274 #define C0_ENTRYLO1 3, 0
275 #define C0_CONTEXT 4, 0
276 #define C0_PAGEMASK 5, 0
277 #define C0_BADVADDR 8, 0
278 #define C0_ENTRYHI 10, 0
280 #define C0_XCONTEXT 20, 0
283 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
285 # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
288 /* The worst case length of the handler is around 18 instructions for
289 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
290 * Maximum space available is 32 instructions for R3000 and 64
291 * instructions for R4000.
293 * We deliberately chose a buffer size of 128, so we won't scribble
294 * over anything important on overflow before we panic.
296 static u32 tlb_handler
[128];
298 /* simply assume worst case size for labels and relocs */
299 static struct uasm_label labels
[128];
300 static struct uasm_reloc relocs
[128];
302 static int check_for_high_segbits
;
304 static unsigned int kscratch_used_mask
;
306 static inline int __maybe_unused
c0_kscratch(void)
308 switch (current_cpu_type()) {
317 static int allocate_kscratch(void)
320 unsigned int a
= cpu_data
[0].kscratch_mask
& ~kscratch_used_mask
;
327 r
--; /* make it zero based */
329 kscratch_used_mask
|= (1 << r
);
334 static int scratch_reg
;
336 enum vmalloc64_mode
{not_refill
, refill_scratch
, refill_noscratch
};
338 static struct work_registers
build_get_work_registers(u32
**p
)
340 struct work_registers r
;
342 if (scratch_reg
>= 0) {
343 /* Save in CPU local C0_KScratch? */
344 UASM_i_MTC0(p
, 1, c0_kscratch(), scratch_reg
);
351 if (num_possible_cpus() > 1) {
352 /* Get smp_processor_id */
353 UASM_i_CPUID_MFC0(p
, K0
, SMP_CPUID_REG
);
354 UASM_i_SRL_SAFE(p
, K0
, K0
, SMP_CPUID_REGSHIFT
);
356 /* handler_reg_save index in K0 */
357 UASM_i_SLL(p
, K0
, K0
, ilog2(sizeof(struct tlb_reg_save
)));
359 UASM_i_LA(p
, K1
, (long)&handler_reg_save
);
360 UASM_i_ADDU(p
, K0
, K0
, K1
);
362 UASM_i_LA(p
, K0
, (long)&handler_reg_save
);
364 /* K0 now points to save area, save $1 and $2 */
365 UASM_i_SW(p
, 1, offsetof(struct tlb_reg_save
, a
), K0
);
366 UASM_i_SW(p
, 2, offsetof(struct tlb_reg_save
, b
), K0
);
374 static void build_restore_work_registers(u32
**p
)
376 if (scratch_reg
>= 0) {
377 UASM_i_MFC0(p
, 1, c0_kscratch(), scratch_reg
);
380 /* K0 already points to save area, restore $1 and $2 */
381 UASM_i_LW(p
, 1, offsetof(struct tlb_reg_save
, a
), K0
);
382 UASM_i_LW(p
, 2, offsetof(struct tlb_reg_save
, b
), K0
);
385 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
388 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
389 * we cannot do r3000 under these circumstances.
391 * Declare pgd_current here instead of including mmu_context.h to avoid type
392 * conflicts for tlbmiss_handler_setup_pgd
394 extern unsigned long pgd_current
[];
397 * The R3000 TLB handler is simple.
399 static void build_r3000_tlb_refill_handler(void)
401 long pgdc
= (long)pgd_current
;
404 memset(tlb_handler
, 0, sizeof(tlb_handler
));
407 uasm_i_mfc0(&p
, K0
, C0_BADVADDR
);
408 uasm_i_lui(&p
, K1
, uasm_rel_hi(pgdc
)); /* cp0 delay */
409 uasm_i_lw(&p
, K1
, uasm_rel_lo(pgdc
), K1
);
410 uasm_i_srl(&p
, K0
, K0
, 22); /* load delay */
411 uasm_i_sll(&p
, K0
, K0
, 2);
412 uasm_i_addu(&p
, K1
, K1
, K0
);
413 uasm_i_mfc0(&p
, K0
, C0_CONTEXT
);
414 uasm_i_lw(&p
, K1
, 0, K1
); /* cp0 delay */
415 uasm_i_andi(&p
, K0
, K0
, 0xffc); /* load delay */
416 uasm_i_addu(&p
, K1
, K1
, K0
);
417 uasm_i_lw(&p
, K0
, 0, K1
);
418 uasm_i_nop(&p
); /* load delay */
419 uasm_i_mtc0(&p
, K0
, C0_ENTRYLO0
);
420 uasm_i_mfc0(&p
, K1
, C0_EPC
); /* cp0 delay */
421 uasm_i_tlbwr(&p
); /* cp0 delay */
423 uasm_i_rfe(&p
); /* branch delay */
425 if (p
> tlb_handler
+ 32)
426 panic("TLB refill handler space exceeded");
428 pr_debug("Wrote TLB refill handler (%u instructions).\n",
429 (unsigned int)(p
- tlb_handler
));
431 memcpy((void *)ebase
, tlb_handler
, 0x80);
433 dump_handler("r3000_tlb_refill", (u32
*)ebase
, 32);
435 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
438 * The R4000 TLB handler is much more complicated. We have two
439 * consecutive handler areas with 32 instructions space each.
440 * Since they aren't used at the same time, we can overflow in the
441 * other one.To keep things simple, we first assume linear space,
442 * then we relocate it to the final handler layout as needed.
444 static u32 final_handler
[64];
449 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
450 * 2. A timing hazard exists for the TLBP instruction.
452 * stalling_instruction
455 * The JTLB is being read for the TLBP throughout the stall generated by the
456 * previous instruction. This is not really correct as the stalling instruction
457 * can modify the address used to access the JTLB. The failure symptom is that
458 * the TLBP instruction will use an address created for the stalling instruction
459 * and not the address held in C0_ENHI and thus report the wrong results.
461 * The software work-around is to not allow the instruction preceding the TLBP
462 * to stall - make it an NOP or some other instruction guaranteed not to stall.
464 * Errata 2 will not be fixed. This errata is also on the R5000.
466 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
468 static void __maybe_unused
build_tlb_probe_entry(u32
**p
)
470 switch (current_cpu_type()) {
471 /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
487 * Write random or indexed TLB entry, and care about the hazards from
488 * the preceding mtc0 and for the following eret.
490 enum tlb_write_entry
{ tlb_random
, tlb_indexed
};
492 static void build_tlb_write_entry(u32
**p
, struct uasm_label
**l
,
493 struct uasm_reloc
**r
,
494 enum tlb_write_entry wmode
)
496 void(*tlbw
)(u32
**) = NULL
;
499 case tlb_random
: tlbw
= uasm_i_tlbwr
; break;
500 case tlb_indexed
: tlbw
= uasm_i_tlbwi
; break;
503 if (cpu_has_mips_r2
) {
505 * The architecture spec says an ehb is required here,
506 * but a number of cores do not have the hazard and
507 * using an ehb causes an expensive pipeline stall.
509 switch (current_cpu_type()) {
526 switch (current_cpu_type()) {
534 * This branch uses up a mtc0 hazard nop slot and saves
535 * two nops after the tlbw instruction.
537 uasm_bgezl_hazard(p
, r
, hazard_instance
);
539 uasm_bgezl_label(l
, p
, hazard_instance
);
553 uasm_i_nop(p
); /* QED specifies 2 nops hazard */
554 uasm_i_nop(p
); /* QED specifies 2 nops hazard */
627 panic("No TLB refill handler yet (CPU type: %d)",
633 static __maybe_unused
void build_convert_pte_to_entrylo(u32
**p
,
637 UASM_i_ROTR(p
, reg
, reg
, ilog2(_PAGE_GLOBAL
));
639 #ifdef CONFIG_64BIT_PHYS_ADDR
640 uasm_i_dsrl_safe(p
, reg
, reg
, ilog2(_PAGE_GLOBAL
));
642 UASM_i_SRL(p
, reg
, reg
, ilog2(_PAGE_GLOBAL
));
647 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
649 static void build_restore_pagemask(u32
**p
, struct uasm_reloc
**r
,
650 unsigned int tmp
, enum label_id lid
,
653 if (restore_scratch
) {
654 /* Reset default page size */
655 if (PM_DEFAULT_MASK
>> 16) {
656 uasm_i_lui(p
, tmp
, PM_DEFAULT_MASK
>> 16);
657 uasm_i_ori(p
, tmp
, tmp
, PM_DEFAULT_MASK
& 0xffff);
658 uasm_i_mtc0(p
, tmp
, C0_PAGEMASK
);
659 uasm_il_b(p
, r
, lid
);
660 } else if (PM_DEFAULT_MASK
) {
661 uasm_i_ori(p
, tmp
, 0, PM_DEFAULT_MASK
);
662 uasm_i_mtc0(p
, tmp
, C0_PAGEMASK
);
663 uasm_il_b(p
, r
, lid
);
665 uasm_i_mtc0(p
, 0, C0_PAGEMASK
);
666 uasm_il_b(p
, r
, lid
);
668 if (scratch_reg
>= 0)
669 UASM_i_MFC0(p
, 1, c0_kscratch(), scratch_reg
);
671 UASM_i_LW(p
, 1, scratchpad_offset(0), 0);
673 /* Reset default page size */
674 if (PM_DEFAULT_MASK
>> 16) {
675 uasm_i_lui(p
, tmp
, PM_DEFAULT_MASK
>> 16);
676 uasm_i_ori(p
, tmp
, tmp
, PM_DEFAULT_MASK
& 0xffff);
677 uasm_il_b(p
, r
, lid
);
678 uasm_i_mtc0(p
, tmp
, C0_PAGEMASK
);
679 } else if (PM_DEFAULT_MASK
) {
680 uasm_i_ori(p
, tmp
, 0, PM_DEFAULT_MASK
);
681 uasm_il_b(p
, r
, lid
);
682 uasm_i_mtc0(p
, tmp
, C0_PAGEMASK
);
684 uasm_il_b(p
, r
, lid
);
685 uasm_i_mtc0(p
, 0, C0_PAGEMASK
);
690 static void build_huge_tlb_write_entry(u32
**p
, struct uasm_label
**l
,
691 struct uasm_reloc
**r
,
693 enum tlb_write_entry wmode
,
696 /* Set huge page tlb entry size */
697 uasm_i_lui(p
, tmp
, PM_HUGE_MASK
>> 16);
698 uasm_i_ori(p
, tmp
, tmp
, PM_HUGE_MASK
& 0xffff);
699 uasm_i_mtc0(p
, tmp
, C0_PAGEMASK
);
701 build_tlb_write_entry(p
, l
, r
, wmode
);
703 build_restore_pagemask(p
, r
, tmp
, label_leave
, restore_scratch
);
707 * Check if Huge PTE is present, if so then jump to LABEL.
710 build_is_huge_pte(u32
**p
, struct uasm_reloc
**r
, unsigned int tmp
,
711 unsigned int pmd
, int lid
)
713 UASM_i_LW(p
, tmp
, 0, pmd
);
714 if (use_bbit_insns()) {
715 uasm_il_bbit1(p
, r
, tmp
, ilog2(_PAGE_HUGE
), lid
);
717 uasm_i_andi(p
, tmp
, tmp
, _PAGE_HUGE
);
718 uasm_il_bnez(p
, r
, tmp
, lid
);
722 static void build_huge_update_entries(u32
**p
, unsigned int pte
,
728 * A huge PTE describes an area the size of the
729 * configured huge page size. This is twice the
730 * of the large TLB entry size we intend to use.
731 * A TLB entry half the size of the configured
732 * huge page size is configured into entrylo0
733 * and entrylo1 to cover the contiguous huge PTE
736 small_sequence
= (HPAGE_SIZE
>> 7) < 0x10000;
738 /* We can clobber tmp. It isn't used after this.*/
740 uasm_i_lui(p
, tmp
, HPAGE_SIZE
>> (7 + 16));
742 build_convert_pte_to_entrylo(p
, pte
);
743 UASM_i_MTC0(p
, pte
, C0_ENTRYLO0
); /* load it */
744 /* convert to entrylo1 */
746 UASM_i_ADDIU(p
, pte
, pte
, HPAGE_SIZE
>> 7);
748 UASM_i_ADDU(p
, pte
, pte
, tmp
);
750 UASM_i_MTC0(p
, pte
, C0_ENTRYLO1
); /* load it */
753 static void build_huge_handler_tail(u32
**p
, struct uasm_reloc
**r
,
754 struct uasm_label
**l
,
759 UASM_i_SC(p
, pte
, 0, ptr
);
760 uasm_il_beqz(p
, r
, pte
, label_tlb_huge_update
);
761 UASM_i_LW(p
, pte
, 0, ptr
); /* Needed because SC killed our PTE */
763 UASM_i_SW(p
, pte
, 0, ptr
);
765 build_huge_update_entries(p
, pte
, ptr
);
766 build_huge_tlb_write_entry(p
, l
, r
, pte
, tlb_indexed
, 0);
768 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
772 * TMP and PTR are scratch.
773 * TMP will be clobbered, PTR will hold the pmd entry.
776 build_get_pmde64(u32
**p
, struct uasm_label
**l
, struct uasm_reloc
**r
,
777 unsigned int tmp
, unsigned int ptr
)
779 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
780 long pgdc
= (long)pgd_current
;
783 * The vmalloc handling is not in the hotpath.
785 uasm_i_dmfc0(p
, tmp
, C0_BADVADDR
);
787 if (check_for_high_segbits
) {
789 * The kernel currently implicitely assumes that the
790 * MIPS SEGBITS parameter for the processor is
791 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
792 * allocate virtual addresses outside the maximum
793 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
794 * that doesn't prevent user code from accessing the
795 * higher xuseg addresses. Here, we make sure that
796 * everything but the lower xuseg addresses goes down
797 * the module_alloc/vmalloc path.
799 uasm_i_dsrl_safe(p
, ptr
, tmp
, PGDIR_SHIFT
+ PGD_ORDER
+ PAGE_SHIFT
- 3);
800 uasm_il_bnez(p
, r
, ptr
, label_vmalloc
);
802 uasm_il_bltz(p
, r
, tmp
, label_vmalloc
);
804 /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
807 /* pgd is in pgd_reg */
808 UASM_i_MFC0(p
, ptr
, c0_kscratch(), pgd_reg
);
810 #if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
812 * &pgd << 11 stored in CONTEXT [23..63].
814 UASM_i_MFC0(p
, ptr
, C0_CONTEXT
);
816 /* Clear lower 23 bits of context. */
817 uasm_i_dins(p
, ptr
, 0, 0, 23);
819 /* 1 0 1 0 1 << 6 xkphys cached */
820 uasm_i_ori(p
, ptr
, ptr
, 0x540);
821 uasm_i_drotr(p
, ptr
, ptr
, 11);
822 #elif defined(CONFIG_SMP)
823 UASM_i_CPUID_MFC0(p
, ptr
, SMP_CPUID_REG
);
824 uasm_i_dsrl_safe(p
, ptr
, ptr
, SMP_CPUID_PTRSHIFT
);
825 UASM_i_LA_mostly(p
, tmp
, pgdc
);
826 uasm_i_daddu(p
, ptr
, ptr
, tmp
);
827 uasm_i_dmfc0(p
, tmp
, C0_BADVADDR
);
828 uasm_i_ld(p
, ptr
, uasm_rel_lo(pgdc
), ptr
);
830 UASM_i_LA_mostly(p
, ptr
, pgdc
);
831 uasm_i_ld(p
, ptr
, uasm_rel_lo(pgdc
), ptr
);
835 uasm_l_vmalloc_done(l
, *p
);
837 /* get pgd offset in bytes */
838 uasm_i_dsrl_safe(p
, tmp
, tmp
, PGDIR_SHIFT
- 3);
840 uasm_i_andi(p
, tmp
, tmp
, (PTRS_PER_PGD
- 1)<<3);
841 uasm_i_daddu(p
, ptr
, ptr
, tmp
); /* add in pgd offset */
842 #ifndef __PAGETABLE_PMD_FOLDED
843 uasm_i_dmfc0(p
, tmp
, C0_BADVADDR
); /* get faulting address */
844 uasm_i_ld(p
, ptr
, 0, ptr
); /* get pmd pointer */
845 uasm_i_dsrl_safe(p
, tmp
, tmp
, PMD_SHIFT
-3); /* get pmd offset in bytes */
846 uasm_i_andi(p
, tmp
, tmp
, (PTRS_PER_PMD
- 1)<<3);
847 uasm_i_daddu(p
, ptr
, ptr
, tmp
); /* add in pmd offset */
852 * BVADDR is the faulting address, PTR is scratch.
853 * PTR will hold the pgd for vmalloc.
856 build_get_pgd_vmalloc64(u32
**p
, struct uasm_label
**l
, struct uasm_reloc
**r
,
857 unsigned int bvaddr
, unsigned int ptr
,
858 enum vmalloc64_mode mode
)
860 long swpd
= (long)swapper_pg_dir
;
861 int single_insn_swpd
;
862 int did_vmalloc_branch
= 0;
864 single_insn_swpd
= uasm_in_compat_space_p(swpd
) && !uasm_rel_lo(swpd
);
866 uasm_l_vmalloc(l
, *p
);
868 if (mode
!= not_refill
&& check_for_high_segbits
) {
869 if (single_insn_swpd
) {
870 uasm_il_bltz(p
, r
, bvaddr
, label_vmalloc_done
);
871 uasm_i_lui(p
, ptr
, uasm_rel_hi(swpd
));
872 did_vmalloc_branch
= 1;
875 uasm_il_bgez(p
, r
, bvaddr
, label_large_segbits_fault
);
878 if (!did_vmalloc_branch
) {
879 if (uasm_in_compat_space_p(swpd
) && !uasm_rel_lo(swpd
)) {
880 uasm_il_b(p
, r
, label_vmalloc_done
);
881 uasm_i_lui(p
, ptr
, uasm_rel_hi(swpd
));
883 UASM_i_LA_mostly(p
, ptr
, swpd
);
884 uasm_il_b(p
, r
, label_vmalloc_done
);
885 if (uasm_in_compat_space_p(swpd
))
886 uasm_i_addiu(p
, ptr
, ptr
, uasm_rel_lo(swpd
));
888 uasm_i_daddiu(p
, ptr
, ptr
, uasm_rel_lo(swpd
));
891 if (mode
!= not_refill
&& check_for_high_segbits
) {
892 uasm_l_large_segbits_fault(l
, *p
);
894 * We get here if we are an xsseg address, or if we are
895 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
897 * Ignoring xsseg (assume disabled so would generate
898 * (address errors?), the only remaining possibility
899 * is the upper xuseg addresses. On processors with
900 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
901 * addresses would have taken an address error. We try
902 * to mimic that here by taking a load/istream page
905 UASM_i_LA(p
, ptr
, (unsigned long)tlb_do_page_fault_0
);
908 if (mode
== refill_scratch
) {
909 if (scratch_reg
>= 0)
910 UASM_i_MFC0(p
, 1, c0_kscratch(), scratch_reg
);
912 UASM_i_LW(p
, 1, scratchpad_offset(0), 0);
919 #else /* !CONFIG_64BIT */
922 * TMP and PTR are scratch.
923 * TMP will be clobbered, PTR will hold the pgd entry.
925 static void __maybe_unused
926 build_get_pgde32(u32
**p
, unsigned int tmp
, unsigned int ptr
)
929 /* pgd is in pgd_reg */
930 uasm_i_mfc0(p
, ptr
, c0_kscratch(), pgd_reg
);
931 uasm_i_mfc0(p
, tmp
, C0_BADVADDR
); /* get faulting address */
933 long pgdc
= (long)pgd_current
;
935 /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
937 uasm_i_mfc0(p
, ptr
, SMP_CPUID_REG
);
938 UASM_i_LA_mostly(p
, tmp
, pgdc
);
939 uasm_i_srl(p
, ptr
, ptr
, SMP_CPUID_PTRSHIFT
);
940 uasm_i_addu(p
, ptr
, tmp
, ptr
);
942 UASM_i_LA_mostly(p
, ptr
, pgdc
);
944 uasm_i_mfc0(p
, tmp
, C0_BADVADDR
); /* get faulting address */
945 uasm_i_lw(p
, ptr
, uasm_rel_lo(pgdc
), ptr
);
947 uasm_i_srl(p
, tmp
, tmp
, PGDIR_SHIFT
); /* get pgd only bits */
948 uasm_i_sll(p
, tmp
, tmp
, PGD_T_LOG2
);
949 uasm_i_addu(p
, ptr
, ptr
, tmp
); /* add in pgd offset */
952 #endif /* !CONFIG_64BIT */
954 static void build_adjust_context(u32
**p
, unsigned int ctx
)
956 unsigned int shift
= 4 - (PTE_T_LOG2
+ 1) + PAGE_SHIFT
- 12;
957 unsigned int mask
= (PTRS_PER_PTE
/ 2 - 1) << (PTE_T_LOG2
+ 1);
959 switch (current_cpu_type()) {
976 UASM_i_SRL(p
, ctx
, ctx
, shift
);
977 uasm_i_andi(p
, ctx
, ctx
, mask
);
980 static void build_get_ptep(u32
**p
, unsigned int tmp
, unsigned int ptr
)
983 * Bug workaround for the Nevada. It seems as if under certain
984 * circumstances the move from cp0_context might produce a
985 * bogus result when the mfc0 instruction and its consumer are
986 * in a different cacheline or a load instruction, probably any
987 * memory reference, is between them.
989 switch (current_cpu_type()) {
991 UASM_i_LW(p
, ptr
, 0, ptr
);
992 GET_CONTEXT(p
, tmp
); /* get context reg */
996 GET_CONTEXT(p
, tmp
); /* get context reg */
997 UASM_i_LW(p
, ptr
, 0, ptr
);
1001 build_adjust_context(p
, tmp
);
1002 UASM_i_ADDU(p
, ptr
, ptr
, tmp
); /* add in offset */
1005 static void build_update_entries(u32
**p
, unsigned int tmp
, unsigned int ptep
)
1008 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1009 * Kernel is a special case. Only a few CPUs use it.
1011 #ifdef CONFIG_64BIT_PHYS_ADDR
1012 if (cpu_has_64bits
) {
1013 uasm_i_ld(p
, tmp
, 0, ptep
); /* get even pte */
1014 uasm_i_ld(p
, ptep
, sizeof(pte_t
), ptep
); /* get odd pte */
1016 UASM_i_ROTR(p
, tmp
, tmp
, ilog2(_PAGE_GLOBAL
));
1017 UASM_i_MTC0(p
, tmp
, C0_ENTRYLO0
); /* load it */
1018 UASM_i_ROTR(p
, ptep
, ptep
, ilog2(_PAGE_GLOBAL
));
1020 uasm_i_dsrl_safe(p
, tmp
, tmp
, ilog2(_PAGE_GLOBAL
)); /* convert to entrylo0 */
1021 UASM_i_MTC0(p
, tmp
, C0_ENTRYLO0
); /* load it */
1022 uasm_i_dsrl_safe(p
, ptep
, ptep
, ilog2(_PAGE_GLOBAL
)); /* convert to entrylo1 */
1024 UASM_i_MTC0(p
, ptep
, C0_ENTRYLO1
); /* load it */
1026 int pte_off_even
= sizeof(pte_t
) / 2;
1027 int pte_off_odd
= pte_off_even
+ sizeof(pte_t
);
1029 /* The pte entries are pre-shifted */
1030 uasm_i_lw(p
, tmp
, pte_off_even
, ptep
); /* get even pte */
1031 UASM_i_MTC0(p
, tmp
, C0_ENTRYLO0
); /* load it */
1032 uasm_i_lw(p
, ptep
, pte_off_odd
, ptep
); /* get odd pte */
1033 UASM_i_MTC0(p
, ptep
, C0_ENTRYLO1
); /* load it */
1036 UASM_i_LW(p
, tmp
, 0, ptep
); /* get even pte */
1037 UASM_i_LW(p
, ptep
, sizeof(pte_t
), ptep
); /* get odd pte */
1038 if (r45k_bvahwbug())
1039 build_tlb_probe_entry(p
);
1041 UASM_i_ROTR(p
, tmp
, tmp
, ilog2(_PAGE_GLOBAL
));
1042 if (r4k_250MHZhwbug())
1043 UASM_i_MTC0(p
, 0, C0_ENTRYLO0
);
1044 UASM_i_MTC0(p
, tmp
, C0_ENTRYLO0
); /* load it */
1045 UASM_i_ROTR(p
, ptep
, ptep
, ilog2(_PAGE_GLOBAL
));
1047 UASM_i_SRL(p
, tmp
, tmp
, ilog2(_PAGE_GLOBAL
)); /* convert to entrylo0 */
1048 if (r4k_250MHZhwbug())
1049 UASM_i_MTC0(p
, 0, C0_ENTRYLO0
);
1050 UASM_i_MTC0(p
, tmp
, C0_ENTRYLO0
); /* load it */
1051 UASM_i_SRL(p
, ptep
, ptep
, ilog2(_PAGE_GLOBAL
)); /* convert to entrylo1 */
1052 if (r45k_bvahwbug())
1053 uasm_i_mfc0(p
, tmp
, C0_INDEX
);
1055 if (r4k_250MHZhwbug())
1056 UASM_i_MTC0(p
, 0, C0_ENTRYLO1
);
1057 UASM_i_MTC0(p
, ptep
, C0_ENTRYLO1
); /* load it */
1061 struct mips_huge_tlb_info
{
1063 int restore_scratch
;
1066 static struct mips_huge_tlb_info
1067 build_fast_tlb_refill_handler (u32
**p
, struct uasm_label
**l
,
1068 struct uasm_reloc
**r
, unsigned int tmp
,
1069 unsigned int ptr
, int c0_scratch_reg
)
1071 struct mips_huge_tlb_info rv
;
1072 unsigned int even
, odd
;
1073 int vmalloc_branch_delay_filled
= 0;
1074 const int scratch
= 1; /* Our extra working register */
1076 rv
.huge_pte
= scratch
;
1077 rv
.restore_scratch
= 0;
1079 if (check_for_high_segbits
) {
1080 UASM_i_MFC0(p
, tmp
, C0_BADVADDR
);
1083 UASM_i_MFC0(p
, ptr
, c0_kscratch(), pgd_reg
);
1085 UASM_i_MFC0(p
, ptr
, C0_CONTEXT
);
1087 if (c0_scratch_reg
>= 0)
1088 UASM_i_MTC0(p
, scratch
, c0_kscratch(), c0_scratch_reg
);
1090 UASM_i_SW(p
, scratch
, scratchpad_offset(0), 0);
1092 uasm_i_dsrl_safe(p
, scratch
, tmp
,
1093 PGDIR_SHIFT
+ PGD_ORDER
+ PAGE_SHIFT
- 3);
1094 uasm_il_bnez(p
, r
, scratch
, label_vmalloc
);
1096 if (pgd_reg
== -1) {
1097 vmalloc_branch_delay_filled
= 1;
1098 /* Clear lower 23 bits of context. */
1099 uasm_i_dins(p
, ptr
, 0, 0, 23);
1103 UASM_i_MFC0(p
, ptr
, c0_kscratch(), pgd_reg
);
1105 UASM_i_MFC0(p
, ptr
, C0_CONTEXT
);
1107 UASM_i_MFC0(p
, tmp
, C0_BADVADDR
);
1109 if (c0_scratch_reg
>= 0)
1110 UASM_i_MTC0(p
, scratch
, c0_kscratch(), c0_scratch_reg
);
1112 UASM_i_SW(p
, scratch
, scratchpad_offset(0), 0);
1115 /* Clear lower 23 bits of context. */
1116 uasm_i_dins(p
, ptr
, 0, 0, 23);
1118 uasm_il_bltz(p
, r
, tmp
, label_vmalloc
);
1121 if (pgd_reg
== -1) {
1122 vmalloc_branch_delay_filled
= 1;
1123 /* 1 0 1 0 1 << 6 xkphys cached */
1124 uasm_i_ori(p
, ptr
, ptr
, 0x540);
1125 uasm_i_drotr(p
, ptr
, ptr
, 11);
1128 #ifdef __PAGETABLE_PMD_FOLDED
1129 #define LOC_PTEP scratch
1131 #define LOC_PTEP ptr
1134 if (!vmalloc_branch_delay_filled
)
1135 /* get pgd offset in bytes */
1136 uasm_i_dsrl_safe(p
, scratch
, tmp
, PGDIR_SHIFT
- 3);
1138 uasm_l_vmalloc_done(l
, *p
);
1142 * fall-through case = badvaddr *pgd_current
1143 * vmalloc case = badvaddr swapper_pg_dir
1146 if (vmalloc_branch_delay_filled
)
1147 /* get pgd offset in bytes */
1148 uasm_i_dsrl_safe(p
, scratch
, tmp
, PGDIR_SHIFT
- 3);
1150 #ifdef __PAGETABLE_PMD_FOLDED
1151 GET_CONTEXT(p
, tmp
); /* get context reg */
1153 uasm_i_andi(p
, scratch
, scratch
, (PTRS_PER_PGD
- 1) << 3);
1155 if (use_lwx_insns()) {
1156 UASM_i_LWX(p
, LOC_PTEP
, scratch
, ptr
);
1158 uasm_i_daddu(p
, ptr
, ptr
, scratch
); /* add in pgd offset */
1159 uasm_i_ld(p
, LOC_PTEP
, 0, ptr
); /* get pmd pointer */
1162 #ifndef __PAGETABLE_PMD_FOLDED
1163 /* get pmd offset in bytes */
1164 uasm_i_dsrl_safe(p
, scratch
, tmp
, PMD_SHIFT
- 3);
1165 uasm_i_andi(p
, scratch
, scratch
, (PTRS_PER_PMD
- 1) << 3);
1166 GET_CONTEXT(p
, tmp
); /* get context reg */
1168 if (use_lwx_insns()) {
1169 UASM_i_LWX(p
, scratch
, scratch
, ptr
);
1171 uasm_i_daddu(p
, ptr
, ptr
, scratch
); /* add in pmd offset */
1172 UASM_i_LW(p
, scratch
, 0, ptr
);
1175 /* Adjust the context during the load latency. */
1176 build_adjust_context(p
, tmp
);
1178 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1179 uasm_il_bbit1(p
, r
, scratch
, ilog2(_PAGE_HUGE
), label_tlb_huge_update
);
1181 * The in the LWX case we don't want to do the load in the
1182 * delay slot. It cannot issue in the same cycle and may be
1183 * speculative and unneeded.
1185 if (use_lwx_insns())
1187 #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1190 /* build_update_entries */
1191 if (use_lwx_insns()) {
1194 UASM_i_LWX(p
, even
, scratch
, tmp
);
1195 UASM_i_ADDIU(p
, tmp
, tmp
, sizeof(pte_t
));
1196 UASM_i_LWX(p
, odd
, scratch
, tmp
);
1198 UASM_i_ADDU(p
, ptr
, scratch
, tmp
); /* add in offset */
1201 UASM_i_LW(p
, even
, 0, ptr
); /* get even pte */
1202 UASM_i_LW(p
, odd
, sizeof(pte_t
), ptr
); /* get odd pte */
1205 uasm_i_drotr(p
, even
, even
, ilog2(_PAGE_GLOBAL
));
1206 UASM_i_MTC0(p
, even
, C0_ENTRYLO0
); /* load it */
1207 uasm_i_drotr(p
, odd
, odd
, ilog2(_PAGE_GLOBAL
));
1209 uasm_i_dsrl_safe(p
, even
, even
, ilog2(_PAGE_GLOBAL
));
1210 UASM_i_MTC0(p
, even
, C0_ENTRYLO0
); /* load it */
1211 uasm_i_dsrl_safe(p
, odd
, odd
, ilog2(_PAGE_GLOBAL
));
1213 UASM_i_MTC0(p
, odd
, C0_ENTRYLO1
); /* load it */
1215 if (c0_scratch_reg
>= 0) {
1216 UASM_i_MFC0(p
, scratch
, c0_kscratch(), c0_scratch_reg
);
1217 build_tlb_write_entry(p
, l
, r
, tlb_random
);
1218 uasm_l_leave(l
, *p
);
1219 rv
.restore_scratch
= 1;
1220 } else if (PAGE_SHIFT
== 14 || PAGE_SHIFT
== 13) {
1221 build_tlb_write_entry(p
, l
, r
, tlb_random
);
1222 uasm_l_leave(l
, *p
);
1223 UASM_i_LW(p
, scratch
, scratchpad_offset(0), 0);
1225 UASM_i_LW(p
, scratch
, scratchpad_offset(0), 0);
1226 build_tlb_write_entry(p
, l
, r
, tlb_random
);
1227 uasm_l_leave(l
, *p
);
1228 rv
.restore_scratch
= 1;
1231 uasm_i_eret(p
); /* return from trap */
1237 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1238 * because EXL == 0. If we wrap, we can also use the 32 instruction
1239 * slots before the XTLB refill exception handler which belong to the
1240 * unused TLB refill exception.
1242 #define MIPS64_REFILL_INSNS 32
1244 static void build_r4000_tlb_refill_handler(void)
1246 u32
*p
= tlb_handler
;
1247 struct uasm_label
*l
= labels
;
1248 struct uasm_reloc
*r
= relocs
;
1250 unsigned int final_len
;
1251 struct mips_huge_tlb_info htlb_info __maybe_unused
;
1252 enum vmalloc64_mode vmalloc_mode __maybe_unused
;
1254 memset(tlb_handler
, 0, sizeof(tlb_handler
));
1255 memset(labels
, 0, sizeof(labels
));
1256 memset(relocs
, 0, sizeof(relocs
));
1257 memset(final_handler
, 0, sizeof(final_handler
));
1259 if ((scratch_reg
>= 0 || scratchpad_available()) && use_bbit_insns()) {
1260 htlb_info
= build_fast_tlb_refill_handler(&p
, &l
, &r
, K0
, K1
,
1262 vmalloc_mode
= refill_scratch
;
1264 htlb_info
.huge_pte
= K0
;
1265 htlb_info
.restore_scratch
= 0;
1266 vmalloc_mode
= refill_noscratch
;
1268 * create the plain linear handler
1270 if (bcm1250_m3_war()) {
1271 unsigned int segbits
= 44;
1273 uasm_i_dmfc0(&p
, K0
, C0_BADVADDR
);
1274 uasm_i_dmfc0(&p
, K1
, C0_ENTRYHI
);
1275 uasm_i_xor(&p
, K0
, K0
, K1
);
1276 uasm_i_dsrl_safe(&p
, K1
, K0
, 62);
1277 uasm_i_dsrl_safe(&p
, K0
, K0
, 12 + 1);
1278 uasm_i_dsll_safe(&p
, K0
, K0
, 64 + 12 + 1 - segbits
);
1279 uasm_i_or(&p
, K0
, K0
, K1
);
1280 uasm_il_bnez(&p
, &r
, K0
, label_leave
);
1281 /* No need for uasm_i_nop */
1285 build_get_pmde64(&p
, &l
, &r
, K0
, K1
); /* get pmd in K1 */
1287 build_get_pgde32(&p
, K0
, K1
); /* get pgd in K1 */
1290 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1291 build_is_huge_pte(&p
, &r
, K0
, K1
, label_tlb_huge_update
);
1294 build_get_ptep(&p
, K0
, K1
);
1295 build_update_entries(&p
, K0
, K1
);
1296 build_tlb_write_entry(&p
, &l
, &r
, tlb_random
);
1297 uasm_l_leave(&l
, p
);
1298 uasm_i_eret(&p
); /* return from trap */
1300 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1301 uasm_l_tlb_huge_update(&l
, p
);
1302 build_huge_update_entries(&p
, htlb_info
.huge_pte
, K1
);
1303 build_huge_tlb_write_entry(&p
, &l
, &r
, K0
, tlb_random
,
1304 htlb_info
.restore_scratch
);
1308 build_get_pgd_vmalloc64(&p
, &l
, &r
, K0
, K1
, vmalloc_mode
);
1312 * Overflow check: For the 64bit handler, we need at least one
1313 * free instruction slot for the wrap-around branch. In worst
1314 * case, if the intended insertion point is a delay slot, we
1315 * need three, with the second nop'ed and the third being
1318 switch (boot_cpu_type()) {
1320 if (sizeof(long) == 4) {
1322 /* Loongson2 ebase is different than r4k, we have more space */
1323 if ((p
- tlb_handler
) > 64)
1324 panic("TLB refill handler space exceeded");
1326 * Now fold the handler in the TLB refill handler space.
1329 /* Simplest case, just copy the handler. */
1330 uasm_copy_handler(relocs
, labels
, tlb_handler
, p
, f
);
1331 final_len
= p
- tlb_handler
;
1334 if (((p
- tlb_handler
) > (MIPS64_REFILL_INSNS
* 2) - 1)
1335 || (((p
- tlb_handler
) > (MIPS64_REFILL_INSNS
* 2) - 3)
1336 && uasm_insn_has_bdelay(relocs
,
1337 tlb_handler
+ MIPS64_REFILL_INSNS
- 3)))
1338 panic("TLB refill handler space exceeded");
1340 * Now fold the handler in the TLB refill handler space.
1342 f
= final_handler
+ MIPS64_REFILL_INSNS
;
1343 if ((p
- tlb_handler
) <= MIPS64_REFILL_INSNS
) {
1344 /* Just copy the handler. */
1345 uasm_copy_handler(relocs
, labels
, tlb_handler
, p
, f
);
1346 final_len
= p
- tlb_handler
;
1348 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1349 const enum label_id ls
= label_tlb_huge_update
;
1351 const enum label_id ls
= label_vmalloc
;
1357 for (i
= 0; i
< ARRAY_SIZE(labels
) && labels
[i
].lab
!= ls
; i
++)
1359 BUG_ON(i
== ARRAY_SIZE(labels
));
1360 split
= labels
[i
].addr
;
1363 * See if we have overflown one way or the other.
1365 if (split
> tlb_handler
+ MIPS64_REFILL_INSNS
||
1366 split
< p
- MIPS64_REFILL_INSNS
)
1371 * Split two instructions before the end. One
1372 * for the branch and one for the instruction
1373 * in the delay slot.
1375 split
= tlb_handler
+ MIPS64_REFILL_INSNS
- 2;
1378 * If the branch would fall in a delay slot,
1379 * we must back up an additional instruction
1380 * so that it is no longer in a delay slot.
1382 if (uasm_insn_has_bdelay(relocs
, split
- 1))
1385 /* Copy first part of the handler. */
1386 uasm_copy_handler(relocs
, labels
, tlb_handler
, split
, f
);
1387 f
+= split
- tlb_handler
;
1390 /* Insert branch. */
1391 uasm_l_split(&l
, final_handler
);
1392 uasm_il_b(&f
, &r
, label_split
);
1393 if (uasm_insn_has_bdelay(relocs
, split
))
1396 uasm_copy_handler(relocs
, labels
,
1397 split
, split
+ 1, f
);
1398 uasm_move_labels(labels
, f
, f
+ 1, -1);
1404 /* Copy the rest of the handler. */
1405 uasm_copy_handler(relocs
, labels
, split
, p
, final_handler
);
1406 final_len
= (f
- (final_handler
+ MIPS64_REFILL_INSNS
)) +
1413 uasm_resolve_relocs(relocs
, labels
);
1414 pr_debug("Wrote TLB refill handler (%u instructions).\n",
1417 memcpy((void *)ebase
, final_handler
, 0x100);
1419 dump_handler("r4000_tlb_refill", (u32
*)ebase
, 64);
1422 extern u32 handle_tlbl
[], handle_tlbl_end
[];
1423 extern u32 handle_tlbs
[], handle_tlbs_end
[];
1424 extern u32 handle_tlbm
[], handle_tlbm_end
[];
1425 extern u32 tlbmiss_handler_setup_pgd
[], tlbmiss_handler_setup_pgd_end
[];
1427 static void build_setup_pgd(void)
1430 const int __maybe_unused a1
= 5;
1431 const int __maybe_unused a2
= 6;
1432 u32
*p
= tlbmiss_handler_setup_pgd
;
1433 const int tlbmiss_handler_setup_pgd_size
=
1434 tlbmiss_handler_setup_pgd_end
- tlbmiss_handler_setup_pgd
;
1435 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1436 long pgdc
= (long)pgd_current
;
1439 memset(tlbmiss_handler_setup_pgd
, 0, tlbmiss_handler_setup_pgd_size
*
1440 sizeof(tlbmiss_handler_setup_pgd
[0]));
1441 memset(labels
, 0, sizeof(labels
));
1442 memset(relocs
, 0, sizeof(relocs
));
1443 pgd_reg
= allocate_kscratch();
1444 #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1445 if (pgd_reg
== -1) {
1446 struct uasm_label
*l
= labels
;
1447 struct uasm_reloc
*r
= relocs
;
1449 /* PGD << 11 in c0_Context */
1451 * If it is a ckseg0 address, convert to a physical
1452 * address. Shifting right by 29 and adding 4 will
1453 * result in zero for these addresses.
1456 UASM_i_SRA(&p
, a1
, a0
, 29);
1457 UASM_i_ADDIU(&p
, a1
, a1
, 4);
1458 uasm_il_bnez(&p
, &r
, a1
, label_tlbl_goaround1
);
1460 uasm_i_dinsm(&p
, a0
, 0, 29, 64 - 29);
1461 uasm_l_tlbl_goaround1(&l
, p
);
1462 UASM_i_SLL(&p
, a0
, a0
, 11);
1464 UASM_i_MTC0(&p
, a0
, C0_CONTEXT
);
1466 /* PGD in c0_KScratch */
1468 UASM_i_MTC0(&p
, a0
, c0_kscratch(), pgd_reg
);
1472 /* Save PGD to pgd_current[smp_processor_id()] */
1473 UASM_i_CPUID_MFC0(&p
, a1
, SMP_CPUID_REG
);
1474 UASM_i_SRL_SAFE(&p
, a1
, a1
, SMP_CPUID_PTRSHIFT
);
1475 UASM_i_LA_mostly(&p
, a2
, pgdc
);
1476 UASM_i_ADDU(&p
, a2
, a2
, a1
);
1477 UASM_i_SW(&p
, a0
, uasm_rel_lo(pgdc
), a2
);
1479 UASM_i_LA_mostly(&p
, a2
, pgdc
);
1480 UASM_i_SW(&p
, a0
, uasm_rel_lo(pgdc
), a2
);
1484 /* if pgd_reg is allocated, save PGD also to scratch register */
1486 UASM_i_MTC0(&p
, a0
, c0_kscratch(), pgd_reg
);
1490 if (p
>= tlbmiss_handler_setup_pgd_end
)
1491 panic("tlbmiss_handler_setup_pgd space exceeded");
1493 uasm_resolve_relocs(relocs
, labels
);
1494 pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1495 (unsigned int)(p
- tlbmiss_handler_setup_pgd
));
1497 dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd
,
1498 tlbmiss_handler_setup_pgd_size
);
1502 iPTE_LW(u32
**p
, unsigned int pte
, unsigned int ptr
)
1505 # ifdef CONFIG_64BIT_PHYS_ADDR
1507 uasm_i_lld(p
, pte
, 0, ptr
);
1510 UASM_i_LL(p
, pte
, 0, ptr
);
1512 # ifdef CONFIG_64BIT_PHYS_ADDR
1514 uasm_i_ld(p
, pte
, 0, ptr
);
1517 UASM_i_LW(p
, pte
, 0, ptr
);
1522 iPTE_SW(u32
**p
, struct uasm_reloc
**r
, unsigned int pte
, unsigned int ptr
,
1525 #ifdef CONFIG_64BIT_PHYS_ADDR
1526 unsigned int hwmode
= mode
& (_PAGE_VALID
| _PAGE_DIRTY
);
1529 uasm_i_ori(p
, pte
, pte
, mode
);
1531 # ifdef CONFIG_64BIT_PHYS_ADDR
1533 uasm_i_scd(p
, pte
, 0, ptr
);
1536 UASM_i_SC(p
, pte
, 0, ptr
);
1538 if (r10000_llsc_war())
1539 uasm_il_beqzl(p
, r
, pte
, label_smp_pgtable_change
);
1541 uasm_il_beqz(p
, r
, pte
, label_smp_pgtable_change
);
1543 # ifdef CONFIG_64BIT_PHYS_ADDR
1544 if (!cpu_has_64bits
) {
1545 /* no uasm_i_nop needed */
1546 uasm_i_ll(p
, pte
, sizeof(pte_t
) / 2, ptr
);
1547 uasm_i_ori(p
, pte
, pte
, hwmode
);
1548 uasm_i_sc(p
, pte
, sizeof(pte_t
) / 2, ptr
);
1549 uasm_il_beqz(p
, r
, pte
, label_smp_pgtable_change
);
1550 /* no uasm_i_nop needed */
1551 uasm_i_lw(p
, pte
, 0, ptr
);
1558 # ifdef CONFIG_64BIT_PHYS_ADDR
1560 uasm_i_sd(p
, pte
, 0, ptr
);
1563 UASM_i_SW(p
, pte
, 0, ptr
);
1565 # ifdef CONFIG_64BIT_PHYS_ADDR
1566 if (!cpu_has_64bits
) {
1567 uasm_i_lw(p
, pte
, sizeof(pte_t
) / 2, ptr
);
1568 uasm_i_ori(p
, pte
, pte
, hwmode
);
1569 uasm_i_sw(p
, pte
, sizeof(pte_t
) / 2, ptr
);
1570 uasm_i_lw(p
, pte
, 0, ptr
);
1577 * Check if PTE is present, if not then jump to LABEL. PTR points to
1578 * the page table where this PTE is located, PTE will be re-loaded
1579 * with it's original value.
1582 build_pte_present(u32
**p
, struct uasm_reloc
**r
,
1583 int pte
, int ptr
, int scratch
, enum label_id lid
)
1585 int t
= scratch
>= 0 ? scratch
: pte
;
1588 if (use_bbit_insns()) {
1589 uasm_il_bbit0(p
, r
, pte
, ilog2(_PAGE_PRESENT
), lid
);
1592 uasm_i_andi(p
, t
, pte
, _PAGE_PRESENT
);
1593 uasm_il_beqz(p
, r
, t
, lid
);
1595 /* You lose the SMP race :-(*/
1596 iPTE_LW(p
, pte
, ptr
);
1599 uasm_i_andi(p
, t
, pte
, _PAGE_PRESENT
| _PAGE_READ
);
1600 uasm_i_xori(p
, t
, t
, _PAGE_PRESENT
| _PAGE_READ
);
1601 uasm_il_bnez(p
, r
, t
, lid
);
1603 /* You lose the SMP race :-(*/
1604 iPTE_LW(p
, pte
, ptr
);
1608 /* Make PTE valid, store result in PTR. */
1610 build_make_valid(u32
**p
, struct uasm_reloc
**r
, unsigned int pte
,
1613 unsigned int mode
= _PAGE_VALID
| _PAGE_ACCESSED
;
1615 iPTE_SW(p
, r
, pte
, ptr
, mode
);
1619 * Check if PTE can be written to, if not branch to LABEL. Regardless
1620 * restore PTE with value from PTR when done.
1623 build_pte_writable(u32
**p
, struct uasm_reloc
**r
,
1624 unsigned int pte
, unsigned int ptr
, int scratch
,
1627 int t
= scratch
>= 0 ? scratch
: pte
;
1629 uasm_i_andi(p
, t
, pte
, _PAGE_PRESENT
| _PAGE_WRITE
);
1630 uasm_i_xori(p
, t
, t
, _PAGE_PRESENT
| _PAGE_WRITE
);
1631 uasm_il_bnez(p
, r
, t
, lid
);
1633 /* You lose the SMP race :-(*/
1634 iPTE_LW(p
, pte
, ptr
);
1639 /* Make PTE writable, update software status bits as well, then store
1643 build_make_write(u32
**p
, struct uasm_reloc
**r
, unsigned int pte
,
1646 unsigned int mode
= (_PAGE_ACCESSED
| _PAGE_MODIFIED
| _PAGE_VALID
1649 iPTE_SW(p
, r
, pte
, ptr
, mode
);
1653 * Check if PTE can be modified, if not branch to LABEL. Regardless
1654 * restore PTE with value from PTR when done.
1657 build_pte_modifiable(u32
**p
, struct uasm_reloc
**r
,
1658 unsigned int pte
, unsigned int ptr
, int scratch
,
1661 if (use_bbit_insns()) {
1662 uasm_il_bbit0(p
, r
, pte
, ilog2(_PAGE_WRITE
), lid
);
1665 int t
= scratch
>= 0 ? scratch
: pte
;
1666 uasm_i_andi(p
, t
, pte
, _PAGE_WRITE
);
1667 uasm_il_beqz(p
, r
, t
, lid
);
1669 /* You lose the SMP race :-(*/
1670 iPTE_LW(p
, pte
, ptr
);
1674 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1678 * R3000 style TLB load/store/modify handlers.
1682 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1686 build_r3000_pte_reload_tlbwi(u32
**p
, unsigned int pte
, unsigned int tmp
)
1688 uasm_i_mtc0(p
, pte
, C0_ENTRYLO0
); /* cp0 delay */
1689 uasm_i_mfc0(p
, tmp
, C0_EPC
); /* cp0 delay */
1692 uasm_i_rfe(p
); /* branch delay */
1696 * This places the pte into ENTRYLO0 and writes it with tlbwi
1697 * or tlbwr as appropriate. This is because the index register
1698 * may have the probe fail bit set as a result of a trap on a
1699 * kseg2 access, i.e. without refill. Then it returns.
1702 build_r3000_tlb_reload_write(u32
**p
, struct uasm_label
**l
,
1703 struct uasm_reloc
**r
, unsigned int pte
,
1706 uasm_i_mfc0(p
, tmp
, C0_INDEX
);
1707 uasm_i_mtc0(p
, pte
, C0_ENTRYLO0
); /* cp0 delay */
1708 uasm_il_bltz(p
, r
, tmp
, label_r3000_write_probe_fail
); /* cp0 delay */
1709 uasm_i_mfc0(p
, tmp
, C0_EPC
); /* branch delay */
1710 uasm_i_tlbwi(p
); /* cp0 delay */
1712 uasm_i_rfe(p
); /* branch delay */
1713 uasm_l_r3000_write_probe_fail(l
, *p
);
1714 uasm_i_tlbwr(p
); /* cp0 delay */
1716 uasm_i_rfe(p
); /* branch delay */
1720 build_r3000_tlbchange_handler_head(u32
**p
, unsigned int pte
,
1723 long pgdc
= (long)pgd_current
;
1725 uasm_i_mfc0(p
, pte
, C0_BADVADDR
);
1726 uasm_i_lui(p
, ptr
, uasm_rel_hi(pgdc
)); /* cp0 delay */
1727 uasm_i_lw(p
, ptr
, uasm_rel_lo(pgdc
), ptr
);
1728 uasm_i_srl(p
, pte
, pte
, 22); /* load delay */
1729 uasm_i_sll(p
, pte
, pte
, 2);
1730 uasm_i_addu(p
, ptr
, ptr
, pte
);
1731 uasm_i_mfc0(p
, pte
, C0_CONTEXT
);
1732 uasm_i_lw(p
, ptr
, 0, ptr
); /* cp0 delay */
1733 uasm_i_andi(p
, pte
, pte
, 0xffc); /* load delay */
1734 uasm_i_addu(p
, ptr
, ptr
, pte
);
1735 uasm_i_lw(p
, pte
, 0, ptr
);
1736 uasm_i_tlbp(p
); /* load delay */
1739 static void build_r3000_tlb_load_handler(void)
1741 u32
*p
= handle_tlbl
;
1742 const int handle_tlbl_size
= handle_tlbl_end
- handle_tlbl
;
1743 struct uasm_label
*l
= labels
;
1744 struct uasm_reloc
*r
= relocs
;
1746 memset(handle_tlbl
, 0, handle_tlbl_size
* sizeof(handle_tlbl
[0]));
1747 memset(labels
, 0, sizeof(labels
));
1748 memset(relocs
, 0, sizeof(relocs
));
1750 build_r3000_tlbchange_handler_head(&p
, K0
, K1
);
1751 build_pte_present(&p
, &r
, K0
, K1
, -1, label_nopage_tlbl
);
1752 uasm_i_nop(&p
); /* load delay */
1753 build_make_valid(&p
, &r
, K0
, K1
);
1754 build_r3000_tlb_reload_write(&p
, &l
, &r
, K0
, K1
);
1756 uasm_l_nopage_tlbl(&l
, p
);
1757 uasm_i_j(&p
, (unsigned long)tlb_do_page_fault_0
& 0x0fffffff);
1760 if (p
>= handle_tlbl_end
)
1761 panic("TLB load handler fastpath space exceeded");
1763 uasm_resolve_relocs(relocs
, labels
);
1764 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1765 (unsigned int)(p
- handle_tlbl
));
1767 dump_handler("r3000_tlb_load", handle_tlbl
, handle_tlbl_size
);
1770 static void build_r3000_tlb_store_handler(void)
1772 u32
*p
= handle_tlbs
;
1773 const int handle_tlbs_size
= handle_tlbs_end
- handle_tlbs
;
1774 struct uasm_label
*l
= labels
;
1775 struct uasm_reloc
*r
= relocs
;
1777 memset(handle_tlbs
, 0, handle_tlbs_size
* sizeof(handle_tlbs
[0]));
1778 memset(labels
, 0, sizeof(labels
));
1779 memset(relocs
, 0, sizeof(relocs
));
1781 build_r3000_tlbchange_handler_head(&p
, K0
, K1
);
1782 build_pte_writable(&p
, &r
, K0
, K1
, -1, label_nopage_tlbs
);
1783 uasm_i_nop(&p
); /* load delay */
1784 build_make_write(&p
, &r
, K0
, K1
);
1785 build_r3000_tlb_reload_write(&p
, &l
, &r
, K0
, K1
);
1787 uasm_l_nopage_tlbs(&l
, p
);
1788 uasm_i_j(&p
, (unsigned long)tlb_do_page_fault_1
& 0x0fffffff);
1791 if (p
>= handle_tlbs_end
)
1792 panic("TLB store handler fastpath space exceeded");
1794 uasm_resolve_relocs(relocs
, labels
);
1795 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1796 (unsigned int)(p
- handle_tlbs
));
1798 dump_handler("r3000_tlb_store", handle_tlbs
, handle_tlbs_size
);
1801 static void build_r3000_tlb_modify_handler(void)
1803 u32
*p
= handle_tlbm
;
1804 const int handle_tlbm_size
= handle_tlbm_end
- handle_tlbm
;
1805 struct uasm_label
*l
= labels
;
1806 struct uasm_reloc
*r
= relocs
;
1808 memset(handle_tlbm
, 0, handle_tlbm_size
* sizeof(handle_tlbm
[0]));
1809 memset(labels
, 0, sizeof(labels
));
1810 memset(relocs
, 0, sizeof(relocs
));
1812 build_r3000_tlbchange_handler_head(&p
, K0
, K1
);
1813 build_pte_modifiable(&p
, &r
, K0
, K1
, -1, label_nopage_tlbm
);
1814 uasm_i_nop(&p
); /* load delay */
1815 build_make_write(&p
, &r
, K0
, K1
);
1816 build_r3000_pte_reload_tlbwi(&p
, K0
, K1
);
1818 uasm_l_nopage_tlbm(&l
, p
);
1819 uasm_i_j(&p
, (unsigned long)tlb_do_page_fault_1
& 0x0fffffff);
1822 if (p
>= handle_tlbm_end
)
1823 panic("TLB modify handler fastpath space exceeded");
1825 uasm_resolve_relocs(relocs
, labels
);
1826 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1827 (unsigned int)(p
- handle_tlbm
));
1829 dump_handler("r3000_tlb_modify", handle_tlbm
, handle_tlbm_size
);
1831 #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1834 * R4000 style TLB load/store/modify handlers.
1836 static struct work_registers
1837 build_r4000_tlbchange_handler_head(u32
**p
, struct uasm_label
**l
,
1838 struct uasm_reloc
**r
)
1840 struct work_registers wr
= build_get_work_registers(p
);
1843 build_get_pmde64(p
, l
, r
, wr
.r1
, wr
.r2
); /* get pmd in ptr */
1845 build_get_pgde32(p
, wr
.r1
, wr
.r2
); /* get pgd in ptr */
1848 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1850 * For huge tlb entries, pmd doesn't contain an address but
1851 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1852 * see if we need to jump to huge tlb processing.
1854 build_is_huge_pte(p
, r
, wr
.r1
, wr
.r2
, label_tlb_huge_update
);
1857 UASM_i_MFC0(p
, wr
.r1
, C0_BADVADDR
);
1858 UASM_i_LW(p
, wr
.r2
, 0, wr
.r2
);
1859 UASM_i_SRL(p
, wr
.r1
, wr
.r1
, PAGE_SHIFT
+ PTE_ORDER
- PTE_T_LOG2
);
1860 uasm_i_andi(p
, wr
.r1
, wr
.r1
, (PTRS_PER_PTE
- 1) << PTE_T_LOG2
);
1861 UASM_i_ADDU(p
, wr
.r2
, wr
.r2
, wr
.r1
);
1864 uasm_l_smp_pgtable_change(l
, *p
);
1866 iPTE_LW(p
, wr
.r1
, wr
.r2
); /* get even pte */
1867 if (!m4kc_tlbp_war())
1868 build_tlb_probe_entry(p
);
1873 build_r4000_tlbchange_handler_tail(u32
**p
, struct uasm_label
**l
,
1874 struct uasm_reloc
**r
, unsigned int tmp
,
1877 uasm_i_ori(p
, ptr
, ptr
, sizeof(pte_t
));
1878 uasm_i_xori(p
, ptr
, ptr
, sizeof(pte_t
));
1879 build_update_entries(p
, tmp
, ptr
);
1880 build_tlb_write_entry(p
, l
, r
, tlb_indexed
);
1881 uasm_l_leave(l
, *p
);
1882 build_restore_work_registers(p
);
1883 uasm_i_eret(p
); /* return from trap */
1886 build_get_pgd_vmalloc64(p
, l
, r
, tmp
, ptr
, not_refill
);
1890 static void build_r4000_tlb_load_handler(void)
1892 u32
*p
= handle_tlbl
;
1893 const int handle_tlbl_size
= handle_tlbl_end
- handle_tlbl
;
1894 struct uasm_label
*l
= labels
;
1895 struct uasm_reloc
*r
= relocs
;
1896 struct work_registers wr
;
1898 memset(handle_tlbl
, 0, handle_tlbl_size
* sizeof(handle_tlbl
[0]));
1899 memset(labels
, 0, sizeof(labels
));
1900 memset(relocs
, 0, sizeof(relocs
));
1902 if (bcm1250_m3_war()) {
1903 unsigned int segbits
= 44;
1905 uasm_i_dmfc0(&p
, K0
, C0_BADVADDR
);
1906 uasm_i_dmfc0(&p
, K1
, C0_ENTRYHI
);
1907 uasm_i_xor(&p
, K0
, K0
, K1
);
1908 uasm_i_dsrl_safe(&p
, K1
, K0
, 62);
1909 uasm_i_dsrl_safe(&p
, K0
, K0
, 12 + 1);
1910 uasm_i_dsll_safe(&p
, K0
, K0
, 64 + 12 + 1 - segbits
);
1911 uasm_i_or(&p
, K0
, K0
, K1
);
1912 uasm_il_bnez(&p
, &r
, K0
, label_leave
);
1913 /* No need for uasm_i_nop */
1916 wr
= build_r4000_tlbchange_handler_head(&p
, &l
, &r
);
1917 build_pte_present(&p
, &r
, wr
.r1
, wr
.r2
, wr
.r3
, label_nopage_tlbl
);
1918 if (m4kc_tlbp_war())
1919 build_tlb_probe_entry(&p
);
1923 * If the page is not _PAGE_VALID, RI or XI could not
1924 * have triggered it. Skip the expensive test..
1926 if (use_bbit_insns()) {
1927 uasm_il_bbit0(&p
, &r
, wr
.r1
, ilog2(_PAGE_VALID
),
1928 label_tlbl_goaround1
);
1930 uasm_i_andi(&p
, wr
.r3
, wr
.r1
, _PAGE_VALID
);
1931 uasm_il_beqz(&p
, &r
, wr
.r3
, label_tlbl_goaround1
);
1937 switch (current_cpu_type()) {
1939 if (cpu_has_mips_r2
) {
1942 case CPU_CAVIUM_OCTEON
:
1943 case CPU_CAVIUM_OCTEON_PLUS
:
1944 case CPU_CAVIUM_OCTEON2
:
1949 /* Examine entrylo 0 or 1 based on ptr. */
1950 if (use_bbit_insns()) {
1951 uasm_i_bbit0(&p
, wr
.r2
, ilog2(sizeof(pte_t
)), 8);
1953 uasm_i_andi(&p
, wr
.r3
, wr
.r2
, sizeof(pte_t
));
1954 uasm_i_beqz(&p
, wr
.r3
, 8);
1956 /* load it in the delay slot*/
1957 UASM_i_MFC0(&p
, wr
.r3
, C0_ENTRYLO0
);
1958 /* load it if ptr is odd */
1959 UASM_i_MFC0(&p
, wr
.r3
, C0_ENTRYLO1
);
1961 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1962 * XI must have triggered it.
1964 if (use_bbit_insns()) {
1965 uasm_il_bbit1(&p
, &r
, wr
.r3
, 1, label_nopage_tlbl
);
1967 uasm_l_tlbl_goaround1(&l
, p
);
1969 uasm_i_andi(&p
, wr
.r3
, wr
.r3
, 2);
1970 uasm_il_bnez(&p
, &r
, wr
.r3
, label_nopage_tlbl
);
1973 uasm_l_tlbl_goaround1(&l
, p
);
1975 build_make_valid(&p
, &r
, wr
.r1
, wr
.r2
);
1976 build_r4000_tlbchange_handler_tail(&p
, &l
, &r
, wr
.r1
, wr
.r2
);
1978 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1980 * This is the entry point when build_r4000_tlbchange_handler_head
1981 * spots a huge page.
1983 uasm_l_tlb_huge_update(&l
, p
);
1984 iPTE_LW(&p
, wr
.r1
, wr
.r2
);
1985 build_pte_present(&p
, &r
, wr
.r1
, wr
.r2
, wr
.r3
, label_nopage_tlbl
);
1986 build_tlb_probe_entry(&p
);
1990 * If the page is not _PAGE_VALID, RI or XI could not
1991 * have triggered it. Skip the expensive test..
1993 if (use_bbit_insns()) {
1994 uasm_il_bbit0(&p
, &r
, wr
.r1
, ilog2(_PAGE_VALID
),
1995 label_tlbl_goaround2
);
1997 uasm_i_andi(&p
, wr
.r3
, wr
.r1
, _PAGE_VALID
);
1998 uasm_il_beqz(&p
, &r
, wr
.r3
, label_tlbl_goaround2
);
2004 switch (current_cpu_type()) {
2006 if (cpu_has_mips_r2
) {
2009 case CPU_CAVIUM_OCTEON
:
2010 case CPU_CAVIUM_OCTEON_PLUS
:
2011 case CPU_CAVIUM_OCTEON2
:
2016 /* Examine entrylo 0 or 1 based on ptr. */
2017 if (use_bbit_insns()) {
2018 uasm_i_bbit0(&p
, wr
.r2
, ilog2(sizeof(pte_t
)), 8);
2020 uasm_i_andi(&p
, wr
.r3
, wr
.r2
, sizeof(pte_t
));
2021 uasm_i_beqz(&p
, wr
.r3
, 8);
2023 /* load it in the delay slot*/
2024 UASM_i_MFC0(&p
, wr
.r3
, C0_ENTRYLO0
);
2025 /* load it if ptr is odd */
2026 UASM_i_MFC0(&p
, wr
.r3
, C0_ENTRYLO1
);
2028 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2029 * XI must have triggered it.
2031 if (use_bbit_insns()) {
2032 uasm_il_bbit0(&p
, &r
, wr
.r3
, 1, label_tlbl_goaround2
);
2034 uasm_i_andi(&p
, wr
.r3
, wr
.r3
, 2);
2035 uasm_il_beqz(&p
, &r
, wr
.r3
, label_tlbl_goaround2
);
2037 if (PM_DEFAULT_MASK
== 0)
2040 * We clobbered C0_PAGEMASK, restore it. On the other branch
2041 * it is restored in build_huge_tlb_write_entry.
2043 build_restore_pagemask(&p
, &r
, wr
.r3
, label_nopage_tlbl
, 0);
2045 uasm_l_tlbl_goaround2(&l
, p
);
2047 uasm_i_ori(&p
, wr
.r1
, wr
.r1
, (_PAGE_ACCESSED
| _PAGE_VALID
));
2048 build_huge_handler_tail(&p
, &r
, &l
, wr
.r1
, wr
.r2
);
2051 uasm_l_nopage_tlbl(&l
, p
);
2052 build_restore_work_registers(&p
);
2053 #ifdef CONFIG_CPU_MICROMIPS
2054 if ((unsigned long)tlb_do_page_fault_0
& 1) {
2055 uasm_i_lui(&p
, K0
, uasm_rel_hi((long)tlb_do_page_fault_0
));
2056 uasm_i_addiu(&p
, K0
, K0
, uasm_rel_lo((long)tlb_do_page_fault_0
));
2060 uasm_i_j(&p
, (unsigned long)tlb_do_page_fault_0
& 0x0fffffff);
2063 if (p
>= handle_tlbl_end
)
2064 panic("TLB load handler fastpath space exceeded");
2066 uasm_resolve_relocs(relocs
, labels
);
2067 pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2068 (unsigned int)(p
- handle_tlbl
));
2070 dump_handler("r4000_tlb_load", handle_tlbl
, handle_tlbl_size
);
2073 static void build_r4000_tlb_store_handler(void)
2075 u32
*p
= handle_tlbs
;
2076 const int handle_tlbs_size
= handle_tlbs_end
- handle_tlbs
;
2077 struct uasm_label
*l
= labels
;
2078 struct uasm_reloc
*r
= relocs
;
2079 struct work_registers wr
;
2081 memset(handle_tlbs
, 0, handle_tlbs_size
* sizeof(handle_tlbs
[0]));
2082 memset(labels
, 0, sizeof(labels
));
2083 memset(relocs
, 0, sizeof(relocs
));
2085 wr
= build_r4000_tlbchange_handler_head(&p
, &l
, &r
);
2086 build_pte_writable(&p
, &r
, wr
.r1
, wr
.r2
, wr
.r3
, label_nopage_tlbs
);
2087 if (m4kc_tlbp_war())
2088 build_tlb_probe_entry(&p
);
2089 build_make_write(&p
, &r
, wr
.r1
, wr
.r2
);
2090 build_r4000_tlbchange_handler_tail(&p
, &l
, &r
, wr
.r1
, wr
.r2
);
2092 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2094 * This is the entry point when
2095 * build_r4000_tlbchange_handler_head spots a huge page.
2097 uasm_l_tlb_huge_update(&l
, p
);
2098 iPTE_LW(&p
, wr
.r1
, wr
.r2
);
2099 build_pte_writable(&p
, &r
, wr
.r1
, wr
.r2
, wr
.r3
, label_nopage_tlbs
);
2100 build_tlb_probe_entry(&p
);
2101 uasm_i_ori(&p
, wr
.r1
, wr
.r1
,
2102 _PAGE_ACCESSED
| _PAGE_MODIFIED
| _PAGE_VALID
| _PAGE_DIRTY
);
2103 build_huge_handler_tail(&p
, &r
, &l
, wr
.r1
, wr
.r2
);
2106 uasm_l_nopage_tlbs(&l
, p
);
2107 build_restore_work_registers(&p
);
2108 #ifdef CONFIG_CPU_MICROMIPS
2109 if ((unsigned long)tlb_do_page_fault_1
& 1) {
2110 uasm_i_lui(&p
, K0
, uasm_rel_hi((long)tlb_do_page_fault_1
));
2111 uasm_i_addiu(&p
, K0
, K0
, uasm_rel_lo((long)tlb_do_page_fault_1
));
2115 uasm_i_j(&p
, (unsigned long)tlb_do_page_fault_1
& 0x0fffffff);
2118 if (p
>= handle_tlbs_end
)
2119 panic("TLB store handler fastpath space exceeded");
2121 uasm_resolve_relocs(relocs
, labels
);
2122 pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2123 (unsigned int)(p
- handle_tlbs
));
2125 dump_handler("r4000_tlb_store", handle_tlbs
, handle_tlbs_size
);
2128 static void build_r4000_tlb_modify_handler(void)
2130 u32
*p
= handle_tlbm
;
2131 const int handle_tlbm_size
= handle_tlbm_end
- handle_tlbm
;
2132 struct uasm_label
*l
= labels
;
2133 struct uasm_reloc
*r
= relocs
;
2134 struct work_registers wr
;
2136 memset(handle_tlbm
, 0, handle_tlbm_size
* sizeof(handle_tlbm
[0]));
2137 memset(labels
, 0, sizeof(labels
));
2138 memset(relocs
, 0, sizeof(relocs
));
2140 wr
= build_r4000_tlbchange_handler_head(&p
, &l
, &r
);
2141 build_pte_modifiable(&p
, &r
, wr
.r1
, wr
.r2
, wr
.r3
, label_nopage_tlbm
);
2142 if (m4kc_tlbp_war())
2143 build_tlb_probe_entry(&p
);
2144 /* Present and writable bits set, set accessed and dirty bits. */
2145 build_make_write(&p
, &r
, wr
.r1
, wr
.r2
);
2146 build_r4000_tlbchange_handler_tail(&p
, &l
, &r
, wr
.r1
, wr
.r2
);
2148 #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2150 * This is the entry point when
2151 * build_r4000_tlbchange_handler_head spots a huge page.
2153 uasm_l_tlb_huge_update(&l
, p
);
2154 iPTE_LW(&p
, wr
.r1
, wr
.r2
);
2155 build_pte_modifiable(&p
, &r
, wr
.r1
, wr
.r2
, wr
.r3
, label_nopage_tlbm
);
2156 build_tlb_probe_entry(&p
);
2157 uasm_i_ori(&p
, wr
.r1
, wr
.r1
,
2158 _PAGE_ACCESSED
| _PAGE_MODIFIED
| _PAGE_VALID
| _PAGE_DIRTY
);
2159 build_huge_handler_tail(&p
, &r
, &l
, wr
.r1
, wr
.r2
);
2162 uasm_l_nopage_tlbm(&l
, p
);
2163 build_restore_work_registers(&p
);
2164 #ifdef CONFIG_CPU_MICROMIPS
2165 if ((unsigned long)tlb_do_page_fault_1
& 1) {
2166 uasm_i_lui(&p
, K0
, uasm_rel_hi((long)tlb_do_page_fault_1
));
2167 uasm_i_addiu(&p
, K0
, K0
, uasm_rel_lo((long)tlb_do_page_fault_1
));
2171 uasm_i_j(&p
, (unsigned long)tlb_do_page_fault_1
& 0x0fffffff);
2174 if (p
>= handle_tlbm_end
)
2175 panic("TLB modify handler fastpath space exceeded");
2177 uasm_resolve_relocs(relocs
, labels
);
2178 pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2179 (unsigned int)(p
- handle_tlbm
));
2181 dump_handler("r4000_tlb_modify", handle_tlbm
, handle_tlbm_size
);
2184 static void flush_tlb_handlers(void)
2186 local_flush_icache_range((unsigned long)handle_tlbl
,
2187 (unsigned long)handle_tlbl_end
);
2188 local_flush_icache_range((unsigned long)handle_tlbs
,
2189 (unsigned long)handle_tlbs_end
);
2190 local_flush_icache_range((unsigned long)handle_tlbm
,
2191 (unsigned long)handle_tlbm_end
);
2192 local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd
,
2193 (unsigned long)tlbmiss_handler_setup_pgd_end
);
2196 void build_tlb_refill_handler(void)
2199 * The refill handler is generated per-CPU, multi-node systems
2200 * may have local storage for it. The other handlers are only
2203 static int run_once
= 0;
2205 output_pgtable_bits_defines();
2208 check_for_high_segbits
= current_cpu_data
.vmbits
> (PGDIR_SHIFT
+ PGD_ORDER
+ PAGE_SHIFT
- 3);
2211 switch (current_cpu_type()) {
2219 #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2220 if (cpu_has_local_ebase
)
2221 build_r3000_tlb_refill_handler();
2223 if (!cpu_has_local_ebase
)
2224 build_r3000_tlb_refill_handler();
2226 build_r3000_tlb_load_handler();
2227 build_r3000_tlb_store_handler();
2228 build_r3000_tlb_modify_handler();
2229 flush_tlb_handlers();
2233 panic("No R3000 TLB refill handler");
2239 panic("No R6000 TLB refill handler yet");
2243 panic("No R8000 TLB refill handler yet");
2248 scratch_reg
= allocate_kscratch();
2250 build_r4000_tlb_load_handler();
2251 build_r4000_tlb_store_handler();
2252 build_r4000_tlb_modify_handler();
2253 if (!cpu_has_local_ebase
)
2254 build_r4000_tlb_refill_handler();
2255 flush_tlb_handlers();
2258 if (cpu_has_local_ebase
)
2259 build_r4000_tlb_refill_handler();