2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * A small micro-assembler. It is intentionally kept simple, does only
7 * support a subset of instructions, and does not try to hide pipeline
8 * effects like branch delay slots.
10 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
11 * Copyright (C) 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
13 * Copyright (C) 2012, 2013 MIPS Technologies, Inc. All rights reserved.
16 #include <linux/kernel.h>
17 #include <linux/types.h>
22 #define UASM_ISA _UASM_ISA_CLASSIC
29 #define SCIMM_MASK 0xfffff
32 /* This macro sets the non-variable bits of an instruction. */
33 #define M(a, b, c, d, e, f) \
41 /* Define these when we are not the ISA the kernel is being compiled with. */
42 #ifdef CONFIG_CPU_MICROMIPS
43 #define CL_uasm_i_b(buf, off) ISAOPC(_beq)(buf, 0, 0, off)
44 #define CL_uasm_i_beqz(buf, rs, off) ISAOPC(_beq)(buf, rs, 0, off)
45 #define CL_uasm_i_beqzl(buf, rs, off) ISAOPC(_beql)(buf, rs, 0, off)
46 #define CL_uasm_i_bnez(buf, rs, off) ISAOPC(_bne)(buf, rs, 0, off)
51 static struct insn insn_table
[] = {
52 { insn_addiu
, M(addiu_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
53 { insn_addu
, M(spec_op
, 0, 0, 0, 0, addu_op
), RS
| RT
| RD
},
54 { insn_andi
, M(andi_op
, 0, 0, 0, 0, 0), RS
| RT
| UIMM
},
55 { insn_and
, M(spec_op
, 0, 0, 0, 0, and_op
), RS
| RT
| RD
},
56 { insn_bbit0
, M(lwc2_op
, 0, 0, 0, 0, 0), RS
| RT
| BIMM
},
57 { insn_bbit1
, M(swc2_op
, 0, 0, 0, 0, 0), RS
| RT
| BIMM
},
58 { insn_beql
, M(beql_op
, 0, 0, 0, 0, 0), RS
| RT
| BIMM
},
59 { insn_beq
, M(beq_op
, 0, 0, 0, 0, 0), RS
| RT
| BIMM
},
60 { insn_bgezl
, M(bcond_op
, 0, bgezl_op
, 0, 0, 0), RS
| BIMM
},
61 { insn_bgez
, M(bcond_op
, 0, bgez_op
, 0, 0, 0), RS
| BIMM
},
62 { insn_bltzl
, M(bcond_op
, 0, bltzl_op
, 0, 0, 0), RS
| BIMM
},
63 { insn_bltz
, M(bcond_op
, 0, bltz_op
, 0, 0, 0), RS
| BIMM
},
64 { insn_bne
, M(bne_op
, 0, 0, 0, 0, 0), RS
| RT
| BIMM
},
65 { insn_cache
, M(cache_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
66 { insn_daddiu
, M(daddiu_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
67 { insn_daddu
, M(spec_op
, 0, 0, 0, 0, daddu_op
), RS
| RT
| RD
},
68 { insn_dinsm
, M(spec3_op
, 0, 0, 0, 0, dinsm_op
), RS
| RT
| RD
| RE
},
69 { insn_dins
, M(spec3_op
, 0, 0, 0, 0, dins_op
), RS
| RT
| RD
| RE
},
70 { insn_dmfc0
, M(cop0_op
, dmfc_op
, 0, 0, 0, 0), RT
| RD
| SET
},
71 { insn_dmtc0
, M(cop0_op
, dmtc_op
, 0, 0, 0, 0), RT
| RD
| SET
},
72 { insn_drotr32
, M(spec_op
, 1, 0, 0, 0, dsrl32_op
), RT
| RD
| RE
},
73 { insn_drotr
, M(spec_op
, 1, 0, 0, 0, dsrl_op
), RT
| RD
| RE
},
74 { insn_dsll32
, M(spec_op
, 0, 0, 0, 0, dsll32_op
), RT
| RD
| RE
},
75 { insn_dsll
, M(spec_op
, 0, 0, 0, 0, dsll_op
), RT
| RD
| RE
},
76 { insn_dsra
, M(spec_op
, 0, 0, 0, 0, dsra_op
), RT
| RD
| RE
},
77 { insn_dsrl32
, M(spec_op
, 0, 0, 0, 0, dsrl32_op
), RT
| RD
| RE
},
78 { insn_dsrl
, M(spec_op
, 0, 0, 0, 0, dsrl_op
), RT
| RD
| RE
},
79 { insn_dsubu
, M(spec_op
, 0, 0, 0, 0, dsubu_op
), RS
| RT
| RD
},
80 { insn_eret
, M(cop0_op
, cop_op
, 0, 0, 0, eret_op
), 0 },
81 { insn_ext
, M(spec3_op
, 0, 0, 0, 0, ext_op
), RS
| RT
| RD
| RE
},
82 { insn_ins
, M(spec3_op
, 0, 0, 0, 0, ins_op
), RS
| RT
| RD
| RE
},
83 { insn_j
, M(j_op
, 0, 0, 0, 0, 0), JIMM
},
84 { insn_jal
, M(jal_op
, 0, 0, 0, 0, 0), JIMM
},
85 { insn_j
, M(j_op
, 0, 0, 0, 0, 0), JIMM
},
86 { insn_jr
, M(spec_op
, 0, 0, 0, 0, jr_op
), RS
},
87 { insn_ld
, M(ld_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
88 { insn_ldx
, M(spec3_op
, 0, 0, 0, ldx_op
, lx_op
), RS
| RT
| RD
},
89 { insn_lld
, M(lld_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
90 { insn_ll
, M(ll_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
91 { insn_lui
, M(lui_op
, 0, 0, 0, 0, 0), RT
| SIMM
},
92 { insn_lw
, M(lw_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
93 { insn_lwx
, M(spec3_op
, 0, 0, 0, lwx_op
, lx_op
), RS
| RT
| RD
},
94 { insn_mfc0
, M(cop0_op
, mfc_op
, 0, 0, 0, 0), RT
| RD
| SET
},
95 { insn_mtc0
, M(cop0_op
, mtc_op
, 0, 0, 0, 0), RT
| RD
| SET
},
96 { insn_ori
, M(ori_op
, 0, 0, 0, 0, 0), RS
| RT
| UIMM
},
97 { insn_or
, M(spec_op
, 0, 0, 0, 0, or_op
), RS
| RT
| RD
},
98 { insn_pref
, M(pref_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
99 { insn_rfe
, M(cop0_op
, cop_op
, 0, 0, 0, rfe_op
), 0 },
100 { insn_rotr
, M(spec_op
, 1, 0, 0, 0, srl_op
), RT
| RD
| RE
},
101 { insn_scd
, M(scd_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
102 { insn_sc
, M(sc_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
103 { insn_sd
, M(sd_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
104 { insn_sll
, M(spec_op
, 0, 0, 0, 0, sll_op
), RT
| RD
| RE
},
105 { insn_sra
, M(spec_op
, 0, 0, 0, 0, sra_op
), RT
| RD
| RE
},
106 { insn_srl
, M(spec_op
, 0, 0, 0, 0, srl_op
), RT
| RD
| RE
},
107 { insn_subu
, M(spec_op
, 0, 0, 0, 0, subu_op
), RS
| RT
| RD
},
108 { insn_sw
, M(sw_op
, 0, 0, 0, 0, 0), RS
| RT
| SIMM
},
109 { insn_syscall
, M(spec_op
, 0, 0, 0, 0, syscall_op
), SCIMM
},
110 { insn_tlbp
, M(cop0_op
, cop_op
, 0, 0, 0, tlbp_op
), 0 },
111 { insn_tlbr
, M(cop0_op
, cop_op
, 0, 0, 0, tlbr_op
), 0 },
112 { insn_tlbwi
, M(cop0_op
, cop_op
, 0, 0, 0, tlbwi_op
), 0 },
113 { insn_tlbwr
, M(cop0_op
, cop_op
, 0, 0, 0, tlbwr_op
), 0 },
114 { insn_xori
, M(xori_op
, 0, 0, 0, 0, 0), RS
| RT
| UIMM
},
115 { insn_xor
, M(spec_op
, 0, 0, 0, 0, xor_op
), RS
| RT
| RD
},
116 { insn_invalid
, 0, 0 }
121 static inline u32
build_bimm(s32 arg
)
123 WARN(arg
> 0x1ffff || arg
< -0x20000,
124 KERN_WARNING
"Micro-assembler field overflow\n");
126 WARN(arg
& 0x3, KERN_WARNING
"Invalid micro-assembler branch target\n");
128 return ((arg
< 0) ? (1 << 15) : 0) | ((arg
>> 2) & 0x7fff);
131 static inline u32
build_jimm(u32 arg
)
133 WARN(arg
& ~(JIMM_MASK
<< 2),
134 KERN_WARNING
"Micro-assembler field overflow\n");
136 return (arg
>> 2) & JIMM_MASK
;
140 * The order of opcode arguments is implicitly left to right,
141 * starting with RS and ending with FUNC or IMM.
143 static void build_insn(u32
**buf
, enum opcode opc
, ...)
145 struct insn
*ip
= NULL
;
150 for (i
= 0; insn_table
[i
].opcode
!= insn_invalid
; i
++)
151 if (insn_table
[i
].opcode
== opc
) {
156 if (!ip
|| (opc
== insn_daddiu
&& r4k_daddiu_bug()))
157 panic("Unsupported Micro-assembler instruction %d", opc
);
162 op
|= build_rs(va_arg(ap
, u32
));
164 op
|= build_rt(va_arg(ap
, u32
));
166 op
|= build_rd(va_arg(ap
, u32
));
168 op
|= build_re(va_arg(ap
, u32
));
169 if (ip
->fields
& SIMM
)
170 op
|= build_simm(va_arg(ap
, s32
));
171 if (ip
->fields
& UIMM
)
172 op
|= build_uimm(va_arg(ap
, u32
));
173 if (ip
->fields
& BIMM
)
174 op
|= build_bimm(va_arg(ap
, s32
));
175 if (ip
->fields
& JIMM
)
176 op
|= build_jimm(va_arg(ap
, u32
));
177 if (ip
->fields
& FUNC
)
178 op
|= build_func(va_arg(ap
, u32
));
179 if (ip
->fields
& SET
)
180 op
|= build_set(va_arg(ap
, u32
));
181 if (ip
->fields
& SCIMM
)
182 op
|= build_scimm(va_arg(ap
, u32
));
190 __resolve_relocs(struct uasm_reloc
*rel
, struct uasm_label
*lab
)
192 long laddr
= (long)lab
->addr
;
193 long raddr
= (long)rel
->addr
;
197 *rel
->addr
|= build_bimm(laddr
- (raddr
+ 4));
201 panic("Unsupported Micro-assembler relocation %d",