2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/vmalloc.h>
24 #include "transaction.h"
25 #include "delayed-ref.h"
28 struct extent_inode_elem
{
31 struct extent_inode_elem
*next
;
34 static int check_extent_in_eb(struct btrfs_key
*key
, struct extent_buffer
*eb
,
35 struct btrfs_file_extent_item
*fi
,
37 struct extent_inode_elem
**eie
)
40 struct extent_inode_elem
*e
;
42 if (!btrfs_file_extent_compression(eb
, fi
) &&
43 !btrfs_file_extent_encryption(eb
, fi
) &&
44 !btrfs_file_extent_other_encoding(eb
, fi
)) {
48 data_offset
= btrfs_file_extent_offset(eb
, fi
);
49 data_len
= btrfs_file_extent_num_bytes(eb
, fi
);
51 if (extent_item_pos
< data_offset
||
52 extent_item_pos
>= data_offset
+ data_len
)
54 offset
= extent_item_pos
- data_offset
;
57 e
= kmalloc(sizeof(*e
), GFP_NOFS
);
62 e
->inum
= key
->objectid
;
63 e
->offset
= key
->offset
+ offset
;
69 static void free_inode_elem_list(struct extent_inode_elem
*eie
)
71 struct extent_inode_elem
*eie_next
;
73 for (; eie
; eie
= eie_next
) {
79 static int find_extent_in_eb(struct extent_buffer
*eb
, u64 wanted_disk_byte
,
81 struct extent_inode_elem
**eie
)
85 struct btrfs_file_extent_item
*fi
;
92 * from the shared data ref, we only have the leaf but we need
93 * the key. thus, we must look into all items and see that we
94 * find one (some) with a reference to our extent item.
96 nritems
= btrfs_header_nritems(eb
);
97 for (slot
= 0; slot
< nritems
; ++slot
) {
98 btrfs_item_key_to_cpu(eb
, &key
, slot
);
99 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
101 fi
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
102 extent_type
= btrfs_file_extent_type(eb
, fi
);
103 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
)
105 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
106 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
107 if (disk_byte
!= wanted_disk_byte
)
110 ret
= check_extent_in_eb(&key
, eb
, fi
, extent_item_pos
, eie
);
119 * this structure records all encountered refs on the way up to the root
121 struct __prelim_ref
{
122 struct list_head list
;
124 struct btrfs_key key_for_search
;
127 struct extent_inode_elem
*inode_list
;
129 u64 wanted_disk_byte
;
132 static struct kmem_cache
*btrfs_prelim_ref_cache
;
134 int __init
btrfs_prelim_ref_init(void)
136 btrfs_prelim_ref_cache
= kmem_cache_create("btrfs_prelim_ref",
137 sizeof(struct __prelim_ref
),
139 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
141 if (!btrfs_prelim_ref_cache
)
146 void btrfs_prelim_ref_exit(void)
148 if (btrfs_prelim_ref_cache
)
149 kmem_cache_destroy(btrfs_prelim_ref_cache
);
153 * the rules for all callers of this function are:
154 * - obtaining the parent is the goal
155 * - if you add a key, you must know that it is a correct key
156 * - if you cannot add the parent or a correct key, then we will look into the
157 * block later to set a correct key
161 * backref type | shared | indirect | shared | indirect
162 * information | tree | tree | data | data
163 * --------------------+--------+----------+--------+----------
164 * parent logical | y | - | - | -
165 * key to resolve | - | y | y | y
166 * tree block logical | - | - | - | -
167 * root for resolving | y | y | y | y
169 * - column 1: we've the parent -> done
170 * - column 2, 3, 4: we use the key to find the parent
172 * on disk refs (inline or keyed)
173 * ==============================
174 * backref type | shared | indirect | shared | indirect
175 * information | tree | tree | data | data
176 * --------------------+--------+----------+--------+----------
177 * parent logical | y | - | y | -
178 * key to resolve | - | - | - | y
179 * tree block logical | y | y | y | y
180 * root for resolving | - | y | y | y
182 * - column 1, 3: we've the parent -> done
183 * - column 2: we take the first key from the block to find the parent
184 * (see __add_missing_keys)
185 * - column 4: we use the key to find the parent
187 * additional information that's available but not required to find the parent
188 * block might help in merging entries to gain some speed.
191 static int __add_prelim_ref(struct list_head
*head
, u64 root_id
,
192 struct btrfs_key
*key
, int level
,
193 u64 parent
, u64 wanted_disk_byte
, int count
,
196 struct __prelim_ref
*ref
;
198 if (root_id
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
201 ref
= kmem_cache_alloc(btrfs_prelim_ref_cache
, gfp_mask
);
205 ref
->root_id
= root_id
;
207 ref
->key_for_search
= *key
;
209 memset(&ref
->key_for_search
, 0, sizeof(ref
->key_for_search
));
211 ref
->inode_list
= NULL
;
214 ref
->parent
= parent
;
215 ref
->wanted_disk_byte
= wanted_disk_byte
;
216 list_add_tail(&ref
->list
, head
);
221 static int add_all_parents(struct btrfs_root
*root
, struct btrfs_path
*path
,
222 struct ulist
*parents
, struct __prelim_ref
*ref
,
223 int level
, u64 time_seq
, const u64
*extent_item_pos
,
228 struct extent_buffer
*eb
;
229 struct btrfs_key key
;
230 struct btrfs_key
*key_for_search
= &ref
->key_for_search
;
231 struct btrfs_file_extent_item
*fi
;
232 struct extent_inode_elem
*eie
= NULL
, *old
= NULL
;
234 u64 wanted_disk_byte
= ref
->wanted_disk_byte
;
238 eb
= path
->nodes
[level
];
239 ret
= ulist_add(parents
, eb
->start
, 0, GFP_NOFS
);
246 * We normally enter this function with the path already pointing to
247 * the first item to check. But sometimes, we may enter it with
248 * slot==nritems. In that case, go to the next leaf before we continue.
250 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0]))
251 ret
= btrfs_next_old_leaf(root
, path
, time_seq
);
253 while (!ret
&& count
< total_refs
) {
255 slot
= path
->slots
[0];
257 btrfs_item_key_to_cpu(eb
, &key
, slot
);
259 if (key
.objectid
!= key_for_search
->objectid
||
260 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
263 fi
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
264 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
266 if (disk_byte
== wanted_disk_byte
) {
270 if (extent_item_pos
) {
271 ret
= check_extent_in_eb(&key
, eb
, fi
,
279 ret
= ulist_add_merge(parents
, eb
->start
,
281 (u64
*)&old
, GFP_NOFS
);
284 if (!ret
&& extent_item_pos
) {
292 ret
= btrfs_next_old_item(root
, path
, time_seq
);
298 free_inode_elem_list(eie
);
303 * resolve an indirect backref in the form (root_id, key, level)
304 * to a logical address
306 static int __resolve_indirect_ref(struct btrfs_fs_info
*fs_info
,
307 struct btrfs_path
*path
, u64 time_seq
,
308 struct __prelim_ref
*ref
,
309 struct ulist
*parents
,
310 const u64
*extent_item_pos
, u64 total_refs
)
312 struct btrfs_root
*root
;
313 struct btrfs_key root_key
;
314 struct extent_buffer
*eb
;
317 int level
= ref
->level
;
320 root_key
.objectid
= ref
->root_id
;
321 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
322 root_key
.offset
= (u64
)-1;
324 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
326 root
= btrfs_read_fs_root_no_name(fs_info
, &root_key
);
328 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
333 if (path
->search_commit_root
)
334 root_level
= btrfs_header_level(root
->commit_root
);
336 root_level
= btrfs_old_root_level(root
, time_seq
);
338 if (root_level
+ 1 == level
) {
339 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
343 path
->lowest_level
= level
;
344 ret
= btrfs_search_old_slot(root
, &ref
->key_for_search
, path
, time_seq
);
346 /* root node has been locked, we can release @subvol_srcu safely here */
347 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
349 pr_debug("search slot in root %llu (level %d, ref count %d) returned "
350 "%d for key (%llu %u %llu)\n",
351 ref
->root_id
, level
, ref
->count
, ret
,
352 ref
->key_for_search
.objectid
, ref
->key_for_search
.type
,
353 ref
->key_for_search
.offset
);
357 eb
= path
->nodes
[level
];
359 if (WARN_ON(!level
)) {
364 eb
= path
->nodes
[level
];
367 ret
= add_all_parents(root
, path
, parents
, ref
, level
, time_seq
,
368 extent_item_pos
, total_refs
);
370 path
->lowest_level
= 0;
371 btrfs_release_path(path
);
376 * resolve all indirect backrefs from the list
378 static int __resolve_indirect_refs(struct btrfs_fs_info
*fs_info
,
379 struct btrfs_path
*path
, u64 time_seq
,
380 struct list_head
*head
,
381 const u64
*extent_item_pos
, u64 total_refs
)
385 struct __prelim_ref
*ref
;
386 struct __prelim_ref
*ref_safe
;
387 struct __prelim_ref
*new_ref
;
388 struct ulist
*parents
;
389 struct ulist_node
*node
;
390 struct ulist_iterator uiter
;
392 parents
= ulist_alloc(GFP_NOFS
);
397 * _safe allows us to insert directly after the current item without
398 * iterating over the newly inserted items.
399 * we're also allowed to re-assign ref during iteration.
401 list_for_each_entry_safe(ref
, ref_safe
, head
, list
) {
402 if (ref
->parent
) /* already direct */
406 err
= __resolve_indirect_ref(fs_info
, path
, time_seq
, ref
,
407 parents
, extent_item_pos
,
410 * we can only tolerate ENOENT,otherwise,we should catch error
411 * and return directly.
413 if (err
== -ENOENT
) {
420 /* we put the first parent into the ref at hand */
421 ULIST_ITER_INIT(&uiter
);
422 node
= ulist_next(parents
, &uiter
);
423 ref
->parent
= node
? node
->val
: 0;
424 ref
->inode_list
= node
?
425 (struct extent_inode_elem
*)(uintptr_t)node
->aux
: NULL
;
427 /* additional parents require new refs being added here */
428 while ((node
= ulist_next(parents
, &uiter
))) {
429 new_ref
= kmem_cache_alloc(btrfs_prelim_ref_cache
,
435 memcpy(new_ref
, ref
, sizeof(*ref
));
436 new_ref
->parent
= node
->val
;
437 new_ref
->inode_list
= (struct extent_inode_elem
*)
438 (uintptr_t)node
->aux
;
439 list_add(&new_ref
->list
, &ref
->list
);
441 ulist_reinit(parents
);
448 static inline int ref_for_same_block(struct __prelim_ref
*ref1
,
449 struct __prelim_ref
*ref2
)
451 if (ref1
->level
!= ref2
->level
)
453 if (ref1
->root_id
!= ref2
->root_id
)
455 if (ref1
->key_for_search
.type
!= ref2
->key_for_search
.type
)
457 if (ref1
->key_for_search
.objectid
!= ref2
->key_for_search
.objectid
)
459 if (ref1
->key_for_search
.offset
!= ref2
->key_for_search
.offset
)
461 if (ref1
->parent
!= ref2
->parent
)
468 * read tree blocks and add keys where required.
470 static int __add_missing_keys(struct btrfs_fs_info
*fs_info
,
471 struct list_head
*head
)
473 struct list_head
*pos
;
474 struct extent_buffer
*eb
;
476 list_for_each(pos
, head
) {
477 struct __prelim_ref
*ref
;
478 ref
= list_entry(pos
, struct __prelim_ref
, list
);
482 if (ref
->key_for_search
.type
)
484 BUG_ON(!ref
->wanted_disk_byte
);
485 eb
= read_tree_block(fs_info
->tree_root
, ref
->wanted_disk_byte
,
486 fs_info
->tree_root
->leafsize
, 0);
487 if (!eb
|| !extent_buffer_uptodate(eb
)) {
488 free_extent_buffer(eb
);
491 btrfs_tree_read_lock(eb
);
492 if (btrfs_header_level(eb
) == 0)
493 btrfs_item_key_to_cpu(eb
, &ref
->key_for_search
, 0);
495 btrfs_node_key_to_cpu(eb
, &ref
->key_for_search
, 0);
496 btrfs_tree_read_unlock(eb
);
497 free_extent_buffer(eb
);
503 * merge two lists of backrefs and adjust counts accordingly
505 * mode = 1: merge identical keys, if key is set
506 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
507 * additionally, we could even add a key range for the blocks we
508 * looked into to merge even more (-> replace unresolved refs by those
510 * mode = 2: merge identical parents
512 static void __merge_refs(struct list_head
*head
, int mode
)
514 struct list_head
*pos1
;
516 list_for_each(pos1
, head
) {
517 struct list_head
*n2
;
518 struct list_head
*pos2
;
519 struct __prelim_ref
*ref1
;
521 ref1
= list_entry(pos1
, struct __prelim_ref
, list
);
523 for (pos2
= pos1
->next
, n2
= pos2
->next
; pos2
!= head
;
524 pos2
= n2
, n2
= pos2
->next
) {
525 struct __prelim_ref
*ref2
;
526 struct __prelim_ref
*xchg
;
527 struct extent_inode_elem
*eie
;
529 ref2
= list_entry(pos2
, struct __prelim_ref
, list
);
532 if (!ref_for_same_block(ref1
, ref2
))
534 if (!ref1
->parent
&& ref2
->parent
) {
540 if (ref1
->parent
!= ref2
->parent
)
544 eie
= ref1
->inode_list
;
545 while (eie
&& eie
->next
)
548 eie
->next
= ref2
->inode_list
;
550 ref1
->inode_list
= ref2
->inode_list
;
551 ref1
->count
+= ref2
->count
;
553 list_del(&ref2
->list
);
554 kmem_cache_free(btrfs_prelim_ref_cache
, ref2
);
561 * add all currently queued delayed refs from this head whose seq nr is
562 * smaller or equal that seq to the list
564 static int __add_delayed_refs(struct btrfs_delayed_ref_head
*head
, u64 seq
,
565 struct list_head
*prefs
, u64
*total_refs
)
567 struct btrfs_delayed_extent_op
*extent_op
= head
->extent_op
;
568 struct rb_node
*n
= &head
->node
.rb_node
;
569 struct btrfs_key key
;
570 struct btrfs_key op_key
= {0};
574 if (extent_op
&& extent_op
->update_key
)
575 btrfs_disk_key_to_cpu(&op_key
, &extent_op
->key
);
577 spin_lock(&head
->lock
);
578 n
= rb_first(&head
->ref_root
);
580 struct btrfs_delayed_ref_node
*node
;
581 node
= rb_entry(n
, struct btrfs_delayed_ref_node
,
587 switch (node
->action
) {
588 case BTRFS_ADD_DELAYED_EXTENT
:
589 case BTRFS_UPDATE_DELAYED_HEAD
:
592 case BTRFS_ADD_DELAYED_REF
:
595 case BTRFS_DROP_DELAYED_REF
:
601 *total_refs
+= (node
->ref_mod
* sgn
);
602 switch (node
->type
) {
603 case BTRFS_TREE_BLOCK_REF_KEY
: {
604 struct btrfs_delayed_tree_ref
*ref
;
606 ref
= btrfs_delayed_node_to_tree_ref(node
);
607 ret
= __add_prelim_ref(prefs
, ref
->root
, &op_key
,
608 ref
->level
+ 1, 0, node
->bytenr
,
609 node
->ref_mod
* sgn
, GFP_ATOMIC
);
612 case BTRFS_SHARED_BLOCK_REF_KEY
: {
613 struct btrfs_delayed_tree_ref
*ref
;
615 ref
= btrfs_delayed_node_to_tree_ref(node
);
616 ret
= __add_prelim_ref(prefs
, ref
->root
, NULL
,
617 ref
->level
+ 1, ref
->parent
,
619 node
->ref_mod
* sgn
, GFP_ATOMIC
);
622 case BTRFS_EXTENT_DATA_REF_KEY
: {
623 struct btrfs_delayed_data_ref
*ref
;
624 ref
= btrfs_delayed_node_to_data_ref(node
);
626 key
.objectid
= ref
->objectid
;
627 key
.type
= BTRFS_EXTENT_DATA_KEY
;
628 key
.offset
= ref
->offset
;
629 ret
= __add_prelim_ref(prefs
, ref
->root
, &key
, 0, 0,
631 node
->ref_mod
* sgn
, GFP_ATOMIC
);
634 case BTRFS_SHARED_DATA_REF_KEY
: {
635 struct btrfs_delayed_data_ref
*ref
;
637 ref
= btrfs_delayed_node_to_data_ref(node
);
639 key
.objectid
= ref
->objectid
;
640 key
.type
= BTRFS_EXTENT_DATA_KEY
;
641 key
.offset
= ref
->offset
;
642 ret
= __add_prelim_ref(prefs
, ref
->root
, &key
, 0,
643 ref
->parent
, node
->bytenr
,
644 node
->ref_mod
* sgn
, GFP_ATOMIC
);
653 spin_unlock(&head
->lock
);
658 * add all inline backrefs for bytenr to the list
660 static int __add_inline_refs(struct btrfs_fs_info
*fs_info
,
661 struct btrfs_path
*path
, u64 bytenr
,
662 int *info_level
, struct list_head
*prefs
,
667 struct extent_buffer
*leaf
;
668 struct btrfs_key key
;
669 struct btrfs_key found_key
;
672 struct btrfs_extent_item
*ei
;
677 * enumerate all inline refs
679 leaf
= path
->nodes
[0];
680 slot
= path
->slots
[0];
682 item_size
= btrfs_item_size_nr(leaf
, slot
);
683 BUG_ON(item_size
< sizeof(*ei
));
685 ei
= btrfs_item_ptr(leaf
, slot
, struct btrfs_extent_item
);
686 flags
= btrfs_extent_flags(leaf
, ei
);
687 *total_refs
+= btrfs_extent_refs(leaf
, ei
);
688 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
690 ptr
= (unsigned long)(ei
+ 1);
691 end
= (unsigned long)ei
+ item_size
;
693 if (found_key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
694 flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
695 struct btrfs_tree_block_info
*info
;
697 info
= (struct btrfs_tree_block_info
*)ptr
;
698 *info_level
= btrfs_tree_block_level(leaf
, info
);
699 ptr
+= sizeof(struct btrfs_tree_block_info
);
701 } else if (found_key
.type
== BTRFS_METADATA_ITEM_KEY
) {
702 *info_level
= found_key
.offset
;
704 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_DATA
));
708 struct btrfs_extent_inline_ref
*iref
;
712 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
713 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
714 offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
717 case BTRFS_SHARED_BLOCK_REF_KEY
:
718 ret
= __add_prelim_ref(prefs
, 0, NULL
,
719 *info_level
+ 1, offset
,
720 bytenr
, 1, GFP_NOFS
);
722 case BTRFS_SHARED_DATA_REF_KEY
: {
723 struct btrfs_shared_data_ref
*sdref
;
726 sdref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
727 count
= btrfs_shared_data_ref_count(leaf
, sdref
);
728 ret
= __add_prelim_ref(prefs
, 0, NULL
, 0, offset
,
729 bytenr
, count
, GFP_NOFS
);
732 case BTRFS_TREE_BLOCK_REF_KEY
:
733 ret
= __add_prelim_ref(prefs
, offset
, NULL
,
735 bytenr
, 1, GFP_NOFS
);
737 case BTRFS_EXTENT_DATA_REF_KEY
: {
738 struct btrfs_extent_data_ref
*dref
;
742 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
743 count
= btrfs_extent_data_ref_count(leaf
, dref
);
744 key
.objectid
= btrfs_extent_data_ref_objectid(leaf
,
746 key
.type
= BTRFS_EXTENT_DATA_KEY
;
747 key
.offset
= btrfs_extent_data_ref_offset(leaf
, dref
);
748 root
= btrfs_extent_data_ref_root(leaf
, dref
);
749 ret
= __add_prelim_ref(prefs
, root
, &key
, 0, 0,
750 bytenr
, count
, GFP_NOFS
);
758 ptr
+= btrfs_extent_inline_ref_size(type
);
765 * add all non-inline backrefs for bytenr to the list
767 static int __add_keyed_refs(struct btrfs_fs_info
*fs_info
,
768 struct btrfs_path
*path
, u64 bytenr
,
769 int info_level
, struct list_head
*prefs
)
771 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
774 struct extent_buffer
*leaf
;
775 struct btrfs_key key
;
778 ret
= btrfs_next_item(extent_root
, path
);
786 slot
= path
->slots
[0];
787 leaf
= path
->nodes
[0];
788 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
790 if (key
.objectid
!= bytenr
)
792 if (key
.type
< BTRFS_TREE_BLOCK_REF_KEY
)
794 if (key
.type
> BTRFS_SHARED_DATA_REF_KEY
)
798 case BTRFS_SHARED_BLOCK_REF_KEY
:
799 ret
= __add_prelim_ref(prefs
, 0, NULL
,
800 info_level
+ 1, key
.offset
,
801 bytenr
, 1, GFP_NOFS
);
803 case BTRFS_SHARED_DATA_REF_KEY
: {
804 struct btrfs_shared_data_ref
*sdref
;
807 sdref
= btrfs_item_ptr(leaf
, slot
,
808 struct btrfs_shared_data_ref
);
809 count
= btrfs_shared_data_ref_count(leaf
, sdref
);
810 ret
= __add_prelim_ref(prefs
, 0, NULL
, 0, key
.offset
,
811 bytenr
, count
, GFP_NOFS
);
814 case BTRFS_TREE_BLOCK_REF_KEY
:
815 ret
= __add_prelim_ref(prefs
, key
.offset
, NULL
,
817 bytenr
, 1, GFP_NOFS
);
819 case BTRFS_EXTENT_DATA_REF_KEY
: {
820 struct btrfs_extent_data_ref
*dref
;
824 dref
= btrfs_item_ptr(leaf
, slot
,
825 struct btrfs_extent_data_ref
);
826 count
= btrfs_extent_data_ref_count(leaf
, dref
);
827 key
.objectid
= btrfs_extent_data_ref_objectid(leaf
,
829 key
.type
= BTRFS_EXTENT_DATA_KEY
;
830 key
.offset
= btrfs_extent_data_ref_offset(leaf
, dref
);
831 root
= btrfs_extent_data_ref_root(leaf
, dref
);
832 ret
= __add_prelim_ref(prefs
, root
, &key
, 0, 0,
833 bytenr
, count
, GFP_NOFS
);
848 * this adds all existing backrefs (inline backrefs, backrefs and delayed
849 * refs) for the given bytenr to the refs list, merges duplicates and resolves
850 * indirect refs to their parent bytenr.
851 * When roots are found, they're added to the roots list
853 * FIXME some caching might speed things up
855 static int find_parent_nodes(struct btrfs_trans_handle
*trans
,
856 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
857 u64 time_seq
, struct ulist
*refs
,
858 struct ulist
*roots
, const u64
*extent_item_pos
)
860 struct btrfs_key key
;
861 struct btrfs_path
*path
;
862 struct btrfs_delayed_ref_root
*delayed_refs
= NULL
;
863 struct btrfs_delayed_ref_head
*head
;
866 struct list_head prefs_delayed
;
867 struct list_head prefs
;
868 struct __prelim_ref
*ref
;
869 struct extent_inode_elem
*eie
= NULL
;
872 INIT_LIST_HEAD(&prefs
);
873 INIT_LIST_HEAD(&prefs_delayed
);
875 key
.objectid
= bytenr
;
876 key
.offset
= (u64
)-1;
877 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
878 key
.type
= BTRFS_METADATA_ITEM_KEY
;
880 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
882 path
= btrfs_alloc_path();
886 path
->search_commit_root
= 1;
887 path
->skip_locking
= 1;
891 * grab both a lock on the path and a lock on the delayed ref head.
892 * We need both to get a consistent picture of how the refs look
893 * at a specified point in time
898 ret
= btrfs_search_slot(trans
, fs_info
->extent_root
, &key
, path
, 0, 0);
905 * look if there are updates for this ref queued and lock the
908 delayed_refs
= &trans
->transaction
->delayed_refs
;
909 spin_lock(&delayed_refs
->lock
);
910 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
912 if (!mutex_trylock(&head
->mutex
)) {
913 atomic_inc(&head
->node
.refs
);
914 spin_unlock(&delayed_refs
->lock
);
916 btrfs_release_path(path
);
919 * Mutex was contended, block until it's
920 * released and try again
922 mutex_lock(&head
->mutex
);
923 mutex_unlock(&head
->mutex
);
924 btrfs_put_delayed_ref(&head
->node
);
927 spin_unlock(&delayed_refs
->lock
);
928 ret
= __add_delayed_refs(head
, time_seq
,
929 &prefs_delayed
, &total_refs
);
930 mutex_unlock(&head
->mutex
);
934 spin_unlock(&delayed_refs
->lock
);
938 if (path
->slots
[0]) {
939 struct extent_buffer
*leaf
;
943 leaf
= path
->nodes
[0];
944 slot
= path
->slots
[0];
945 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
946 if (key
.objectid
== bytenr
&&
947 (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
948 key
.type
== BTRFS_METADATA_ITEM_KEY
)) {
949 ret
= __add_inline_refs(fs_info
, path
, bytenr
,
954 ret
= __add_keyed_refs(fs_info
, path
, bytenr
,
960 btrfs_release_path(path
);
962 list_splice_init(&prefs_delayed
, &prefs
);
964 ret
= __add_missing_keys(fs_info
, &prefs
);
968 __merge_refs(&prefs
, 1);
970 ret
= __resolve_indirect_refs(fs_info
, path
, time_seq
, &prefs
,
971 extent_item_pos
, total_refs
);
975 __merge_refs(&prefs
, 2);
977 while (!list_empty(&prefs
)) {
978 ref
= list_first_entry(&prefs
, struct __prelim_ref
, list
);
979 WARN_ON(ref
->count
< 0);
980 if (roots
&& ref
->count
&& ref
->root_id
&& ref
->parent
== 0) {
981 /* no parent == root of tree */
982 ret
= ulist_add(roots
, ref
->root_id
, 0, GFP_NOFS
);
986 if (ref
->count
&& ref
->parent
) {
987 if (extent_item_pos
&& !ref
->inode_list
) {
989 struct extent_buffer
*eb
;
990 bsz
= btrfs_level_size(fs_info
->extent_root
,
992 eb
= read_tree_block(fs_info
->extent_root
,
993 ref
->parent
, bsz
, 0);
994 if (!eb
|| !extent_buffer_uptodate(eb
)) {
995 free_extent_buffer(eb
);
999 ret
= find_extent_in_eb(eb
, bytenr
,
1000 *extent_item_pos
, &eie
);
1001 free_extent_buffer(eb
);
1004 ref
->inode_list
= eie
;
1006 ret
= ulist_add_merge(refs
, ref
->parent
,
1007 (uintptr_t)ref
->inode_list
,
1008 (u64
*)&eie
, GFP_NOFS
);
1011 if (!ret
&& extent_item_pos
) {
1013 * we've recorded that parent, so we must extend
1014 * its inode list here
1019 eie
->next
= ref
->inode_list
;
1023 list_del(&ref
->list
);
1024 kmem_cache_free(btrfs_prelim_ref_cache
, ref
);
1028 btrfs_free_path(path
);
1029 while (!list_empty(&prefs
)) {
1030 ref
= list_first_entry(&prefs
, struct __prelim_ref
, list
);
1031 list_del(&ref
->list
);
1032 kmem_cache_free(btrfs_prelim_ref_cache
, ref
);
1034 while (!list_empty(&prefs_delayed
)) {
1035 ref
= list_first_entry(&prefs_delayed
, struct __prelim_ref
,
1037 list_del(&ref
->list
);
1038 kmem_cache_free(btrfs_prelim_ref_cache
, ref
);
1041 free_inode_elem_list(eie
);
1045 static void free_leaf_list(struct ulist
*blocks
)
1047 struct ulist_node
*node
= NULL
;
1048 struct extent_inode_elem
*eie
;
1049 struct ulist_iterator uiter
;
1051 ULIST_ITER_INIT(&uiter
);
1052 while ((node
= ulist_next(blocks
, &uiter
))) {
1055 eie
= (struct extent_inode_elem
*)(uintptr_t)node
->aux
;
1056 free_inode_elem_list(eie
);
1064 * Finds all leafs with a reference to the specified combination of bytenr and
1065 * offset. key_list_head will point to a list of corresponding keys (caller must
1066 * free each list element). The leafs will be stored in the leafs ulist, which
1067 * must be freed with ulist_free.
1069 * returns 0 on success, <0 on error
1071 static int btrfs_find_all_leafs(struct btrfs_trans_handle
*trans
,
1072 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1073 u64 time_seq
, struct ulist
**leafs
,
1074 const u64
*extent_item_pos
)
1078 *leafs
= ulist_alloc(GFP_NOFS
);
1082 ret
= find_parent_nodes(trans
, fs_info
, bytenr
,
1083 time_seq
, *leafs
, NULL
, extent_item_pos
);
1084 if (ret
< 0 && ret
!= -ENOENT
) {
1085 free_leaf_list(*leafs
);
1093 * walk all backrefs for a given extent to find all roots that reference this
1094 * extent. Walking a backref means finding all extents that reference this
1095 * extent and in turn walk the backrefs of those, too. Naturally this is a
1096 * recursive process, but here it is implemented in an iterative fashion: We
1097 * find all referencing extents for the extent in question and put them on a
1098 * list. In turn, we find all referencing extents for those, further appending
1099 * to the list. The way we iterate the list allows adding more elements after
1100 * the current while iterating. The process stops when we reach the end of the
1101 * list. Found roots are added to the roots list.
1103 * returns 0 on success, < 0 on error.
1105 static int __btrfs_find_all_roots(struct btrfs_trans_handle
*trans
,
1106 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1107 u64 time_seq
, struct ulist
**roots
)
1110 struct ulist_node
*node
= NULL
;
1111 struct ulist_iterator uiter
;
1114 tmp
= ulist_alloc(GFP_NOFS
);
1117 *roots
= ulist_alloc(GFP_NOFS
);
1123 ULIST_ITER_INIT(&uiter
);
1125 ret
= find_parent_nodes(trans
, fs_info
, bytenr
,
1126 time_seq
, tmp
, *roots
, NULL
);
1127 if (ret
< 0 && ret
!= -ENOENT
) {
1132 node
= ulist_next(tmp
, &uiter
);
1143 int btrfs_find_all_roots(struct btrfs_trans_handle
*trans
,
1144 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1145 u64 time_seq
, struct ulist
**roots
)
1150 down_read(&fs_info
->commit_root_sem
);
1151 ret
= __btrfs_find_all_roots(trans
, fs_info
, bytenr
, time_seq
, roots
);
1153 up_read(&fs_info
->commit_root_sem
);
1158 * this makes the path point to (inum INODE_ITEM ioff)
1160 int inode_item_info(u64 inum
, u64 ioff
, struct btrfs_root
*fs_root
,
1161 struct btrfs_path
*path
)
1163 struct btrfs_key key
;
1164 return btrfs_find_item(fs_root
, path
, inum
, ioff
,
1165 BTRFS_INODE_ITEM_KEY
, &key
);
1168 static int inode_ref_info(u64 inum
, u64 ioff
, struct btrfs_root
*fs_root
,
1169 struct btrfs_path
*path
,
1170 struct btrfs_key
*found_key
)
1172 return btrfs_find_item(fs_root
, path
, inum
, ioff
,
1173 BTRFS_INODE_REF_KEY
, found_key
);
1176 int btrfs_find_one_extref(struct btrfs_root
*root
, u64 inode_objectid
,
1177 u64 start_off
, struct btrfs_path
*path
,
1178 struct btrfs_inode_extref
**ret_extref
,
1182 struct btrfs_key key
;
1183 struct btrfs_key found_key
;
1184 struct btrfs_inode_extref
*extref
;
1185 struct extent_buffer
*leaf
;
1188 key
.objectid
= inode_objectid
;
1189 btrfs_set_key_type(&key
, BTRFS_INODE_EXTREF_KEY
);
1190 key
.offset
= start_off
;
1192 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1197 leaf
= path
->nodes
[0];
1198 slot
= path
->slots
[0];
1199 if (slot
>= btrfs_header_nritems(leaf
)) {
1201 * If the item at offset is not found,
1202 * btrfs_search_slot will point us to the slot
1203 * where it should be inserted. In our case
1204 * that will be the slot directly before the
1205 * next INODE_REF_KEY_V2 item. In the case
1206 * that we're pointing to the last slot in a
1207 * leaf, we must move one leaf over.
1209 ret
= btrfs_next_leaf(root
, path
);
1218 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
1221 * Check that we're still looking at an extended ref key for
1222 * this particular objectid. If we have different
1223 * objectid or type then there are no more to be found
1224 * in the tree and we can exit.
1227 if (found_key
.objectid
!= inode_objectid
)
1229 if (btrfs_key_type(&found_key
) != BTRFS_INODE_EXTREF_KEY
)
1233 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1234 extref
= (struct btrfs_inode_extref
*)ptr
;
1235 *ret_extref
= extref
;
1237 *found_off
= found_key
.offset
;
1245 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1246 * Elements of the path are separated by '/' and the path is guaranteed to be
1247 * 0-terminated. the path is only given within the current file system.
1248 * Therefore, it never starts with a '/'. the caller is responsible to provide
1249 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1250 * the start point of the resulting string is returned. this pointer is within
1252 * in case the path buffer would overflow, the pointer is decremented further
1253 * as if output was written to the buffer, though no more output is actually
1254 * generated. that way, the caller can determine how much space would be
1255 * required for the path to fit into the buffer. in that case, the returned
1256 * value will be smaller than dest. callers must check this!
1258 char *btrfs_ref_to_path(struct btrfs_root
*fs_root
, struct btrfs_path
*path
,
1259 u32 name_len
, unsigned long name_off
,
1260 struct extent_buffer
*eb_in
, u64 parent
,
1261 char *dest
, u32 size
)
1266 s64 bytes_left
= ((s64
)size
) - 1;
1267 struct extent_buffer
*eb
= eb_in
;
1268 struct btrfs_key found_key
;
1269 int leave_spinning
= path
->leave_spinning
;
1270 struct btrfs_inode_ref
*iref
;
1272 if (bytes_left
>= 0)
1273 dest
[bytes_left
] = '\0';
1275 path
->leave_spinning
= 1;
1277 bytes_left
-= name_len
;
1278 if (bytes_left
>= 0)
1279 read_extent_buffer(eb
, dest
+ bytes_left
,
1280 name_off
, name_len
);
1282 btrfs_tree_read_unlock_blocking(eb
);
1283 free_extent_buffer(eb
);
1285 ret
= inode_ref_info(parent
, 0, fs_root
, path
, &found_key
);
1291 next_inum
= found_key
.offset
;
1293 /* regular exit ahead */
1294 if (parent
== next_inum
)
1297 slot
= path
->slots
[0];
1298 eb
= path
->nodes
[0];
1299 /* make sure we can use eb after releasing the path */
1301 atomic_inc(&eb
->refs
);
1302 btrfs_tree_read_lock(eb
);
1303 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1305 btrfs_release_path(path
);
1306 iref
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_ref
);
1308 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
1309 name_off
= (unsigned long)(iref
+ 1);
1313 if (bytes_left
>= 0)
1314 dest
[bytes_left
] = '/';
1317 btrfs_release_path(path
);
1318 path
->leave_spinning
= leave_spinning
;
1321 return ERR_PTR(ret
);
1323 return dest
+ bytes_left
;
1327 * this makes the path point to (logical EXTENT_ITEM *)
1328 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1329 * tree blocks and <0 on error.
1331 int extent_from_logical(struct btrfs_fs_info
*fs_info
, u64 logical
,
1332 struct btrfs_path
*path
, struct btrfs_key
*found_key
,
1339 struct extent_buffer
*eb
;
1340 struct btrfs_extent_item
*ei
;
1341 struct btrfs_key key
;
1343 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
1344 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1346 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1347 key
.objectid
= logical
;
1348 key
.offset
= (u64
)-1;
1350 ret
= btrfs_search_slot(NULL
, fs_info
->extent_root
, &key
, path
, 0, 0);
1354 ret
= btrfs_previous_extent_item(fs_info
->extent_root
, path
, 0);
1360 btrfs_item_key_to_cpu(path
->nodes
[0], found_key
, path
->slots
[0]);
1361 if (found_key
->type
== BTRFS_METADATA_ITEM_KEY
)
1362 size
= fs_info
->extent_root
->leafsize
;
1363 else if (found_key
->type
== BTRFS_EXTENT_ITEM_KEY
)
1364 size
= found_key
->offset
;
1366 if (found_key
->objectid
> logical
||
1367 found_key
->objectid
+ size
<= logical
) {
1368 pr_debug("logical %llu is not within any extent\n", logical
);
1372 eb
= path
->nodes
[0];
1373 item_size
= btrfs_item_size_nr(eb
, path
->slots
[0]);
1374 BUG_ON(item_size
< sizeof(*ei
));
1376 ei
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_extent_item
);
1377 flags
= btrfs_extent_flags(eb
, ei
);
1379 pr_debug("logical %llu is at position %llu within the extent (%llu "
1380 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1381 logical
, logical
- found_key
->objectid
, found_key
->objectid
,
1382 found_key
->offset
, flags
, item_size
);
1384 WARN_ON(!flags_ret
);
1386 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1387 *flags_ret
= BTRFS_EXTENT_FLAG_TREE_BLOCK
;
1388 else if (flags
& BTRFS_EXTENT_FLAG_DATA
)
1389 *flags_ret
= BTRFS_EXTENT_FLAG_DATA
;
1399 * helper function to iterate extent inline refs. ptr must point to a 0 value
1400 * for the first call and may be modified. it is used to track state.
1401 * if more refs exist, 0 is returned and the next call to
1402 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1403 * next ref. after the last ref was processed, 1 is returned.
1404 * returns <0 on error
1406 static int __get_extent_inline_ref(unsigned long *ptr
, struct extent_buffer
*eb
,
1407 struct btrfs_extent_item
*ei
, u32 item_size
,
1408 struct btrfs_extent_inline_ref
**out_eiref
,
1413 struct btrfs_tree_block_info
*info
;
1417 flags
= btrfs_extent_flags(eb
, ei
);
1418 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1419 info
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1421 (struct btrfs_extent_inline_ref
*)(info
+ 1);
1423 *out_eiref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
1425 *ptr
= (unsigned long)*out_eiref
;
1426 if ((void *)*ptr
>= (void *)ei
+ item_size
)
1430 end
= (unsigned long)ei
+ item_size
;
1431 *out_eiref
= (struct btrfs_extent_inline_ref
*)*ptr
;
1432 *out_type
= btrfs_extent_inline_ref_type(eb
, *out_eiref
);
1434 *ptr
+= btrfs_extent_inline_ref_size(*out_type
);
1435 WARN_ON(*ptr
> end
);
1437 return 1; /* last */
1443 * reads the tree block backref for an extent. tree level and root are returned
1444 * through out_level and out_root. ptr must point to a 0 value for the first
1445 * call and may be modified (see __get_extent_inline_ref comment).
1446 * returns 0 if data was provided, 1 if there was no more data to provide or
1449 int tree_backref_for_extent(unsigned long *ptr
, struct extent_buffer
*eb
,
1450 struct btrfs_extent_item
*ei
, u32 item_size
,
1451 u64
*out_root
, u8
*out_level
)
1455 struct btrfs_tree_block_info
*info
;
1456 struct btrfs_extent_inline_ref
*eiref
;
1458 if (*ptr
== (unsigned long)-1)
1462 ret
= __get_extent_inline_ref(ptr
, eb
, ei
, item_size
,
1467 if (type
== BTRFS_TREE_BLOCK_REF_KEY
||
1468 type
== BTRFS_SHARED_BLOCK_REF_KEY
)
1475 /* we can treat both ref types equally here */
1476 info
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1477 *out_root
= btrfs_extent_inline_ref_offset(eb
, eiref
);
1478 *out_level
= btrfs_tree_block_level(eb
, info
);
1481 *ptr
= (unsigned long)-1;
1486 static int iterate_leaf_refs(struct extent_inode_elem
*inode_list
,
1487 u64 root
, u64 extent_item_objectid
,
1488 iterate_extent_inodes_t
*iterate
, void *ctx
)
1490 struct extent_inode_elem
*eie
;
1493 for (eie
= inode_list
; eie
; eie
= eie
->next
) {
1494 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1495 "root %llu\n", extent_item_objectid
,
1496 eie
->inum
, eie
->offset
, root
);
1497 ret
= iterate(eie
->inum
, eie
->offset
, root
, ctx
);
1499 pr_debug("stopping iteration for %llu due to ret=%d\n",
1500 extent_item_objectid
, ret
);
1509 * calls iterate() for every inode that references the extent identified by
1510 * the given parameters.
1511 * when the iterator function returns a non-zero value, iteration stops.
1513 int iterate_extent_inodes(struct btrfs_fs_info
*fs_info
,
1514 u64 extent_item_objectid
, u64 extent_item_pos
,
1515 int search_commit_root
,
1516 iterate_extent_inodes_t
*iterate
, void *ctx
)
1519 struct btrfs_trans_handle
*trans
= NULL
;
1520 struct ulist
*refs
= NULL
;
1521 struct ulist
*roots
= NULL
;
1522 struct ulist_node
*ref_node
= NULL
;
1523 struct ulist_node
*root_node
= NULL
;
1524 struct seq_list tree_mod_seq_elem
= {};
1525 struct ulist_iterator ref_uiter
;
1526 struct ulist_iterator root_uiter
;
1528 pr_debug("resolving all inodes for extent %llu\n",
1529 extent_item_objectid
);
1531 if (!search_commit_root
) {
1532 trans
= btrfs_join_transaction(fs_info
->extent_root
);
1534 return PTR_ERR(trans
);
1535 btrfs_get_tree_mod_seq(fs_info
, &tree_mod_seq_elem
);
1537 down_read(&fs_info
->commit_root_sem
);
1540 ret
= btrfs_find_all_leafs(trans
, fs_info
, extent_item_objectid
,
1541 tree_mod_seq_elem
.seq
, &refs
,
1546 ULIST_ITER_INIT(&ref_uiter
);
1547 while (!ret
&& (ref_node
= ulist_next(refs
, &ref_uiter
))) {
1548 ret
= __btrfs_find_all_roots(trans
, fs_info
, ref_node
->val
,
1549 tree_mod_seq_elem
.seq
, &roots
);
1552 ULIST_ITER_INIT(&root_uiter
);
1553 while (!ret
&& (root_node
= ulist_next(roots
, &root_uiter
))) {
1554 pr_debug("root %llu references leaf %llu, data list "
1555 "%#llx\n", root_node
->val
, ref_node
->val
,
1557 ret
= iterate_leaf_refs((struct extent_inode_elem
*)
1558 (uintptr_t)ref_node
->aux
,
1560 extent_item_objectid
,
1566 free_leaf_list(refs
);
1568 if (!search_commit_root
) {
1569 btrfs_put_tree_mod_seq(fs_info
, &tree_mod_seq_elem
);
1570 btrfs_end_transaction(trans
, fs_info
->extent_root
);
1572 up_read(&fs_info
->commit_root_sem
);
1578 int iterate_inodes_from_logical(u64 logical
, struct btrfs_fs_info
*fs_info
,
1579 struct btrfs_path
*path
,
1580 iterate_extent_inodes_t
*iterate
, void *ctx
)
1583 u64 extent_item_pos
;
1585 struct btrfs_key found_key
;
1586 int search_commit_root
= path
->search_commit_root
;
1588 ret
= extent_from_logical(fs_info
, logical
, path
, &found_key
, &flags
);
1589 btrfs_release_path(path
);
1592 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1595 extent_item_pos
= logical
- found_key
.objectid
;
1596 ret
= iterate_extent_inodes(fs_info
, found_key
.objectid
,
1597 extent_item_pos
, search_commit_root
,
1603 typedef int (iterate_irefs_t
)(u64 parent
, u32 name_len
, unsigned long name_off
,
1604 struct extent_buffer
*eb
, void *ctx
);
1606 static int iterate_inode_refs(u64 inum
, struct btrfs_root
*fs_root
,
1607 struct btrfs_path
*path
,
1608 iterate_irefs_t
*iterate
, void *ctx
)
1617 struct extent_buffer
*eb
;
1618 struct btrfs_item
*item
;
1619 struct btrfs_inode_ref
*iref
;
1620 struct btrfs_key found_key
;
1623 ret
= inode_ref_info(inum
, parent
? parent
+1 : 0, fs_root
, path
,
1628 ret
= found
? 0 : -ENOENT
;
1633 parent
= found_key
.offset
;
1634 slot
= path
->slots
[0];
1635 eb
= btrfs_clone_extent_buffer(path
->nodes
[0]);
1640 extent_buffer_get(eb
);
1641 btrfs_tree_read_lock(eb
);
1642 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1643 btrfs_release_path(path
);
1645 item
= btrfs_item_nr(slot
);
1646 iref
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_ref
);
1648 for (cur
= 0; cur
< btrfs_item_size(eb
, item
); cur
+= len
) {
1649 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
1650 /* path must be released before calling iterate()! */
1651 pr_debug("following ref at offset %u for inode %llu in "
1652 "tree %llu\n", cur
, found_key
.objectid
,
1654 ret
= iterate(parent
, name_len
,
1655 (unsigned long)(iref
+ 1), eb
, ctx
);
1658 len
= sizeof(*iref
) + name_len
;
1659 iref
= (struct btrfs_inode_ref
*)((char *)iref
+ len
);
1661 btrfs_tree_read_unlock_blocking(eb
);
1662 free_extent_buffer(eb
);
1665 btrfs_release_path(path
);
1670 static int iterate_inode_extrefs(u64 inum
, struct btrfs_root
*fs_root
,
1671 struct btrfs_path
*path
,
1672 iterate_irefs_t
*iterate
, void *ctx
)
1679 struct extent_buffer
*eb
;
1680 struct btrfs_inode_extref
*extref
;
1681 struct extent_buffer
*leaf
;
1687 ret
= btrfs_find_one_extref(fs_root
, inum
, offset
, path
, &extref
,
1692 ret
= found
? 0 : -ENOENT
;
1697 slot
= path
->slots
[0];
1698 eb
= btrfs_clone_extent_buffer(path
->nodes
[0]);
1703 extent_buffer_get(eb
);
1705 btrfs_tree_read_lock(eb
);
1706 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1707 btrfs_release_path(path
);
1709 leaf
= path
->nodes
[0];
1710 item_size
= btrfs_item_size_nr(leaf
, slot
);
1711 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
1714 while (cur_offset
< item_size
) {
1717 extref
= (struct btrfs_inode_extref
*)(ptr
+ cur_offset
);
1718 parent
= btrfs_inode_extref_parent(eb
, extref
);
1719 name_len
= btrfs_inode_extref_name_len(eb
, extref
);
1720 ret
= iterate(parent
, name_len
,
1721 (unsigned long)&extref
->name
, eb
, ctx
);
1725 cur_offset
+= btrfs_inode_extref_name_len(leaf
, extref
);
1726 cur_offset
+= sizeof(*extref
);
1728 btrfs_tree_read_unlock_blocking(eb
);
1729 free_extent_buffer(eb
);
1734 btrfs_release_path(path
);
1739 static int iterate_irefs(u64 inum
, struct btrfs_root
*fs_root
,
1740 struct btrfs_path
*path
, iterate_irefs_t
*iterate
,
1746 ret
= iterate_inode_refs(inum
, fs_root
, path
, iterate
, ctx
);
1749 else if (ret
!= -ENOENT
)
1752 ret
= iterate_inode_extrefs(inum
, fs_root
, path
, iterate
, ctx
);
1753 if (ret
== -ENOENT
&& found_refs
)
1760 * returns 0 if the path could be dumped (probably truncated)
1761 * returns <0 in case of an error
1763 static int inode_to_path(u64 inum
, u32 name_len
, unsigned long name_off
,
1764 struct extent_buffer
*eb
, void *ctx
)
1766 struct inode_fs_paths
*ipath
= ctx
;
1769 int i
= ipath
->fspath
->elem_cnt
;
1770 const int s_ptr
= sizeof(char *);
1773 bytes_left
= ipath
->fspath
->bytes_left
> s_ptr
?
1774 ipath
->fspath
->bytes_left
- s_ptr
: 0;
1776 fspath_min
= (char *)ipath
->fspath
->val
+ (i
+ 1) * s_ptr
;
1777 fspath
= btrfs_ref_to_path(ipath
->fs_root
, ipath
->btrfs_path
, name_len
,
1778 name_off
, eb
, inum
, fspath_min
, bytes_left
);
1780 return PTR_ERR(fspath
);
1782 if (fspath
> fspath_min
) {
1783 ipath
->fspath
->val
[i
] = (u64
)(unsigned long)fspath
;
1784 ++ipath
->fspath
->elem_cnt
;
1785 ipath
->fspath
->bytes_left
= fspath
- fspath_min
;
1787 ++ipath
->fspath
->elem_missed
;
1788 ipath
->fspath
->bytes_missing
+= fspath_min
- fspath
;
1789 ipath
->fspath
->bytes_left
= 0;
1796 * this dumps all file system paths to the inode into the ipath struct, provided
1797 * is has been created large enough. each path is zero-terminated and accessed
1798 * from ipath->fspath->val[i].
1799 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1800 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1801 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1802 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1803 * have been needed to return all paths.
1805 int paths_from_inode(u64 inum
, struct inode_fs_paths
*ipath
)
1807 return iterate_irefs(inum
, ipath
->fs_root
, ipath
->btrfs_path
,
1808 inode_to_path
, ipath
);
1811 struct btrfs_data_container
*init_data_container(u32 total_bytes
)
1813 struct btrfs_data_container
*data
;
1816 alloc_bytes
= max_t(size_t, total_bytes
, sizeof(*data
));
1817 data
= vmalloc(alloc_bytes
);
1819 return ERR_PTR(-ENOMEM
);
1821 if (total_bytes
>= sizeof(*data
)) {
1822 data
->bytes_left
= total_bytes
- sizeof(*data
);
1823 data
->bytes_missing
= 0;
1825 data
->bytes_missing
= sizeof(*data
) - total_bytes
;
1826 data
->bytes_left
= 0;
1830 data
->elem_missed
= 0;
1836 * allocates space to return multiple file system paths for an inode.
1837 * total_bytes to allocate are passed, note that space usable for actual path
1838 * information will be total_bytes - sizeof(struct inode_fs_paths).
1839 * the returned pointer must be freed with free_ipath() in the end.
1841 struct inode_fs_paths
*init_ipath(s32 total_bytes
, struct btrfs_root
*fs_root
,
1842 struct btrfs_path
*path
)
1844 struct inode_fs_paths
*ifp
;
1845 struct btrfs_data_container
*fspath
;
1847 fspath
= init_data_container(total_bytes
);
1849 return (void *)fspath
;
1851 ifp
= kmalloc(sizeof(*ifp
), GFP_NOFS
);
1854 return ERR_PTR(-ENOMEM
);
1857 ifp
->btrfs_path
= path
;
1858 ifp
->fspath
= fspath
;
1859 ifp
->fs_root
= fs_root
;
1864 void free_ipath(struct inode_fs_paths
*ipath
)
1868 vfree(ipath
->fspath
);