2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 #include <linux/hashtable.h>
26 #include <asm/pgalloc.h>
30 * By default transparent hugepage support is disabled in order that avoid
31 * to risk increase the memory footprint of applications without a guaranteed
32 * benefit. When transparent hugepage support is enabled, is for all mappings,
33 * and khugepaged scans all mappings.
34 * Defrag is invoked by khugepaged hugepage allocations and by page faults
35 * for all hugepage allocations.
37 unsigned long transparent_hugepage_flags __read_mostly
=
38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
39 (1<<TRANSPARENT_HUGEPAGE_FLAG
)|
41 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
42 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
)|
44 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG
)|
45 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
)|
46 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
48 /* default scan 8*512 pte (or vmas) every 30 second */
49 static unsigned int khugepaged_pages_to_scan __read_mostly
= HPAGE_PMD_NR
*8;
50 static unsigned int khugepaged_pages_collapsed
;
51 static unsigned int khugepaged_full_scans
;
52 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly
= 10000;
53 /* during fragmentation poll the hugepage allocator once every minute */
54 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly
= 60000;
55 static struct task_struct
*khugepaged_thread __read_mostly
;
56 static DEFINE_MUTEX(khugepaged_mutex
);
57 static DEFINE_SPINLOCK(khugepaged_mm_lock
);
58 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait
);
60 * default collapse hugepages if there is at least one pte mapped like
61 * it would have happened if the vma was large enough during page
64 static unsigned int khugepaged_max_ptes_none __read_mostly
= HPAGE_PMD_NR
-1;
66 static int khugepaged(void *none
);
67 static int khugepaged_slab_init(void);
69 #define MM_SLOTS_HASH_BITS 10
70 static __read_mostly
DEFINE_HASHTABLE(mm_slots_hash
, MM_SLOTS_HASH_BITS
);
72 static struct kmem_cache
*mm_slot_cache __read_mostly
;
75 * struct mm_slot - hash lookup from mm to mm_slot
76 * @hash: hash collision list
77 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
78 * @mm: the mm that this information is valid for
81 struct hlist_node hash
;
82 struct list_head mm_node
;
87 * struct khugepaged_scan - cursor for scanning
88 * @mm_head: the head of the mm list to scan
89 * @mm_slot: the current mm_slot we are scanning
90 * @address: the next address inside that to be scanned
92 * There is only the one khugepaged_scan instance of this cursor structure.
94 struct khugepaged_scan
{
95 struct list_head mm_head
;
96 struct mm_slot
*mm_slot
;
97 unsigned long address
;
99 static struct khugepaged_scan khugepaged_scan
= {
100 .mm_head
= LIST_HEAD_INIT(khugepaged_scan
.mm_head
),
104 static int set_recommended_min_free_kbytes(void)
108 unsigned long recommended_min
;
110 if (!khugepaged_enabled())
113 for_each_populated_zone(zone
)
116 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
117 recommended_min
= pageblock_nr_pages
* nr_zones
* 2;
120 * Make sure that on average at least two pageblocks are almost free
121 * of another type, one for a migratetype to fall back to and a
122 * second to avoid subsequent fallbacks of other types There are 3
123 * MIGRATE_TYPES we care about.
125 recommended_min
+= pageblock_nr_pages
* nr_zones
*
126 MIGRATE_PCPTYPES
* MIGRATE_PCPTYPES
;
128 /* don't ever allow to reserve more than 5% of the lowmem */
129 recommended_min
= min(recommended_min
,
130 (unsigned long) nr_free_buffer_pages() / 20);
131 recommended_min
<<= (PAGE_SHIFT
-10);
133 if (recommended_min
> min_free_kbytes
) {
134 if (user_min_free_kbytes
>= 0)
135 pr_info("raising min_free_kbytes from %d to %lu "
136 "to help transparent hugepage allocations\n",
137 min_free_kbytes
, recommended_min
);
139 min_free_kbytes
= recommended_min
;
141 setup_per_zone_wmarks();
144 late_initcall(set_recommended_min_free_kbytes
);
146 static int start_khugepaged(void)
149 if (khugepaged_enabled()) {
150 if (!khugepaged_thread
)
151 khugepaged_thread
= kthread_run(khugepaged
, NULL
,
153 if (unlikely(IS_ERR(khugepaged_thread
))) {
155 "khugepaged: kthread_run(khugepaged) failed\n");
156 err
= PTR_ERR(khugepaged_thread
);
157 khugepaged_thread
= NULL
;
160 if (!list_empty(&khugepaged_scan
.mm_head
))
161 wake_up_interruptible(&khugepaged_wait
);
163 set_recommended_min_free_kbytes();
164 } else if (khugepaged_thread
) {
165 kthread_stop(khugepaged_thread
);
166 khugepaged_thread
= NULL
;
172 static atomic_t huge_zero_refcount
;
173 static struct page
*huge_zero_page __read_mostly
;
175 static inline bool is_huge_zero_page(struct page
*page
)
177 return ACCESS_ONCE(huge_zero_page
) == page
;
180 static inline bool is_huge_zero_pmd(pmd_t pmd
)
182 return is_huge_zero_page(pmd_page(pmd
));
185 static struct page
*get_huge_zero_page(void)
187 struct page
*zero_page
;
189 if (likely(atomic_inc_not_zero(&huge_zero_refcount
)))
190 return ACCESS_ONCE(huge_zero_page
);
192 zero_page
= alloc_pages((GFP_TRANSHUGE
| __GFP_ZERO
) & ~__GFP_MOVABLE
,
195 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED
);
198 count_vm_event(THP_ZERO_PAGE_ALLOC
);
200 if (cmpxchg(&huge_zero_page
, NULL
, zero_page
)) {
202 __free_page(zero_page
);
206 /* We take additional reference here. It will be put back by shrinker */
207 atomic_set(&huge_zero_refcount
, 2);
209 return ACCESS_ONCE(huge_zero_page
);
212 static void put_huge_zero_page(void)
215 * Counter should never go to zero here. Only shrinker can put
218 BUG_ON(atomic_dec_and_test(&huge_zero_refcount
));
221 static unsigned long shrink_huge_zero_page_count(struct shrinker
*shrink
,
222 struct shrink_control
*sc
)
224 /* we can free zero page only if last reference remains */
225 return atomic_read(&huge_zero_refcount
) == 1 ? HPAGE_PMD_NR
: 0;
228 static unsigned long shrink_huge_zero_page_scan(struct shrinker
*shrink
,
229 struct shrink_control
*sc
)
231 if (atomic_cmpxchg(&huge_zero_refcount
, 1, 0) == 1) {
232 struct page
*zero_page
= xchg(&huge_zero_page
, NULL
);
233 BUG_ON(zero_page
== NULL
);
234 __free_page(zero_page
);
241 static struct shrinker huge_zero_page_shrinker
= {
242 .count_objects
= shrink_huge_zero_page_count
,
243 .scan_objects
= shrink_huge_zero_page_scan
,
244 .seeks
= DEFAULT_SEEKS
,
249 static ssize_t
double_flag_show(struct kobject
*kobj
,
250 struct kobj_attribute
*attr
, char *buf
,
251 enum transparent_hugepage_flag enabled
,
252 enum transparent_hugepage_flag req_madv
)
254 if (test_bit(enabled
, &transparent_hugepage_flags
)) {
255 VM_BUG_ON(test_bit(req_madv
, &transparent_hugepage_flags
));
256 return sprintf(buf
, "[always] madvise never\n");
257 } else if (test_bit(req_madv
, &transparent_hugepage_flags
))
258 return sprintf(buf
, "always [madvise] never\n");
260 return sprintf(buf
, "always madvise [never]\n");
262 static ssize_t
double_flag_store(struct kobject
*kobj
,
263 struct kobj_attribute
*attr
,
264 const char *buf
, size_t count
,
265 enum transparent_hugepage_flag enabled
,
266 enum transparent_hugepage_flag req_madv
)
268 if (!memcmp("always", buf
,
269 min(sizeof("always")-1, count
))) {
270 set_bit(enabled
, &transparent_hugepage_flags
);
271 clear_bit(req_madv
, &transparent_hugepage_flags
);
272 } else if (!memcmp("madvise", buf
,
273 min(sizeof("madvise")-1, count
))) {
274 clear_bit(enabled
, &transparent_hugepage_flags
);
275 set_bit(req_madv
, &transparent_hugepage_flags
);
276 } else if (!memcmp("never", buf
,
277 min(sizeof("never")-1, count
))) {
278 clear_bit(enabled
, &transparent_hugepage_flags
);
279 clear_bit(req_madv
, &transparent_hugepage_flags
);
286 static ssize_t
enabled_show(struct kobject
*kobj
,
287 struct kobj_attribute
*attr
, char *buf
)
289 return double_flag_show(kobj
, attr
, buf
,
290 TRANSPARENT_HUGEPAGE_FLAG
,
291 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
);
293 static ssize_t
enabled_store(struct kobject
*kobj
,
294 struct kobj_attribute
*attr
,
295 const char *buf
, size_t count
)
299 ret
= double_flag_store(kobj
, attr
, buf
, count
,
300 TRANSPARENT_HUGEPAGE_FLAG
,
301 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
);
306 mutex_lock(&khugepaged_mutex
);
307 err
= start_khugepaged();
308 mutex_unlock(&khugepaged_mutex
);
316 static struct kobj_attribute enabled_attr
=
317 __ATTR(enabled
, 0644, enabled_show
, enabled_store
);
319 static ssize_t
single_flag_show(struct kobject
*kobj
,
320 struct kobj_attribute
*attr
, char *buf
,
321 enum transparent_hugepage_flag flag
)
323 return sprintf(buf
, "%d\n",
324 !!test_bit(flag
, &transparent_hugepage_flags
));
327 static ssize_t
single_flag_store(struct kobject
*kobj
,
328 struct kobj_attribute
*attr
,
329 const char *buf
, size_t count
,
330 enum transparent_hugepage_flag flag
)
335 ret
= kstrtoul(buf
, 10, &value
);
342 set_bit(flag
, &transparent_hugepage_flags
);
344 clear_bit(flag
, &transparent_hugepage_flags
);
350 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
351 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
352 * memory just to allocate one more hugepage.
354 static ssize_t
defrag_show(struct kobject
*kobj
,
355 struct kobj_attribute
*attr
, char *buf
)
357 return double_flag_show(kobj
, attr
, buf
,
358 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG
,
359 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
);
361 static ssize_t
defrag_store(struct kobject
*kobj
,
362 struct kobj_attribute
*attr
,
363 const char *buf
, size_t count
)
365 return double_flag_store(kobj
, attr
, buf
, count
,
366 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG
,
367 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
);
369 static struct kobj_attribute defrag_attr
=
370 __ATTR(defrag
, 0644, defrag_show
, defrag_store
);
372 static ssize_t
use_zero_page_show(struct kobject
*kobj
,
373 struct kobj_attribute
*attr
, char *buf
)
375 return single_flag_show(kobj
, attr
, buf
,
376 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
378 static ssize_t
use_zero_page_store(struct kobject
*kobj
,
379 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
381 return single_flag_store(kobj
, attr
, buf
, count
,
382 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
384 static struct kobj_attribute use_zero_page_attr
=
385 __ATTR(use_zero_page
, 0644, use_zero_page_show
, use_zero_page_store
);
386 #ifdef CONFIG_DEBUG_VM
387 static ssize_t
debug_cow_show(struct kobject
*kobj
,
388 struct kobj_attribute
*attr
, char *buf
)
390 return single_flag_show(kobj
, attr
, buf
,
391 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
393 static ssize_t
debug_cow_store(struct kobject
*kobj
,
394 struct kobj_attribute
*attr
,
395 const char *buf
, size_t count
)
397 return single_flag_store(kobj
, attr
, buf
, count
,
398 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
400 static struct kobj_attribute debug_cow_attr
=
401 __ATTR(debug_cow
, 0644, debug_cow_show
, debug_cow_store
);
402 #endif /* CONFIG_DEBUG_VM */
404 static struct attribute
*hugepage_attr
[] = {
407 &use_zero_page_attr
.attr
,
408 #ifdef CONFIG_DEBUG_VM
409 &debug_cow_attr
.attr
,
414 static struct attribute_group hugepage_attr_group
= {
415 .attrs
= hugepage_attr
,
418 static ssize_t
scan_sleep_millisecs_show(struct kobject
*kobj
,
419 struct kobj_attribute
*attr
,
422 return sprintf(buf
, "%u\n", khugepaged_scan_sleep_millisecs
);
425 static ssize_t
scan_sleep_millisecs_store(struct kobject
*kobj
,
426 struct kobj_attribute
*attr
,
427 const char *buf
, size_t count
)
432 err
= kstrtoul(buf
, 10, &msecs
);
433 if (err
|| msecs
> UINT_MAX
)
436 khugepaged_scan_sleep_millisecs
= msecs
;
437 wake_up_interruptible(&khugepaged_wait
);
441 static struct kobj_attribute scan_sleep_millisecs_attr
=
442 __ATTR(scan_sleep_millisecs
, 0644, scan_sleep_millisecs_show
,
443 scan_sleep_millisecs_store
);
445 static ssize_t
alloc_sleep_millisecs_show(struct kobject
*kobj
,
446 struct kobj_attribute
*attr
,
449 return sprintf(buf
, "%u\n", khugepaged_alloc_sleep_millisecs
);
452 static ssize_t
alloc_sleep_millisecs_store(struct kobject
*kobj
,
453 struct kobj_attribute
*attr
,
454 const char *buf
, size_t count
)
459 err
= kstrtoul(buf
, 10, &msecs
);
460 if (err
|| msecs
> UINT_MAX
)
463 khugepaged_alloc_sleep_millisecs
= msecs
;
464 wake_up_interruptible(&khugepaged_wait
);
468 static struct kobj_attribute alloc_sleep_millisecs_attr
=
469 __ATTR(alloc_sleep_millisecs
, 0644, alloc_sleep_millisecs_show
,
470 alloc_sleep_millisecs_store
);
472 static ssize_t
pages_to_scan_show(struct kobject
*kobj
,
473 struct kobj_attribute
*attr
,
476 return sprintf(buf
, "%u\n", khugepaged_pages_to_scan
);
478 static ssize_t
pages_to_scan_store(struct kobject
*kobj
,
479 struct kobj_attribute
*attr
,
480 const char *buf
, size_t count
)
485 err
= kstrtoul(buf
, 10, &pages
);
486 if (err
|| !pages
|| pages
> UINT_MAX
)
489 khugepaged_pages_to_scan
= pages
;
493 static struct kobj_attribute pages_to_scan_attr
=
494 __ATTR(pages_to_scan
, 0644, pages_to_scan_show
,
495 pages_to_scan_store
);
497 static ssize_t
pages_collapsed_show(struct kobject
*kobj
,
498 struct kobj_attribute
*attr
,
501 return sprintf(buf
, "%u\n", khugepaged_pages_collapsed
);
503 static struct kobj_attribute pages_collapsed_attr
=
504 __ATTR_RO(pages_collapsed
);
506 static ssize_t
full_scans_show(struct kobject
*kobj
,
507 struct kobj_attribute
*attr
,
510 return sprintf(buf
, "%u\n", khugepaged_full_scans
);
512 static struct kobj_attribute full_scans_attr
=
513 __ATTR_RO(full_scans
);
515 static ssize_t
khugepaged_defrag_show(struct kobject
*kobj
,
516 struct kobj_attribute
*attr
, char *buf
)
518 return single_flag_show(kobj
, attr
, buf
,
519 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
521 static ssize_t
khugepaged_defrag_store(struct kobject
*kobj
,
522 struct kobj_attribute
*attr
,
523 const char *buf
, size_t count
)
525 return single_flag_store(kobj
, attr
, buf
, count
,
526 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
528 static struct kobj_attribute khugepaged_defrag_attr
=
529 __ATTR(defrag
, 0644, khugepaged_defrag_show
,
530 khugepaged_defrag_store
);
533 * max_ptes_none controls if khugepaged should collapse hugepages over
534 * any unmapped ptes in turn potentially increasing the memory
535 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
536 * reduce the available free memory in the system as it
537 * runs. Increasing max_ptes_none will instead potentially reduce the
538 * free memory in the system during the khugepaged scan.
540 static ssize_t
khugepaged_max_ptes_none_show(struct kobject
*kobj
,
541 struct kobj_attribute
*attr
,
544 return sprintf(buf
, "%u\n", khugepaged_max_ptes_none
);
546 static ssize_t
khugepaged_max_ptes_none_store(struct kobject
*kobj
,
547 struct kobj_attribute
*attr
,
548 const char *buf
, size_t count
)
551 unsigned long max_ptes_none
;
553 err
= kstrtoul(buf
, 10, &max_ptes_none
);
554 if (err
|| max_ptes_none
> HPAGE_PMD_NR
-1)
557 khugepaged_max_ptes_none
= max_ptes_none
;
561 static struct kobj_attribute khugepaged_max_ptes_none_attr
=
562 __ATTR(max_ptes_none
, 0644, khugepaged_max_ptes_none_show
,
563 khugepaged_max_ptes_none_store
);
565 static struct attribute
*khugepaged_attr
[] = {
566 &khugepaged_defrag_attr
.attr
,
567 &khugepaged_max_ptes_none_attr
.attr
,
568 &pages_to_scan_attr
.attr
,
569 &pages_collapsed_attr
.attr
,
570 &full_scans_attr
.attr
,
571 &scan_sleep_millisecs_attr
.attr
,
572 &alloc_sleep_millisecs_attr
.attr
,
576 static struct attribute_group khugepaged_attr_group
= {
577 .attrs
= khugepaged_attr
,
578 .name
= "khugepaged",
581 static int __init
hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
585 *hugepage_kobj
= kobject_create_and_add("transparent_hugepage", mm_kobj
);
586 if (unlikely(!*hugepage_kobj
)) {
587 printk(KERN_ERR
"hugepage: failed to create transparent hugepage kobject\n");
591 err
= sysfs_create_group(*hugepage_kobj
, &hugepage_attr_group
);
593 printk(KERN_ERR
"hugepage: failed to register transparent hugepage group\n");
597 err
= sysfs_create_group(*hugepage_kobj
, &khugepaged_attr_group
);
599 printk(KERN_ERR
"hugepage: failed to register transparent hugepage group\n");
600 goto remove_hp_group
;
606 sysfs_remove_group(*hugepage_kobj
, &hugepage_attr_group
);
608 kobject_put(*hugepage_kobj
);
612 static void __init
hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
614 sysfs_remove_group(hugepage_kobj
, &khugepaged_attr_group
);
615 sysfs_remove_group(hugepage_kobj
, &hugepage_attr_group
);
616 kobject_put(hugepage_kobj
);
619 static inline int hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
624 static inline void hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
627 #endif /* CONFIG_SYSFS */
629 static int __init
hugepage_init(void)
632 struct kobject
*hugepage_kobj
;
634 if (!has_transparent_hugepage()) {
635 transparent_hugepage_flags
= 0;
639 err
= hugepage_init_sysfs(&hugepage_kobj
);
643 err
= khugepaged_slab_init();
647 register_shrinker(&huge_zero_page_shrinker
);
650 * By default disable transparent hugepages on smaller systems,
651 * where the extra memory used could hurt more than TLB overhead
652 * is likely to save. The admin can still enable it through /sys.
654 if (totalram_pages
< (512 << (20 - PAGE_SHIFT
)))
655 transparent_hugepage_flags
= 0;
661 hugepage_exit_sysfs(hugepage_kobj
);
664 subsys_initcall(hugepage_init
);
666 static int __init
setup_transparent_hugepage(char *str
)
671 if (!strcmp(str
, "always")) {
672 set_bit(TRANSPARENT_HUGEPAGE_FLAG
,
673 &transparent_hugepage_flags
);
674 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
675 &transparent_hugepage_flags
);
677 } else if (!strcmp(str
, "madvise")) {
678 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
679 &transparent_hugepage_flags
);
680 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
681 &transparent_hugepage_flags
);
683 } else if (!strcmp(str
, "never")) {
684 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
685 &transparent_hugepage_flags
);
686 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
687 &transparent_hugepage_flags
);
693 "transparent_hugepage= cannot parse, ignored\n");
696 __setup("transparent_hugepage=", setup_transparent_hugepage
);
698 pmd_t
maybe_pmd_mkwrite(pmd_t pmd
, struct vm_area_struct
*vma
)
700 if (likely(vma
->vm_flags
& VM_WRITE
))
701 pmd
= pmd_mkwrite(pmd
);
705 static inline pmd_t
mk_huge_pmd(struct page
*page
, pgprot_t prot
)
708 entry
= mk_pmd(page
, prot
);
709 entry
= pmd_mkhuge(entry
);
713 static int __do_huge_pmd_anonymous_page(struct mm_struct
*mm
,
714 struct vm_area_struct
*vma
,
715 unsigned long haddr
, pmd_t
*pmd
,
721 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
722 pgtable
= pte_alloc_one(mm
, haddr
);
723 if (unlikely(!pgtable
))
726 clear_huge_page(page
, haddr
, HPAGE_PMD_NR
);
728 * The memory barrier inside __SetPageUptodate makes sure that
729 * clear_huge_page writes become visible before the set_pmd_at()
732 __SetPageUptodate(page
);
734 ptl
= pmd_lock(mm
, pmd
);
735 if (unlikely(!pmd_none(*pmd
))) {
737 mem_cgroup_uncharge_page(page
);
739 pte_free(mm
, pgtable
);
742 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
743 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
744 page_add_new_anon_rmap(page
, vma
, haddr
);
745 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
746 set_pmd_at(mm
, haddr
, pmd
, entry
);
747 add_mm_counter(mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
748 atomic_long_inc(&mm
->nr_ptes
);
755 static inline gfp_t
alloc_hugepage_gfpmask(int defrag
, gfp_t extra_gfp
)
757 return (GFP_TRANSHUGE
& ~(defrag
? 0 : __GFP_WAIT
)) | extra_gfp
;
760 static inline struct page
*alloc_hugepage_vma(int defrag
,
761 struct vm_area_struct
*vma
,
762 unsigned long haddr
, int nd
,
765 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag
, extra_gfp
),
766 HPAGE_PMD_ORDER
, vma
, haddr
, nd
);
769 /* Caller must hold page table lock. */
770 static bool set_huge_zero_page(pgtable_t pgtable
, struct mm_struct
*mm
,
771 struct vm_area_struct
*vma
, unsigned long haddr
, pmd_t
*pmd
,
772 struct page
*zero_page
)
777 entry
= mk_pmd(zero_page
, vma
->vm_page_prot
);
778 entry
= pmd_wrprotect(entry
);
779 entry
= pmd_mkhuge(entry
);
780 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
781 set_pmd_at(mm
, haddr
, pmd
, entry
);
782 atomic_long_inc(&mm
->nr_ptes
);
786 int do_huge_pmd_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
787 unsigned long address
, pmd_t
*pmd
,
791 unsigned long haddr
= address
& HPAGE_PMD_MASK
;
793 if (haddr
< vma
->vm_start
|| haddr
+ HPAGE_PMD_SIZE
> vma
->vm_end
)
794 return VM_FAULT_FALLBACK
;
795 if (unlikely(anon_vma_prepare(vma
)))
797 if (unlikely(khugepaged_enter(vma
)))
799 if (!(flags
& FAULT_FLAG_WRITE
) &&
800 transparent_hugepage_use_zero_page()) {
803 struct page
*zero_page
;
805 pgtable
= pte_alloc_one(mm
, haddr
);
806 if (unlikely(!pgtable
))
808 zero_page
= get_huge_zero_page();
809 if (unlikely(!zero_page
)) {
810 pte_free(mm
, pgtable
);
811 count_vm_event(THP_FAULT_FALLBACK
);
812 return VM_FAULT_FALLBACK
;
814 ptl
= pmd_lock(mm
, pmd
);
815 set
= set_huge_zero_page(pgtable
, mm
, vma
, haddr
, pmd
,
819 pte_free(mm
, pgtable
);
820 put_huge_zero_page();
824 page
= alloc_hugepage_vma(transparent_hugepage_defrag(vma
),
825 vma
, haddr
, numa_node_id(), 0);
826 if (unlikely(!page
)) {
827 count_vm_event(THP_FAULT_FALLBACK
);
828 return VM_FAULT_FALLBACK
;
830 if (unlikely(mem_cgroup_charge_anon(page
, mm
, GFP_KERNEL
))) {
832 count_vm_event(THP_FAULT_FALLBACK
);
833 return VM_FAULT_FALLBACK
;
835 if (unlikely(__do_huge_pmd_anonymous_page(mm
, vma
, haddr
, pmd
, page
))) {
836 mem_cgroup_uncharge_page(page
);
838 count_vm_event(THP_FAULT_FALLBACK
);
839 return VM_FAULT_FALLBACK
;
842 count_vm_event(THP_FAULT_ALLOC
);
846 int copy_huge_pmd(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
847 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, unsigned long addr
,
848 struct vm_area_struct
*vma
)
850 spinlock_t
*dst_ptl
, *src_ptl
;
851 struct page
*src_page
;
857 pgtable
= pte_alloc_one(dst_mm
, addr
);
858 if (unlikely(!pgtable
))
861 dst_ptl
= pmd_lock(dst_mm
, dst_pmd
);
862 src_ptl
= pmd_lockptr(src_mm
, src_pmd
);
863 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
867 if (unlikely(!pmd_trans_huge(pmd
))) {
868 pte_free(dst_mm
, pgtable
);
872 * When page table lock is held, the huge zero pmd should not be
873 * under splitting since we don't split the page itself, only pmd to
876 if (is_huge_zero_pmd(pmd
)) {
877 struct page
*zero_page
;
880 * get_huge_zero_page() will never allocate a new page here,
881 * since we already have a zero page to copy. It just takes a
884 zero_page
= get_huge_zero_page();
885 set
= set_huge_zero_page(pgtable
, dst_mm
, vma
, addr
, dst_pmd
,
887 BUG_ON(!set
); /* unexpected !pmd_none(dst_pmd) */
892 if (unlikely(pmd_trans_splitting(pmd
))) {
893 /* split huge page running from under us */
894 spin_unlock(src_ptl
);
895 spin_unlock(dst_ptl
);
896 pte_free(dst_mm
, pgtable
);
898 wait_split_huge_page(vma
->anon_vma
, src_pmd
); /* src_vma */
901 src_page
= pmd_page(pmd
);
902 VM_BUG_ON_PAGE(!PageHead(src_page
), src_page
);
904 page_dup_rmap(src_page
);
905 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
907 pmdp_set_wrprotect(src_mm
, addr
, src_pmd
);
908 pmd
= pmd_mkold(pmd_wrprotect(pmd
));
909 pgtable_trans_huge_deposit(dst_mm
, dst_pmd
, pgtable
);
910 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
911 atomic_long_inc(&dst_mm
->nr_ptes
);
915 spin_unlock(src_ptl
);
916 spin_unlock(dst_ptl
);
921 void huge_pmd_set_accessed(struct mm_struct
*mm
,
922 struct vm_area_struct
*vma
,
923 unsigned long address
,
924 pmd_t
*pmd
, pmd_t orig_pmd
,
931 ptl
= pmd_lock(mm
, pmd
);
932 if (unlikely(!pmd_same(*pmd
, orig_pmd
)))
935 entry
= pmd_mkyoung(orig_pmd
);
936 haddr
= address
& HPAGE_PMD_MASK
;
937 if (pmdp_set_access_flags(vma
, haddr
, pmd
, entry
, dirty
))
938 update_mmu_cache_pmd(vma
, address
, pmd
);
944 static int do_huge_pmd_wp_page_fallback(struct mm_struct
*mm
,
945 struct vm_area_struct
*vma
,
946 unsigned long address
,
947 pmd_t
*pmd
, pmd_t orig_pmd
,
956 unsigned long mmun_start
; /* For mmu_notifiers */
957 unsigned long mmun_end
; /* For mmu_notifiers */
959 pages
= kmalloc(sizeof(struct page
*) * HPAGE_PMD_NR
,
961 if (unlikely(!pages
)) {
966 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
967 pages
[i
] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE
|
969 vma
, address
, page_to_nid(page
));
970 if (unlikely(!pages
[i
] ||
971 mem_cgroup_charge_anon(pages
[i
], mm
,
975 mem_cgroup_uncharge_start();
977 mem_cgroup_uncharge_page(pages
[i
]);
980 mem_cgroup_uncharge_end();
987 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
988 copy_user_highpage(pages
[i
], page
+ i
,
989 haddr
+ PAGE_SIZE
* i
, vma
);
990 __SetPageUptodate(pages
[i
]);
995 mmun_end
= haddr
+ HPAGE_PMD_SIZE
;
996 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
998 ptl
= pmd_lock(mm
, pmd
);
999 if (unlikely(!pmd_same(*pmd
, orig_pmd
)))
1000 goto out_free_pages
;
1001 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1003 pmdp_clear_flush(vma
, haddr
, pmd
);
1004 /* leave pmd empty until pte is filled */
1006 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
1007 pmd_populate(mm
, &_pmd
, pgtable
);
1009 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
1011 entry
= mk_pte(pages
[i
], vma
->vm_page_prot
);
1012 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1013 page_add_new_anon_rmap(pages
[i
], vma
, haddr
);
1014 pte
= pte_offset_map(&_pmd
, haddr
);
1015 VM_BUG_ON(!pte_none(*pte
));
1016 set_pte_at(mm
, haddr
, pte
, entry
);
1021 smp_wmb(); /* make pte visible before pmd */
1022 pmd_populate(mm
, pmd
, pgtable
);
1023 page_remove_rmap(page
);
1026 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1028 ret
|= VM_FAULT_WRITE
;
1036 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1037 mem_cgroup_uncharge_start();
1038 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1039 mem_cgroup_uncharge_page(pages
[i
]);
1042 mem_cgroup_uncharge_end();
1047 int do_huge_pmd_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1048 unsigned long address
, pmd_t
*pmd
, pmd_t orig_pmd
)
1052 struct page
*page
= NULL
, *new_page
;
1053 unsigned long haddr
;
1054 unsigned long mmun_start
; /* For mmu_notifiers */
1055 unsigned long mmun_end
; /* For mmu_notifiers */
1057 ptl
= pmd_lockptr(mm
, pmd
);
1058 VM_BUG_ON(!vma
->anon_vma
);
1059 haddr
= address
& HPAGE_PMD_MASK
;
1060 if (is_huge_zero_pmd(orig_pmd
))
1063 if (unlikely(!pmd_same(*pmd
, orig_pmd
)))
1066 page
= pmd_page(orig_pmd
);
1067 VM_BUG_ON_PAGE(!PageCompound(page
) || !PageHead(page
), page
);
1068 if (page_mapcount(page
) == 1) {
1070 entry
= pmd_mkyoung(orig_pmd
);
1071 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1072 if (pmdp_set_access_flags(vma
, haddr
, pmd
, entry
, 1))
1073 update_mmu_cache_pmd(vma
, address
, pmd
);
1074 ret
|= VM_FAULT_WRITE
;
1080 if (transparent_hugepage_enabled(vma
) &&
1081 !transparent_hugepage_debug_cow())
1082 new_page
= alloc_hugepage_vma(transparent_hugepage_defrag(vma
),
1083 vma
, haddr
, numa_node_id(), 0);
1087 if (unlikely(!new_page
)) {
1089 split_huge_page_pmd(vma
, address
, pmd
);
1090 ret
|= VM_FAULT_FALLBACK
;
1092 ret
= do_huge_pmd_wp_page_fallback(mm
, vma
, address
,
1093 pmd
, orig_pmd
, page
, haddr
);
1094 if (ret
& VM_FAULT_OOM
) {
1095 split_huge_page(page
);
1096 ret
|= VM_FAULT_FALLBACK
;
1100 count_vm_event(THP_FAULT_FALLBACK
);
1104 if (unlikely(mem_cgroup_charge_anon(new_page
, mm
, GFP_KERNEL
))) {
1107 split_huge_page(page
);
1110 split_huge_page_pmd(vma
, address
, pmd
);
1111 ret
|= VM_FAULT_FALLBACK
;
1112 count_vm_event(THP_FAULT_FALLBACK
);
1116 count_vm_event(THP_FAULT_ALLOC
);
1119 clear_huge_page(new_page
, haddr
, HPAGE_PMD_NR
);
1121 copy_user_huge_page(new_page
, page
, haddr
, vma
, HPAGE_PMD_NR
);
1122 __SetPageUptodate(new_page
);
1125 mmun_end
= haddr
+ HPAGE_PMD_SIZE
;
1126 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1131 if (unlikely(!pmd_same(*pmd
, orig_pmd
))) {
1133 mem_cgroup_uncharge_page(new_page
);
1138 entry
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
1139 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1140 pmdp_clear_flush(vma
, haddr
, pmd
);
1141 page_add_new_anon_rmap(new_page
, vma
, haddr
);
1142 set_pmd_at(mm
, haddr
, pmd
, entry
);
1143 update_mmu_cache_pmd(vma
, address
, pmd
);
1145 add_mm_counter(mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1146 put_huge_zero_page();
1148 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1149 page_remove_rmap(page
);
1152 ret
|= VM_FAULT_WRITE
;
1156 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1164 struct page
*follow_trans_huge_pmd(struct vm_area_struct
*vma
,
1169 struct mm_struct
*mm
= vma
->vm_mm
;
1170 struct page
*page
= NULL
;
1172 assert_spin_locked(pmd_lockptr(mm
, pmd
));
1174 if (flags
& FOLL_WRITE
&& !pmd_write(*pmd
))
1177 /* Avoid dumping huge zero page */
1178 if ((flags
& FOLL_DUMP
) && is_huge_zero_pmd(*pmd
))
1179 return ERR_PTR(-EFAULT
);
1181 /* Full NUMA hinting faults to serialise migration in fault paths */
1182 if ((flags
& FOLL_NUMA
) && pmd_numa(*pmd
))
1185 page
= pmd_page(*pmd
);
1186 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1187 if (flags
& FOLL_TOUCH
) {
1190 * We should set the dirty bit only for FOLL_WRITE but
1191 * for now the dirty bit in the pmd is meaningless.
1192 * And if the dirty bit will become meaningful and
1193 * we'll only set it with FOLL_WRITE, an atomic
1194 * set_bit will be required on the pmd to set the
1195 * young bit, instead of the current set_pmd_at.
1197 _pmd
= pmd_mkyoung(pmd_mkdirty(*pmd
));
1198 if (pmdp_set_access_flags(vma
, addr
& HPAGE_PMD_MASK
,
1200 update_mmu_cache_pmd(vma
, addr
, pmd
);
1202 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
1203 if (page
->mapping
&& trylock_page(page
)) {
1206 mlock_vma_page(page
);
1210 page
+= (addr
& ~HPAGE_PMD_MASK
) >> PAGE_SHIFT
;
1211 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
1212 if (flags
& FOLL_GET
)
1213 get_page_foll(page
);
1219 /* NUMA hinting page fault entry point for trans huge pmds */
1220 int do_huge_pmd_numa_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1221 unsigned long addr
, pmd_t pmd
, pmd_t
*pmdp
)
1224 struct anon_vma
*anon_vma
= NULL
;
1226 unsigned long haddr
= addr
& HPAGE_PMD_MASK
;
1227 int page_nid
= -1, this_nid
= numa_node_id();
1228 int target_nid
, last_cpupid
= -1;
1230 bool migrated
= false;
1233 ptl
= pmd_lock(mm
, pmdp
);
1234 if (unlikely(!pmd_same(pmd
, *pmdp
)))
1238 * If there are potential migrations, wait for completion and retry
1239 * without disrupting NUMA hinting information. Do not relock and
1240 * check_same as the page may no longer be mapped.
1242 if (unlikely(pmd_trans_migrating(*pmdp
))) {
1244 wait_migrate_huge_page(vma
->anon_vma
, pmdp
);
1248 page
= pmd_page(pmd
);
1249 BUG_ON(is_huge_zero_page(page
));
1250 page_nid
= page_to_nid(page
);
1251 last_cpupid
= page_cpupid_last(page
);
1252 count_vm_numa_event(NUMA_HINT_FAULTS
);
1253 if (page_nid
== this_nid
) {
1254 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
1255 flags
|= TNF_FAULT_LOCAL
;
1259 * Avoid grouping on DSO/COW pages in specific and RO pages
1260 * in general, RO pages shouldn't hurt as much anyway since
1261 * they can be in shared cache state.
1263 if (!pmd_write(pmd
))
1264 flags
|= TNF_NO_GROUP
;
1267 * Acquire the page lock to serialise THP migrations but avoid dropping
1268 * page_table_lock if at all possible
1270 page_locked
= trylock_page(page
);
1271 target_nid
= mpol_misplaced(page
, vma
, haddr
);
1272 if (target_nid
== -1) {
1273 /* If the page was locked, there are no parallel migrations */
1278 /* Migration could have started since the pmd_trans_migrating check */
1281 wait_on_page_locked(page
);
1287 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1288 * to serialises splits
1292 anon_vma
= page_lock_anon_vma_read(page
);
1294 /* Confirm the PMD did not change while page_table_lock was released */
1296 if (unlikely(!pmd_same(pmd
, *pmdp
))) {
1303 /* Bail if we fail to protect against THP splits for any reason */
1304 if (unlikely(!anon_vma
)) {
1311 * Migrate the THP to the requested node, returns with page unlocked
1312 * and pmd_numa cleared.
1315 migrated
= migrate_misplaced_transhuge_page(mm
, vma
,
1316 pmdp
, pmd
, addr
, page
, target_nid
);
1318 flags
|= TNF_MIGRATED
;
1319 page_nid
= target_nid
;
1324 BUG_ON(!PageLocked(page
));
1325 pmd
= pmd_mknonnuma(pmd
);
1326 set_pmd_at(mm
, haddr
, pmdp
, pmd
);
1327 VM_BUG_ON(pmd_numa(*pmdp
));
1328 update_mmu_cache_pmd(vma
, addr
, pmdp
);
1335 page_unlock_anon_vma_read(anon_vma
);
1338 task_numa_fault(last_cpupid
, page_nid
, HPAGE_PMD_NR
, flags
);
1343 int zap_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1344 pmd_t
*pmd
, unsigned long addr
)
1349 if (__pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
1354 * For architectures like ppc64 we look at deposited pgtable
1355 * when calling pmdp_get_and_clear. So do the
1356 * pgtable_trans_huge_withdraw after finishing pmdp related
1359 orig_pmd
= pmdp_get_and_clear(tlb
->mm
, addr
, pmd
);
1360 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1361 pgtable
= pgtable_trans_huge_withdraw(tlb
->mm
, pmd
);
1362 if (is_huge_zero_pmd(orig_pmd
)) {
1363 atomic_long_dec(&tlb
->mm
->nr_ptes
);
1365 put_huge_zero_page();
1367 page
= pmd_page(orig_pmd
);
1368 page_remove_rmap(page
);
1369 VM_BUG_ON_PAGE(page_mapcount(page
) < 0, page
);
1370 add_mm_counter(tlb
->mm
, MM_ANONPAGES
, -HPAGE_PMD_NR
);
1371 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1372 atomic_long_dec(&tlb
->mm
->nr_ptes
);
1374 tlb_remove_page(tlb
, page
);
1376 pte_free(tlb
->mm
, pgtable
);
1382 int mincore_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1383 unsigned long addr
, unsigned long end
,
1389 if (__pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
1391 * All logical pages in the range are present
1392 * if backed by a huge page.
1395 memset(vec
, 1, (end
- addr
) >> PAGE_SHIFT
);
1402 int move_huge_pmd(struct vm_area_struct
*vma
, struct vm_area_struct
*new_vma
,
1403 unsigned long old_addr
,
1404 unsigned long new_addr
, unsigned long old_end
,
1405 pmd_t
*old_pmd
, pmd_t
*new_pmd
)
1407 spinlock_t
*old_ptl
, *new_ptl
;
1411 struct mm_struct
*mm
= vma
->vm_mm
;
1413 if ((old_addr
& ~HPAGE_PMD_MASK
) ||
1414 (new_addr
& ~HPAGE_PMD_MASK
) ||
1415 old_end
- old_addr
< HPAGE_PMD_SIZE
||
1416 (new_vma
->vm_flags
& VM_NOHUGEPAGE
))
1420 * The destination pmd shouldn't be established, free_pgtables()
1421 * should have release it.
1423 if (WARN_ON(!pmd_none(*new_pmd
))) {
1424 VM_BUG_ON(pmd_trans_huge(*new_pmd
));
1429 * We don't have to worry about the ordering of src and dst
1430 * ptlocks because exclusive mmap_sem prevents deadlock.
1432 ret
= __pmd_trans_huge_lock(old_pmd
, vma
, &old_ptl
);
1434 new_ptl
= pmd_lockptr(mm
, new_pmd
);
1435 if (new_ptl
!= old_ptl
)
1436 spin_lock_nested(new_ptl
, SINGLE_DEPTH_NESTING
);
1437 pmd
= pmdp_get_and_clear(mm
, old_addr
, old_pmd
);
1438 VM_BUG_ON(!pmd_none(*new_pmd
));
1440 if (pmd_move_must_withdraw(new_ptl
, old_ptl
)) {
1442 pgtable
= pgtable_trans_huge_withdraw(mm
, old_pmd
);
1443 pgtable_trans_huge_deposit(mm
, new_pmd
, pgtable
);
1445 set_pmd_at(mm
, new_addr
, new_pmd
, pmd_mksoft_dirty(pmd
));
1446 if (new_ptl
!= old_ptl
)
1447 spin_unlock(new_ptl
);
1448 spin_unlock(old_ptl
);
1456 * - 0 if PMD could not be locked
1457 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1458 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1460 int change_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1461 unsigned long addr
, pgprot_t newprot
, int prot_numa
)
1463 struct mm_struct
*mm
= vma
->vm_mm
;
1467 if (__pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
1471 entry
= pmdp_get_and_clear(mm
, addr
, pmd
);
1472 if (pmd_numa(entry
))
1473 entry
= pmd_mknonnuma(entry
);
1474 entry
= pmd_modify(entry
, newprot
);
1476 set_pmd_at(mm
, addr
, pmd
, entry
);
1477 BUG_ON(pmd_write(entry
));
1479 struct page
*page
= pmd_page(*pmd
);
1482 * Do not trap faults against the zero page. The
1483 * read-only data is likely to be read-cached on the
1484 * local CPU cache and it is less useful to know about
1485 * local vs remote hits on the zero page.
1487 if (!is_huge_zero_page(page
) &&
1489 pmdp_set_numa(mm
, addr
, pmd
);
1500 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1501 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1503 * Note that if it returns 1, this routine returns without unlocking page
1504 * table locks. So callers must unlock them.
1506 int __pmd_trans_huge_lock(pmd_t
*pmd
, struct vm_area_struct
*vma
,
1509 *ptl
= pmd_lock(vma
->vm_mm
, pmd
);
1510 if (likely(pmd_trans_huge(*pmd
))) {
1511 if (unlikely(pmd_trans_splitting(*pmd
))) {
1513 wait_split_huge_page(vma
->anon_vma
, pmd
);
1516 /* Thp mapped by 'pmd' is stable, so we can
1517 * handle it as it is. */
1526 * This function returns whether a given @page is mapped onto the @address
1527 * in the virtual space of @mm.
1529 * When it's true, this function returns *pmd with holding the page table lock
1530 * and passing it back to the caller via @ptl.
1531 * If it's false, returns NULL without holding the page table lock.
1533 pmd_t
*page_check_address_pmd(struct page
*page
,
1534 struct mm_struct
*mm
,
1535 unsigned long address
,
1536 enum page_check_address_pmd_flag flag
,
1541 if (address
& ~HPAGE_PMD_MASK
)
1544 pmd
= mm_find_pmd(mm
, address
);
1547 *ptl
= pmd_lock(mm
, pmd
);
1550 if (pmd_page(*pmd
) != page
)
1553 * split_vma() may create temporary aliased mappings. There is
1554 * no risk as long as all huge pmd are found and have their
1555 * splitting bit set before __split_huge_page_refcount
1556 * runs. Finding the same huge pmd more than once during the
1557 * same rmap walk is not a problem.
1559 if (flag
== PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG
&&
1560 pmd_trans_splitting(*pmd
))
1562 if (pmd_trans_huge(*pmd
)) {
1563 VM_BUG_ON(flag
== PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG
&&
1564 !pmd_trans_splitting(*pmd
));
1572 static int __split_huge_page_splitting(struct page
*page
,
1573 struct vm_area_struct
*vma
,
1574 unsigned long address
)
1576 struct mm_struct
*mm
= vma
->vm_mm
;
1580 /* For mmu_notifiers */
1581 const unsigned long mmun_start
= address
;
1582 const unsigned long mmun_end
= address
+ HPAGE_PMD_SIZE
;
1584 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1585 pmd
= page_check_address_pmd(page
, mm
, address
,
1586 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG
, &ptl
);
1589 * We can't temporarily set the pmd to null in order
1590 * to split it, the pmd must remain marked huge at all
1591 * times or the VM won't take the pmd_trans_huge paths
1592 * and it won't wait on the anon_vma->root->rwsem to
1593 * serialize against split_huge_page*.
1595 pmdp_splitting_flush(vma
, address
, pmd
);
1599 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1604 static void __split_huge_page_refcount(struct page
*page
,
1605 struct list_head
*list
)
1608 struct zone
*zone
= page_zone(page
);
1609 struct lruvec
*lruvec
;
1612 /* prevent PageLRU to go away from under us, and freeze lru stats */
1613 spin_lock_irq(&zone
->lru_lock
);
1614 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
1616 compound_lock(page
);
1617 /* complete memcg works before add pages to LRU */
1618 mem_cgroup_split_huge_fixup(page
);
1620 for (i
= HPAGE_PMD_NR
- 1; i
>= 1; i
--) {
1621 struct page
*page_tail
= page
+ i
;
1623 /* tail_page->_mapcount cannot change */
1624 BUG_ON(page_mapcount(page_tail
) < 0);
1625 tail_count
+= page_mapcount(page_tail
);
1626 /* check for overflow */
1627 BUG_ON(tail_count
< 0);
1628 BUG_ON(atomic_read(&page_tail
->_count
) != 0);
1630 * tail_page->_count is zero and not changing from
1631 * under us. But get_page_unless_zero() may be running
1632 * from under us on the tail_page. If we used
1633 * atomic_set() below instead of atomic_add(), we
1634 * would then run atomic_set() concurrently with
1635 * get_page_unless_zero(), and atomic_set() is
1636 * implemented in C not using locked ops. spin_unlock
1637 * on x86 sometime uses locked ops because of PPro
1638 * errata 66, 92, so unless somebody can guarantee
1639 * atomic_set() here would be safe on all archs (and
1640 * not only on x86), it's safer to use atomic_add().
1642 atomic_add(page_mapcount(page
) + page_mapcount(page_tail
) + 1,
1643 &page_tail
->_count
);
1645 /* after clearing PageTail the gup refcount can be released */
1649 * retain hwpoison flag of the poisoned tail page:
1650 * fix for the unsuitable process killed on Guest Machine(KVM)
1651 * by the memory-failure.
1653 page_tail
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
| __PG_HWPOISON
;
1654 page_tail
->flags
|= (page
->flags
&
1655 ((1L << PG_referenced
) |
1656 (1L << PG_swapbacked
) |
1657 (1L << PG_mlocked
) |
1658 (1L << PG_uptodate
) |
1660 (1L << PG_unevictable
)));
1661 page_tail
->flags
|= (1L << PG_dirty
);
1663 /* clear PageTail before overwriting first_page */
1667 * __split_huge_page_splitting() already set the
1668 * splitting bit in all pmd that could map this
1669 * hugepage, that will ensure no CPU can alter the
1670 * mapcount on the head page. The mapcount is only
1671 * accounted in the head page and it has to be
1672 * transferred to all tail pages in the below code. So
1673 * for this code to be safe, the split the mapcount
1674 * can't change. But that doesn't mean userland can't
1675 * keep changing and reading the page contents while
1676 * we transfer the mapcount, so the pmd splitting
1677 * status is achieved setting a reserved bit in the
1678 * pmd, not by clearing the present bit.
1680 page_tail
->_mapcount
= page
->_mapcount
;
1682 BUG_ON(page_tail
->mapping
);
1683 page_tail
->mapping
= page
->mapping
;
1685 page_tail
->index
= page
->index
+ i
;
1686 page_cpupid_xchg_last(page_tail
, page_cpupid_last(page
));
1688 BUG_ON(!PageAnon(page_tail
));
1689 BUG_ON(!PageUptodate(page_tail
));
1690 BUG_ON(!PageDirty(page_tail
));
1691 BUG_ON(!PageSwapBacked(page_tail
));
1693 lru_add_page_tail(page
, page_tail
, lruvec
, list
);
1695 atomic_sub(tail_count
, &page
->_count
);
1696 BUG_ON(atomic_read(&page
->_count
) <= 0);
1698 __mod_zone_page_state(zone
, NR_ANON_TRANSPARENT_HUGEPAGES
, -1);
1700 ClearPageCompound(page
);
1701 compound_unlock(page
);
1702 spin_unlock_irq(&zone
->lru_lock
);
1704 for (i
= 1; i
< HPAGE_PMD_NR
; i
++) {
1705 struct page
*page_tail
= page
+ i
;
1706 BUG_ON(page_count(page_tail
) <= 0);
1708 * Tail pages may be freed if there wasn't any mapping
1709 * like if add_to_swap() is running on a lru page that
1710 * had its mapping zapped. And freeing these pages
1711 * requires taking the lru_lock so we do the put_page
1712 * of the tail pages after the split is complete.
1714 put_page(page_tail
);
1718 * Only the head page (now become a regular page) is required
1719 * to be pinned by the caller.
1721 BUG_ON(page_count(page
) <= 0);
1724 static int __split_huge_page_map(struct page
*page
,
1725 struct vm_area_struct
*vma
,
1726 unsigned long address
)
1728 struct mm_struct
*mm
= vma
->vm_mm
;
1733 unsigned long haddr
;
1735 pmd
= page_check_address_pmd(page
, mm
, address
,
1736 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG
, &ptl
);
1738 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
1739 pmd_populate(mm
, &_pmd
, pgtable
);
1742 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
1744 BUG_ON(PageCompound(page
+i
));
1745 entry
= mk_pte(page
+ i
, vma
->vm_page_prot
);
1746 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1747 if (!pmd_write(*pmd
))
1748 entry
= pte_wrprotect(entry
);
1750 BUG_ON(page_mapcount(page
) != 1);
1751 if (!pmd_young(*pmd
))
1752 entry
= pte_mkold(entry
);
1754 entry
= pte_mknuma(entry
);
1755 pte
= pte_offset_map(&_pmd
, haddr
);
1756 BUG_ON(!pte_none(*pte
));
1757 set_pte_at(mm
, haddr
, pte
, entry
);
1761 smp_wmb(); /* make pte visible before pmd */
1763 * Up to this point the pmd is present and huge and
1764 * userland has the whole access to the hugepage
1765 * during the split (which happens in place). If we
1766 * overwrite the pmd with the not-huge version
1767 * pointing to the pte here (which of course we could
1768 * if all CPUs were bug free), userland could trigger
1769 * a small page size TLB miss on the small sized TLB
1770 * while the hugepage TLB entry is still established
1771 * in the huge TLB. Some CPU doesn't like that. See
1772 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1773 * Erratum 383 on page 93. Intel should be safe but is
1774 * also warns that it's only safe if the permission
1775 * and cache attributes of the two entries loaded in
1776 * the two TLB is identical (which should be the case
1777 * here). But it is generally safer to never allow
1778 * small and huge TLB entries for the same virtual
1779 * address to be loaded simultaneously. So instead of
1780 * doing "pmd_populate(); flush_tlb_range();" we first
1781 * mark the current pmd notpresent (atomically because
1782 * here the pmd_trans_huge and pmd_trans_splitting
1783 * must remain set at all times on the pmd until the
1784 * split is complete for this pmd), then we flush the
1785 * SMP TLB and finally we write the non-huge version
1786 * of the pmd entry with pmd_populate.
1788 pmdp_invalidate(vma
, address
, pmd
);
1789 pmd_populate(mm
, pmd
, pgtable
);
1797 /* must be called with anon_vma->root->rwsem held */
1798 static void __split_huge_page(struct page
*page
,
1799 struct anon_vma
*anon_vma
,
1800 struct list_head
*list
)
1802 int mapcount
, mapcount2
;
1803 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1804 struct anon_vma_chain
*avc
;
1806 BUG_ON(!PageHead(page
));
1807 BUG_ON(PageTail(page
));
1810 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
1811 struct vm_area_struct
*vma
= avc
->vma
;
1812 unsigned long addr
= vma_address(page
, vma
);
1813 BUG_ON(is_vma_temporary_stack(vma
));
1814 mapcount
+= __split_huge_page_splitting(page
, vma
, addr
);
1817 * It is critical that new vmas are added to the tail of the
1818 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1819 * and establishes a child pmd before
1820 * __split_huge_page_splitting() freezes the parent pmd (so if
1821 * we fail to prevent copy_huge_pmd() from running until the
1822 * whole __split_huge_page() is complete), we will still see
1823 * the newly established pmd of the child later during the
1824 * walk, to be able to set it as pmd_trans_splitting too.
1826 if (mapcount
!= page_mapcount(page
))
1827 printk(KERN_ERR
"mapcount %d page_mapcount %d\n",
1828 mapcount
, page_mapcount(page
));
1829 BUG_ON(mapcount
!= page_mapcount(page
));
1831 __split_huge_page_refcount(page
, list
);
1834 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
1835 struct vm_area_struct
*vma
= avc
->vma
;
1836 unsigned long addr
= vma_address(page
, vma
);
1837 BUG_ON(is_vma_temporary_stack(vma
));
1838 mapcount2
+= __split_huge_page_map(page
, vma
, addr
);
1840 if (mapcount
!= mapcount2
)
1841 printk(KERN_ERR
"mapcount %d mapcount2 %d page_mapcount %d\n",
1842 mapcount
, mapcount2
, page_mapcount(page
));
1843 BUG_ON(mapcount
!= mapcount2
);
1847 * Split a hugepage into normal pages. This doesn't change the position of head
1848 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1849 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1850 * from the hugepage.
1851 * Return 0 if the hugepage is split successfully otherwise return 1.
1853 int split_huge_page_to_list(struct page
*page
, struct list_head
*list
)
1855 struct anon_vma
*anon_vma
;
1858 BUG_ON(is_huge_zero_page(page
));
1859 BUG_ON(!PageAnon(page
));
1862 * The caller does not necessarily hold an mmap_sem that would prevent
1863 * the anon_vma disappearing so we first we take a reference to it
1864 * and then lock the anon_vma for write. This is similar to
1865 * page_lock_anon_vma_read except the write lock is taken to serialise
1866 * against parallel split or collapse operations.
1868 anon_vma
= page_get_anon_vma(page
);
1871 anon_vma_lock_write(anon_vma
);
1874 if (!PageCompound(page
))
1877 BUG_ON(!PageSwapBacked(page
));
1878 __split_huge_page(page
, anon_vma
, list
);
1879 count_vm_event(THP_SPLIT
);
1881 BUG_ON(PageCompound(page
));
1883 anon_vma_unlock_write(anon_vma
);
1884 put_anon_vma(anon_vma
);
1889 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1891 int hugepage_madvise(struct vm_area_struct
*vma
,
1892 unsigned long *vm_flags
, int advice
)
1898 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1899 * can't handle this properly after s390_enable_sie, so we simply
1900 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1902 if (mm_has_pgste(vma
->vm_mm
))
1906 * Be somewhat over-protective like KSM for now!
1908 if (*vm_flags
& (VM_HUGEPAGE
| VM_NO_THP
))
1910 *vm_flags
&= ~VM_NOHUGEPAGE
;
1911 *vm_flags
|= VM_HUGEPAGE
;
1913 * If the vma become good for khugepaged to scan,
1914 * register it here without waiting a page fault that
1915 * may not happen any time soon.
1917 if (unlikely(khugepaged_enter_vma_merge(vma
)))
1920 case MADV_NOHUGEPAGE
:
1922 * Be somewhat over-protective like KSM for now!
1924 if (*vm_flags
& (VM_NOHUGEPAGE
| VM_NO_THP
))
1926 *vm_flags
&= ~VM_HUGEPAGE
;
1927 *vm_flags
|= VM_NOHUGEPAGE
;
1929 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1930 * this vma even if we leave the mm registered in khugepaged if
1931 * it got registered before VM_NOHUGEPAGE was set.
1939 static int __init
khugepaged_slab_init(void)
1941 mm_slot_cache
= kmem_cache_create("khugepaged_mm_slot",
1942 sizeof(struct mm_slot
),
1943 __alignof__(struct mm_slot
), 0, NULL
);
1950 static inline struct mm_slot
*alloc_mm_slot(void)
1952 if (!mm_slot_cache
) /* initialization failed */
1954 return kmem_cache_zalloc(mm_slot_cache
, GFP_KERNEL
);
1957 static inline void free_mm_slot(struct mm_slot
*mm_slot
)
1959 kmem_cache_free(mm_slot_cache
, mm_slot
);
1962 static struct mm_slot
*get_mm_slot(struct mm_struct
*mm
)
1964 struct mm_slot
*mm_slot
;
1966 hash_for_each_possible(mm_slots_hash
, mm_slot
, hash
, (unsigned long)mm
)
1967 if (mm
== mm_slot
->mm
)
1973 static void insert_to_mm_slots_hash(struct mm_struct
*mm
,
1974 struct mm_slot
*mm_slot
)
1977 hash_add(mm_slots_hash
, &mm_slot
->hash
, (long)mm
);
1980 static inline int khugepaged_test_exit(struct mm_struct
*mm
)
1982 return atomic_read(&mm
->mm_users
) == 0;
1985 int __khugepaged_enter(struct mm_struct
*mm
)
1987 struct mm_slot
*mm_slot
;
1990 mm_slot
= alloc_mm_slot();
1994 /* __khugepaged_exit() must not run from under us */
1995 VM_BUG_ON(khugepaged_test_exit(mm
));
1996 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE
, &mm
->flags
))) {
1997 free_mm_slot(mm_slot
);
2001 spin_lock(&khugepaged_mm_lock
);
2002 insert_to_mm_slots_hash(mm
, mm_slot
);
2004 * Insert just behind the scanning cursor, to let the area settle
2007 wakeup
= list_empty(&khugepaged_scan
.mm_head
);
2008 list_add_tail(&mm_slot
->mm_node
, &khugepaged_scan
.mm_head
);
2009 spin_unlock(&khugepaged_mm_lock
);
2011 atomic_inc(&mm
->mm_count
);
2013 wake_up_interruptible(&khugepaged_wait
);
2018 int khugepaged_enter_vma_merge(struct vm_area_struct
*vma
)
2020 unsigned long hstart
, hend
;
2023 * Not yet faulted in so we will register later in the
2024 * page fault if needed.
2028 /* khugepaged not yet working on file or special mappings */
2030 VM_BUG_ON(vma
->vm_flags
& VM_NO_THP
);
2031 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
2032 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
2034 return khugepaged_enter(vma
);
2038 void __khugepaged_exit(struct mm_struct
*mm
)
2040 struct mm_slot
*mm_slot
;
2043 spin_lock(&khugepaged_mm_lock
);
2044 mm_slot
= get_mm_slot(mm
);
2045 if (mm_slot
&& khugepaged_scan
.mm_slot
!= mm_slot
) {
2046 hash_del(&mm_slot
->hash
);
2047 list_del(&mm_slot
->mm_node
);
2050 spin_unlock(&khugepaged_mm_lock
);
2053 clear_bit(MMF_VM_HUGEPAGE
, &mm
->flags
);
2054 free_mm_slot(mm_slot
);
2056 } else if (mm_slot
) {
2058 * This is required to serialize against
2059 * khugepaged_test_exit() (which is guaranteed to run
2060 * under mmap sem read mode). Stop here (after we
2061 * return all pagetables will be destroyed) until
2062 * khugepaged has finished working on the pagetables
2063 * under the mmap_sem.
2065 down_write(&mm
->mmap_sem
);
2066 up_write(&mm
->mmap_sem
);
2070 static void release_pte_page(struct page
*page
)
2072 /* 0 stands for page_is_file_cache(page) == false */
2073 dec_zone_page_state(page
, NR_ISOLATED_ANON
+ 0);
2075 putback_lru_page(page
);
2078 static void release_pte_pages(pte_t
*pte
, pte_t
*_pte
)
2080 while (--_pte
>= pte
) {
2081 pte_t pteval
= *_pte
;
2082 if (!pte_none(pteval
))
2083 release_pte_page(pte_page(pteval
));
2087 static int __collapse_huge_page_isolate(struct vm_area_struct
*vma
,
2088 unsigned long address
,
2093 int referenced
= 0, none
= 0;
2094 for (_pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
2095 _pte
++, address
+= PAGE_SIZE
) {
2096 pte_t pteval
= *_pte
;
2097 if (pte_none(pteval
)) {
2098 if (++none
<= khugepaged_max_ptes_none
)
2103 if (!pte_present(pteval
) || !pte_write(pteval
))
2105 page
= vm_normal_page(vma
, address
, pteval
);
2106 if (unlikely(!page
))
2109 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2110 VM_BUG_ON_PAGE(!PageAnon(page
), page
);
2111 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
2113 /* cannot use mapcount: can't collapse if there's a gup pin */
2114 if (page_count(page
) != 1)
2117 * We can do it before isolate_lru_page because the
2118 * page can't be freed from under us. NOTE: PG_lock
2119 * is needed to serialize against split_huge_page
2120 * when invoked from the VM.
2122 if (!trylock_page(page
))
2125 * Isolate the page to avoid collapsing an hugepage
2126 * currently in use by the VM.
2128 if (isolate_lru_page(page
)) {
2132 /* 0 stands for page_is_file_cache(page) == false */
2133 inc_zone_page_state(page
, NR_ISOLATED_ANON
+ 0);
2134 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2135 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2137 /* If there is no mapped pte young don't collapse the page */
2138 if (pte_young(pteval
) || PageReferenced(page
) ||
2139 mmu_notifier_test_young(vma
->vm_mm
, address
))
2142 if (likely(referenced
))
2145 release_pte_pages(pte
, _pte
);
2149 static void __collapse_huge_page_copy(pte_t
*pte
, struct page
*page
,
2150 struct vm_area_struct
*vma
,
2151 unsigned long address
,
2155 for (_pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
; _pte
++) {
2156 pte_t pteval
= *_pte
;
2157 struct page
*src_page
;
2159 if (pte_none(pteval
)) {
2160 clear_user_highpage(page
, address
);
2161 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, 1);
2163 src_page
= pte_page(pteval
);
2164 copy_user_highpage(page
, src_page
, address
, vma
);
2165 VM_BUG_ON_PAGE(page_mapcount(src_page
) != 1, src_page
);
2166 release_pte_page(src_page
);
2168 * ptl mostly unnecessary, but preempt has to
2169 * be disabled to update the per-cpu stats
2170 * inside page_remove_rmap().
2174 * paravirt calls inside pte_clear here are
2177 pte_clear(vma
->vm_mm
, address
, _pte
);
2178 page_remove_rmap(src_page
);
2180 free_page_and_swap_cache(src_page
);
2183 address
+= PAGE_SIZE
;
2188 static void khugepaged_alloc_sleep(void)
2190 wait_event_freezable_timeout(khugepaged_wait
, false,
2191 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs
));
2194 static int khugepaged_node_load
[MAX_NUMNODES
];
2197 static int khugepaged_find_target_node(void)
2199 static int last_khugepaged_target_node
= NUMA_NO_NODE
;
2200 int nid
, target_node
= 0, max_value
= 0;
2202 /* find first node with max normal pages hit */
2203 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
2204 if (khugepaged_node_load
[nid
] > max_value
) {
2205 max_value
= khugepaged_node_load
[nid
];
2209 /* do some balance if several nodes have the same hit record */
2210 if (target_node
<= last_khugepaged_target_node
)
2211 for (nid
= last_khugepaged_target_node
+ 1; nid
< MAX_NUMNODES
;
2213 if (max_value
== khugepaged_node_load
[nid
]) {
2218 last_khugepaged_target_node
= target_node
;
2222 static bool khugepaged_prealloc_page(struct page
**hpage
, bool *wait
)
2224 if (IS_ERR(*hpage
)) {
2230 khugepaged_alloc_sleep();
2231 } else if (*hpage
) {
2240 *khugepaged_alloc_page(struct page
**hpage
, struct mm_struct
*mm
,
2241 struct vm_area_struct
*vma
, unsigned long address
,
2244 VM_BUG_ON_PAGE(*hpage
, *hpage
);
2246 * Allocate the page while the vma is still valid and under
2247 * the mmap_sem read mode so there is no memory allocation
2248 * later when we take the mmap_sem in write mode. This is more
2249 * friendly behavior (OTOH it may actually hide bugs) to
2250 * filesystems in userland with daemons allocating memory in
2251 * the userland I/O paths. Allocating memory with the
2252 * mmap_sem in read mode is good idea also to allow greater
2255 *hpage
= alloc_pages_exact_node(node
, alloc_hugepage_gfpmask(
2256 khugepaged_defrag(), __GFP_OTHER_NODE
), HPAGE_PMD_ORDER
);
2258 * After allocating the hugepage, release the mmap_sem read lock in
2259 * preparation for taking it in write mode.
2261 up_read(&mm
->mmap_sem
);
2262 if (unlikely(!*hpage
)) {
2263 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
2264 *hpage
= ERR_PTR(-ENOMEM
);
2268 count_vm_event(THP_COLLAPSE_ALLOC
);
2272 static int khugepaged_find_target_node(void)
2277 static inline struct page
*alloc_hugepage(int defrag
)
2279 return alloc_pages(alloc_hugepage_gfpmask(defrag
, 0),
2283 static struct page
*khugepaged_alloc_hugepage(bool *wait
)
2288 hpage
= alloc_hugepage(khugepaged_defrag());
2290 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
2295 khugepaged_alloc_sleep();
2297 count_vm_event(THP_COLLAPSE_ALLOC
);
2298 } while (unlikely(!hpage
) && likely(khugepaged_enabled()));
2303 static bool khugepaged_prealloc_page(struct page
**hpage
, bool *wait
)
2306 *hpage
= khugepaged_alloc_hugepage(wait
);
2308 if (unlikely(!*hpage
))
2315 *khugepaged_alloc_page(struct page
**hpage
, struct mm_struct
*mm
,
2316 struct vm_area_struct
*vma
, unsigned long address
,
2319 up_read(&mm
->mmap_sem
);
2325 static bool hugepage_vma_check(struct vm_area_struct
*vma
)
2327 if ((!(vma
->vm_flags
& VM_HUGEPAGE
) && !khugepaged_always()) ||
2328 (vma
->vm_flags
& VM_NOHUGEPAGE
))
2331 if (!vma
->anon_vma
|| vma
->vm_ops
)
2333 if (is_vma_temporary_stack(vma
))
2335 VM_BUG_ON(vma
->vm_flags
& VM_NO_THP
);
2339 static void collapse_huge_page(struct mm_struct
*mm
,
2340 unsigned long address
,
2341 struct page
**hpage
,
2342 struct vm_area_struct
*vma
,
2348 struct page
*new_page
;
2349 spinlock_t
*pmd_ptl
, *pte_ptl
;
2351 unsigned long hstart
, hend
;
2352 unsigned long mmun_start
; /* For mmu_notifiers */
2353 unsigned long mmun_end
; /* For mmu_notifiers */
2355 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
2357 /* release the mmap_sem read lock. */
2358 new_page
= khugepaged_alloc_page(hpage
, mm
, vma
, address
, node
);
2362 if (unlikely(mem_cgroup_charge_anon(new_page
, mm
, GFP_KERNEL
)))
2366 * Prevent all access to pagetables with the exception of
2367 * gup_fast later hanlded by the ptep_clear_flush and the VM
2368 * handled by the anon_vma lock + PG_lock.
2370 down_write(&mm
->mmap_sem
);
2371 if (unlikely(khugepaged_test_exit(mm
)))
2374 vma
= find_vma(mm
, address
);
2377 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
2378 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
2379 if (address
< hstart
|| address
+ HPAGE_PMD_SIZE
> hend
)
2381 if (!hugepage_vma_check(vma
))
2383 pmd
= mm_find_pmd(mm
, address
);
2386 if (pmd_trans_huge(*pmd
))
2389 anon_vma_lock_write(vma
->anon_vma
);
2391 pte
= pte_offset_map(pmd
, address
);
2392 pte_ptl
= pte_lockptr(mm
, pmd
);
2394 mmun_start
= address
;
2395 mmun_end
= address
+ HPAGE_PMD_SIZE
;
2396 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2397 pmd_ptl
= pmd_lock(mm
, pmd
); /* probably unnecessary */
2399 * After this gup_fast can't run anymore. This also removes
2400 * any huge TLB entry from the CPU so we won't allow
2401 * huge and small TLB entries for the same virtual address
2402 * to avoid the risk of CPU bugs in that area.
2404 _pmd
= pmdp_clear_flush(vma
, address
, pmd
);
2405 spin_unlock(pmd_ptl
);
2406 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2409 isolated
= __collapse_huge_page_isolate(vma
, address
, pte
);
2410 spin_unlock(pte_ptl
);
2412 if (unlikely(!isolated
)) {
2415 BUG_ON(!pmd_none(*pmd
));
2417 * We can only use set_pmd_at when establishing
2418 * hugepmds and never for establishing regular pmds that
2419 * points to regular pagetables. Use pmd_populate for that
2421 pmd_populate(mm
, pmd
, pmd_pgtable(_pmd
));
2422 spin_unlock(pmd_ptl
);
2423 anon_vma_unlock_write(vma
->anon_vma
);
2428 * All pages are isolated and locked so anon_vma rmap
2429 * can't run anymore.
2431 anon_vma_unlock_write(vma
->anon_vma
);
2433 __collapse_huge_page_copy(pte
, new_page
, vma
, address
, pte_ptl
);
2435 __SetPageUptodate(new_page
);
2436 pgtable
= pmd_pgtable(_pmd
);
2438 _pmd
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
2439 _pmd
= maybe_pmd_mkwrite(pmd_mkdirty(_pmd
), vma
);
2442 * spin_lock() below is not the equivalent of smp_wmb(), so
2443 * this is needed to avoid the copy_huge_page writes to become
2444 * visible after the set_pmd_at() write.
2449 BUG_ON(!pmd_none(*pmd
));
2450 page_add_new_anon_rmap(new_page
, vma
, address
);
2451 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
2452 set_pmd_at(mm
, address
, pmd
, _pmd
);
2453 update_mmu_cache_pmd(vma
, address
, pmd
);
2454 spin_unlock(pmd_ptl
);
2458 khugepaged_pages_collapsed
++;
2460 up_write(&mm
->mmap_sem
);
2464 mem_cgroup_uncharge_page(new_page
);
2468 static int khugepaged_scan_pmd(struct mm_struct
*mm
,
2469 struct vm_area_struct
*vma
,
2470 unsigned long address
,
2471 struct page
**hpage
)
2475 int ret
= 0, referenced
= 0, none
= 0;
2477 unsigned long _address
;
2479 int node
= NUMA_NO_NODE
;
2481 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
2483 pmd
= mm_find_pmd(mm
, address
);
2486 if (pmd_trans_huge(*pmd
))
2489 memset(khugepaged_node_load
, 0, sizeof(khugepaged_node_load
));
2490 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2491 for (_address
= address
, _pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
2492 _pte
++, _address
+= PAGE_SIZE
) {
2493 pte_t pteval
= *_pte
;
2494 if (pte_none(pteval
)) {
2495 if (++none
<= khugepaged_max_ptes_none
)
2500 if (!pte_present(pteval
) || !pte_write(pteval
))
2502 page
= vm_normal_page(vma
, _address
, pteval
);
2503 if (unlikely(!page
))
2506 * Record which node the original page is from and save this
2507 * information to khugepaged_node_load[].
2508 * Khupaged will allocate hugepage from the node has the max
2511 node
= page_to_nid(page
);
2512 khugepaged_node_load
[node
]++;
2513 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2514 if (!PageLRU(page
) || PageLocked(page
) || !PageAnon(page
))
2516 /* cannot use mapcount: can't collapse if there's a gup pin */
2517 if (page_count(page
) != 1)
2519 if (pte_young(pteval
) || PageReferenced(page
) ||
2520 mmu_notifier_test_young(vma
->vm_mm
, address
))
2526 pte_unmap_unlock(pte
, ptl
);
2528 node
= khugepaged_find_target_node();
2529 /* collapse_huge_page will return with the mmap_sem released */
2530 collapse_huge_page(mm
, address
, hpage
, vma
, node
);
2536 static void collect_mm_slot(struct mm_slot
*mm_slot
)
2538 struct mm_struct
*mm
= mm_slot
->mm
;
2540 VM_BUG_ON(NR_CPUS
!= 1 && !spin_is_locked(&khugepaged_mm_lock
));
2542 if (khugepaged_test_exit(mm
)) {
2544 hash_del(&mm_slot
->hash
);
2545 list_del(&mm_slot
->mm_node
);
2548 * Not strictly needed because the mm exited already.
2550 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2553 /* khugepaged_mm_lock actually not necessary for the below */
2554 free_mm_slot(mm_slot
);
2559 static unsigned int khugepaged_scan_mm_slot(unsigned int pages
,
2560 struct page
**hpage
)
2561 __releases(&khugepaged_mm_lock
)
2562 __acquires(&khugepaged_mm_lock
)
2564 struct mm_slot
*mm_slot
;
2565 struct mm_struct
*mm
;
2566 struct vm_area_struct
*vma
;
2570 VM_BUG_ON(NR_CPUS
!= 1 && !spin_is_locked(&khugepaged_mm_lock
));
2572 if (khugepaged_scan
.mm_slot
)
2573 mm_slot
= khugepaged_scan
.mm_slot
;
2575 mm_slot
= list_entry(khugepaged_scan
.mm_head
.next
,
2576 struct mm_slot
, mm_node
);
2577 khugepaged_scan
.address
= 0;
2578 khugepaged_scan
.mm_slot
= mm_slot
;
2580 spin_unlock(&khugepaged_mm_lock
);
2583 down_read(&mm
->mmap_sem
);
2584 if (unlikely(khugepaged_test_exit(mm
)))
2587 vma
= find_vma(mm
, khugepaged_scan
.address
);
2590 for (; vma
; vma
= vma
->vm_next
) {
2591 unsigned long hstart
, hend
;
2594 if (unlikely(khugepaged_test_exit(mm
))) {
2598 if (!hugepage_vma_check(vma
)) {
2603 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
2604 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
2607 if (khugepaged_scan
.address
> hend
)
2609 if (khugepaged_scan
.address
< hstart
)
2610 khugepaged_scan
.address
= hstart
;
2611 VM_BUG_ON(khugepaged_scan
.address
& ~HPAGE_PMD_MASK
);
2613 while (khugepaged_scan
.address
< hend
) {
2616 if (unlikely(khugepaged_test_exit(mm
)))
2617 goto breakouterloop
;
2619 VM_BUG_ON(khugepaged_scan
.address
< hstart
||
2620 khugepaged_scan
.address
+ HPAGE_PMD_SIZE
>
2622 ret
= khugepaged_scan_pmd(mm
, vma
,
2623 khugepaged_scan
.address
,
2625 /* move to next address */
2626 khugepaged_scan
.address
+= HPAGE_PMD_SIZE
;
2627 progress
+= HPAGE_PMD_NR
;
2629 /* we released mmap_sem so break loop */
2630 goto breakouterloop_mmap_sem
;
2631 if (progress
>= pages
)
2632 goto breakouterloop
;
2636 up_read(&mm
->mmap_sem
); /* exit_mmap will destroy ptes after this */
2637 breakouterloop_mmap_sem
:
2639 spin_lock(&khugepaged_mm_lock
);
2640 VM_BUG_ON(khugepaged_scan
.mm_slot
!= mm_slot
);
2642 * Release the current mm_slot if this mm is about to die, or
2643 * if we scanned all vmas of this mm.
2645 if (khugepaged_test_exit(mm
) || !vma
) {
2647 * Make sure that if mm_users is reaching zero while
2648 * khugepaged runs here, khugepaged_exit will find
2649 * mm_slot not pointing to the exiting mm.
2651 if (mm_slot
->mm_node
.next
!= &khugepaged_scan
.mm_head
) {
2652 khugepaged_scan
.mm_slot
= list_entry(
2653 mm_slot
->mm_node
.next
,
2654 struct mm_slot
, mm_node
);
2655 khugepaged_scan
.address
= 0;
2657 khugepaged_scan
.mm_slot
= NULL
;
2658 khugepaged_full_scans
++;
2661 collect_mm_slot(mm_slot
);
2667 static int khugepaged_has_work(void)
2669 return !list_empty(&khugepaged_scan
.mm_head
) &&
2670 khugepaged_enabled();
2673 static int khugepaged_wait_event(void)
2675 return !list_empty(&khugepaged_scan
.mm_head
) ||
2676 kthread_should_stop();
2679 static void khugepaged_do_scan(void)
2681 struct page
*hpage
= NULL
;
2682 unsigned int progress
= 0, pass_through_head
= 0;
2683 unsigned int pages
= khugepaged_pages_to_scan
;
2686 barrier(); /* write khugepaged_pages_to_scan to local stack */
2688 while (progress
< pages
) {
2689 if (!khugepaged_prealloc_page(&hpage
, &wait
))
2694 if (unlikely(kthread_should_stop() || freezing(current
)))
2697 spin_lock(&khugepaged_mm_lock
);
2698 if (!khugepaged_scan
.mm_slot
)
2699 pass_through_head
++;
2700 if (khugepaged_has_work() &&
2701 pass_through_head
< 2)
2702 progress
+= khugepaged_scan_mm_slot(pages
- progress
,
2706 spin_unlock(&khugepaged_mm_lock
);
2709 if (!IS_ERR_OR_NULL(hpage
))
2713 static void khugepaged_wait_work(void)
2717 if (khugepaged_has_work()) {
2718 if (!khugepaged_scan_sleep_millisecs
)
2721 wait_event_freezable_timeout(khugepaged_wait
,
2722 kthread_should_stop(),
2723 msecs_to_jiffies(khugepaged_scan_sleep_millisecs
));
2727 if (khugepaged_enabled())
2728 wait_event_freezable(khugepaged_wait
, khugepaged_wait_event());
2731 static int khugepaged(void *none
)
2733 struct mm_slot
*mm_slot
;
2736 set_user_nice(current
, 19);
2738 while (!kthread_should_stop()) {
2739 khugepaged_do_scan();
2740 khugepaged_wait_work();
2743 spin_lock(&khugepaged_mm_lock
);
2744 mm_slot
= khugepaged_scan
.mm_slot
;
2745 khugepaged_scan
.mm_slot
= NULL
;
2747 collect_mm_slot(mm_slot
);
2748 spin_unlock(&khugepaged_mm_lock
);
2752 static void __split_huge_zero_page_pmd(struct vm_area_struct
*vma
,
2753 unsigned long haddr
, pmd_t
*pmd
)
2755 struct mm_struct
*mm
= vma
->vm_mm
;
2760 pmdp_clear_flush(vma
, haddr
, pmd
);
2761 /* leave pmd empty until pte is filled */
2763 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
2764 pmd_populate(mm
, &_pmd
, pgtable
);
2766 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
2768 entry
= pfn_pte(my_zero_pfn(haddr
), vma
->vm_page_prot
);
2769 entry
= pte_mkspecial(entry
);
2770 pte
= pte_offset_map(&_pmd
, haddr
);
2771 VM_BUG_ON(!pte_none(*pte
));
2772 set_pte_at(mm
, haddr
, pte
, entry
);
2775 smp_wmb(); /* make pte visible before pmd */
2776 pmd_populate(mm
, pmd
, pgtable
);
2777 put_huge_zero_page();
2780 void __split_huge_page_pmd(struct vm_area_struct
*vma
, unsigned long address
,
2785 struct mm_struct
*mm
= vma
->vm_mm
;
2786 unsigned long haddr
= address
& HPAGE_PMD_MASK
;
2787 unsigned long mmun_start
; /* For mmu_notifiers */
2788 unsigned long mmun_end
; /* For mmu_notifiers */
2790 BUG_ON(vma
->vm_start
> haddr
|| vma
->vm_end
< haddr
+ HPAGE_PMD_SIZE
);
2793 mmun_end
= haddr
+ HPAGE_PMD_SIZE
;
2795 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2796 ptl
= pmd_lock(mm
, pmd
);
2797 if (unlikely(!pmd_trans_huge(*pmd
))) {
2799 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2802 if (is_huge_zero_pmd(*pmd
)) {
2803 __split_huge_zero_page_pmd(vma
, haddr
, pmd
);
2805 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2808 page
= pmd_page(*pmd
);
2809 VM_BUG_ON_PAGE(!page_count(page
), page
);
2812 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2814 split_huge_page(page
);
2819 * We don't always have down_write of mmap_sem here: a racing
2820 * do_huge_pmd_wp_page() might have copied-on-write to another
2821 * huge page before our split_huge_page() got the anon_vma lock.
2823 if (unlikely(pmd_trans_huge(*pmd
)))
2827 void split_huge_page_pmd_mm(struct mm_struct
*mm
, unsigned long address
,
2830 struct vm_area_struct
*vma
;
2832 vma
= find_vma(mm
, address
);
2833 BUG_ON(vma
== NULL
);
2834 split_huge_page_pmd(vma
, address
, pmd
);
2837 static void split_huge_page_address(struct mm_struct
*mm
,
2838 unsigned long address
)
2842 VM_BUG_ON(!(address
& ~HPAGE_PMD_MASK
));
2844 pmd
= mm_find_pmd(mm
, address
);
2848 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2849 * materialize from under us.
2851 split_huge_page_pmd_mm(mm
, address
, pmd
);
2854 void __vma_adjust_trans_huge(struct vm_area_struct
*vma
,
2855 unsigned long start
,
2860 * If the new start address isn't hpage aligned and it could
2861 * previously contain an hugepage: check if we need to split
2864 if (start
& ~HPAGE_PMD_MASK
&&
2865 (start
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2866 (start
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2867 split_huge_page_address(vma
->vm_mm
, start
);
2870 * If the new end address isn't hpage aligned and it could
2871 * previously contain an hugepage: check if we need to split
2874 if (end
& ~HPAGE_PMD_MASK
&&
2875 (end
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2876 (end
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2877 split_huge_page_address(vma
->vm_mm
, end
);
2880 * If we're also updating the vma->vm_next->vm_start, if the new
2881 * vm_next->vm_start isn't page aligned and it could previously
2882 * contain an hugepage: check if we need to split an huge pmd.
2884 if (adjust_next
> 0) {
2885 struct vm_area_struct
*next
= vma
->vm_next
;
2886 unsigned long nstart
= next
->vm_start
;
2887 nstart
+= adjust_next
<< PAGE_SHIFT
;
2888 if (nstart
& ~HPAGE_PMD_MASK
&&
2889 (nstart
& HPAGE_PMD_MASK
) >= next
->vm_start
&&
2890 (nstart
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= next
->vm_end
)
2891 split_huge_page_address(next
->vm_mm
, nstart
);