Linux 3.15-rc1
[linux/fpc-iii.git] / mm / memory.c
blobd0f0bef3be488af9eb9406cc5d28272093abb5a6
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
72 #include "internal.h"
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
88 * A number of key systems in x86 including ioremap() rely on the assumption
89 * that high_memory defines the upper bound on direct map memory, then end
90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92 * and ZONE_HIGHMEM.
94 void * high_memory;
96 EXPORT_SYMBOL(high_memory);
99 * Randomize the address space (stacks, mmaps, brk, etc.).
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
107 #else
109 #endif
111 static int __init disable_randmaps(char *s)
113 randomize_va_space = 0;
114 return 1;
116 __setup("norandmaps", disable_randmaps);
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
122 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
124 static int __init init_zero_pfn(void)
126 zero_pfn = page_to_pfn(ZERO_PAGE(0));
127 return 0;
129 core_initcall(init_zero_pfn);
132 #if defined(SPLIT_RSS_COUNTING)
134 void sync_mm_rss(struct mm_struct *mm)
136 int i;
138 for (i = 0; i < NR_MM_COUNTERS; i++) {
139 if (current->rss_stat.count[i]) {
140 add_mm_counter(mm, i, current->rss_stat.count[i]);
141 current->rss_stat.count[i] = 0;
144 current->rss_stat.events = 0;
147 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
149 struct task_struct *task = current;
151 if (likely(task->mm == mm))
152 task->rss_stat.count[member] += val;
153 else
154 add_mm_counter(mm, member, val);
156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
159 /* sync counter once per 64 page faults */
160 #define TASK_RSS_EVENTS_THRESH (64)
161 static void check_sync_rss_stat(struct task_struct *task)
163 if (unlikely(task != current))
164 return;
165 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
166 sync_mm_rss(task->mm);
168 #else /* SPLIT_RSS_COUNTING */
170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
173 static void check_sync_rss_stat(struct task_struct *task)
177 #endif /* SPLIT_RSS_COUNTING */
179 #ifdef HAVE_GENERIC_MMU_GATHER
181 static int tlb_next_batch(struct mmu_gather *tlb)
183 struct mmu_gather_batch *batch;
185 batch = tlb->active;
186 if (batch->next) {
187 tlb->active = batch->next;
188 return 1;
191 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
192 return 0;
194 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
195 if (!batch)
196 return 0;
198 tlb->batch_count++;
199 batch->next = NULL;
200 batch->nr = 0;
201 batch->max = MAX_GATHER_BATCH;
203 tlb->active->next = batch;
204 tlb->active = batch;
206 return 1;
209 /* tlb_gather_mmu
210 * Called to initialize an (on-stack) mmu_gather structure for page-table
211 * tear-down from @mm. The @fullmm argument is used when @mm is without
212 * users and we're going to destroy the full address space (exit/execve).
214 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
216 tlb->mm = mm;
218 /* Is it from 0 to ~0? */
219 tlb->fullmm = !(start | (end+1));
220 tlb->need_flush_all = 0;
221 tlb->start = start;
222 tlb->end = end;
223 tlb->need_flush = 0;
224 tlb->local.next = NULL;
225 tlb->local.nr = 0;
226 tlb->local.max = ARRAY_SIZE(tlb->__pages);
227 tlb->active = &tlb->local;
228 tlb->batch_count = 0;
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
231 tlb->batch = NULL;
232 #endif
235 void tlb_flush_mmu(struct mmu_gather *tlb)
237 struct mmu_gather_batch *batch;
239 if (!tlb->need_flush)
240 return;
241 tlb->need_flush = 0;
242 tlb_flush(tlb);
243 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
244 tlb_table_flush(tlb);
245 #endif
247 for (batch = &tlb->local; batch; batch = batch->next) {
248 free_pages_and_swap_cache(batch->pages, batch->nr);
249 batch->nr = 0;
251 tlb->active = &tlb->local;
254 /* tlb_finish_mmu
255 * Called at the end of the shootdown operation to free up any resources
256 * that were required.
258 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
260 struct mmu_gather_batch *batch, *next;
262 tlb_flush_mmu(tlb);
264 /* keep the page table cache within bounds */
265 check_pgt_cache();
267 for (batch = tlb->local.next; batch; batch = next) {
268 next = batch->next;
269 free_pages((unsigned long)batch, 0);
271 tlb->local.next = NULL;
274 /* __tlb_remove_page
275 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
276 * handling the additional races in SMP caused by other CPUs caching valid
277 * mappings in their TLBs. Returns the number of free page slots left.
278 * When out of page slots we must call tlb_flush_mmu().
280 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
282 struct mmu_gather_batch *batch;
284 VM_BUG_ON(!tlb->need_flush);
286 batch = tlb->active;
287 batch->pages[batch->nr++] = page;
288 if (batch->nr == batch->max) {
289 if (!tlb_next_batch(tlb))
290 return 0;
291 batch = tlb->active;
293 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
295 return batch->max - batch->nr;
298 #endif /* HAVE_GENERIC_MMU_GATHER */
300 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
303 * See the comment near struct mmu_table_batch.
306 static void tlb_remove_table_smp_sync(void *arg)
308 /* Simply deliver the interrupt */
311 static void tlb_remove_table_one(void *table)
314 * This isn't an RCU grace period and hence the page-tables cannot be
315 * assumed to be actually RCU-freed.
317 * It is however sufficient for software page-table walkers that rely on
318 * IRQ disabling. See the comment near struct mmu_table_batch.
320 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
321 __tlb_remove_table(table);
324 static void tlb_remove_table_rcu(struct rcu_head *head)
326 struct mmu_table_batch *batch;
327 int i;
329 batch = container_of(head, struct mmu_table_batch, rcu);
331 for (i = 0; i < batch->nr; i++)
332 __tlb_remove_table(batch->tables[i]);
334 free_page((unsigned long)batch);
337 void tlb_table_flush(struct mmu_gather *tlb)
339 struct mmu_table_batch **batch = &tlb->batch;
341 if (*batch) {
342 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
343 *batch = NULL;
347 void tlb_remove_table(struct mmu_gather *tlb, void *table)
349 struct mmu_table_batch **batch = &tlb->batch;
351 tlb->need_flush = 1;
354 * When there's less then two users of this mm there cannot be a
355 * concurrent page-table walk.
357 if (atomic_read(&tlb->mm->mm_users) < 2) {
358 __tlb_remove_table(table);
359 return;
362 if (*batch == NULL) {
363 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
364 if (*batch == NULL) {
365 tlb_remove_table_one(table);
366 return;
368 (*batch)->nr = 0;
370 (*batch)->tables[(*batch)->nr++] = table;
371 if ((*batch)->nr == MAX_TABLE_BATCH)
372 tlb_table_flush(tlb);
375 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
378 * Note: this doesn't free the actual pages themselves. That
379 * has been handled earlier when unmapping all the memory regions.
381 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
382 unsigned long addr)
384 pgtable_t token = pmd_pgtable(*pmd);
385 pmd_clear(pmd);
386 pte_free_tlb(tlb, token, addr);
387 atomic_long_dec(&tlb->mm->nr_ptes);
390 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
391 unsigned long addr, unsigned long end,
392 unsigned long floor, unsigned long ceiling)
394 pmd_t *pmd;
395 unsigned long next;
396 unsigned long start;
398 start = addr;
399 pmd = pmd_offset(pud, addr);
400 do {
401 next = pmd_addr_end(addr, end);
402 if (pmd_none_or_clear_bad(pmd))
403 continue;
404 free_pte_range(tlb, pmd, addr);
405 } while (pmd++, addr = next, addr != end);
407 start &= PUD_MASK;
408 if (start < floor)
409 return;
410 if (ceiling) {
411 ceiling &= PUD_MASK;
412 if (!ceiling)
413 return;
415 if (end - 1 > ceiling - 1)
416 return;
418 pmd = pmd_offset(pud, start);
419 pud_clear(pud);
420 pmd_free_tlb(tlb, pmd, start);
423 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
424 unsigned long addr, unsigned long end,
425 unsigned long floor, unsigned long ceiling)
427 pud_t *pud;
428 unsigned long next;
429 unsigned long start;
431 start = addr;
432 pud = pud_offset(pgd, addr);
433 do {
434 next = pud_addr_end(addr, end);
435 if (pud_none_or_clear_bad(pud))
436 continue;
437 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
438 } while (pud++, addr = next, addr != end);
440 start &= PGDIR_MASK;
441 if (start < floor)
442 return;
443 if (ceiling) {
444 ceiling &= PGDIR_MASK;
445 if (!ceiling)
446 return;
448 if (end - 1 > ceiling - 1)
449 return;
451 pud = pud_offset(pgd, start);
452 pgd_clear(pgd);
453 pud_free_tlb(tlb, pud, start);
457 * This function frees user-level page tables of a process.
459 void free_pgd_range(struct mmu_gather *tlb,
460 unsigned long addr, unsigned long end,
461 unsigned long floor, unsigned long ceiling)
463 pgd_t *pgd;
464 unsigned long next;
467 * The next few lines have given us lots of grief...
469 * Why are we testing PMD* at this top level? Because often
470 * there will be no work to do at all, and we'd prefer not to
471 * go all the way down to the bottom just to discover that.
473 * Why all these "- 1"s? Because 0 represents both the bottom
474 * of the address space and the top of it (using -1 for the
475 * top wouldn't help much: the masks would do the wrong thing).
476 * The rule is that addr 0 and floor 0 refer to the bottom of
477 * the address space, but end 0 and ceiling 0 refer to the top
478 * Comparisons need to use "end - 1" and "ceiling - 1" (though
479 * that end 0 case should be mythical).
481 * Wherever addr is brought up or ceiling brought down, we must
482 * be careful to reject "the opposite 0" before it confuses the
483 * subsequent tests. But what about where end is brought down
484 * by PMD_SIZE below? no, end can't go down to 0 there.
486 * Whereas we round start (addr) and ceiling down, by different
487 * masks at different levels, in order to test whether a table
488 * now has no other vmas using it, so can be freed, we don't
489 * bother to round floor or end up - the tests don't need that.
492 addr &= PMD_MASK;
493 if (addr < floor) {
494 addr += PMD_SIZE;
495 if (!addr)
496 return;
498 if (ceiling) {
499 ceiling &= PMD_MASK;
500 if (!ceiling)
501 return;
503 if (end - 1 > ceiling - 1)
504 end -= PMD_SIZE;
505 if (addr > end - 1)
506 return;
508 pgd = pgd_offset(tlb->mm, addr);
509 do {
510 next = pgd_addr_end(addr, end);
511 if (pgd_none_or_clear_bad(pgd))
512 continue;
513 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
514 } while (pgd++, addr = next, addr != end);
517 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
518 unsigned long floor, unsigned long ceiling)
520 while (vma) {
521 struct vm_area_struct *next = vma->vm_next;
522 unsigned long addr = vma->vm_start;
525 * Hide vma from rmap and truncate_pagecache before freeing
526 * pgtables
528 unlink_anon_vmas(vma);
529 unlink_file_vma(vma);
531 if (is_vm_hugetlb_page(vma)) {
532 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
533 floor, next? next->vm_start: ceiling);
534 } else {
536 * Optimization: gather nearby vmas into one call down
538 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
539 && !is_vm_hugetlb_page(next)) {
540 vma = next;
541 next = vma->vm_next;
542 unlink_anon_vmas(vma);
543 unlink_file_vma(vma);
545 free_pgd_range(tlb, addr, vma->vm_end,
546 floor, next? next->vm_start: ceiling);
548 vma = next;
552 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
553 pmd_t *pmd, unsigned long address)
555 spinlock_t *ptl;
556 pgtable_t new = pte_alloc_one(mm, address);
557 int wait_split_huge_page;
558 if (!new)
559 return -ENOMEM;
562 * Ensure all pte setup (eg. pte page lock and page clearing) are
563 * visible before the pte is made visible to other CPUs by being
564 * put into page tables.
566 * The other side of the story is the pointer chasing in the page
567 * table walking code (when walking the page table without locking;
568 * ie. most of the time). Fortunately, these data accesses consist
569 * of a chain of data-dependent loads, meaning most CPUs (alpha
570 * being the notable exception) will already guarantee loads are
571 * seen in-order. See the alpha page table accessors for the
572 * smp_read_barrier_depends() barriers in page table walking code.
574 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
576 ptl = pmd_lock(mm, pmd);
577 wait_split_huge_page = 0;
578 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
579 atomic_long_inc(&mm->nr_ptes);
580 pmd_populate(mm, pmd, new);
581 new = NULL;
582 } else if (unlikely(pmd_trans_splitting(*pmd)))
583 wait_split_huge_page = 1;
584 spin_unlock(ptl);
585 if (new)
586 pte_free(mm, new);
587 if (wait_split_huge_page)
588 wait_split_huge_page(vma->anon_vma, pmd);
589 return 0;
592 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
594 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
595 if (!new)
596 return -ENOMEM;
598 smp_wmb(); /* See comment in __pte_alloc */
600 spin_lock(&init_mm.page_table_lock);
601 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
602 pmd_populate_kernel(&init_mm, pmd, new);
603 new = NULL;
604 } else
605 VM_BUG_ON(pmd_trans_splitting(*pmd));
606 spin_unlock(&init_mm.page_table_lock);
607 if (new)
608 pte_free_kernel(&init_mm, new);
609 return 0;
612 static inline void init_rss_vec(int *rss)
614 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
617 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
619 int i;
621 if (current->mm == mm)
622 sync_mm_rss(mm);
623 for (i = 0; i < NR_MM_COUNTERS; i++)
624 if (rss[i])
625 add_mm_counter(mm, i, rss[i]);
629 * This function is called to print an error when a bad pte
630 * is found. For example, we might have a PFN-mapped pte in
631 * a region that doesn't allow it.
633 * The calling function must still handle the error.
635 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
636 pte_t pte, struct page *page)
638 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
639 pud_t *pud = pud_offset(pgd, addr);
640 pmd_t *pmd = pmd_offset(pud, addr);
641 struct address_space *mapping;
642 pgoff_t index;
643 static unsigned long resume;
644 static unsigned long nr_shown;
645 static unsigned long nr_unshown;
648 * Allow a burst of 60 reports, then keep quiet for that minute;
649 * or allow a steady drip of one report per second.
651 if (nr_shown == 60) {
652 if (time_before(jiffies, resume)) {
653 nr_unshown++;
654 return;
656 if (nr_unshown) {
657 printk(KERN_ALERT
658 "BUG: Bad page map: %lu messages suppressed\n",
659 nr_unshown);
660 nr_unshown = 0;
662 nr_shown = 0;
664 if (nr_shown++ == 0)
665 resume = jiffies + 60 * HZ;
667 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
668 index = linear_page_index(vma, addr);
670 printk(KERN_ALERT
671 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
672 current->comm,
673 (long long)pte_val(pte), (long long)pmd_val(*pmd));
674 if (page)
675 dump_page(page, "bad pte");
676 printk(KERN_ALERT
677 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
678 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
680 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
682 if (vma->vm_ops)
683 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
684 vma->vm_ops->fault);
685 if (vma->vm_file)
686 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
687 vma->vm_file->f_op->mmap);
688 dump_stack();
689 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
692 static inline bool is_cow_mapping(vm_flags_t flags)
694 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
698 * vm_normal_page -- This function gets the "struct page" associated with a pte.
700 * "Special" mappings do not wish to be associated with a "struct page" (either
701 * it doesn't exist, or it exists but they don't want to touch it). In this
702 * case, NULL is returned here. "Normal" mappings do have a struct page.
704 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
705 * pte bit, in which case this function is trivial. Secondly, an architecture
706 * may not have a spare pte bit, which requires a more complicated scheme,
707 * described below.
709 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
710 * special mapping (even if there are underlying and valid "struct pages").
711 * COWed pages of a VM_PFNMAP are always normal.
713 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
714 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
715 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
716 * mapping will always honor the rule
718 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
720 * And for normal mappings this is false.
722 * This restricts such mappings to be a linear translation from virtual address
723 * to pfn. To get around this restriction, we allow arbitrary mappings so long
724 * as the vma is not a COW mapping; in that case, we know that all ptes are
725 * special (because none can have been COWed).
728 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
730 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
731 * page" backing, however the difference is that _all_ pages with a struct
732 * page (that is, those where pfn_valid is true) are refcounted and considered
733 * normal pages by the VM. The disadvantage is that pages are refcounted
734 * (which can be slower and simply not an option for some PFNMAP users). The
735 * advantage is that we don't have to follow the strict linearity rule of
736 * PFNMAP mappings in order to support COWable mappings.
739 #ifdef __HAVE_ARCH_PTE_SPECIAL
740 # define HAVE_PTE_SPECIAL 1
741 #else
742 # define HAVE_PTE_SPECIAL 0
743 #endif
744 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
745 pte_t pte)
747 unsigned long pfn = pte_pfn(pte);
749 if (HAVE_PTE_SPECIAL) {
750 if (likely(!pte_special(pte)))
751 goto check_pfn;
752 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
753 return NULL;
754 if (!is_zero_pfn(pfn))
755 print_bad_pte(vma, addr, pte, NULL);
756 return NULL;
759 /* !HAVE_PTE_SPECIAL case follows: */
761 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
762 if (vma->vm_flags & VM_MIXEDMAP) {
763 if (!pfn_valid(pfn))
764 return NULL;
765 goto out;
766 } else {
767 unsigned long off;
768 off = (addr - vma->vm_start) >> PAGE_SHIFT;
769 if (pfn == vma->vm_pgoff + off)
770 return NULL;
771 if (!is_cow_mapping(vma->vm_flags))
772 return NULL;
776 if (is_zero_pfn(pfn))
777 return NULL;
778 check_pfn:
779 if (unlikely(pfn > highest_memmap_pfn)) {
780 print_bad_pte(vma, addr, pte, NULL);
781 return NULL;
785 * NOTE! We still have PageReserved() pages in the page tables.
786 * eg. VDSO mappings can cause them to exist.
788 out:
789 return pfn_to_page(pfn);
793 * copy one vm_area from one task to the other. Assumes the page tables
794 * already present in the new task to be cleared in the whole range
795 * covered by this vma.
798 static inline unsigned long
799 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
800 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
801 unsigned long addr, int *rss)
803 unsigned long vm_flags = vma->vm_flags;
804 pte_t pte = *src_pte;
805 struct page *page;
807 /* pte contains position in swap or file, so copy. */
808 if (unlikely(!pte_present(pte))) {
809 if (!pte_file(pte)) {
810 swp_entry_t entry = pte_to_swp_entry(pte);
812 if (swap_duplicate(entry) < 0)
813 return entry.val;
815 /* make sure dst_mm is on swapoff's mmlist. */
816 if (unlikely(list_empty(&dst_mm->mmlist))) {
817 spin_lock(&mmlist_lock);
818 if (list_empty(&dst_mm->mmlist))
819 list_add(&dst_mm->mmlist,
820 &src_mm->mmlist);
821 spin_unlock(&mmlist_lock);
823 if (likely(!non_swap_entry(entry)))
824 rss[MM_SWAPENTS]++;
825 else if (is_migration_entry(entry)) {
826 page = migration_entry_to_page(entry);
828 if (PageAnon(page))
829 rss[MM_ANONPAGES]++;
830 else
831 rss[MM_FILEPAGES]++;
833 if (is_write_migration_entry(entry) &&
834 is_cow_mapping(vm_flags)) {
836 * COW mappings require pages in both
837 * parent and child to be set to read.
839 make_migration_entry_read(&entry);
840 pte = swp_entry_to_pte(entry);
841 if (pte_swp_soft_dirty(*src_pte))
842 pte = pte_swp_mksoft_dirty(pte);
843 set_pte_at(src_mm, addr, src_pte, pte);
847 goto out_set_pte;
851 * If it's a COW mapping, write protect it both
852 * in the parent and the child
854 if (is_cow_mapping(vm_flags)) {
855 ptep_set_wrprotect(src_mm, addr, src_pte);
856 pte = pte_wrprotect(pte);
860 * If it's a shared mapping, mark it clean in
861 * the child
863 if (vm_flags & VM_SHARED)
864 pte = pte_mkclean(pte);
865 pte = pte_mkold(pte);
867 page = vm_normal_page(vma, addr, pte);
868 if (page) {
869 get_page(page);
870 page_dup_rmap(page);
871 if (PageAnon(page))
872 rss[MM_ANONPAGES]++;
873 else
874 rss[MM_FILEPAGES]++;
877 out_set_pte:
878 set_pte_at(dst_mm, addr, dst_pte, pte);
879 return 0;
882 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
883 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
884 unsigned long addr, unsigned long end)
886 pte_t *orig_src_pte, *orig_dst_pte;
887 pte_t *src_pte, *dst_pte;
888 spinlock_t *src_ptl, *dst_ptl;
889 int progress = 0;
890 int rss[NR_MM_COUNTERS];
891 swp_entry_t entry = (swp_entry_t){0};
893 again:
894 init_rss_vec(rss);
896 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
897 if (!dst_pte)
898 return -ENOMEM;
899 src_pte = pte_offset_map(src_pmd, addr);
900 src_ptl = pte_lockptr(src_mm, src_pmd);
901 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
902 orig_src_pte = src_pte;
903 orig_dst_pte = dst_pte;
904 arch_enter_lazy_mmu_mode();
906 do {
908 * We are holding two locks at this point - either of them
909 * could generate latencies in another task on another CPU.
911 if (progress >= 32) {
912 progress = 0;
913 if (need_resched() ||
914 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
915 break;
917 if (pte_none(*src_pte)) {
918 progress++;
919 continue;
921 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
922 vma, addr, rss);
923 if (entry.val)
924 break;
925 progress += 8;
926 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
928 arch_leave_lazy_mmu_mode();
929 spin_unlock(src_ptl);
930 pte_unmap(orig_src_pte);
931 add_mm_rss_vec(dst_mm, rss);
932 pte_unmap_unlock(orig_dst_pte, dst_ptl);
933 cond_resched();
935 if (entry.val) {
936 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
937 return -ENOMEM;
938 progress = 0;
940 if (addr != end)
941 goto again;
942 return 0;
945 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
946 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
947 unsigned long addr, unsigned long end)
949 pmd_t *src_pmd, *dst_pmd;
950 unsigned long next;
952 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
953 if (!dst_pmd)
954 return -ENOMEM;
955 src_pmd = pmd_offset(src_pud, addr);
956 do {
957 next = pmd_addr_end(addr, end);
958 if (pmd_trans_huge(*src_pmd)) {
959 int err;
960 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
961 err = copy_huge_pmd(dst_mm, src_mm,
962 dst_pmd, src_pmd, addr, vma);
963 if (err == -ENOMEM)
964 return -ENOMEM;
965 if (!err)
966 continue;
967 /* fall through */
969 if (pmd_none_or_clear_bad(src_pmd))
970 continue;
971 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
972 vma, addr, next))
973 return -ENOMEM;
974 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
975 return 0;
978 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
979 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
980 unsigned long addr, unsigned long end)
982 pud_t *src_pud, *dst_pud;
983 unsigned long next;
985 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
986 if (!dst_pud)
987 return -ENOMEM;
988 src_pud = pud_offset(src_pgd, addr);
989 do {
990 next = pud_addr_end(addr, end);
991 if (pud_none_or_clear_bad(src_pud))
992 continue;
993 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
994 vma, addr, next))
995 return -ENOMEM;
996 } while (dst_pud++, src_pud++, addr = next, addr != end);
997 return 0;
1000 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1001 struct vm_area_struct *vma)
1003 pgd_t *src_pgd, *dst_pgd;
1004 unsigned long next;
1005 unsigned long addr = vma->vm_start;
1006 unsigned long end = vma->vm_end;
1007 unsigned long mmun_start; /* For mmu_notifiers */
1008 unsigned long mmun_end; /* For mmu_notifiers */
1009 bool is_cow;
1010 int ret;
1013 * Don't copy ptes where a page fault will fill them correctly.
1014 * Fork becomes much lighter when there are big shared or private
1015 * readonly mappings. The tradeoff is that copy_page_range is more
1016 * efficient than faulting.
1018 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1019 VM_PFNMAP | VM_MIXEDMAP))) {
1020 if (!vma->anon_vma)
1021 return 0;
1024 if (is_vm_hugetlb_page(vma))
1025 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1027 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1029 * We do not free on error cases below as remove_vma
1030 * gets called on error from higher level routine
1032 ret = track_pfn_copy(vma);
1033 if (ret)
1034 return ret;
1038 * We need to invalidate the secondary MMU mappings only when
1039 * there could be a permission downgrade on the ptes of the
1040 * parent mm. And a permission downgrade will only happen if
1041 * is_cow_mapping() returns true.
1043 is_cow = is_cow_mapping(vma->vm_flags);
1044 mmun_start = addr;
1045 mmun_end = end;
1046 if (is_cow)
1047 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1048 mmun_end);
1050 ret = 0;
1051 dst_pgd = pgd_offset(dst_mm, addr);
1052 src_pgd = pgd_offset(src_mm, addr);
1053 do {
1054 next = pgd_addr_end(addr, end);
1055 if (pgd_none_or_clear_bad(src_pgd))
1056 continue;
1057 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1058 vma, addr, next))) {
1059 ret = -ENOMEM;
1060 break;
1062 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1064 if (is_cow)
1065 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1066 return ret;
1069 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1070 struct vm_area_struct *vma, pmd_t *pmd,
1071 unsigned long addr, unsigned long end,
1072 struct zap_details *details)
1074 struct mm_struct *mm = tlb->mm;
1075 int force_flush = 0;
1076 int rss[NR_MM_COUNTERS];
1077 spinlock_t *ptl;
1078 pte_t *start_pte;
1079 pte_t *pte;
1081 again:
1082 init_rss_vec(rss);
1083 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1084 pte = start_pte;
1085 arch_enter_lazy_mmu_mode();
1086 do {
1087 pte_t ptent = *pte;
1088 if (pte_none(ptent)) {
1089 continue;
1092 if (pte_present(ptent)) {
1093 struct page *page;
1095 page = vm_normal_page(vma, addr, ptent);
1096 if (unlikely(details) && page) {
1098 * unmap_shared_mapping_pages() wants to
1099 * invalidate cache without truncating:
1100 * unmap shared but keep private pages.
1102 if (details->check_mapping &&
1103 details->check_mapping != page->mapping)
1104 continue;
1106 * Each page->index must be checked when
1107 * invalidating or truncating nonlinear.
1109 if (details->nonlinear_vma &&
1110 (page->index < details->first_index ||
1111 page->index > details->last_index))
1112 continue;
1114 ptent = ptep_get_and_clear_full(mm, addr, pte,
1115 tlb->fullmm);
1116 tlb_remove_tlb_entry(tlb, pte, addr);
1117 if (unlikely(!page))
1118 continue;
1119 if (unlikely(details) && details->nonlinear_vma
1120 && linear_page_index(details->nonlinear_vma,
1121 addr) != page->index) {
1122 pte_t ptfile = pgoff_to_pte(page->index);
1123 if (pte_soft_dirty(ptent))
1124 pte_file_mksoft_dirty(ptfile);
1125 set_pte_at(mm, addr, pte, ptfile);
1127 if (PageAnon(page))
1128 rss[MM_ANONPAGES]--;
1129 else {
1130 if (pte_dirty(ptent))
1131 set_page_dirty(page);
1132 if (pte_young(ptent) &&
1133 likely(!(vma->vm_flags & VM_SEQ_READ)))
1134 mark_page_accessed(page);
1135 rss[MM_FILEPAGES]--;
1137 page_remove_rmap(page);
1138 if (unlikely(page_mapcount(page) < 0))
1139 print_bad_pte(vma, addr, ptent, page);
1140 force_flush = !__tlb_remove_page(tlb, page);
1141 if (force_flush)
1142 break;
1143 continue;
1146 * If details->check_mapping, we leave swap entries;
1147 * if details->nonlinear_vma, we leave file entries.
1149 if (unlikely(details))
1150 continue;
1151 if (pte_file(ptent)) {
1152 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1153 print_bad_pte(vma, addr, ptent, NULL);
1154 } else {
1155 swp_entry_t entry = pte_to_swp_entry(ptent);
1157 if (!non_swap_entry(entry))
1158 rss[MM_SWAPENTS]--;
1159 else if (is_migration_entry(entry)) {
1160 struct page *page;
1162 page = migration_entry_to_page(entry);
1164 if (PageAnon(page))
1165 rss[MM_ANONPAGES]--;
1166 else
1167 rss[MM_FILEPAGES]--;
1169 if (unlikely(!free_swap_and_cache(entry)))
1170 print_bad_pte(vma, addr, ptent, NULL);
1172 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1173 } while (pte++, addr += PAGE_SIZE, addr != end);
1175 add_mm_rss_vec(mm, rss);
1176 arch_leave_lazy_mmu_mode();
1177 pte_unmap_unlock(start_pte, ptl);
1180 * mmu_gather ran out of room to batch pages, we break out of
1181 * the PTE lock to avoid doing the potential expensive TLB invalidate
1182 * and page-free while holding it.
1184 if (force_flush) {
1185 unsigned long old_end;
1187 force_flush = 0;
1190 * Flush the TLB just for the previous segment,
1191 * then update the range to be the remaining
1192 * TLB range.
1194 old_end = tlb->end;
1195 tlb->end = addr;
1197 tlb_flush_mmu(tlb);
1199 tlb->start = addr;
1200 tlb->end = old_end;
1202 if (addr != end)
1203 goto again;
1206 return addr;
1209 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1210 struct vm_area_struct *vma, pud_t *pud,
1211 unsigned long addr, unsigned long end,
1212 struct zap_details *details)
1214 pmd_t *pmd;
1215 unsigned long next;
1217 pmd = pmd_offset(pud, addr);
1218 do {
1219 next = pmd_addr_end(addr, end);
1220 if (pmd_trans_huge(*pmd)) {
1221 if (next - addr != HPAGE_PMD_SIZE) {
1222 #ifdef CONFIG_DEBUG_VM
1223 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1224 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1225 __func__, addr, end,
1226 vma->vm_start,
1227 vma->vm_end);
1228 BUG();
1230 #endif
1231 split_huge_page_pmd(vma, addr, pmd);
1232 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1233 goto next;
1234 /* fall through */
1237 * Here there can be other concurrent MADV_DONTNEED or
1238 * trans huge page faults running, and if the pmd is
1239 * none or trans huge it can change under us. This is
1240 * because MADV_DONTNEED holds the mmap_sem in read
1241 * mode.
1243 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1244 goto next;
1245 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1246 next:
1247 cond_resched();
1248 } while (pmd++, addr = next, addr != end);
1250 return addr;
1253 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1254 struct vm_area_struct *vma, pgd_t *pgd,
1255 unsigned long addr, unsigned long end,
1256 struct zap_details *details)
1258 pud_t *pud;
1259 unsigned long next;
1261 pud = pud_offset(pgd, addr);
1262 do {
1263 next = pud_addr_end(addr, end);
1264 if (pud_none_or_clear_bad(pud))
1265 continue;
1266 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1267 } while (pud++, addr = next, addr != end);
1269 return addr;
1272 static void unmap_page_range(struct mmu_gather *tlb,
1273 struct vm_area_struct *vma,
1274 unsigned long addr, unsigned long end,
1275 struct zap_details *details)
1277 pgd_t *pgd;
1278 unsigned long next;
1280 if (details && !details->check_mapping && !details->nonlinear_vma)
1281 details = NULL;
1283 BUG_ON(addr >= end);
1284 mem_cgroup_uncharge_start();
1285 tlb_start_vma(tlb, vma);
1286 pgd = pgd_offset(vma->vm_mm, addr);
1287 do {
1288 next = pgd_addr_end(addr, end);
1289 if (pgd_none_or_clear_bad(pgd))
1290 continue;
1291 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1292 } while (pgd++, addr = next, addr != end);
1293 tlb_end_vma(tlb, vma);
1294 mem_cgroup_uncharge_end();
1298 static void unmap_single_vma(struct mmu_gather *tlb,
1299 struct vm_area_struct *vma, unsigned long start_addr,
1300 unsigned long end_addr,
1301 struct zap_details *details)
1303 unsigned long start = max(vma->vm_start, start_addr);
1304 unsigned long end;
1306 if (start >= vma->vm_end)
1307 return;
1308 end = min(vma->vm_end, end_addr);
1309 if (end <= vma->vm_start)
1310 return;
1312 if (vma->vm_file)
1313 uprobe_munmap(vma, start, end);
1315 if (unlikely(vma->vm_flags & VM_PFNMAP))
1316 untrack_pfn(vma, 0, 0);
1318 if (start != end) {
1319 if (unlikely(is_vm_hugetlb_page(vma))) {
1321 * It is undesirable to test vma->vm_file as it
1322 * should be non-null for valid hugetlb area.
1323 * However, vm_file will be NULL in the error
1324 * cleanup path of mmap_region. When
1325 * hugetlbfs ->mmap method fails,
1326 * mmap_region() nullifies vma->vm_file
1327 * before calling this function to clean up.
1328 * Since no pte has actually been setup, it is
1329 * safe to do nothing in this case.
1331 if (vma->vm_file) {
1332 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1333 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1334 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1336 } else
1337 unmap_page_range(tlb, vma, start, end, details);
1342 * unmap_vmas - unmap a range of memory covered by a list of vma's
1343 * @tlb: address of the caller's struct mmu_gather
1344 * @vma: the starting vma
1345 * @start_addr: virtual address at which to start unmapping
1346 * @end_addr: virtual address at which to end unmapping
1348 * Unmap all pages in the vma list.
1350 * Only addresses between `start' and `end' will be unmapped.
1352 * The VMA list must be sorted in ascending virtual address order.
1354 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1355 * range after unmap_vmas() returns. So the only responsibility here is to
1356 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1357 * drops the lock and schedules.
1359 void unmap_vmas(struct mmu_gather *tlb,
1360 struct vm_area_struct *vma, unsigned long start_addr,
1361 unsigned long end_addr)
1363 struct mm_struct *mm = vma->vm_mm;
1365 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1366 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1367 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1368 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1372 * zap_page_range - remove user pages in a given range
1373 * @vma: vm_area_struct holding the applicable pages
1374 * @start: starting address of pages to zap
1375 * @size: number of bytes to zap
1376 * @details: details of nonlinear truncation or shared cache invalidation
1378 * Caller must protect the VMA list
1380 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1381 unsigned long size, struct zap_details *details)
1383 struct mm_struct *mm = vma->vm_mm;
1384 struct mmu_gather tlb;
1385 unsigned long end = start + size;
1387 lru_add_drain();
1388 tlb_gather_mmu(&tlb, mm, start, end);
1389 update_hiwater_rss(mm);
1390 mmu_notifier_invalidate_range_start(mm, start, end);
1391 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1392 unmap_single_vma(&tlb, vma, start, end, details);
1393 mmu_notifier_invalidate_range_end(mm, start, end);
1394 tlb_finish_mmu(&tlb, start, end);
1398 * zap_page_range_single - remove user pages in a given range
1399 * @vma: vm_area_struct holding the applicable pages
1400 * @address: starting address of pages to zap
1401 * @size: number of bytes to zap
1402 * @details: details of nonlinear truncation or shared cache invalidation
1404 * The range must fit into one VMA.
1406 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1407 unsigned long size, struct zap_details *details)
1409 struct mm_struct *mm = vma->vm_mm;
1410 struct mmu_gather tlb;
1411 unsigned long end = address + size;
1413 lru_add_drain();
1414 tlb_gather_mmu(&tlb, mm, address, end);
1415 update_hiwater_rss(mm);
1416 mmu_notifier_invalidate_range_start(mm, address, end);
1417 unmap_single_vma(&tlb, vma, address, end, details);
1418 mmu_notifier_invalidate_range_end(mm, address, end);
1419 tlb_finish_mmu(&tlb, address, end);
1423 * zap_vma_ptes - remove ptes mapping the vma
1424 * @vma: vm_area_struct holding ptes to be zapped
1425 * @address: starting address of pages to zap
1426 * @size: number of bytes to zap
1428 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1430 * The entire address range must be fully contained within the vma.
1432 * Returns 0 if successful.
1434 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1435 unsigned long size)
1437 if (address < vma->vm_start || address + size > vma->vm_end ||
1438 !(vma->vm_flags & VM_PFNMAP))
1439 return -1;
1440 zap_page_range_single(vma, address, size, NULL);
1441 return 0;
1443 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1446 * follow_page_mask - look up a page descriptor from a user-virtual address
1447 * @vma: vm_area_struct mapping @address
1448 * @address: virtual address to look up
1449 * @flags: flags modifying lookup behaviour
1450 * @page_mask: on output, *page_mask is set according to the size of the page
1452 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1454 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1455 * an error pointer if there is a mapping to something not represented
1456 * by a page descriptor (see also vm_normal_page()).
1458 struct page *follow_page_mask(struct vm_area_struct *vma,
1459 unsigned long address, unsigned int flags,
1460 unsigned int *page_mask)
1462 pgd_t *pgd;
1463 pud_t *pud;
1464 pmd_t *pmd;
1465 pte_t *ptep, pte;
1466 spinlock_t *ptl;
1467 struct page *page;
1468 struct mm_struct *mm = vma->vm_mm;
1470 *page_mask = 0;
1472 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1473 if (!IS_ERR(page)) {
1474 BUG_ON(flags & FOLL_GET);
1475 goto out;
1478 page = NULL;
1479 pgd = pgd_offset(mm, address);
1480 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1481 goto no_page_table;
1483 pud = pud_offset(pgd, address);
1484 if (pud_none(*pud))
1485 goto no_page_table;
1486 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1487 if (flags & FOLL_GET)
1488 goto out;
1489 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1490 goto out;
1492 if (unlikely(pud_bad(*pud)))
1493 goto no_page_table;
1495 pmd = pmd_offset(pud, address);
1496 if (pmd_none(*pmd))
1497 goto no_page_table;
1498 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1499 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1500 if (flags & FOLL_GET) {
1502 * Refcount on tail pages are not well-defined and
1503 * shouldn't be taken. The caller should handle a NULL
1504 * return when trying to follow tail pages.
1506 if (PageHead(page))
1507 get_page(page);
1508 else {
1509 page = NULL;
1510 goto out;
1513 goto out;
1515 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1516 goto no_page_table;
1517 if (pmd_trans_huge(*pmd)) {
1518 if (flags & FOLL_SPLIT) {
1519 split_huge_page_pmd(vma, address, pmd);
1520 goto split_fallthrough;
1522 ptl = pmd_lock(mm, pmd);
1523 if (likely(pmd_trans_huge(*pmd))) {
1524 if (unlikely(pmd_trans_splitting(*pmd))) {
1525 spin_unlock(ptl);
1526 wait_split_huge_page(vma->anon_vma, pmd);
1527 } else {
1528 page = follow_trans_huge_pmd(vma, address,
1529 pmd, flags);
1530 spin_unlock(ptl);
1531 *page_mask = HPAGE_PMD_NR - 1;
1532 goto out;
1534 } else
1535 spin_unlock(ptl);
1536 /* fall through */
1538 split_fallthrough:
1539 if (unlikely(pmd_bad(*pmd)))
1540 goto no_page_table;
1542 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1544 pte = *ptep;
1545 if (!pte_present(pte)) {
1546 swp_entry_t entry;
1548 * KSM's break_ksm() relies upon recognizing a ksm page
1549 * even while it is being migrated, so for that case we
1550 * need migration_entry_wait().
1552 if (likely(!(flags & FOLL_MIGRATION)))
1553 goto no_page;
1554 if (pte_none(pte) || pte_file(pte))
1555 goto no_page;
1556 entry = pte_to_swp_entry(pte);
1557 if (!is_migration_entry(entry))
1558 goto no_page;
1559 pte_unmap_unlock(ptep, ptl);
1560 migration_entry_wait(mm, pmd, address);
1561 goto split_fallthrough;
1563 if ((flags & FOLL_NUMA) && pte_numa(pte))
1564 goto no_page;
1565 if ((flags & FOLL_WRITE) && !pte_write(pte))
1566 goto unlock;
1568 page = vm_normal_page(vma, address, pte);
1569 if (unlikely(!page)) {
1570 if ((flags & FOLL_DUMP) ||
1571 !is_zero_pfn(pte_pfn(pte)))
1572 goto bad_page;
1573 page = pte_page(pte);
1576 if (flags & FOLL_GET)
1577 get_page_foll(page);
1578 if (flags & FOLL_TOUCH) {
1579 if ((flags & FOLL_WRITE) &&
1580 !pte_dirty(pte) && !PageDirty(page))
1581 set_page_dirty(page);
1583 * pte_mkyoung() would be more correct here, but atomic care
1584 * is needed to avoid losing the dirty bit: it is easier to use
1585 * mark_page_accessed().
1587 mark_page_accessed(page);
1589 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1591 * The preliminary mapping check is mainly to avoid the
1592 * pointless overhead of lock_page on the ZERO_PAGE
1593 * which might bounce very badly if there is contention.
1595 * If the page is already locked, we don't need to
1596 * handle it now - vmscan will handle it later if and
1597 * when it attempts to reclaim the page.
1599 if (page->mapping && trylock_page(page)) {
1600 lru_add_drain(); /* push cached pages to LRU */
1602 * Because we lock page here, and migration is
1603 * blocked by the pte's page reference, and we
1604 * know the page is still mapped, we don't even
1605 * need to check for file-cache page truncation.
1607 mlock_vma_page(page);
1608 unlock_page(page);
1611 unlock:
1612 pte_unmap_unlock(ptep, ptl);
1613 out:
1614 return page;
1616 bad_page:
1617 pte_unmap_unlock(ptep, ptl);
1618 return ERR_PTR(-EFAULT);
1620 no_page:
1621 pte_unmap_unlock(ptep, ptl);
1622 if (!pte_none(pte))
1623 return page;
1625 no_page_table:
1627 * When core dumping an enormous anonymous area that nobody
1628 * has touched so far, we don't want to allocate unnecessary pages or
1629 * page tables. Return error instead of NULL to skip handle_mm_fault,
1630 * then get_dump_page() will return NULL to leave a hole in the dump.
1631 * But we can only make this optimization where a hole would surely
1632 * be zero-filled if handle_mm_fault() actually did handle it.
1634 if ((flags & FOLL_DUMP) &&
1635 (!vma->vm_ops || !vma->vm_ops->fault))
1636 return ERR_PTR(-EFAULT);
1637 return page;
1640 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1642 return stack_guard_page_start(vma, addr) ||
1643 stack_guard_page_end(vma, addr+PAGE_SIZE);
1647 * __get_user_pages() - pin user pages in memory
1648 * @tsk: task_struct of target task
1649 * @mm: mm_struct of target mm
1650 * @start: starting user address
1651 * @nr_pages: number of pages from start to pin
1652 * @gup_flags: flags modifying pin behaviour
1653 * @pages: array that receives pointers to the pages pinned.
1654 * Should be at least nr_pages long. Or NULL, if caller
1655 * only intends to ensure the pages are faulted in.
1656 * @vmas: array of pointers to vmas corresponding to each page.
1657 * Or NULL if the caller does not require them.
1658 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1660 * Returns number of pages pinned. This may be fewer than the number
1661 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1662 * were pinned, returns -errno. Each page returned must be released
1663 * with a put_page() call when it is finished with. vmas will only
1664 * remain valid while mmap_sem is held.
1666 * Must be called with mmap_sem held for read or write.
1668 * __get_user_pages walks a process's page tables and takes a reference to
1669 * each struct page that each user address corresponds to at a given
1670 * instant. That is, it takes the page that would be accessed if a user
1671 * thread accesses the given user virtual address at that instant.
1673 * This does not guarantee that the page exists in the user mappings when
1674 * __get_user_pages returns, and there may even be a completely different
1675 * page there in some cases (eg. if mmapped pagecache has been invalidated
1676 * and subsequently re faulted). However it does guarantee that the page
1677 * won't be freed completely. And mostly callers simply care that the page
1678 * contains data that was valid *at some point in time*. Typically, an IO
1679 * or similar operation cannot guarantee anything stronger anyway because
1680 * locks can't be held over the syscall boundary.
1682 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1683 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1684 * appropriate) must be called after the page is finished with, and
1685 * before put_page is called.
1687 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1688 * or mmap_sem contention, and if waiting is needed to pin all pages,
1689 * *@nonblocking will be set to 0.
1691 * In most cases, get_user_pages or get_user_pages_fast should be used
1692 * instead of __get_user_pages. __get_user_pages should be used only if
1693 * you need some special @gup_flags.
1695 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1696 unsigned long start, unsigned long nr_pages,
1697 unsigned int gup_flags, struct page **pages,
1698 struct vm_area_struct **vmas, int *nonblocking)
1700 long i;
1701 unsigned long vm_flags;
1702 unsigned int page_mask;
1704 if (!nr_pages)
1705 return 0;
1707 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1710 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1711 * would be called on PROT_NONE ranges. We must never invoke
1712 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1713 * page faults would unprotect the PROT_NONE ranges if
1714 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1715 * bitflag. So to avoid that, don't set FOLL_NUMA if
1716 * FOLL_FORCE is set.
1718 if (!(gup_flags & FOLL_FORCE))
1719 gup_flags |= FOLL_NUMA;
1721 i = 0;
1723 do {
1724 struct vm_area_struct *vma;
1726 vma = find_extend_vma(mm, start);
1727 if (!vma && in_gate_area(mm, start)) {
1728 unsigned long pg = start & PAGE_MASK;
1729 pgd_t *pgd;
1730 pud_t *pud;
1731 pmd_t *pmd;
1732 pte_t *pte;
1734 /* user gate pages are read-only */
1735 if (gup_flags & FOLL_WRITE)
1736 goto efault;
1737 if (pg > TASK_SIZE)
1738 pgd = pgd_offset_k(pg);
1739 else
1740 pgd = pgd_offset_gate(mm, pg);
1741 BUG_ON(pgd_none(*pgd));
1742 pud = pud_offset(pgd, pg);
1743 BUG_ON(pud_none(*pud));
1744 pmd = pmd_offset(pud, pg);
1745 if (pmd_none(*pmd))
1746 goto efault;
1747 VM_BUG_ON(pmd_trans_huge(*pmd));
1748 pte = pte_offset_map(pmd, pg);
1749 if (pte_none(*pte)) {
1750 pte_unmap(pte);
1751 goto efault;
1753 vma = get_gate_vma(mm);
1754 if (pages) {
1755 struct page *page;
1757 page = vm_normal_page(vma, start, *pte);
1758 if (!page) {
1759 if (!(gup_flags & FOLL_DUMP) &&
1760 is_zero_pfn(pte_pfn(*pte)))
1761 page = pte_page(*pte);
1762 else {
1763 pte_unmap(pte);
1764 goto efault;
1767 pages[i] = page;
1768 get_page(page);
1770 pte_unmap(pte);
1771 page_mask = 0;
1772 goto next_page;
1775 if (!vma)
1776 goto efault;
1777 vm_flags = vma->vm_flags;
1778 if (vm_flags & (VM_IO | VM_PFNMAP))
1779 goto efault;
1781 if (gup_flags & FOLL_WRITE) {
1782 if (!(vm_flags & VM_WRITE)) {
1783 if (!(gup_flags & FOLL_FORCE))
1784 goto efault;
1786 * We used to let the write,force case do COW
1787 * in a VM_MAYWRITE VM_SHARED !VM_WRITE vma, so
1788 * ptrace could set a breakpoint in a read-only
1789 * mapping of an executable, without corrupting
1790 * the file (yet only when that file had been
1791 * opened for writing!). Anon pages in shared
1792 * mappings are surprising: now just reject it.
1794 if (!is_cow_mapping(vm_flags)) {
1795 WARN_ON_ONCE(vm_flags & VM_MAYWRITE);
1796 goto efault;
1799 } else {
1800 if (!(vm_flags & VM_READ)) {
1801 if (!(gup_flags & FOLL_FORCE))
1802 goto efault;
1804 * Is there actually any vma we can reach here
1805 * which does not have VM_MAYREAD set?
1807 if (!(vm_flags & VM_MAYREAD))
1808 goto efault;
1812 if (is_vm_hugetlb_page(vma)) {
1813 i = follow_hugetlb_page(mm, vma, pages, vmas,
1814 &start, &nr_pages, i, gup_flags);
1815 continue;
1818 do {
1819 struct page *page;
1820 unsigned int foll_flags = gup_flags;
1821 unsigned int page_increm;
1824 * If we have a pending SIGKILL, don't keep faulting
1825 * pages and potentially allocating memory.
1827 if (unlikely(fatal_signal_pending(current)))
1828 return i ? i : -ERESTARTSYS;
1830 cond_resched();
1831 while (!(page = follow_page_mask(vma, start,
1832 foll_flags, &page_mask))) {
1833 int ret;
1834 unsigned int fault_flags = 0;
1836 /* For mlock, just skip the stack guard page. */
1837 if (foll_flags & FOLL_MLOCK) {
1838 if (stack_guard_page(vma, start))
1839 goto next_page;
1841 if (foll_flags & FOLL_WRITE)
1842 fault_flags |= FAULT_FLAG_WRITE;
1843 if (nonblocking)
1844 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1845 if (foll_flags & FOLL_NOWAIT)
1846 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1848 ret = handle_mm_fault(mm, vma, start,
1849 fault_flags);
1851 if (ret & VM_FAULT_ERROR) {
1852 if (ret & VM_FAULT_OOM)
1853 return i ? i : -ENOMEM;
1854 if (ret & (VM_FAULT_HWPOISON |
1855 VM_FAULT_HWPOISON_LARGE)) {
1856 if (i)
1857 return i;
1858 else if (gup_flags & FOLL_HWPOISON)
1859 return -EHWPOISON;
1860 else
1861 return -EFAULT;
1863 if (ret & VM_FAULT_SIGBUS)
1864 goto efault;
1865 BUG();
1868 if (tsk) {
1869 if (ret & VM_FAULT_MAJOR)
1870 tsk->maj_flt++;
1871 else
1872 tsk->min_flt++;
1875 if (ret & VM_FAULT_RETRY) {
1876 if (nonblocking)
1877 *nonblocking = 0;
1878 return i;
1882 * The VM_FAULT_WRITE bit tells us that
1883 * do_wp_page has broken COW when necessary,
1884 * even if maybe_mkwrite decided not to set
1885 * pte_write. We can thus safely do subsequent
1886 * page lookups as if they were reads. But only
1887 * do so when looping for pte_write is futile:
1888 * in some cases userspace may also be wanting
1889 * to write to the gotten user page, which a
1890 * read fault here might prevent (a readonly
1891 * page might get reCOWed by userspace write).
1893 if ((ret & VM_FAULT_WRITE) &&
1894 !(vma->vm_flags & VM_WRITE))
1895 foll_flags &= ~FOLL_WRITE;
1897 cond_resched();
1899 if (IS_ERR(page))
1900 return i ? i : PTR_ERR(page);
1901 if (pages) {
1902 pages[i] = page;
1904 flush_anon_page(vma, page, start);
1905 flush_dcache_page(page);
1906 page_mask = 0;
1908 next_page:
1909 if (vmas) {
1910 vmas[i] = vma;
1911 page_mask = 0;
1913 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1914 if (page_increm > nr_pages)
1915 page_increm = nr_pages;
1916 i += page_increm;
1917 start += page_increm * PAGE_SIZE;
1918 nr_pages -= page_increm;
1919 } while (nr_pages && start < vma->vm_end);
1920 } while (nr_pages);
1921 return i;
1922 efault:
1923 return i ? : -EFAULT;
1925 EXPORT_SYMBOL(__get_user_pages);
1928 * fixup_user_fault() - manually resolve a user page fault
1929 * @tsk: the task_struct to use for page fault accounting, or
1930 * NULL if faults are not to be recorded.
1931 * @mm: mm_struct of target mm
1932 * @address: user address
1933 * @fault_flags:flags to pass down to handle_mm_fault()
1935 * This is meant to be called in the specific scenario where for locking reasons
1936 * we try to access user memory in atomic context (within a pagefault_disable()
1937 * section), this returns -EFAULT, and we want to resolve the user fault before
1938 * trying again.
1940 * Typically this is meant to be used by the futex code.
1942 * The main difference with get_user_pages() is that this function will
1943 * unconditionally call handle_mm_fault() which will in turn perform all the
1944 * necessary SW fixup of the dirty and young bits in the PTE, while
1945 * handle_mm_fault() only guarantees to update these in the struct page.
1947 * This is important for some architectures where those bits also gate the
1948 * access permission to the page because they are maintained in software. On
1949 * such architectures, gup() will not be enough to make a subsequent access
1950 * succeed.
1952 * This should be called with the mm_sem held for read.
1954 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1955 unsigned long address, unsigned int fault_flags)
1957 struct vm_area_struct *vma;
1958 int ret;
1960 vma = find_extend_vma(mm, address);
1961 if (!vma || address < vma->vm_start)
1962 return -EFAULT;
1964 ret = handle_mm_fault(mm, vma, address, fault_flags);
1965 if (ret & VM_FAULT_ERROR) {
1966 if (ret & VM_FAULT_OOM)
1967 return -ENOMEM;
1968 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1969 return -EHWPOISON;
1970 if (ret & VM_FAULT_SIGBUS)
1971 return -EFAULT;
1972 BUG();
1974 if (tsk) {
1975 if (ret & VM_FAULT_MAJOR)
1976 tsk->maj_flt++;
1977 else
1978 tsk->min_flt++;
1980 return 0;
1984 * get_user_pages() - pin user pages in memory
1985 * @tsk: the task_struct to use for page fault accounting, or
1986 * NULL if faults are not to be recorded.
1987 * @mm: mm_struct of target mm
1988 * @start: starting user address
1989 * @nr_pages: number of pages from start to pin
1990 * @write: whether pages will be written to by the caller
1991 * @force: whether to force access even when user mapping is currently
1992 * protected (but never forces write access to shared mapping).
1993 * @pages: array that receives pointers to the pages pinned.
1994 * Should be at least nr_pages long. Or NULL, if caller
1995 * only intends to ensure the pages are faulted in.
1996 * @vmas: array of pointers to vmas corresponding to each page.
1997 * Or NULL if the caller does not require them.
1999 * Returns number of pages pinned. This may be fewer than the number
2000 * requested. If nr_pages is 0 or negative, returns 0. If no pages
2001 * were pinned, returns -errno. Each page returned must be released
2002 * with a put_page() call when it is finished with. vmas will only
2003 * remain valid while mmap_sem is held.
2005 * Must be called with mmap_sem held for read or write.
2007 * get_user_pages walks a process's page tables and takes a reference to
2008 * each struct page that each user address corresponds to at a given
2009 * instant. That is, it takes the page that would be accessed if a user
2010 * thread accesses the given user virtual address at that instant.
2012 * This does not guarantee that the page exists in the user mappings when
2013 * get_user_pages returns, and there may even be a completely different
2014 * page there in some cases (eg. if mmapped pagecache has been invalidated
2015 * and subsequently re faulted). However it does guarantee that the page
2016 * won't be freed completely. And mostly callers simply care that the page
2017 * contains data that was valid *at some point in time*. Typically, an IO
2018 * or similar operation cannot guarantee anything stronger anyway because
2019 * locks can't be held over the syscall boundary.
2021 * If write=0, the page must not be written to. If the page is written to,
2022 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2023 * after the page is finished with, and before put_page is called.
2025 * get_user_pages is typically used for fewer-copy IO operations, to get a
2026 * handle on the memory by some means other than accesses via the user virtual
2027 * addresses. The pages may be submitted for DMA to devices or accessed via
2028 * their kernel linear mapping (via the kmap APIs). Care should be taken to
2029 * use the correct cache flushing APIs.
2031 * See also get_user_pages_fast, for performance critical applications.
2033 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2034 unsigned long start, unsigned long nr_pages, int write,
2035 int force, struct page **pages, struct vm_area_struct **vmas)
2037 int flags = FOLL_TOUCH;
2039 if (pages)
2040 flags |= FOLL_GET;
2041 if (write)
2042 flags |= FOLL_WRITE;
2043 if (force)
2044 flags |= FOLL_FORCE;
2046 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2047 NULL);
2049 EXPORT_SYMBOL(get_user_pages);
2052 * get_dump_page() - pin user page in memory while writing it to core dump
2053 * @addr: user address
2055 * Returns struct page pointer of user page pinned for dump,
2056 * to be freed afterwards by page_cache_release() or put_page().
2058 * Returns NULL on any kind of failure - a hole must then be inserted into
2059 * the corefile, to preserve alignment with its headers; and also returns
2060 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2061 * allowing a hole to be left in the corefile to save diskspace.
2063 * Called without mmap_sem, but after all other threads have been killed.
2065 #ifdef CONFIG_ELF_CORE
2066 struct page *get_dump_page(unsigned long addr)
2068 struct vm_area_struct *vma;
2069 struct page *page;
2071 if (__get_user_pages(current, current->mm, addr, 1,
2072 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2073 NULL) < 1)
2074 return NULL;
2075 flush_cache_page(vma, addr, page_to_pfn(page));
2076 return page;
2078 #endif /* CONFIG_ELF_CORE */
2080 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2081 spinlock_t **ptl)
2083 pgd_t * pgd = pgd_offset(mm, addr);
2084 pud_t * pud = pud_alloc(mm, pgd, addr);
2085 if (pud) {
2086 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2087 if (pmd) {
2088 VM_BUG_ON(pmd_trans_huge(*pmd));
2089 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2092 return NULL;
2096 * This is the old fallback for page remapping.
2098 * For historical reasons, it only allows reserved pages. Only
2099 * old drivers should use this, and they needed to mark their
2100 * pages reserved for the old functions anyway.
2102 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2103 struct page *page, pgprot_t prot)
2105 struct mm_struct *mm = vma->vm_mm;
2106 int retval;
2107 pte_t *pte;
2108 spinlock_t *ptl;
2110 retval = -EINVAL;
2111 if (PageAnon(page))
2112 goto out;
2113 retval = -ENOMEM;
2114 flush_dcache_page(page);
2115 pte = get_locked_pte(mm, addr, &ptl);
2116 if (!pte)
2117 goto out;
2118 retval = -EBUSY;
2119 if (!pte_none(*pte))
2120 goto out_unlock;
2122 /* Ok, finally just insert the thing.. */
2123 get_page(page);
2124 inc_mm_counter_fast(mm, MM_FILEPAGES);
2125 page_add_file_rmap(page);
2126 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2128 retval = 0;
2129 pte_unmap_unlock(pte, ptl);
2130 return retval;
2131 out_unlock:
2132 pte_unmap_unlock(pte, ptl);
2133 out:
2134 return retval;
2138 * vm_insert_page - insert single page into user vma
2139 * @vma: user vma to map to
2140 * @addr: target user address of this page
2141 * @page: source kernel page
2143 * This allows drivers to insert individual pages they've allocated
2144 * into a user vma.
2146 * The page has to be a nice clean _individual_ kernel allocation.
2147 * If you allocate a compound page, you need to have marked it as
2148 * such (__GFP_COMP), or manually just split the page up yourself
2149 * (see split_page()).
2151 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2152 * took an arbitrary page protection parameter. This doesn't allow
2153 * that. Your vma protection will have to be set up correctly, which
2154 * means that if you want a shared writable mapping, you'd better
2155 * ask for a shared writable mapping!
2157 * The page does not need to be reserved.
2159 * Usually this function is called from f_op->mmap() handler
2160 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2161 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2162 * function from other places, for example from page-fault handler.
2164 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2165 struct page *page)
2167 if (addr < vma->vm_start || addr >= vma->vm_end)
2168 return -EFAULT;
2169 if (!page_count(page))
2170 return -EINVAL;
2171 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2172 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2173 BUG_ON(vma->vm_flags & VM_PFNMAP);
2174 vma->vm_flags |= VM_MIXEDMAP;
2176 return insert_page(vma, addr, page, vma->vm_page_prot);
2178 EXPORT_SYMBOL(vm_insert_page);
2180 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2181 unsigned long pfn, pgprot_t prot)
2183 struct mm_struct *mm = vma->vm_mm;
2184 int retval;
2185 pte_t *pte, entry;
2186 spinlock_t *ptl;
2188 retval = -ENOMEM;
2189 pte = get_locked_pte(mm, addr, &ptl);
2190 if (!pte)
2191 goto out;
2192 retval = -EBUSY;
2193 if (!pte_none(*pte))
2194 goto out_unlock;
2196 /* Ok, finally just insert the thing.. */
2197 entry = pte_mkspecial(pfn_pte(pfn, prot));
2198 set_pte_at(mm, addr, pte, entry);
2199 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2201 retval = 0;
2202 out_unlock:
2203 pte_unmap_unlock(pte, ptl);
2204 out:
2205 return retval;
2209 * vm_insert_pfn - insert single pfn into user vma
2210 * @vma: user vma to map to
2211 * @addr: target user address of this page
2212 * @pfn: source kernel pfn
2214 * Similar to vm_insert_page, this allows drivers to insert individual pages
2215 * they've allocated into a user vma. Same comments apply.
2217 * This function should only be called from a vm_ops->fault handler, and
2218 * in that case the handler should return NULL.
2220 * vma cannot be a COW mapping.
2222 * As this is called only for pages that do not currently exist, we
2223 * do not need to flush old virtual caches or the TLB.
2225 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2226 unsigned long pfn)
2228 int ret;
2229 pgprot_t pgprot = vma->vm_page_prot;
2231 * Technically, architectures with pte_special can avoid all these
2232 * restrictions (same for remap_pfn_range). However we would like
2233 * consistency in testing and feature parity among all, so we should
2234 * try to keep these invariants in place for everybody.
2236 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2237 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2238 (VM_PFNMAP|VM_MIXEDMAP));
2239 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2240 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2242 if (addr < vma->vm_start || addr >= vma->vm_end)
2243 return -EFAULT;
2244 if (track_pfn_insert(vma, &pgprot, pfn))
2245 return -EINVAL;
2247 ret = insert_pfn(vma, addr, pfn, pgprot);
2249 return ret;
2251 EXPORT_SYMBOL(vm_insert_pfn);
2253 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2254 unsigned long pfn)
2256 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2258 if (addr < vma->vm_start || addr >= vma->vm_end)
2259 return -EFAULT;
2262 * If we don't have pte special, then we have to use the pfn_valid()
2263 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2264 * refcount the page if pfn_valid is true (hence insert_page rather
2265 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2266 * without pte special, it would there be refcounted as a normal page.
2268 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2269 struct page *page;
2271 page = pfn_to_page(pfn);
2272 return insert_page(vma, addr, page, vma->vm_page_prot);
2274 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2276 EXPORT_SYMBOL(vm_insert_mixed);
2279 * maps a range of physical memory into the requested pages. the old
2280 * mappings are removed. any references to nonexistent pages results
2281 * in null mappings (currently treated as "copy-on-access")
2283 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2284 unsigned long addr, unsigned long end,
2285 unsigned long pfn, pgprot_t prot)
2287 pte_t *pte;
2288 spinlock_t *ptl;
2290 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2291 if (!pte)
2292 return -ENOMEM;
2293 arch_enter_lazy_mmu_mode();
2294 do {
2295 BUG_ON(!pte_none(*pte));
2296 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2297 pfn++;
2298 } while (pte++, addr += PAGE_SIZE, addr != end);
2299 arch_leave_lazy_mmu_mode();
2300 pte_unmap_unlock(pte - 1, ptl);
2301 return 0;
2304 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2305 unsigned long addr, unsigned long end,
2306 unsigned long pfn, pgprot_t prot)
2308 pmd_t *pmd;
2309 unsigned long next;
2311 pfn -= addr >> PAGE_SHIFT;
2312 pmd = pmd_alloc(mm, pud, addr);
2313 if (!pmd)
2314 return -ENOMEM;
2315 VM_BUG_ON(pmd_trans_huge(*pmd));
2316 do {
2317 next = pmd_addr_end(addr, end);
2318 if (remap_pte_range(mm, pmd, addr, next,
2319 pfn + (addr >> PAGE_SHIFT), prot))
2320 return -ENOMEM;
2321 } while (pmd++, addr = next, addr != end);
2322 return 0;
2325 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2326 unsigned long addr, unsigned long end,
2327 unsigned long pfn, pgprot_t prot)
2329 pud_t *pud;
2330 unsigned long next;
2332 pfn -= addr >> PAGE_SHIFT;
2333 pud = pud_alloc(mm, pgd, addr);
2334 if (!pud)
2335 return -ENOMEM;
2336 do {
2337 next = pud_addr_end(addr, end);
2338 if (remap_pmd_range(mm, pud, addr, next,
2339 pfn + (addr >> PAGE_SHIFT), prot))
2340 return -ENOMEM;
2341 } while (pud++, addr = next, addr != end);
2342 return 0;
2346 * remap_pfn_range - remap kernel memory to userspace
2347 * @vma: user vma to map to
2348 * @addr: target user address to start at
2349 * @pfn: physical address of kernel memory
2350 * @size: size of map area
2351 * @prot: page protection flags for this mapping
2353 * Note: this is only safe if the mm semaphore is held when called.
2355 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2356 unsigned long pfn, unsigned long size, pgprot_t prot)
2358 pgd_t *pgd;
2359 unsigned long next;
2360 unsigned long end = addr + PAGE_ALIGN(size);
2361 struct mm_struct *mm = vma->vm_mm;
2362 int err;
2365 * Physically remapped pages are special. Tell the
2366 * rest of the world about it:
2367 * VM_IO tells people not to look at these pages
2368 * (accesses can have side effects).
2369 * VM_PFNMAP tells the core MM that the base pages are just
2370 * raw PFN mappings, and do not have a "struct page" associated
2371 * with them.
2372 * VM_DONTEXPAND
2373 * Disable vma merging and expanding with mremap().
2374 * VM_DONTDUMP
2375 * Omit vma from core dump, even when VM_IO turned off.
2377 * There's a horrible special case to handle copy-on-write
2378 * behaviour that some programs depend on. We mark the "original"
2379 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2380 * See vm_normal_page() for details.
2382 if (is_cow_mapping(vma->vm_flags)) {
2383 if (addr != vma->vm_start || end != vma->vm_end)
2384 return -EINVAL;
2385 vma->vm_pgoff = pfn;
2388 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2389 if (err)
2390 return -EINVAL;
2392 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2394 BUG_ON(addr >= end);
2395 pfn -= addr >> PAGE_SHIFT;
2396 pgd = pgd_offset(mm, addr);
2397 flush_cache_range(vma, addr, end);
2398 do {
2399 next = pgd_addr_end(addr, end);
2400 err = remap_pud_range(mm, pgd, addr, next,
2401 pfn + (addr >> PAGE_SHIFT), prot);
2402 if (err)
2403 break;
2404 } while (pgd++, addr = next, addr != end);
2406 if (err)
2407 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2409 return err;
2411 EXPORT_SYMBOL(remap_pfn_range);
2414 * vm_iomap_memory - remap memory to userspace
2415 * @vma: user vma to map to
2416 * @start: start of area
2417 * @len: size of area
2419 * This is a simplified io_remap_pfn_range() for common driver use. The
2420 * driver just needs to give us the physical memory range to be mapped,
2421 * we'll figure out the rest from the vma information.
2423 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2424 * whatever write-combining details or similar.
2426 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2428 unsigned long vm_len, pfn, pages;
2430 /* Check that the physical memory area passed in looks valid */
2431 if (start + len < start)
2432 return -EINVAL;
2434 * You *really* shouldn't map things that aren't page-aligned,
2435 * but we've historically allowed it because IO memory might
2436 * just have smaller alignment.
2438 len += start & ~PAGE_MASK;
2439 pfn = start >> PAGE_SHIFT;
2440 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2441 if (pfn + pages < pfn)
2442 return -EINVAL;
2444 /* We start the mapping 'vm_pgoff' pages into the area */
2445 if (vma->vm_pgoff > pages)
2446 return -EINVAL;
2447 pfn += vma->vm_pgoff;
2448 pages -= vma->vm_pgoff;
2450 /* Can we fit all of the mapping? */
2451 vm_len = vma->vm_end - vma->vm_start;
2452 if (vm_len >> PAGE_SHIFT > pages)
2453 return -EINVAL;
2455 /* Ok, let it rip */
2456 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2458 EXPORT_SYMBOL(vm_iomap_memory);
2460 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2461 unsigned long addr, unsigned long end,
2462 pte_fn_t fn, void *data)
2464 pte_t *pte;
2465 int err;
2466 pgtable_t token;
2467 spinlock_t *uninitialized_var(ptl);
2469 pte = (mm == &init_mm) ?
2470 pte_alloc_kernel(pmd, addr) :
2471 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2472 if (!pte)
2473 return -ENOMEM;
2475 BUG_ON(pmd_huge(*pmd));
2477 arch_enter_lazy_mmu_mode();
2479 token = pmd_pgtable(*pmd);
2481 do {
2482 err = fn(pte++, token, addr, data);
2483 if (err)
2484 break;
2485 } while (addr += PAGE_SIZE, addr != end);
2487 arch_leave_lazy_mmu_mode();
2489 if (mm != &init_mm)
2490 pte_unmap_unlock(pte-1, ptl);
2491 return err;
2494 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2495 unsigned long addr, unsigned long end,
2496 pte_fn_t fn, void *data)
2498 pmd_t *pmd;
2499 unsigned long next;
2500 int err;
2502 BUG_ON(pud_huge(*pud));
2504 pmd = pmd_alloc(mm, pud, addr);
2505 if (!pmd)
2506 return -ENOMEM;
2507 do {
2508 next = pmd_addr_end(addr, end);
2509 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2510 if (err)
2511 break;
2512 } while (pmd++, addr = next, addr != end);
2513 return err;
2516 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2517 unsigned long addr, unsigned long end,
2518 pte_fn_t fn, void *data)
2520 pud_t *pud;
2521 unsigned long next;
2522 int err;
2524 pud = pud_alloc(mm, pgd, addr);
2525 if (!pud)
2526 return -ENOMEM;
2527 do {
2528 next = pud_addr_end(addr, end);
2529 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2530 if (err)
2531 break;
2532 } while (pud++, addr = next, addr != end);
2533 return err;
2537 * Scan a region of virtual memory, filling in page tables as necessary
2538 * and calling a provided function on each leaf page table.
2540 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2541 unsigned long size, pte_fn_t fn, void *data)
2543 pgd_t *pgd;
2544 unsigned long next;
2545 unsigned long end = addr + size;
2546 int err;
2548 BUG_ON(addr >= end);
2549 pgd = pgd_offset(mm, addr);
2550 do {
2551 next = pgd_addr_end(addr, end);
2552 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2553 if (err)
2554 break;
2555 } while (pgd++, addr = next, addr != end);
2557 return err;
2559 EXPORT_SYMBOL_GPL(apply_to_page_range);
2562 * handle_pte_fault chooses page fault handler according to an entry
2563 * which was read non-atomically. Before making any commitment, on
2564 * those architectures or configurations (e.g. i386 with PAE) which
2565 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2566 * must check under lock before unmapping the pte and proceeding
2567 * (but do_wp_page is only called after already making such a check;
2568 * and do_anonymous_page can safely check later on).
2570 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2571 pte_t *page_table, pte_t orig_pte)
2573 int same = 1;
2574 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2575 if (sizeof(pte_t) > sizeof(unsigned long)) {
2576 spinlock_t *ptl = pte_lockptr(mm, pmd);
2577 spin_lock(ptl);
2578 same = pte_same(*page_table, orig_pte);
2579 spin_unlock(ptl);
2581 #endif
2582 pte_unmap(page_table);
2583 return same;
2586 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2588 debug_dma_assert_idle(src);
2591 * If the source page was a PFN mapping, we don't have
2592 * a "struct page" for it. We do a best-effort copy by
2593 * just copying from the original user address. If that
2594 * fails, we just zero-fill it. Live with it.
2596 if (unlikely(!src)) {
2597 void *kaddr = kmap_atomic(dst);
2598 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2601 * This really shouldn't fail, because the page is there
2602 * in the page tables. But it might just be unreadable,
2603 * in which case we just give up and fill the result with
2604 * zeroes.
2606 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2607 clear_page(kaddr);
2608 kunmap_atomic(kaddr);
2609 flush_dcache_page(dst);
2610 } else
2611 copy_user_highpage(dst, src, va, vma);
2615 * Notify the address space that the page is about to become writable so that
2616 * it can prohibit this or wait for the page to get into an appropriate state.
2618 * We do this without the lock held, so that it can sleep if it needs to.
2620 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2621 unsigned long address)
2623 struct vm_fault vmf;
2624 int ret;
2626 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2627 vmf.pgoff = page->index;
2628 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2629 vmf.page = page;
2631 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2632 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2633 return ret;
2634 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2635 lock_page(page);
2636 if (!page->mapping) {
2637 unlock_page(page);
2638 return 0; /* retry */
2640 ret |= VM_FAULT_LOCKED;
2641 } else
2642 VM_BUG_ON_PAGE(!PageLocked(page), page);
2643 return ret;
2647 * This routine handles present pages, when users try to write
2648 * to a shared page. It is done by copying the page to a new address
2649 * and decrementing the shared-page counter for the old page.
2651 * Note that this routine assumes that the protection checks have been
2652 * done by the caller (the low-level page fault routine in most cases).
2653 * Thus we can safely just mark it writable once we've done any necessary
2654 * COW.
2656 * We also mark the page dirty at this point even though the page will
2657 * change only once the write actually happens. This avoids a few races,
2658 * and potentially makes it more efficient.
2660 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2661 * but allow concurrent faults), with pte both mapped and locked.
2662 * We return with mmap_sem still held, but pte unmapped and unlocked.
2664 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2665 unsigned long address, pte_t *page_table, pmd_t *pmd,
2666 spinlock_t *ptl, pte_t orig_pte)
2667 __releases(ptl)
2669 struct page *old_page, *new_page = NULL;
2670 pte_t entry;
2671 int ret = 0;
2672 int page_mkwrite = 0;
2673 struct page *dirty_page = NULL;
2674 unsigned long mmun_start = 0; /* For mmu_notifiers */
2675 unsigned long mmun_end = 0; /* For mmu_notifiers */
2677 old_page = vm_normal_page(vma, address, orig_pte);
2678 if (!old_page) {
2680 * VM_MIXEDMAP !pfn_valid() case
2682 * We should not cow pages in a shared writeable mapping.
2683 * Just mark the pages writable as we can't do any dirty
2684 * accounting on raw pfn maps.
2686 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2687 (VM_WRITE|VM_SHARED))
2688 goto reuse;
2689 goto gotten;
2693 * Take out anonymous pages first, anonymous shared vmas are
2694 * not dirty accountable.
2696 if (PageAnon(old_page) && !PageKsm(old_page)) {
2697 if (!trylock_page(old_page)) {
2698 page_cache_get(old_page);
2699 pte_unmap_unlock(page_table, ptl);
2700 lock_page(old_page);
2701 page_table = pte_offset_map_lock(mm, pmd, address,
2702 &ptl);
2703 if (!pte_same(*page_table, orig_pte)) {
2704 unlock_page(old_page);
2705 goto unlock;
2707 page_cache_release(old_page);
2709 if (reuse_swap_page(old_page)) {
2711 * The page is all ours. Move it to our anon_vma so
2712 * the rmap code will not search our parent or siblings.
2713 * Protected against the rmap code by the page lock.
2715 page_move_anon_rmap(old_page, vma, address);
2716 unlock_page(old_page);
2717 goto reuse;
2719 unlock_page(old_page);
2720 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2721 (VM_WRITE|VM_SHARED))) {
2723 * Only catch write-faults on shared writable pages,
2724 * read-only shared pages can get COWed by
2725 * get_user_pages(.write=1, .force=1).
2727 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2728 int tmp;
2729 page_cache_get(old_page);
2730 pte_unmap_unlock(page_table, ptl);
2731 tmp = do_page_mkwrite(vma, old_page, address);
2732 if (unlikely(!tmp || (tmp &
2733 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2734 page_cache_release(old_page);
2735 return tmp;
2738 * Since we dropped the lock we need to revalidate
2739 * the PTE as someone else may have changed it. If
2740 * they did, we just return, as we can count on the
2741 * MMU to tell us if they didn't also make it writable.
2743 page_table = pte_offset_map_lock(mm, pmd, address,
2744 &ptl);
2745 if (!pte_same(*page_table, orig_pte)) {
2746 unlock_page(old_page);
2747 goto unlock;
2750 page_mkwrite = 1;
2752 dirty_page = old_page;
2753 get_page(dirty_page);
2755 reuse:
2757 * Clear the pages cpupid information as the existing
2758 * information potentially belongs to a now completely
2759 * unrelated process.
2761 if (old_page)
2762 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2764 flush_cache_page(vma, address, pte_pfn(orig_pte));
2765 entry = pte_mkyoung(orig_pte);
2766 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2767 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2768 update_mmu_cache(vma, address, page_table);
2769 pte_unmap_unlock(page_table, ptl);
2770 ret |= VM_FAULT_WRITE;
2772 if (!dirty_page)
2773 return ret;
2776 * Yes, Virginia, this is actually required to prevent a race
2777 * with clear_page_dirty_for_io() from clearing the page dirty
2778 * bit after it clear all dirty ptes, but before a racing
2779 * do_wp_page installs a dirty pte.
2781 * do_shared_fault is protected similarly.
2783 if (!page_mkwrite) {
2784 wait_on_page_locked(dirty_page);
2785 set_page_dirty_balance(dirty_page);
2786 /* file_update_time outside page_lock */
2787 if (vma->vm_file)
2788 file_update_time(vma->vm_file);
2790 put_page(dirty_page);
2791 if (page_mkwrite) {
2792 struct address_space *mapping = dirty_page->mapping;
2794 set_page_dirty(dirty_page);
2795 unlock_page(dirty_page);
2796 page_cache_release(dirty_page);
2797 if (mapping) {
2799 * Some device drivers do not set page.mapping
2800 * but still dirty their pages
2802 balance_dirty_pages_ratelimited(mapping);
2806 return ret;
2810 * Ok, we need to copy. Oh, well..
2812 page_cache_get(old_page);
2813 gotten:
2814 pte_unmap_unlock(page_table, ptl);
2816 if (unlikely(anon_vma_prepare(vma)))
2817 goto oom;
2819 if (is_zero_pfn(pte_pfn(orig_pte))) {
2820 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2821 if (!new_page)
2822 goto oom;
2823 } else {
2824 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2825 if (!new_page)
2826 goto oom;
2827 cow_user_page(new_page, old_page, address, vma);
2829 __SetPageUptodate(new_page);
2831 if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))
2832 goto oom_free_new;
2834 mmun_start = address & PAGE_MASK;
2835 mmun_end = mmun_start + PAGE_SIZE;
2836 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2839 * Re-check the pte - we dropped the lock
2841 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2842 if (likely(pte_same(*page_table, orig_pte))) {
2843 if (old_page) {
2844 if (!PageAnon(old_page)) {
2845 dec_mm_counter_fast(mm, MM_FILEPAGES);
2846 inc_mm_counter_fast(mm, MM_ANONPAGES);
2848 } else
2849 inc_mm_counter_fast(mm, MM_ANONPAGES);
2850 flush_cache_page(vma, address, pte_pfn(orig_pte));
2851 entry = mk_pte(new_page, vma->vm_page_prot);
2852 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2854 * Clear the pte entry and flush it first, before updating the
2855 * pte with the new entry. This will avoid a race condition
2856 * seen in the presence of one thread doing SMC and another
2857 * thread doing COW.
2859 ptep_clear_flush(vma, address, page_table);
2860 page_add_new_anon_rmap(new_page, vma, address);
2862 * We call the notify macro here because, when using secondary
2863 * mmu page tables (such as kvm shadow page tables), we want the
2864 * new page to be mapped directly into the secondary page table.
2866 set_pte_at_notify(mm, address, page_table, entry);
2867 update_mmu_cache(vma, address, page_table);
2868 if (old_page) {
2870 * Only after switching the pte to the new page may
2871 * we remove the mapcount here. Otherwise another
2872 * process may come and find the rmap count decremented
2873 * before the pte is switched to the new page, and
2874 * "reuse" the old page writing into it while our pte
2875 * here still points into it and can be read by other
2876 * threads.
2878 * The critical issue is to order this
2879 * page_remove_rmap with the ptp_clear_flush above.
2880 * Those stores are ordered by (if nothing else,)
2881 * the barrier present in the atomic_add_negative
2882 * in page_remove_rmap.
2884 * Then the TLB flush in ptep_clear_flush ensures that
2885 * no process can access the old page before the
2886 * decremented mapcount is visible. And the old page
2887 * cannot be reused until after the decremented
2888 * mapcount is visible. So transitively, TLBs to
2889 * old page will be flushed before it can be reused.
2891 page_remove_rmap(old_page);
2894 /* Free the old page.. */
2895 new_page = old_page;
2896 ret |= VM_FAULT_WRITE;
2897 } else
2898 mem_cgroup_uncharge_page(new_page);
2900 if (new_page)
2901 page_cache_release(new_page);
2902 unlock:
2903 pte_unmap_unlock(page_table, ptl);
2904 if (mmun_end > mmun_start)
2905 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2906 if (old_page) {
2908 * Don't let another task, with possibly unlocked vma,
2909 * keep the mlocked page.
2911 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2912 lock_page(old_page); /* LRU manipulation */
2913 munlock_vma_page(old_page);
2914 unlock_page(old_page);
2916 page_cache_release(old_page);
2918 return ret;
2919 oom_free_new:
2920 page_cache_release(new_page);
2921 oom:
2922 if (old_page)
2923 page_cache_release(old_page);
2924 return VM_FAULT_OOM;
2927 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2928 unsigned long start_addr, unsigned long end_addr,
2929 struct zap_details *details)
2931 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2934 static inline void unmap_mapping_range_tree(struct rb_root *root,
2935 struct zap_details *details)
2937 struct vm_area_struct *vma;
2938 pgoff_t vba, vea, zba, zea;
2940 vma_interval_tree_foreach(vma, root,
2941 details->first_index, details->last_index) {
2943 vba = vma->vm_pgoff;
2944 vea = vba + vma_pages(vma) - 1;
2945 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2946 zba = details->first_index;
2947 if (zba < vba)
2948 zba = vba;
2949 zea = details->last_index;
2950 if (zea > vea)
2951 zea = vea;
2953 unmap_mapping_range_vma(vma,
2954 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2955 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2956 details);
2960 static inline void unmap_mapping_range_list(struct list_head *head,
2961 struct zap_details *details)
2963 struct vm_area_struct *vma;
2966 * In nonlinear VMAs there is no correspondence between virtual address
2967 * offset and file offset. So we must perform an exhaustive search
2968 * across *all* the pages in each nonlinear VMA, not just the pages
2969 * whose virtual address lies outside the file truncation point.
2971 list_for_each_entry(vma, head, shared.nonlinear) {
2972 details->nonlinear_vma = vma;
2973 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2978 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2979 * @mapping: the address space containing mmaps to be unmapped.
2980 * @holebegin: byte in first page to unmap, relative to the start of
2981 * the underlying file. This will be rounded down to a PAGE_SIZE
2982 * boundary. Note that this is different from truncate_pagecache(), which
2983 * must keep the partial page. In contrast, we must get rid of
2984 * partial pages.
2985 * @holelen: size of prospective hole in bytes. This will be rounded
2986 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2987 * end of the file.
2988 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2989 * but 0 when invalidating pagecache, don't throw away private data.
2991 void unmap_mapping_range(struct address_space *mapping,
2992 loff_t const holebegin, loff_t const holelen, int even_cows)
2994 struct zap_details details;
2995 pgoff_t hba = holebegin >> PAGE_SHIFT;
2996 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2998 /* Check for overflow. */
2999 if (sizeof(holelen) > sizeof(hlen)) {
3000 long long holeend =
3001 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3002 if (holeend & ~(long long)ULONG_MAX)
3003 hlen = ULONG_MAX - hba + 1;
3006 details.check_mapping = even_cows? NULL: mapping;
3007 details.nonlinear_vma = NULL;
3008 details.first_index = hba;
3009 details.last_index = hba + hlen - 1;
3010 if (details.last_index < details.first_index)
3011 details.last_index = ULONG_MAX;
3014 mutex_lock(&mapping->i_mmap_mutex);
3015 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
3016 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3017 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
3018 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3019 mutex_unlock(&mapping->i_mmap_mutex);
3021 EXPORT_SYMBOL(unmap_mapping_range);
3024 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3025 * but allow concurrent faults), and pte mapped but not yet locked.
3026 * We return with mmap_sem still held, but pte unmapped and unlocked.
3028 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
3029 unsigned long address, pte_t *page_table, pmd_t *pmd,
3030 unsigned int flags, pte_t orig_pte)
3032 spinlock_t *ptl;
3033 struct page *page, *swapcache;
3034 swp_entry_t entry;
3035 pte_t pte;
3036 int locked;
3037 struct mem_cgroup *ptr;
3038 int exclusive = 0;
3039 int ret = 0;
3041 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3042 goto out;
3044 entry = pte_to_swp_entry(orig_pte);
3045 if (unlikely(non_swap_entry(entry))) {
3046 if (is_migration_entry(entry)) {
3047 migration_entry_wait(mm, pmd, address);
3048 } else if (is_hwpoison_entry(entry)) {
3049 ret = VM_FAULT_HWPOISON;
3050 } else {
3051 print_bad_pte(vma, address, orig_pte, NULL);
3052 ret = VM_FAULT_SIGBUS;
3054 goto out;
3056 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3057 page = lookup_swap_cache(entry);
3058 if (!page) {
3059 page = swapin_readahead(entry,
3060 GFP_HIGHUSER_MOVABLE, vma, address);
3061 if (!page) {
3063 * Back out if somebody else faulted in this pte
3064 * while we released the pte lock.
3066 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3067 if (likely(pte_same(*page_table, orig_pte)))
3068 ret = VM_FAULT_OOM;
3069 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3070 goto unlock;
3073 /* Had to read the page from swap area: Major fault */
3074 ret = VM_FAULT_MAJOR;
3075 count_vm_event(PGMAJFAULT);
3076 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3077 } else if (PageHWPoison(page)) {
3079 * hwpoisoned dirty swapcache pages are kept for killing
3080 * owner processes (which may be unknown at hwpoison time)
3082 ret = VM_FAULT_HWPOISON;
3083 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3084 swapcache = page;
3085 goto out_release;
3088 swapcache = page;
3089 locked = lock_page_or_retry(page, mm, flags);
3091 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3092 if (!locked) {
3093 ret |= VM_FAULT_RETRY;
3094 goto out_release;
3098 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3099 * release the swapcache from under us. The page pin, and pte_same
3100 * test below, are not enough to exclude that. Even if it is still
3101 * swapcache, we need to check that the page's swap has not changed.
3103 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3104 goto out_page;
3106 page = ksm_might_need_to_copy(page, vma, address);
3107 if (unlikely(!page)) {
3108 ret = VM_FAULT_OOM;
3109 page = swapcache;
3110 goto out_page;
3113 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3114 ret = VM_FAULT_OOM;
3115 goto out_page;
3119 * Back out if somebody else already faulted in this pte.
3121 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3122 if (unlikely(!pte_same(*page_table, orig_pte)))
3123 goto out_nomap;
3125 if (unlikely(!PageUptodate(page))) {
3126 ret = VM_FAULT_SIGBUS;
3127 goto out_nomap;
3131 * The page isn't present yet, go ahead with the fault.
3133 * Be careful about the sequence of operations here.
3134 * To get its accounting right, reuse_swap_page() must be called
3135 * while the page is counted on swap but not yet in mapcount i.e.
3136 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3137 * must be called after the swap_free(), or it will never succeed.
3138 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3139 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3140 * in page->private. In this case, a record in swap_cgroup is silently
3141 * discarded at swap_free().
3144 inc_mm_counter_fast(mm, MM_ANONPAGES);
3145 dec_mm_counter_fast(mm, MM_SWAPENTS);
3146 pte = mk_pte(page, vma->vm_page_prot);
3147 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3148 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3149 flags &= ~FAULT_FLAG_WRITE;
3150 ret |= VM_FAULT_WRITE;
3151 exclusive = 1;
3153 flush_icache_page(vma, page);
3154 if (pte_swp_soft_dirty(orig_pte))
3155 pte = pte_mksoft_dirty(pte);
3156 set_pte_at(mm, address, page_table, pte);
3157 if (page == swapcache)
3158 do_page_add_anon_rmap(page, vma, address, exclusive);
3159 else /* ksm created a completely new copy */
3160 page_add_new_anon_rmap(page, vma, address);
3161 /* It's better to call commit-charge after rmap is established */
3162 mem_cgroup_commit_charge_swapin(page, ptr);
3164 swap_free(entry);
3165 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3166 try_to_free_swap(page);
3167 unlock_page(page);
3168 if (page != swapcache) {
3170 * Hold the lock to avoid the swap entry to be reused
3171 * until we take the PT lock for the pte_same() check
3172 * (to avoid false positives from pte_same). For
3173 * further safety release the lock after the swap_free
3174 * so that the swap count won't change under a
3175 * parallel locked swapcache.
3177 unlock_page(swapcache);
3178 page_cache_release(swapcache);
3181 if (flags & FAULT_FLAG_WRITE) {
3182 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3183 if (ret & VM_FAULT_ERROR)
3184 ret &= VM_FAULT_ERROR;
3185 goto out;
3188 /* No need to invalidate - it was non-present before */
3189 update_mmu_cache(vma, address, page_table);
3190 unlock:
3191 pte_unmap_unlock(page_table, ptl);
3192 out:
3193 return ret;
3194 out_nomap:
3195 mem_cgroup_cancel_charge_swapin(ptr);
3196 pte_unmap_unlock(page_table, ptl);
3197 out_page:
3198 unlock_page(page);
3199 out_release:
3200 page_cache_release(page);
3201 if (page != swapcache) {
3202 unlock_page(swapcache);
3203 page_cache_release(swapcache);
3205 return ret;
3209 * This is like a special single-page "expand_{down|up}wards()",
3210 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3211 * doesn't hit another vma.
3213 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3215 address &= PAGE_MASK;
3216 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3217 struct vm_area_struct *prev = vma->vm_prev;
3220 * Is there a mapping abutting this one below?
3222 * That's only ok if it's the same stack mapping
3223 * that has gotten split..
3225 if (prev && prev->vm_end == address)
3226 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3228 expand_downwards(vma, address - PAGE_SIZE);
3230 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3231 struct vm_area_struct *next = vma->vm_next;
3233 /* As VM_GROWSDOWN but s/below/above/ */
3234 if (next && next->vm_start == address + PAGE_SIZE)
3235 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3237 expand_upwards(vma, address + PAGE_SIZE);
3239 return 0;
3243 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3244 * but allow concurrent faults), and pte mapped but not yet locked.
3245 * We return with mmap_sem still held, but pte unmapped and unlocked.
3247 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3248 unsigned long address, pte_t *page_table, pmd_t *pmd,
3249 unsigned int flags)
3251 struct page *page;
3252 spinlock_t *ptl;
3253 pte_t entry;
3255 pte_unmap(page_table);
3257 /* Check if we need to add a guard page to the stack */
3258 if (check_stack_guard_page(vma, address) < 0)
3259 return VM_FAULT_SIGBUS;
3261 /* Use the zero-page for reads */
3262 if (!(flags & FAULT_FLAG_WRITE)) {
3263 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3264 vma->vm_page_prot));
3265 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3266 if (!pte_none(*page_table))
3267 goto unlock;
3268 goto setpte;
3271 /* Allocate our own private page. */
3272 if (unlikely(anon_vma_prepare(vma)))
3273 goto oom;
3274 page = alloc_zeroed_user_highpage_movable(vma, address);
3275 if (!page)
3276 goto oom;
3278 * The memory barrier inside __SetPageUptodate makes sure that
3279 * preceeding stores to the page contents become visible before
3280 * the set_pte_at() write.
3282 __SetPageUptodate(page);
3284 if (mem_cgroup_charge_anon(page, mm, GFP_KERNEL))
3285 goto oom_free_page;
3287 entry = mk_pte(page, vma->vm_page_prot);
3288 if (vma->vm_flags & VM_WRITE)
3289 entry = pte_mkwrite(pte_mkdirty(entry));
3291 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3292 if (!pte_none(*page_table))
3293 goto release;
3295 inc_mm_counter_fast(mm, MM_ANONPAGES);
3296 page_add_new_anon_rmap(page, vma, address);
3297 setpte:
3298 set_pte_at(mm, address, page_table, entry);
3300 /* No need to invalidate - it was non-present before */
3301 update_mmu_cache(vma, address, page_table);
3302 unlock:
3303 pte_unmap_unlock(page_table, ptl);
3304 return 0;
3305 release:
3306 mem_cgroup_uncharge_page(page);
3307 page_cache_release(page);
3308 goto unlock;
3309 oom_free_page:
3310 page_cache_release(page);
3311 oom:
3312 return VM_FAULT_OOM;
3315 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
3316 pgoff_t pgoff, unsigned int flags, struct page **page)
3318 struct vm_fault vmf;
3319 int ret;
3321 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3322 vmf.pgoff = pgoff;
3323 vmf.flags = flags;
3324 vmf.page = NULL;
3326 ret = vma->vm_ops->fault(vma, &vmf);
3327 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3328 return ret;
3330 if (unlikely(PageHWPoison(vmf.page))) {
3331 if (ret & VM_FAULT_LOCKED)
3332 unlock_page(vmf.page);
3333 page_cache_release(vmf.page);
3334 return VM_FAULT_HWPOISON;
3337 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3338 lock_page(vmf.page);
3339 else
3340 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
3342 *page = vmf.page;
3343 return ret;
3347 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
3349 * @vma: virtual memory area
3350 * @address: user virtual address
3351 * @page: page to map
3352 * @pte: pointer to target page table entry
3353 * @write: true, if new entry is writable
3354 * @anon: true, if it's anonymous page
3356 * Caller must hold page table lock relevant for @pte.
3358 * Target users are page handler itself and implementations of
3359 * vm_ops->map_pages.
3361 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
3362 struct page *page, pte_t *pte, bool write, bool anon)
3364 pte_t entry;
3366 flush_icache_page(vma, page);
3367 entry = mk_pte(page, vma->vm_page_prot);
3368 if (write)
3369 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3370 else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
3371 pte_mksoft_dirty(entry);
3372 if (anon) {
3373 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3374 page_add_new_anon_rmap(page, vma, address);
3375 } else {
3376 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
3377 page_add_file_rmap(page);
3379 set_pte_at(vma->vm_mm, address, pte, entry);
3381 /* no need to invalidate: a not-present page won't be cached */
3382 update_mmu_cache(vma, address, pte);
3385 #define FAULT_AROUND_ORDER 4
3387 #ifdef CONFIG_DEBUG_FS
3388 static unsigned int fault_around_order = FAULT_AROUND_ORDER;
3390 static int fault_around_order_get(void *data, u64 *val)
3392 *val = fault_around_order;
3393 return 0;
3396 static int fault_around_order_set(void *data, u64 val)
3398 BUILD_BUG_ON((1UL << FAULT_AROUND_ORDER) > PTRS_PER_PTE);
3399 if (1UL << val > PTRS_PER_PTE)
3400 return -EINVAL;
3401 fault_around_order = val;
3402 return 0;
3404 DEFINE_SIMPLE_ATTRIBUTE(fault_around_order_fops,
3405 fault_around_order_get, fault_around_order_set, "%llu\n");
3407 static int __init fault_around_debugfs(void)
3409 void *ret;
3411 ret = debugfs_create_file("fault_around_order", 0644, NULL, NULL,
3412 &fault_around_order_fops);
3413 if (!ret)
3414 pr_warn("Failed to create fault_around_order in debugfs");
3415 return 0;
3417 late_initcall(fault_around_debugfs);
3419 static inline unsigned long fault_around_pages(void)
3421 return 1UL << fault_around_order;
3424 static inline unsigned long fault_around_mask(void)
3426 return ~((1UL << (PAGE_SHIFT + fault_around_order)) - 1);
3428 #else
3429 static inline unsigned long fault_around_pages(void)
3431 unsigned long nr_pages;
3433 nr_pages = 1UL << FAULT_AROUND_ORDER;
3434 BUILD_BUG_ON(nr_pages > PTRS_PER_PTE);
3435 return nr_pages;
3438 static inline unsigned long fault_around_mask(void)
3440 return ~((1UL << (PAGE_SHIFT + FAULT_AROUND_ORDER)) - 1);
3442 #endif
3444 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
3445 pte_t *pte, pgoff_t pgoff, unsigned int flags)
3447 unsigned long start_addr;
3448 pgoff_t max_pgoff;
3449 struct vm_fault vmf;
3450 int off;
3452 start_addr = max(address & fault_around_mask(), vma->vm_start);
3453 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3454 pte -= off;
3455 pgoff -= off;
3458 * max_pgoff is either end of page table or end of vma
3459 * or fault_around_pages() from pgoff, depending what is neast.
3461 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3462 PTRS_PER_PTE - 1;
3463 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
3464 pgoff + fault_around_pages() - 1);
3466 /* Check if it makes any sense to call ->map_pages */
3467 while (!pte_none(*pte)) {
3468 if (++pgoff > max_pgoff)
3469 return;
3470 start_addr += PAGE_SIZE;
3471 if (start_addr >= vma->vm_end)
3472 return;
3473 pte++;
3476 vmf.virtual_address = (void __user *) start_addr;
3477 vmf.pte = pte;
3478 vmf.pgoff = pgoff;
3479 vmf.max_pgoff = max_pgoff;
3480 vmf.flags = flags;
3481 vma->vm_ops->map_pages(vma, &vmf);
3484 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3485 unsigned long address, pmd_t *pmd,
3486 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3488 struct page *fault_page;
3489 spinlock_t *ptl;
3490 pte_t *pte;
3491 int ret = 0;
3494 * Let's call ->map_pages() first and use ->fault() as fallback
3495 * if page by the offset is not ready to be mapped (cold cache or
3496 * something).
3498 if (vma->vm_ops->map_pages) {
3499 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3500 do_fault_around(vma, address, pte, pgoff, flags);
3501 if (!pte_same(*pte, orig_pte))
3502 goto unlock_out;
3503 pte_unmap_unlock(pte, ptl);
3506 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3507 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3508 return ret;
3510 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3511 if (unlikely(!pte_same(*pte, orig_pte))) {
3512 pte_unmap_unlock(pte, ptl);
3513 unlock_page(fault_page);
3514 page_cache_release(fault_page);
3515 return ret;
3517 do_set_pte(vma, address, fault_page, pte, false, false);
3518 unlock_page(fault_page);
3519 unlock_out:
3520 pte_unmap_unlock(pte, ptl);
3521 return ret;
3524 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3525 unsigned long address, pmd_t *pmd,
3526 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3528 struct page *fault_page, *new_page;
3529 spinlock_t *ptl;
3530 pte_t *pte;
3531 int ret;
3533 if (unlikely(anon_vma_prepare(vma)))
3534 return VM_FAULT_OOM;
3536 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3537 if (!new_page)
3538 return VM_FAULT_OOM;
3540 if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)) {
3541 page_cache_release(new_page);
3542 return VM_FAULT_OOM;
3545 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3546 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3547 goto uncharge_out;
3549 copy_user_highpage(new_page, fault_page, address, vma);
3550 __SetPageUptodate(new_page);
3552 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3553 if (unlikely(!pte_same(*pte, orig_pte))) {
3554 pte_unmap_unlock(pte, ptl);
3555 unlock_page(fault_page);
3556 page_cache_release(fault_page);
3557 goto uncharge_out;
3559 do_set_pte(vma, address, new_page, pte, true, true);
3560 pte_unmap_unlock(pte, ptl);
3561 unlock_page(fault_page);
3562 page_cache_release(fault_page);
3563 return ret;
3564 uncharge_out:
3565 mem_cgroup_uncharge_page(new_page);
3566 page_cache_release(new_page);
3567 return ret;
3570 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3571 unsigned long address, pmd_t *pmd,
3572 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3574 struct page *fault_page;
3575 struct address_space *mapping;
3576 spinlock_t *ptl;
3577 pte_t *pte;
3578 int dirtied = 0;
3579 int ret, tmp;
3581 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3582 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3583 return ret;
3586 * Check if the backing address space wants to know that the page is
3587 * about to become writable
3589 if (vma->vm_ops->page_mkwrite) {
3590 unlock_page(fault_page);
3591 tmp = do_page_mkwrite(vma, fault_page, address);
3592 if (unlikely(!tmp ||
3593 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3594 page_cache_release(fault_page);
3595 return tmp;
3599 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3600 if (unlikely(!pte_same(*pte, orig_pte))) {
3601 pte_unmap_unlock(pte, ptl);
3602 unlock_page(fault_page);
3603 page_cache_release(fault_page);
3604 return ret;
3606 do_set_pte(vma, address, fault_page, pte, true, false);
3607 pte_unmap_unlock(pte, ptl);
3609 if (set_page_dirty(fault_page))
3610 dirtied = 1;
3611 mapping = fault_page->mapping;
3612 unlock_page(fault_page);
3613 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3615 * Some device drivers do not set page.mapping but still
3616 * dirty their pages
3618 balance_dirty_pages_ratelimited(mapping);
3621 /* file_update_time outside page_lock */
3622 if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3623 file_update_time(vma->vm_file);
3625 return ret;
3628 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3629 unsigned long address, pte_t *page_table, pmd_t *pmd,
3630 unsigned int flags, pte_t orig_pte)
3632 pgoff_t pgoff = (((address & PAGE_MASK)
3633 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3635 pte_unmap(page_table);
3636 if (!(flags & FAULT_FLAG_WRITE))
3637 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3638 orig_pte);
3639 if (!(vma->vm_flags & VM_SHARED))
3640 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3641 orig_pte);
3642 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3646 * Fault of a previously existing named mapping. Repopulate the pte
3647 * from the encoded file_pte if possible. This enables swappable
3648 * nonlinear vmas.
3650 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3651 * but allow concurrent faults), and pte mapped but not yet locked.
3652 * We return with mmap_sem still held, but pte unmapped and unlocked.
3654 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3655 unsigned long address, pte_t *page_table, pmd_t *pmd,
3656 unsigned int flags, pte_t orig_pte)
3658 pgoff_t pgoff;
3660 flags |= FAULT_FLAG_NONLINEAR;
3662 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3663 return 0;
3665 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3667 * Page table corrupted: show pte and kill process.
3669 print_bad_pte(vma, address, orig_pte, NULL);
3670 return VM_FAULT_SIGBUS;
3673 pgoff = pte_to_pgoff(orig_pte);
3674 if (!(flags & FAULT_FLAG_WRITE))
3675 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3676 orig_pte);
3677 if (!(vma->vm_flags & VM_SHARED))
3678 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3679 orig_pte);
3680 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3683 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3684 unsigned long addr, int page_nid,
3685 int *flags)
3687 get_page(page);
3689 count_vm_numa_event(NUMA_HINT_FAULTS);
3690 if (page_nid == numa_node_id()) {
3691 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3692 *flags |= TNF_FAULT_LOCAL;
3695 return mpol_misplaced(page, vma, addr);
3698 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3699 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3701 struct page *page = NULL;
3702 spinlock_t *ptl;
3703 int page_nid = -1;
3704 int last_cpupid;
3705 int target_nid;
3706 bool migrated = false;
3707 int flags = 0;
3710 * The "pte" at this point cannot be used safely without
3711 * validation through pte_unmap_same(). It's of NUMA type but
3712 * the pfn may be screwed if the read is non atomic.
3714 * ptep_modify_prot_start is not called as this is clearing
3715 * the _PAGE_NUMA bit and it is not really expected that there
3716 * would be concurrent hardware modifications to the PTE.
3718 ptl = pte_lockptr(mm, pmd);
3719 spin_lock(ptl);
3720 if (unlikely(!pte_same(*ptep, pte))) {
3721 pte_unmap_unlock(ptep, ptl);
3722 goto out;
3725 pte = pte_mknonnuma(pte);
3726 set_pte_at(mm, addr, ptep, pte);
3727 update_mmu_cache(vma, addr, ptep);
3729 page = vm_normal_page(vma, addr, pte);
3730 if (!page) {
3731 pte_unmap_unlock(ptep, ptl);
3732 return 0;
3734 BUG_ON(is_zero_pfn(page_to_pfn(page)));
3737 * Avoid grouping on DSO/COW pages in specific and RO pages
3738 * in general, RO pages shouldn't hurt as much anyway since
3739 * they can be in shared cache state.
3741 if (!pte_write(pte))
3742 flags |= TNF_NO_GROUP;
3745 * Flag if the page is shared between multiple address spaces. This
3746 * is later used when determining whether to group tasks together
3748 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3749 flags |= TNF_SHARED;
3751 last_cpupid = page_cpupid_last(page);
3752 page_nid = page_to_nid(page);
3753 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3754 pte_unmap_unlock(ptep, ptl);
3755 if (target_nid == -1) {
3756 put_page(page);
3757 goto out;
3760 /* Migrate to the requested node */
3761 migrated = migrate_misplaced_page(page, vma, target_nid);
3762 if (migrated) {
3763 page_nid = target_nid;
3764 flags |= TNF_MIGRATED;
3767 out:
3768 if (page_nid != -1)
3769 task_numa_fault(last_cpupid, page_nid, 1, flags);
3770 return 0;
3774 * These routines also need to handle stuff like marking pages dirty
3775 * and/or accessed for architectures that don't do it in hardware (most
3776 * RISC architectures). The early dirtying is also good on the i386.
3778 * There is also a hook called "update_mmu_cache()" that architectures
3779 * with external mmu caches can use to update those (ie the Sparc or
3780 * PowerPC hashed page tables that act as extended TLBs).
3782 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3783 * but allow concurrent faults), and pte mapped but not yet locked.
3784 * We return with mmap_sem still held, but pte unmapped and unlocked.
3786 static int handle_pte_fault(struct mm_struct *mm,
3787 struct vm_area_struct *vma, unsigned long address,
3788 pte_t *pte, pmd_t *pmd, unsigned int flags)
3790 pte_t entry;
3791 spinlock_t *ptl;
3793 entry = *pte;
3794 if (!pte_present(entry)) {
3795 if (pte_none(entry)) {
3796 if (vma->vm_ops) {
3797 if (likely(vma->vm_ops->fault))
3798 return do_linear_fault(mm, vma, address,
3799 pte, pmd, flags, entry);
3801 return do_anonymous_page(mm, vma, address,
3802 pte, pmd, flags);
3804 if (pte_file(entry))
3805 return do_nonlinear_fault(mm, vma, address,
3806 pte, pmd, flags, entry);
3807 return do_swap_page(mm, vma, address,
3808 pte, pmd, flags, entry);
3811 if (pte_numa(entry))
3812 return do_numa_page(mm, vma, address, entry, pte, pmd);
3814 ptl = pte_lockptr(mm, pmd);
3815 spin_lock(ptl);
3816 if (unlikely(!pte_same(*pte, entry)))
3817 goto unlock;
3818 if (flags & FAULT_FLAG_WRITE) {
3819 if (!pte_write(entry))
3820 return do_wp_page(mm, vma, address,
3821 pte, pmd, ptl, entry);
3822 entry = pte_mkdirty(entry);
3824 entry = pte_mkyoung(entry);
3825 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3826 update_mmu_cache(vma, address, pte);
3827 } else {
3829 * This is needed only for protection faults but the arch code
3830 * is not yet telling us if this is a protection fault or not.
3831 * This still avoids useless tlb flushes for .text page faults
3832 * with threads.
3834 if (flags & FAULT_FLAG_WRITE)
3835 flush_tlb_fix_spurious_fault(vma, address);
3837 unlock:
3838 pte_unmap_unlock(pte, ptl);
3839 return 0;
3843 * By the time we get here, we already hold the mm semaphore
3845 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3846 unsigned long address, unsigned int flags)
3848 pgd_t *pgd;
3849 pud_t *pud;
3850 pmd_t *pmd;
3851 pte_t *pte;
3853 if (unlikely(is_vm_hugetlb_page(vma)))
3854 return hugetlb_fault(mm, vma, address, flags);
3856 pgd = pgd_offset(mm, address);
3857 pud = pud_alloc(mm, pgd, address);
3858 if (!pud)
3859 return VM_FAULT_OOM;
3860 pmd = pmd_alloc(mm, pud, address);
3861 if (!pmd)
3862 return VM_FAULT_OOM;
3863 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3864 int ret = VM_FAULT_FALLBACK;
3865 if (!vma->vm_ops)
3866 ret = do_huge_pmd_anonymous_page(mm, vma, address,
3867 pmd, flags);
3868 if (!(ret & VM_FAULT_FALLBACK))
3869 return ret;
3870 } else {
3871 pmd_t orig_pmd = *pmd;
3872 int ret;
3874 barrier();
3875 if (pmd_trans_huge(orig_pmd)) {
3876 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3879 * If the pmd is splitting, return and retry the
3880 * the fault. Alternative: wait until the split
3881 * is done, and goto retry.
3883 if (pmd_trans_splitting(orig_pmd))
3884 return 0;
3886 if (pmd_numa(orig_pmd))
3887 return do_huge_pmd_numa_page(mm, vma, address,
3888 orig_pmd, pmd);
3890 if (dirty && !pmd_write(orig_pmd)) {
3891 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3892 orig_pmd);
3893 if (!(ret & VM_FAULT_FALLBACK))
3894 return ret;
3895 } else {
3896 huge_pmd_set_accessed(mm, vma, address, pmd,
3897 orig_pmd, dirty);
3898 return 0;
3903 /* THP should already have been handled */
3904 BUG_ON(pmd_numa(*pmd));
3907 * Use __pte_alloc instead of pte_alloc_map, because we can't
3908 * run pte_offset_map on the pmd, if an huge pmd could
3909 * materialize from under us from a different thread.
3911 if (unlikely(pmd_none(*pmd)) &&
3912 unlikely(__pte_alloc(mm, vma, pmd, address)))
3913 return VM_FAULT_OOM;
3914 /* if an huge pmd materialized from under us just retry later */
3915 if (unlikely(pmd_trans_huge(*pmd)))
3916 return 0;
3918 * A regular pmd is established and it can't morph into a huge pmd
3919 * from under us anymore at this point because we hold the mmap_sem
3920 * read mode and khugepaged takes it in write mode. So now it's
3921 * safe to run pte_offset_map().
3923 pte = pte_offset_map(pmd, address);
3925 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3928 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3929 unsigned long address, unsigned int flags)
3931 int ret;
3933 __set_current_state(TASK_RUNNING);
3935 count_vm_event(PGFAULT);
3936 mem_cgroup_count_vm_event(mm, PGFAULT);
3938 /* do counter updates before entering really critical section. */
3939 check_sync_rss_stat(current);
3942 * Enable the memcg OOM handling for faults triggered in user
3943 * space. Kernel faults are handled more gracefully.
3945 if (flags & FAULT_FLAG_USER)
3946 mem_cgroup_oom_enable();
3948 ret = __handle_mm_fault(mm, vma, address, flags);
3950 if (flags & FAULT_FLAG_USER) {
3951 mem_cgroup_oom_disable();
3953 * The task may have entered a memcg OOM situation but
3954 * if the allocation error was handled gracefully (no
3955 * VM_FAULT_OOM), there is no need to kill anything.
3956 * Just clean up the OOM state peacefully.
3958 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3959 mem_cgroup_oom_synchronize(false);
3962 return ret;
3965 #ifndef __PAGETABLE_PUD_FOLDED
3967 * Allocate page upper directory.
3968 * We've already handled the fast-path in-line.
3970 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3972 pud_t *new = pud_alloc_one(mm, address);
3973 if (!new)
3974 return -ENOMEM;
3976 smp_wmb(); /* See comment in __pte_alloc */
3978 spin_lock(&mm->page_table_lock);
3979 if (pgd_present(*pgd)) /* Another has populated it */
3980 pud_free(mm, new);
3981 else
3982 pgd_populate(mm, pgd, new);
3983 spin_unlock(&mm->page_table_lock);
3984 return 0;
3986 #endif /* __PAGETABLE_PUD_FOLDED */
3988 #ifndef __PAGETABLE_PMD_FOLDED
3990 * Allocate page middle directory.
3991 * We've already handled the fast-path in-line.
3993 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3995 pmd_t *new = pmd_alloc_one(mm, address);
3996 if (!new)
3997 return -ENOMEM;
3999 smp_wmb(); /* See comment in __pte_alloc */
4001 spin_lock(&mm->page_table_lock);
4002 #ifndef __ARCH_HAS_4LEVEL_HACK
4003 if (pud_present(*pud)) /* Another has populated it */
4004 pmd_free(mm, new);
4005 else
4006 pud_populate(mm, pud, new);
4007 #else
4008 if (pgd_present(*pud)) /* Another has populated it */
4009 pmd_free(mm, new);
4010 else
4011 pgd_populate(mm, pud, new);
4012 #endif /* __ARCH_HAS_4LEVEL_HACK */
4013 spin_unlock(&mm->page_table_lock);
4014 return 0;
4016 #endif /* __PAGETABLE_PMD_FOLDED */
4018 #if !defined(__HAVE_ARCH_GATE_AREA)
4020 #if defined(AT_SYSINFO_EHDR)
4021 static struct vm_area_struct gate_vma;
4023 static int __init gate_vma_init(void)
4025 gate_vma.vm_mm = NULL;
4026 gate_vma.vm_start = FIXADDR_USER_START;
4027 gate_vma.vm_end = FIXADDR_USER_END;
4028 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
4029 gate_vma.vm_page_prot = __P101;
4031 return 0;
4033 __initcall(gate_vma_init);
4034 #endif
4036 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
4038 #ifdef AT_SYSINFO_EHDR
4039 return &gate_vma;
4040 #else
4041 return NULL;
4042 #endif
4045 int in_gate_area_no_mm(unsigned long addr)
4047 #ifdef AT_SYSINFO_EHDR
4048 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
4049 return 1;
4050 #endif
4051 return 0;
4054 #endif /* __HAVE_ARCH_GATE_AREA */
4056 static int __follow_pte(struct mm_struct *mm, unsigned long address,
4057 pte_t **ptepp, spinlock_t **ptlp)
4059 pgd_t *pgd;
4060 pud_t *pud;
4061 pmd_t *pmd;
4062 pte_t *ptep;
4064 pgd = pgd_offset(mm, address);
4065 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4066 goto out;
4068 pud = pud_offset(pgd, address);
4069 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4070 goto out;
4072 pmd = pmd_offset(pud, address);
4073 VM_BUG_ON(pmd_trans_huge(*pmd));
4074 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4075 goto out;
4077 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
4078 if (pmd_huge(*pmd))
4079 goto out;
4081 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4082 if (!ptep)
4083 goto out;
4084 if (!pte_present(*ptep))
4085 goto unlock;
4086 *ptepp = ptep;
4087 return 0;
4088 unlock:
4089 pte_unmap_unlock(ptep, *ptlp);
4090 out:
4091 return -EINVAL;
4094 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4095 pte_t **ptepp, spinlock_t **ptlp)
4097 int res;
4099 /* (void) is needed to make gcc happy */
4100 (void) __cond_lock(*ptlp,
4101 !(res = __follow_pte(mm, address, ptepp, ptlp)));
4102 return res;
4106 * follow_pfn - look up PFN at a user virtual address
4107 * @vma: memory mapping
4108 * @address: user virtual address
4109 * @pfn: location to store found PFN
4111 * Only IO mappings and raw PFN mappings are allowed.
4113 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4115 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4116 unsigned long *pfn)
4118 int ret = -EINVAL;
4119 spinlock_t *ptl;
4120 pte_t *ptep;
4122 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4123 return ret;
4125 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4126 if (ret)
4127 return ret;
4128 *pfn = pte_pfn(*ptep);
4129 pte_unmap_unlock(ptep, ptl);
4130 return 0;
4132 EXPORT_SYMBOL(follow_pfn);
4134 #ifdef CONFIG_HAVE_IOREMAP_PROT
4135 int follow_phys(struct vm_area_struct *vma,
4136 unsigned long address, unsigned int flags,
4137 unsigned long *prot, resource_size_t *phys)
4139 int ret = -EINVAL;
4140 pte_t *ptep, pte;
4141 spinlock_t *ptl;
4143 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4144 goto out;
4146 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4147 goto out;
4148 pte = *ptep;
4150 if ((flags & FOLL_WRITE) && !pte_write(pte))
4151 goto unlock;
4153 *prot = pgprot_val(pte_pgprot(pte));
4154 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4156 ret = 0;
4157 unlock:
4158 pte_unmap_unlock(ptep, ptl);
4159 out:
4160 return ret;
4163 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4164 void *buf, int len, int write)
4166 resource_size_t phys_addr;
4167 unsigned long prot = 0;
4168 void __iomem *maddr;
4169 int offset = addr & (PAGE_SIZE-1);
4171 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4172 return -EINVAL;
4174 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4175 if (write)
4176 memcpy_toio(maddr + offset, buf, len);
4177 else
4178 memcpy_fromio(buf, maddr + offset, len);
4179 iounmap(maddr);
4181 return len;
4183 EXPORT_SYMBOL_GPL(generic_access_phys);
4184 #endif
4187 * Access another process' address space as given in mm. If non-NULL, use the
4188 * given task for page fault accounting.
4190 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4191 unsigned long addr, void *buf, int len, int write)
4193 struct vm_area_struct *vma;
4194 void *old_buf = buf;
4196 down_read(&mm->mmap_sem);
4197 /* ignore errors, just check how much was successfully transferred */
4198 while (len) {
4199 int bytes, ret, offset;
4200 void *maddr;
4201 struct page *page = NULL;
4203 ret = get_user_pages(tsk, mm, addr, 1,
4204 write, 1, &page, &vma);
4205 if (ret <= 0) {
4207 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4208 * we can access using slightly different code.
4210 #ifdef CONFIG_HAVE_IOREMAP_PROT
4211 vma = find_vma(mm, addr);
4212 if (!vma || vma->vm_start > addr)
4213 break;
4214 if (vma->vm_ops && vma->vm_ops->access)
4215 ret = vma->vm_ops->access(vma, addr, buf,
4216 len, write);
4217 if (ret <= 0)
4218 #endif
4219 break;
4220 bytes = ret;
4221 } else {
4222 bytes = len;
4223 offset = addr & (PAGE_SIZE-1);
4224 if (bytes > PAGE_SIZE-offset)
4225 bytes = PAGE_SIZE-offset;
4227 maddr = kmap(page);
4228 if (write) {
4229 copy_to_user_page(vma, page, addr,
4230 maddr + offset, buf, bytes);
4231 set_page_dirty_lock(page);
4232 } else {
4233 copy_from_user_page(vma, page, addr,
4234 buf, maddr + offset, bytes);
4236 kunmap(page);
4237 page_cache_release(page);
4239 len -= bytes;
4240 buf += bytes;
4241 addr += bytes;
4243 up_read(&mm->mmap_sem);
4245 return buf - old_buf;
4249 * access_remote_vm - access another process' address space
4250 * @mm: the mm_struct of the target address space
4251 * @addr: start address to access
4252 * @buf: source or destination buffer
4253 * @len: number of bytes to transfer
4254 * @write: whether the access is a write
4256 * The caller must hold a reference on @mm.
4258 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4259 void *buf, int len, int write)
4261 return __access_remote_vm(NULL, mm, addr, buf, len, write);
4265 * Access another process' address space.
4266 * Source/target buffer must be kernel space,
4267 * Do not walk the page table directly, use get_user_pages
4269 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4270 void *buf, int len, int write)
4272 struct mm_struct *mm;
4273 int ret;
4275 mm = get_task_mm(tsk);
4276 if (!mm)
4277 return 0;
4279 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4280 mmput(mm);
4282 return ret;
4286 * Print the name of a VMA.
4288 void print_vma_addr(char *prefix, unsigned long ip)
4290 struct mm_struct *mm = current->mm;
4291 struct vm_area_struct *vma;
4294 * Do not print if we are in atomic
4295 * contexts (in exception stacks, etc.):
4297 if (preempt_count())
4298 return;
4300 down_read(&mm->mmap_sem);
4301 vma = find_vma(mm, ip);
4302 if (vma && vma->vm_file) {
4303 struct file *f = vma->vm_file;
4304 char *buf = (char *)__get_free_page(GFP_KERNEL);
4305 if (buf) {
4306 char *p;
4308 p = d_path(&f->f_path, buf, PAGE_SIZE);
4309 if (IS_ERR(p))
4310 p = "?";
4311 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4312 vma->vm_start,
4313 vma->vm_end - vma->vm_start);
4314 free_page((unsigned long)buf);
4317 up_read(&mm->mmap_sem);
4320 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4321 void might_fault(void)
4324 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4325 * holding the mmap_sem, this is safe because kernel memory doesn't
4326 * get paged out, therefore we'll never actually fault, and the
4327 * below annotations will generate false positives.
4329 if (segment_eq(get_fs(), KERNEL_DS))
4330 return;
4333 * it would be nicer only to annotate paths which are not under
4334 * pagefault_disable, however that requires a larger audit and
4335 * providing helpers like get_user_atomic.
4337 if (in_atomic())
4338 return;
4340 __might_sleep(__FILE__, __LINE__, 0);
4342 if (current->mm)
4343 might_lock_read(&current->mm->mmap_sem);
4345 EXPORT_SYMBOL(might_fault);
4346 #endif
4348 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4349 static void clear_gigantic_page(struct page *page,
4350 unsigned long addr,
4351 unsigned int pages_per_huge_page)
4353 int i;
4354 struct page *p = page;
4356 might_sleep();
4357 for (i = 0; i < pages_per_huge_page;
4358 i++, p = mem_map_next(p, page, i)) {
4359 cond_resched();
4360 clear_user_highpage(p, addr + i * PAGE_SIZE);
4363 void clear_huge_page(struct page *page,
4364 unsigned long addr, unsigned int pages_per_huge_page)
4366 int i;
4368 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4369 clear_gigantic_page(page, addr, pages_per_huge_page);
4370 return;
4373 might_sleep();
4374 for (i = 0; i < pages_per_huge_page; i++) {
4375 cond_resched();
4376 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4380 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4381 unsigned long addr,
4382 struct vm_area_struct *vma,
4383 unsigned int pages_per_huge_page)
4385 int i;
4386 struct page *dst_base = dst;
4387 struct page *src_base = src;
4389 for (i = 0; i < pages_per_huge_page; ) {
4390 cond_resched();
4391 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4393 i++;
4394 dst = mem_map_next(dst, dst_base, i);
4395 src = mem_map_next(src, src_base, i);
4399 void copy_user_huge_page(struct page *dst, struct page *src,
4400 unsigned long addr, struct vm_area_struct *vma,
4401 unsigned int pages_per_huge_page)
4403 int i;
4405 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4406 copy_user_gigantic_page(dst, src, addr, vma,
4407 pages_per_huge_page);
4408 return;
4411 might_sleep();
4412 for (i = 0; i < pages_per_huge_page; i++) {
4413 cond_resched();
4414 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4417 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4419 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4421 static struct kmem_cache *page_ptl_cachep;
4423 void __init ptlock_cache_init(void)
4425 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4426 SLAB_PANIC, NULL);
4429 bool ptlock_alloc(struct page *page)
4431 spinlock_t *ptl;
4433 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4434 if (!ptl)
4435 return false;
4436 page->ptl = ptl;
4437 return true;
4440 void ptlock_free(struct page *page)
4442 kmem_cache_free(page_ptl_cachep, page->ptl);
4444 #endif