4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr
;
83 EXPORT_SYMBOL(max_mapnr
);
84 EXPORT_SYMBOL(mem_map
);
88 * A number of key systems in x86 including ioremap() rely on the assumption
89 * that high_memory defines the upper bound on direct map memory, then end
90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
96 EXPORT_SYMBOL(high_memory
);
99 * Randomize the address space (stacks, mmaps, brk, etc.).
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
104 int randomize_va_space __read_mostly
=
105 #ifdef CONFIG_COMPAT_BRK
111 static int __init
disable_randmaps(char *s
)
113 randomize_va_space
= 0;
116 __setup("norandmaps", disable_randmaps
);
118 unsigned long zero_pfn __read_mostly
;
119 unsigned long highest_memmap_pfn __read_mostly
;
122 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
124 static int __init
init_zero_pfn(void)
126 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
129 core_initcall(init_zero_pfn
);
132 #if defined(SPLIT_RSS_COUNTING)
134 void sync_mm_rss(struct mm_struct
*mm
)
138 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
139 if (current
->rss_stat
.count
[i
]) {
140 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
141 current
->rss_stat
.count
[i
] = 0;
144 current
->rss_stat
.events
= 0;
147 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
149 struct task_struct
*task
= current
;
151 if (likely(task
->mm
== mm
))
152 task
->rss_stat
.count
[member
] += val
;
154 add_mm_counter(mm
, member
, val
);
156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
159 /* sync counter once per 64 page faults */
160 #define TASK_RSS_EVENTS_THRESH (64)
161 static void check_sync_rss_stat(struct task_struct
*task
)
163 if (unlikely(task
!= current
))
165 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
166 sync_mm_rss(task
->mm
);
168 #else /* SPLIT_RSS_COUNTING */
170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
173 static void check_sync_rss_stat(struct task_struct
*task
)
177 #endif /* SPLIT_RSS_COUNTING */
179 #ifdef HAVE_GENERIC_MMU_GATHER
181 static int tlb_next_batch(struct mmu_gather
*tlb
)
183 struct mmu_gather_batch
*batch
;
187 tlb
->active
= batch
->next
;
191 if (tlb
->batch_count
== MAX_GATHER_BATCH_COUNT
)
194 batch
= (void *)__get_free_pages(GFP_NOWAIT
| __GFP_NOWARN
, 0);
201 batch
->max
= MAX_GATHER_BATCH
;
203 tlb
->active
->next
= batch
;
210 * Called to initialize an (on-stack) mmu_gather structure for page-table
211 * tear-down from @mm. The @fullmm argument is used when @mm is without
212 * users and we're going to destroy the full address space (exit/execve).
214 void tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
, unsigned long start
, unsigned long end
)
218 /* Is it from 0 to ~0? */
219 tlb
->fullmm
= !(start
| (end
+1));
220 tlb
->need_flush_all
= 0;
224 tlb
->local
.next
= NULL
;
226 tlb
->local
.max
= ARRAY_SIZE(tlb
->__pages
);
227 tlb
->active
= &tlb
->local
;
228 tlb
->batch_count
= 0;
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
235 void tlb_flush_mmu(struct mmu_gather
*tlb
)
237 struct mmu_gather_batch
*batch
;
239 if (!tlb
->need_flush
)
243 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
244 tlb_table_flush(tlb
);
247 for (batch
= &tlb
->local
; batch
; batch
= batch
->next
) {
248 free_pages_and_swap_cache(batch
->pages
, batch
->nr
);
251 tlb
->active
= &tlb
->local
;
255 * Called at the end of the shootdown operation to free up any resources
256 * that were required.
258 void tlb_finish_mmu(struct mmu_gather
*tlb
, unsigned long start
, unsigned long end
)
260 struct mmu_gather_batch
*batch
, *next
;
264 /* keep the page table cache within bounds */
267 for (batch
= tlb
->local
.next
; batch
; batch
= next
) {
269 free_pages((unsigned long)batch
, 0);
271 tlb
->local
.next
= NULL
;
275 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
276 * handling the additional races in SMP caused by other CPUs caching valid
277 * mappings in their TLBs. Returns the number of free page slots left.
278 * When out of page slots we must call tlb_flush_mmu().
280 int __tlb_remove_page(struct mmu_gather
*tlb
, struct page
*page
)
282 struct mmu_gather_batch
*batch
;
284 VM_BUG_ON(!tlb
->need_flush
);
287 batch
->pages
[batch
->nr
++] = page
;
288 if (batch
->nr
== batch
->max
) {
289 if (!tlb_next_batch(tlb
))
293 VM_BUG_ON_PAGE(batch
->nr
> batch
->max
, page
);
295 return batch
->max
- batch
->nr
;
298 #endif /* HAVE_GENERIC_MMU_GATHER */
300 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
303 * See the comment near struct mmu_table_batch.
306 static void tlb_remove_table_smp_sync(void *arg
)
308 /* Simply deliver the interrupt */
311 static void tlb_remove_table_one(void *table
)
314 * This isn't an RCU grace period and hence the page-tables cannot be
315 * assumed to be actually RCU-freed.
317 * It is however sufficient for software page-table walkers that rely on
318 * IRQ disabling. See the comment near struct mmu_table_batch.
320 smp_call_function(tlb_remove_table_smp_sync
, NULL
, 1);
321 __tlb_remove_table(table
);
324 static void tlb_remove_table_rcu(struct rcu_head
*head
)
326 struct mmu_table_batch
*batch
;
329 batch
= container_of(head
, struct mmu_table_batch
, rcu
);
331 for (i
= 0; i
< batch
->nr
; i
++)
332 __tlb_remove_table(batch
->tables
[i
]);
334 free_page((unsigned long)batch
);
337 void tlb_table_flush(struct mmu_gather
*tlb
)
339 struct mmu_table_batch
**batch
= &tlb
->batch
;
342 call_rcu_sched(&(*batch
)->rcu
, tlb_remove_table_rcu
);
347 void tlb_remove_table(struct mmu_gather
*tlb
, void *table
)
349 struct mmu_table_batch
**batch
= &tlb
->batch
;
354 * When there's less then two users of this mm there cannot be a
355 * concurrent page-table walk.
357 if (atomic_read(&tlb
->mm
->mm_users
) < 2) {
358 __tlb_remove_table(table
);
362 if (*batch
== NULL
) {
363 *batch
= (struct mmu_table_batch
*)__get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
364 if (*batch
== NULL
) {
365 tlb_remove_table_one(table
);
370 (*batch
)->tables
[(*batch
)->nr
++] = table
;
371 if ((*batch
)->nr
== MAX_TABLE_BATCH
)
372 tlb_table_flush(tlb
);
375 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
378 * Note: this doesn't free the actual pages themselves. That
379 * has been handled earlier when unmapping all the memory regions.
381 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
384 pgtable_t token
= pmd_pgtable(*pmd
);
386 pte_free_tlb(tlb
, token
, addr
);
387 atomic_long_dec(&tlb
->mm
->nr_ptes
);
390 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
391 unsigned long addr
, unsigned long end
,
392 unsigned long floor
, unsigned long ceiling
)
399 pmd
= pmd_offset(pud
, addr
);
401 next
= pmd_addr_end(addr
, end
);
402 if (pmd_none_or_clear_bad(pmd
))
404 free_pte_range(tlb
, pmd
, addr
);
405 } while (pmd
++, addr
= next
, addr
!= end
);
415 if (end
- 1 > ceiling
- 1)
418 pmd
= pmd_offset(pud
, start
);
420 pmd_free_tlb(tlb
, pmd
, start
);
423 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
424 unsigned long addr
, unsigned long end
,
425 unsigned long floor
, unsigned long ceiling
)
432 pud
= pud_offset(pgd
, addr
);
434 next
= pud_addr_end(addr
, end
);
435 if (pud_none_or_clear_bad(pud
))
437 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
438 } while (pud
++, addr
= next
, addr
!= end
);
444 ceiling
&= PGDIR_MASK
;
448 if (end
- 1 > ceiling
- 1)
451 pud
= pud_offset(pgd
, start
);
453 pud_free_tlb(tlb
, pud
, start
);
457 * This function frees user-level page tables of a process.
459 void free_pgd_range(struct mmu_gather
*tlb
,
460 unsigned long addr
, unsigned long end
,
461 unsigned long floor
, unsigned long ceiling
)
467 * The next few lines have given us lots of grief...
469 * Why are we testing PMD* at this top level? Because often
470 * there will be no work to do at all, and we'd prefer not to
471 * go all the way down to the bottom just to discover that.
473 * Why all these "- 1"s? Because 0 represents both the bottom
474 * of the address space and the top of it (using -1 for the
475 * top wouldn't help much: the masks would do the wrong thing).
476 * The rule is that addr 0 and floor 0 refer to the bottom of
477 * the address space, but end 0 and ceiling 0 refer to the top
478 * Comparisons need to use "end - 1" and "ceiling - 1" (though
479 * that end 0 case should be mythical).
481 * Wherever addr is brought up or ceiling brought down, we must
482 * be careful to reject "the opposite 0" before it confuses the
483 * subsequent tests. But what about where end is brought down
484 * by PMD_SIZE below? no, end can't go down to 0 there.
486 * Whereas we round start (addr) and ceiling down, by different
487 * masks at different levels, in order to test whether a table
488 * now has no other vmas using it, so can be freed, we don't
489 * bother to round floor or end up - the tests don't need that.
503 if (end
- 1 > ceiling
- 1)
508 pgd
= pgd_offset(tlb
->mm
, addr
);
510 next
= pgd_addr_end(addr
, end
);
511 if (pgd_none_or_clear_bad(pgd
))
513 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
514 } while (pgd
++, addr
= next
, addr
!= end
);
517 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
518 unsigned long floor
, unsigned long ceiling
)
521 struct vm_area_struct
*next
= vma
->vm_next
;
522 unsigned long addr
= vma
->vm_start
;
525 * Hide vma from rmap and truncate_pagecache before freeing
528 unlink_anon_vmas(vma
);
529 unlink_file_vma(vma
);
531 if (is_vm_hugetlb_page(vma
)) {
532 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
533 floor
, next
? next
->vm_start
: ceiling
);
536 * Optimization: gather nearby vmas into one call down
538 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
539 && !is_vm_hugetlb_page(next
)) {
542 unlink_anon_vmas(vma
);
543 unlink_file_vma(vma
);
545 free_pgd_range(tlb
, addr
, vma
->vm_end
,
546 floor
, next
? next
->vm_start
: ceiling
);
552 int __pte_alloc(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
553 pmd_t
*pmd
, unsigned long address
)
556 pgtable_t
new = pte_alloc_one(mm
, address
);
557 int wait_split_huge_page
;
562 * Ensure all pte setup (eg. pte page lock and page clearing) are
563 * visible before the pte is made visible to other CPUs by being
564 * put into page tables.
566 * The other side of the story is the pointer chasing in the page
567 * table walking code (when walking the page table without locking;
568 * ie. most of the time). Fortunately, these data accesses consist
569 * of a chain of data-dependent loads, meaning most CPUs (alpha
570 * being the notable exception) will already guarantee loads are
571 * seen in-order. See the alpha page table accessors for the
572 * smp_read_barrier_depends() barriers in page table walking code.
574 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
576 ptl
= pmd_lock(mm
, pmd
);
577 wait_split_huge_page
= 0;
578 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
579 atomic_long_inc(&mm
->nr_ptes
);
580 pmd_populate(mm
, pmd
, new);
582 } else if (unlikely(pmd_trans_splitting(*pmd
)))
583 wait_split_huge_page
= 1;
587 if (wait_split_huge_page
)
588 wait_split_huge_page(vma
->anon_vma
, pmd
);
592 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
594 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
598 smp_wmb(); /* See comment in __pte_alloc */
600 spin_lock(&init_mm
.page_table_lock
);
601 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
602 pmd_populate_kernel(&init_mm
, pmd
, new);
605 VM_BUG_ON(pmd_trans_splitting(*pmd
));
606 spin_unlock(&init_mm
.page_table_lock
);
608 pte_free_kernel(&init_mm
, new);
612 static inline void init_rss_vec(int *rss
)
614 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
617 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
621 if (current
->mm
== mm
)
623 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
625 add_mm_counter(mm
, i
, rss
[i
]);
629 * This function is called to print an error when a bad pte
630 * is found. For example, we might have a PFN-mapped pte in
631 * a region that doesn't allow it.
633 * The calling function must still handle the error.
635 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
636 pte_t pte
, struct page
*page
)
638 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
639 pud_t
*pud
= pud_offset(pgd
, addr
);
640 pmd_t
*pmd
= pmd_offset(pud
, addr
);
641 struct address_space
*mapping
;
643 static unsigned long resume
;
644 static unsigned long nr_shown
;
645 static unsigned long nr_unshown
;
648 * Allow a burst of 60 reports, then keep quiet for that minute;
649 * or allow a steady drip of one report per second.
651 if (nr_shown
== 60) {
652 if (time_before(jiffies
, resume
)) {
658 "BUG: Bad page map: %lu messages suppressed\n",
665 resume
= jiffies
+ 60 * HZ
;
667 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
668 index
= linear_page_index(vma
, addr
);
671 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
673 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
675 dump_page(page
, "bad pte");
677 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
678 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
680 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
683 printk(KERN_ALERT
"vma->vm_ops->fault: %pSR\n",
686 printk(KERN_ALERT
"vma->vm_file->f_op->mmap: %pSR\n",
687 vma
->vm_file
->f_op
->mmap
);
689 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
692 static inline bool is_cow_mapping(vm_flags_t flags
)
694 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
698 * vm_normal_page -- This function gets the "struct page" associated with a pte.
700 * "Special" mappings do not wish to be associated with a "struct page" (either
701 * it doesn't exist, or it exists but they don't want to touch it). In this
702 * case, NULL is returned here. "Normal" mappings do have a struct page.
704 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
705 * pte bit, in which case this function is trivial. Secondly, an architecture
706 * may not have a spare pte bit, which requires a more complicated scheme,
709 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
710 * special mapping (even if there are underlying and valid "struct pages").
711 * COWed pages of a VM_PFNMAP are always normal.
713 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
714 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
715 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
716 * mapping will always honor the rule
718 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
720 * And for normal mappings this is false.
722 * This restricts such mappings to be a linear translation from virtual address
723 * to pfn. To get around this restriction, we allow arbitrary mappings so long
724 * as the vma is not a COW mapping; in that case, we know that all ptes are
725 * special (because none can have been COWed).
728 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
730 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
731 * page" backing, however the difference is that _all_ pages with a struct
732 * page (that is, those where pfn_valid is true) are refcounted and considered
733 * normal pages by the VM. The disadvantage is that pages are refcounted
734 * (which can be slower and simply not an option for some PFNMAP users). The
735 * advantage is that we don't have to follow the strict linearity rule of
736 * PFNMAP mappings in order to support COWable mappings.
739 #ifdef __HAVE_ARCH_PTE_SPECIAL
740 # define HAVE_PTE_SPECIAL 1
742 # define HAVE_PTE_SPECIAL 0
744 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
747 unsigned long pfn
= pte_pfn(pte
);
749 if (HAVE_PTE_SPECIAL
) {
750 if (likely(!pte_special(pte
)))
752 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
754 if (!is_zero_pfn(pfn
))
755 print_bad_pte(vma
, addr
, pte
, NULL
);
759 /* !HAVE_PTE_SPECIAL case follows: */
761 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
762 if (vma
->vm_flags
& VM_MIXEDMAP
) {
768 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
769 if (pfn
== vma
->vm_pgoff
+ off
)
771 if (!is_cow_mapping(vma
->vm_flags
))
776 if (is_zero_pfn(pfn
))
779 if (unlikely(pfn
> highest_memmap_pfn
)) {
780 print_bad_pte(vma
, addr
, pte
, NULL
);
785 * NOTE! We still have PageReserved() pages in the page tables.
786 * eg. VDSO mappings can cause them to exist.
789 return pfn_to_page(pfn
);
793 * copy one vm_area from one task to the other. Assumes the page tables
794 * already present in the new task to be cleared in the whole range
795 * covered by this vma.
798 static inline unsigned long
799 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
800 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
801 unsigned long addr
, int *rss
)
803 unsigned long vm_flags
= vma
->vm_flags
;
804 pte_t pte
= *src_pte
;
807 /* pte contains position in swap or file, so copy. */
808 if (unlikely(!pte_present(pte
))) {
809 if (!pte_file(pte
)) {
810 swp_entry_t entry
= pte_to_swp_entry(pte
);
812 if (swap_duplicate(entry
) < 0)
815 /* make sure dst_mm is on swapoff's mmlist. */
816 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
817 spin_lock(&mmlist_lock
);
818 if (list_empty(&dst_mm
->mmlist
))
819 list_add(&dst_mm
->mmlist
,
821 spin_unlock(&mmlist_lock
);
823 if (likely(!non_swap_entry(entry
)))
825 else if (is_migration_entry(entry
)) {
826 page
= migration_entry_to_page(entry
);
833 if (is_write_migration_entry(entry
) &&
834 is_cow_mapping(vm_flags
)) {
836 * COW mappings require pages in both
837 * parent and child to be set to read.
839 make_migration_entry_read(&entry
);
840 pte
= swp_entry_to_pte(entry
);
841 if (pte_swp_soft_dirty(*src_pte
))
842 pte
= pte_swp_mksoft_dirty(pte
);
843 set_pte_at(src_mm
, addr
, src_pte
, pte
);
851 * If it's a COW mapping, write protect it both
852 * in the parent and the child
854 if (is_cow_mapping(vm_flags
)) {
855 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
856 pte
= pte_wrprotect(pte
);
860 * If it's a shared mapping, mark it clean in
863 if (vm_flags
& VM_SHARED
)
864 pte
= pte_mkclean(pte
);
865 pte
= pte_mkold(pte
);
867 page
= vm_normal_page(vma
, addr
, pte
);
878 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
882 int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
883 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
884 unsigned long addr
, unsigned long end
)
886 pte_t
*orig_src_pte
, *orig_dst_pte
;
887 pte_t
*src_pte
, *dst_pte
;
888 spinlock_t
*src_ptl
, *dst_ptl
;
890 int rss
[NR_MM_COUNTERS
];
891 swp_entry_t entry
= (swp_entry_t
){0};
896 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
899 src_pte
= pte_offset_map(src_pmd
, addr
);
900 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
901 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
902 orig_src_pte
= src_pte
;
903 orig_dst_pte
= dst_pte
;
904 arch_enter_lazy_mmu_mode();
908 * We are holding two locks at this point - either of them
909 * could generate latencies in another task on another CPU.
911 if (progress
>= 32) {
913 if (need_resched() ||
914 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
917 if (pte_none(*src_pte
)) {
921 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
926 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
928 arch_leave_lazy_mmu_mode();
929 spin_unlock(src_ptl
);
930 pte_unmap(orig_src_pte
);
931 add_mm_rss_vec(dst_mm
, rss
);
932 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
936 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
945 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
946 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
947 unsigned long addr
, unsigned long end
)
949 pmd_t
*src_pmd
, *dst_pmd
;
952 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
955 src_pmd
= pmd_offset(src_pud
, addr
);
957 next
= pmd_addr_end(addr
, end
);
958 if (pmd_trans_huge(*src_pmd
)) {
960 VM_BUG_ON(next
-addr
!= HPAGE_PMD_SIZE
);
961 err
= copy_huge_pmd(dst_mm
, src_mm
,
962 dst_pmd
, src_pmd
, addr
, vma
);
969 if (pmd_none_or_clear_bad(src_pmd
))
971 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
974 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
978 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
979 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
980 unsigned long addr
, unsigned long end
)
982 pud_t
*src_pud
, *dst_pud
;
985 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
988 src_pud
= pud_offset(src_pgd
, addr
);
990 next
= pud_addr_end(addr
, end
);
991 if (pud_none_or_clear_bad(src_pud
))
993 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
996 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1000 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1001 struct vm_area_struct
*vma
)
1003 pgd_t
*src_pgd
, *dst_pgd
;
1005 unsigned long addr
= vma
->vm_start
;
1006 unsigned long end
= vma
->vm_end
;
1007 unsigned long mmun_start
; /* For mmu_notifiers */
1008 unsigned long mmun_end
; /* For mmu_notifiers */
1013 * Don't copy ptes where a page fault will fill them correctly.
1014 * Fork becomes much lighter when there are big shared or private
1015 * readonly mappings. The tradeoff is that copy_page_range is more
1016 * efficient than faulting.
1018 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_NONLINEAR
|
1019 VM_PFNMAP
| VM_MIXEDMAP
))) {
1024 if (is_vm_hugetlb_page(vma
))
1025 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
1027 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
1029 * We do not free on error cases below as remove_vma
1030 * gets called on error from higher level routine
1032 ret
= track_pfn_copy(vma
);
1038 * We need to invalidate the secondary MMU mappings only when
1039 * there could be a permission downgrade on the ptes of the
1040 * parent mm. And a permission downgrade will only happen if
1041 * is_cow_mapping() returns true.
1043 is_cow
= is_cow_mapping(vma
->vm_flags
);
1047 mmu_notifier_invalidate_range_start(src_mm
, mmun_start
,
1051 dst_pgd
= pgd_offset(dst_mm
, addr
);
1052 src_pgd
= pgd_offset(src_mm
, addr
);
1054 next
= pgd_addr_end(addr
, end
);
1055 if (pgd_none_or_clear_bad(src_pgd
))
1057 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1058 vma
, addr
, next
))) {
1062 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1065 mmu_notifier_invalidate_range_end(src_mm
, mmun_start
, mmun_end
);
1069 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1070 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1071 unsigned long addr
, unsigned long end
,
1072 struct zap_details
*details
)
1074 struct mm_struct
*mm
= tlb
->mm
;
1075 int force_flush
= 0;
1076 int rss
[NR_MM_COUNTERS
];
1083 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1085 arch_enter_lazy_mmu_mode();
1088 if (pte_none(ptent
)) {
1092 if (pte_present(ptent
)) {
1095 page
= vm_normal_page(vma
, addr
, ptent
);
1096 if (unlikely(details
) && page
) {
1098 * unmap_shared_mapping_pages() wants to
1099 * invalidate cache without truncating:
1100 * unmap shared but keep private pages.
1102 if (details
->check_mapping
&&
1103 details
->check_mapping
!= page
->mapping
)
1106 * Each page->index must be checked when
1107 * invalidating or truncating nonlinear.
1109 if (details
->nonlinear_vma
&&
1110 (page
->index
< details
->first_index
||
1111 page
->index
> details
->last_index
))
1114 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1116 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1117 if (unlikely(!page
))
1119 if (unlikely(details
) && details
->nonlinear_vma
1120 && linear_page_index(details
->nonlinear_vma
,
1121 addr
) != page
->index
) {
1122 pte_t ptfile
= pgoff_to_pte(page
->index
);
1123 if (pte_soft_dirty(ptent
))
1124 pte_file_mksoft_dirty(ptfile
);
1125 set_pte_at(mm
, addr
, pte
, ptfile
);
1128 rss
[MM_ANONPAGES
]--;
1130 if (pte_dirty(ptent
))
1131 set_page_dirty(page
);
1132 if (pte_young(ptent
) &&
1133 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1134 mark_page_accessed(page
);
1135 rss
[MM_FILEPAGES
]--;
1137 page_remove_rmap(page
);
1138 if (unlikely(page_mapcount(page
) < 0))
1139 print_bad_pte(vma
, addr
, ptent
, page
);
1140 force_flush
= !__tlb_remove_page(tlb
, page
);
1146 * If details->check_mapping, we leave swap entries;
1147 * if details->nonlinear_vma, we leave file entries.
1149 if (unlikely(details
))
1151 if (pte_file(ptent
)) {
1152 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
)))
1153 print_bad_pte(vma
, addr
, ptent
, NULL
);
1155 swp_entry_t entry
= pte_to_swp_entry(ptent
);
1157 if (!non_swap_entry(entry
))
1159 else if (is_migration_entry(entry
)) {
1162 page
= migration_entry_to_page(entry
);
1165 rss
[MM_ANONPAGES
]--;
1167 rss
[MM_FILEPAGES
]--;
1169 if (unlikely(!free_swap_and_cache(entry
)))
1170 print_bad_pte(vma
, addr
, ptent
, NULL
);
1172 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1173 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1175 add_mm_rss_vec(mm
, rss
);
1176 arch_leave_lazy_mmu_mode();
1177 pte_unmap_unlock(start_pte
, ptl
);
1180 * mmu_gather ran out of room to batch pages, we break out of
1181 * the PTE lock to avoid doing the potential expensive TLB invalidate
1182 * and page-free while holding it.
1185 unsigned long old_end
;
1190 * Flush the TLB just for the previous segment,
1191 * then update the range to be the remaining
1209 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1210 struct vm_area_struct
*vma
, pud_t
*pud
,
1211 unsigned long addr
, unsigned long end
,
1212 struct zap_details
*details
)
1217 pmd
= pmd_offset(pud
, addr
);
1219 next
= pmd_addr_end(addr
, end
);
1220 if (pmd_trans_huge(*pmd
)) {
1221 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1222 #ifdef CONFIG_DEBUG_VM
1223 if (!rwsem_is_locked(&tlb
->mm
->mmap_sem
)) {
1224 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1225 __func__
, addr
, end
,
1231 split_huge_page_pmd(vma
, addr
, pmd
);
1232 } else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1237 * Here there can be other concurrent MADV_DONTNEED or
1238 * trans huge page faults running, and if the pmd is
1239 * none or trans huge it can change under us. This is
1240 * because MADV_DONTNEED holds the mmap_sem in read
1243 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1245 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1248 } while (pmd
++, addr
= next
, addr
!= end
);
1253 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1254 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1255 unsigned long addr
, unsigned long end
,
1256 struct zap_details
*details
)
1261 pud
= pud_offset(pgd
, addr
);
1263 next
= pud_addr_end(addr
, end
);
1264 if (pud_none_or_clear_bad(pud
))
1266 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1267 } while (pud
++, addr
= next
, addr
!= end
);
1272 static void unmap_page_range(struct mmu_gather
*tlb
,
1273 struct vm_area_struct
*vma
,
1274 unsigned long addr
, unsigned long end
,
1275 struct zap_details
*details
)
1280 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
1283 BUG_ON(addr
>= end
);
1284 mem_cgroup_uncharge_start();
1285 tlb_start_vma(tlb
, vma
);
1286 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1288 next
= pgd_addr_end(addr
, end
);
1289 if (pgd_none_or_clear_bad(pgd
))
1291 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
, details
);
1292 } while (pgd
++, addr
= next
, addr
!= end
);
1293 tlb_end_vma(tlb
, vma
);
1294 mem_cgroup_uncharge_end();
1298 static void unmap_single_vma(struct mmu_gather
*tlb
,
1299 struct vm_area_struct
*vma
, unsigned long start_addr
,
1300 unsigned long end_addr
,
1301 struct zap_details
*details
)
1303 unsigned long start
= max(vma
->vm_start
, start_addr
);
1306 if (start
>= vma
->vm_end
)
1308 end
= min(vma
->vm_end
, end_addr
);
1309 if (end
<= vma
->vm_start
)
1313 uprobe_munmap(vma
, start
, end
);
1315 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1316 untrack_pfn(vma
, 0, 0);
1319 if (unlikely(is_vm_hugetlb_page(vma
))) {
1321 * It is undesirable to test vma->vm_file as it
1322 * should be non-null for valid hugetlb area.
1323 * However, vm_file will be NULL in the error
1324 * cleanup path of mmap_region. When
1325 * hugetlbfs ->mmap method fails,
1326 * mmap_region() nullifies vma->vm_file
1327 * before calling this function to clean up.
1328 * Since no pte has actually been setup, it is
1329 * safe to do nothing in this case.
1332 mutex_lock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
1333 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1334 mutex_unlock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
1337 unmap_page_range(tlb
, vma
, start
, end
, details
);
1342 * unmap_vmas - unmap a range of memory covered by a list of vma's
1343 * @tlb: address of the caller's struct mmu_gather
1344 * @vma: the starting vma
1345 * @start_addr: virtual address at which to start unmapping
1346 * @end_addr: virtual address at which to end unmapping
1348 * Unmap all pages in the vma list.
1350 * Only addresses between `start' and `end' will be unmapped.
1352 * The VMA list must be sorted in ascending virtual address order.
1354 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1355 * range after unmap_vmas() returns. So the only responsibility here is to
1356 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1357 * drops the lock and schedules.
1359 void unmap_vmas(struct mmu_gather
*tlb
,
1360 struct vm_area_struct
*vma
, unsigned long start_addr
,
1361 unsigned long end_addr
)
1363 struct mm_struct
*mm
= vma
->vm_mm
;
1365 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1366 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1367 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1368 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1372 * zap_page_range - remove user pages in a given range
1373 * @vma: vm_area_struct holding the applicable pages
1374 * @start: starting address of pages to zap
1375 * @size: number of bytes to zap
1376 * @details: details of nonlinear truncation or shared cache invalidation
1378 * Caller must protect the VMA list
1380 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1381 unsigned long size
, struct zap_details
*details
)
1383 struct mm_struct
*mm
= vma
->vm_mm
;
1384 struct mmu_gather tlb
;
1385 unsigned long end
= start
+ size
;
1388 tlb_gather_mmu(&tlb
, mm
, start
, end
);
1389 update_hiwater_rss(mm
);
1390 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1391 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
)
1392 unmap_single_vma(&tlb
, vma
, start
, end
, details
);
1393 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1394 tlb_finish_mmu(&tlb
, start
, end
);
1398 * zap_page_range_single - remove user pages in a given range
1399 * @vma: vm_area_struct holding the applicable pages
1400 * @address: starting address of pages to zap
1401 * @size: number of bytes to zap
1402 * @details: details of nonlinear truncation or shared cache invalidation
1404 * The range must fit into one VMA.
1406 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1407 unsigned long size
, struct zap_details
*details
)
1409 struct mm_struct
*mm
= vma
->vm_mm
;
1410 struct mmu_gather tlb
;
1411 unsigned long end
= address
+ size
;
1414 tlb_gather_mmu(&tlb
, mm
, address
, end
);
1415 update_hiwater_rss(mm
);
1416 mmu_notifier_invalidate_range_start(mm
, address
, end
);
1417 unmap_single_vma(&tlb
, vma
, address
, end
, details
);
1418 mmu_notifier_invalidate_range_end(mm
, address
, end
);
1419 tlb_finish_mmu(&tlb
, address
, end
);
1423 * zap_vma_ptes - remove ptes mapping the vma
1424 * @vma: vm_area_struct holding ptes to be zapped
1425 * @address: starting address of pages to zap
1426 * @size: number of bytes to zap
1428 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1430 * The entire address range must be fully contained within the vma.
1432 * Returns 0 if successful.
1434 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1437 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1438 !(vma
->vm_flags
& VM_PFNMAP
))
1440 zap_page_range_single(vma
, address
, size
, NULL
);
1443 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1446 * follow_page_mask - look up a page descriptor from a user-virtual address
1447 * @vma: vm_area_struct mapping @address
1448 * @address: virtual address to look up
1449 * @flags: flags modifying lookup behaviour
1450 * @page_mask: on output, *page_mask is set according to the size of the page
1452 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1454 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1455 * an error pointer if there is a mapping to something not represented
1456 * by a page descriptor (see also vm_normal_page()).
1458 struct page
*follow_page_mask(struct vm_area_struct
*vma
,
1459 unsigned long address
, unsigned int flags
,
1460 unsigned int *page_mask
)
1468 struct mm_struct
*mm
= vma
->vm_mm
;
1472 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
1473 if (!IS_ERR(page
)) {
1474 BUG_ON(flags
& FOLL_GET
);
1479 pgd
= pgd_offset(mm
, address
);
1480 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
1483 pud
= pud_offset(pgd
, address
);
1486 if (pud_huge(*pud
) && vma
->vm_flags
& VM_HUGETLB
) {
1487 if (flags
& FOLL_GET
)
1489 page
= follow_huge_pud(mm
, address
, pud
, flags
& FOLL_WRITE
);
1492 if (unlikely(pud_bad(*pud
)))
1495 pmd
= pmd_offset(pud
, address
);
1498 if (pmd_huge(*pmd
) && vma
->vm_flags
& VM_HUGETLB
) {
1499 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
1500 if (flags
& FOLL_GET
) {
1502 * Refcount on tail pages are not well-defined and
1503 * shouldn't be taken. The caller should handle a NULL
1504 * return when trying to follow tail pages.
1515 if ((flags
& FOLL_NUMA
) && pmd_numa(*pmd
))
1517 if (pmd_trans_huge(*pmd
)) {
1518 if (flags
& FOLL_SPLIT
) {
1519 split_huge_page_pmd(vma
, address
, pmd
);
1520 goto split_fallthrough
;
1522 ptl
= pmd_lock(mm
, pmd
);
1523 if (likely(pmd_trans_huge(*pmd
))) {
1524 if (unlikely(pmd_trans_splitting(*pmd
))) {
1526 wait_split_huge_page(vma
->anon_vma
, pmd
);
1528 page
= follow_trans_huge_pmd(vma
, address
,
1531 *page_mask
= HPAGE_PMD_NR
- 1;
1539 if (unlikely(pmd_bad(*pmd
)))
1542 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1545 if (!pte_present(pte
)) {
1548 * KSM's break_ksm() relies upon recognizing a ksm page
1549 * even while it is being migrated, so for that case we
1550 * need migration_entry_wait().
1552 if (likely(!(flags
& FOLL_MIGRATION
)))
1554 if (pte_none(pte
) || pte_file(pte
))
1556 entry
= pte_to_swp_entry(pte
);
1557 if (!is_migration_entry(entry
))
1559 pte_unmap_unlock(ptep
, ptl
);
1560 migration_entry_wait(mm
, pmd
, address
);
1561 goto split_fallthrough
;
1563 if ((flags
& FOLL_NUMA
) && pte_numa(pte
))
1565 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
1568 page
= vm_normal_page(vma
, address
, pte
);
1569 if (unlikely(!page
)) {
1570 if ((flags
& FOLL_DUMP
) ||
1571 !is_zero_pfn(pte_pfn(pte
)))
1573 page
= pte_page(pte
);
1576 if (flags
& FOLL_GET
)
1577 get_page_foll(page
);
1578 if (flags
& FOLL_TOUCH
) {
1579 if ((flags
& FOLL_WRITE
) &&
1580 !pte_dirty(pte
) && !PageDirty(page
))
1581 set_page_dirty(page
);
1583 * pte_mkyoung() would be more correct here, but atomic care
1584 * is needed to avoid losing the dirty bit: it is easier to use
1585 * mark_page_accessed().
1587 mark_page_accessed(page
);
1589 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
1591 * The preliminary mapping check is mainly to avoid the
1592 * pointless overhead of lock_page on the ZERO_PAGE
1593 * which might bounce very badly if there is contention.
1595 * If the page is already locked, we don't need to
1596 * handle it now - vmscan will handle it later if and
1597 * when it attempts to reclaim the page.
1599 if (page
->mapping
&& trylock_page(page
)) {
1600 lru_add_drain(); /* push cached pages to LRU */
1602 * Because we lock page here, and migration is
1603 * blocked by the pte's page reference, and we
1604 * know the page is still mapped, we don't even
1605 * need to check for file-cache page truncation.
1607 mlock_vma_page(page
);
1612 pte_unmap_unlock(ptep
, ptl
);
1617 pte_unmap_unlock(ptep
, ptl
);
1618 return ERR_PTR(-EFAULT
);
1621 pte_unmap_unlock(ptep
, ptl
);
1627 * When core dumping an enormous anonymous area that nobody
1628 * has touched so far, we don't want to allocate unnecessary pages or
1629 * page tables. Return error instead of NULL to skip handle_mm_fault,
1630 * then get_dump_page() will return NULL to leave a hole in the dump.
1631 * But we can only make this optimization where a hole would surely
1632 * be zero-filled if handle_mm_fault() actually did handle it.
1634 if ((flags
& FOLL_DUMP
) &&
1635 (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
1636 return ERR_PTR(-EFAULT
);
1640 static inline int stack_guard_page(struct vm_area_struct
*vma
, unsigned long addr
)
1642 return stack_guard_page_start(vma
, addr
) ||
1643 stack_guard_page_end(vma
, addr
+PAGE_SIZE
);
1647 * __get_user_pages() - pin user pages in memory
1648 * @tsk: task_struct of target task
1649 * @mm: mm_struct of target mm
1650 * @start: starting user address
1651 * @nr_pages: number of pages from start to pin
1652 * @gup_flags: flags modifying pin behaviour
1653 * @pages: array that receives pointers to the pages pinned.
1654 * Should be at least nr_pages long. Or NULL, if caller
1655 * only intends to ensure the pages are faulted in.
1656 * @vmas: array of pointers to vmas corresponding to each page.
1657 * Or NULL if the caller does not require them.
1658 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1660 * Returns number of pages pinned. This may be fewer than the number
1661 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1662 * were pinned, returns -errno. Each page returned must be released
1663 * with a put_page() call when it is finished with. vmas will only
1664 * remain valid while mmap_sem is held.
1666 * Must be called with mmap_sem held for read or write.
1668 * __get_user_pages walks a process's page tables and takes a reference to
1669 * each struct page that each user address corresponds to at a given
1670 * instant. That is, it takes the page that would be accessed if a user
1671 * thread accesses the given user virtual address at that instant.
1673 * This does not guarantee that the page exists in the user mappings when
1674 * __get_user_pages returns, and there may even be a completely different
1675 * page there in some cases (eg. if mmapped pagecache has been invalidated
1676 * and subsequently re faulted). However it does guarantee that the page
1677 * won't be freed completely. And mostly callers simply care that the page
1678 * contains data that was valid *at some point in time*. Typically, an IO
1679 * or similar operation cannot guarantee anything stronger anyway because
1680 * locks can't be held over the syscall boundary.
1682 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1683 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1684 * appropriate) must be called after the page is finished with, and
1685 * before put_page is called.
1687 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1688 * or mmap_sem contention, and if waiting is needed to pin all pages,
1689 * *@nonblocking will be set to 0.
1691 * In most cases, get_user_pages or get_user_pages_fast should be used
1692 * instead of __get_user_pages. __get_user_pages should be used only if
1693 * you need some special @gup_flags.
1695 long __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1696 unsigned long start
, unsigned long nr_pages
,
1697 unsigned int gup_flags
, struct page
**pages
,
1698 struct vm_area_struct
**vmas
, int *nonblocking
)
1701 unsigned long vm_flags
;
1702 unsigned int page_mask
;
1707 VM_BUG_ON(!!pages
!= !!(gup_flags
& FOLL_GET
));
1710 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1711 * would be called on PROT_NONE ranges. We must never invoke
1712 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1713 * page faults would unprotect the PROT_NONE ranges if
1714 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1715 * bitflag. So to avoid that, don't set FOLL_NUMA if
1716 * FOLL_FORCE is set.
1718 if (!(gup_flags
& FOLL_FORCE
))
1719 gup_flags
|= FOLL_NUMA
;
1724 struct vm_area_struct
*vma
;
1726 vma
= find_extend_vma(mm
, start
);
1727 if (!vma
&& in_gate_area(mm
, start
)) {
1728 unsigned long pg
= start
& PAGE_MASK
;
1734 /* user gate pages are read-only */
1735 if (gup_flags
& FOLL_WRITE
)
1738 pgd
= pgd_offset_k(pg
);
1740 pgd
= pgd_offset_gate(mm
, pg
);
1741 BUG_ON(pgd_none(*pgd
));
1742 pud
= pud_offset(pgd
, pg
);
1743 BUG_ON(pud_none(*pud
));
1744 pmd
= pmd_offset(pud
, pg
);
1747 VM_BUG_ON(pmd_trans_huge(*pmd
));
1748 pte
= pte_offset_map(pmd
, pg
);
1749 if (pte_none(*pte
)) {
1753 vma
= get_gate_vma(mm
);
1757 page
= vm_normal_page(vma
, start
, *pte
);
1759 if (!(gup_flags
& FOLL_DUMP
) &&
1760 is_zero_pfn(pte_pfn(*pte
)))
1761 page
= pte_page(*pte
);
1777 vm_flags
= vma
->vm_flags
;
1778 if (vm_flags
& (VM_IO
| VM_PFNMAP
))
1781 if (gup_flags
& FOLL_WRITE
) {
1782 if (!(vm_flags
& VM_WRITE
)) {
1783 if (!(gup_flags
& FOLL_FORCE
))
1786 * We used to let the write,force case do COW
1787 * in a VM_MAYWRITE VM_SHARED !VM_WRITE vma, so
1788 * ptrace could set a breakpoint in a read-only
1789 * mapping of an executable, without corrupting
1790 * the file (yet only when that file had been
1791 * opened for writing!). Anon pages in shared
1792 * mappings are surprising: now just reject it.
1794 if (!is_cow_mapping(vm_flags
)) {
1795 WARN_ON_ONCE(vm_flags
& VM_MAYWRITE
);
1800 if (!(vm_flags
& VM_READ
)) {
1801 if (!(gup_flags
& FOLL_FORCE
))
1804 * Is there actually any vma we can reach here
1805 * which does not have VM_MAYREAD set?
1807 if (!(vm_flags
& VM_MAYREAD
))
1812 if (is_vm_hugetlb_page(vma
)) {
1813 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1814 &start
, &nr_pages
, i
, gup_flags
);
1820 unsigned int foll_flags
= gup_flags
;
1821 unsigned int page_increm
;
1824 * If we have a pending SIGKILL, don't keep faulting
1825 * pages and potentially allocating memory.
1827 if (unlikely(fatal_signal_pending(current
)))
1828 return i
? i
: -ERESTARTSYS
;
1831 while (!(page
= follow_page_mask(vma
, start
,
1832 foll_flags
, &page_mask
))) {
1834 unsigned int fault_flags
= 0;
1836 /* For mlock, just skip the stack guard page. */
1837 if (foll_flags
& FOLL_MLOCK
) {
1838 if (stack_guard_page(vma
, start
))
1841 if (foll_flags
& FOLL_WRITE
)
1842 fault_flags
|= FAULT_FLAG_WRITE
;
1844 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
1845 if (foll_flags
& FOLL_NOWAIT
)
1846 fault_flags
|= (FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
);
1848 ret
= handle_mm_fault(mm
, vma
, start
,
1851 if (ret
& VM_FAULT_ERROR
) {
1852 if (ret
& VM_FAULT_OOM
)
1853 return i
? i
: -ENOMEM
;
1854 if (ret
& (VM_FAULT_HWPOISON
|
1855 VM_FAULT_HWPOISON_LARGE
)) {
1858 else if (gup_flags
& FOLL_HWPOISON
)
1863 if (ret
& VM_FAULT_SIGBUS
)
1869 if (ret
& VM_FAULT_MAJOR
)
1875 if (ret
& VM_FAULT_RETRY
) {
1882 * The VM_FAULT_WRITE bit tells us that
1883 * do_wp_page has broken COW when necessary,
1884 * even if maybe_mkwrite decided not to set
1885 * pte_write. We can thus safely do subsequent
1886 * page lookups as if they were reads. But only
1887 * do so when looping for pte_write is futile:
1888 * in some cases userspace may also be wanting
1889 * to write to the gotten user page, which a
1890 * read fault here might prevent (a readonly
1891 * page might get reCOWed by userspace write).
1893 if ((ret
& VM_FAULT_WRITE
) &&
1894 !(vma
->vm_flags
& VM_WRITE
))
1895 foll_flags
&= ~FOLL_WRITE
;
1900 return i
? i
: PTR_ERR(page
);
1904 flush_anon_page(vma
, page
, start
);
1905 flush_dcache_page(page
);
1913 page_increm
= 1 + (~(start
>> PAGE_SHIFT
) & page_mask
);
1914 if (page_increm
> nr_pages
)
1915 page_increm
= nr_pages
;
1917 start
+= page_increm
* PAGE_SIZE
;
1918 nr_pages
-= page_increm
;
1919 } while (nr_pages
&& start
< vma
->vm_end
);
1923 return i
? : -EFAULT
;
1925 EXPORT_SYMBOL(__get_user_pages
);
1928 * fixup_user_fault() - manually resolve a user page fault
1929 * @tsk: the task_struct to use for page fault accounting, or
1930 * NULL if faults are not to be recorded.
1931 * @mm: mm_struct of target mm
1932 * @address: user address
1933 * @fault_flags:flags to pass down to handle_mm_fault()
1935 * This is meant to be called in the specific scenario where for locking reasons
1936 * we try to access user memory in atomic context (within a pagefault_disable()
1937 * section), this returns -EFAULT, and we want to resolve the user fault before
1940 * Typically this is meant to be used by the futex code.
1942 * The main difference with get_user_pages() is that this function will
1943 * unconditionally call handle_mm_fault() which will in turn perform all the
1944 * necessary SW fixup of the dirty and young bits in the PTE, while
1945 * handle_mm_fault() only guarantees to update these in the struct page.
1947 * This is important for some architectures where those bits also gate the
1948 * access permission to the page because they are maintained in software. On
1949 * such architectures, gup() will not be enough to make a subsequent access
1952 * This should be called with the mm_sem held for read.
1954 int fixup_user_fault(struct task_struct
*tsk
, struct mm_struct
*mm
,
1955 unsigned long address
, unsigned int fault_flags
)
1957 struct vm_area_struct
*vma
;
1960 vma
= find_extend_vma(mm
, address
);
1961 if (!vma
|| address
< vma
->vm_start
)
1964 ret
= handle_mm_fault(mm
, vma
, address
, fault_flags
);
1965 if (ret
& VM_FAULT_ERROR
) {
1966 if (ret
& VM_FAULT_OOM
)
1968 if (ret
& (VM_FAULT_HWPOISON
| VM_FAULT_HWPOISON_LARGE
))
1970 if (ret
& VM_FAULT_SIGBUS
)
1975 if (ret
& VM_FAULT_MAJOR
)
1984 * get_user_pages() - pin user pages in memory
1985 * @tsk: the task_struct to use for page fault accounting, or
1986 * NULL if faults are not to be recorded.
1987 * @mm: mm_struct of target mm
1988 * @start: starting user address
1989 * @nr_pages: number of pages from start to pin
1990 * @write: whether pages will be written to by the caller
1991 * @force: whether to force access even when user mapping is currently
1992 * protected (but never forces write access to shared mapping).
1993 * @pages: array that receives pointers to the pages pinned.
1994 * Should be at least nr_pages long. Or NULL, if caller
1995 * only intends to ensure the pages are faulted in.
1996 * @vmas: array of pointers to vmas corresponding to each page.
1997 * Or NULL if the caller does not require them.
1999 * Returns number of pages pinned. This may be fewer than the number
2000 * requested. If nr_pages is 0 or negative, returns 0. If no pages
2001 * were pinned, returns -errno. Each page returned must be released
2002 * with a put_page() call when it is finished with. vmas will only
2003 * remain valid while mmap_sem is held.
2005 * Must be called with mmap_sem held for read or write.
2007 * get_user_pages walks a process's page tables and takes a reference to
2008 * each struct page that each user address corresponds to at a given
2009 * instant. That is, it takes the page that would be accessed if a user
2010 * thread accesses the given user virtual address at that instant.
2012 * This does not guarantee that the page exists in the user mappings when
2013 * get_user_pages returns, and there may even be a completely different
2014 * page there in some cases (eg. if mmapped pagecache has been invalidated
2015 * and subsequently re faulted). However it does guarantee that the page
2016 * won't be freed completely. And mostly callers simply care that the page
2017 * contains data that was valid *at some point in time*. Typically, an IO
2018 * or similar operation cannot guarantee anything stronger anyway because
2019 * locks can't be held over the syscall boundary.
2021 * If write=0, the page must not be written to. If the page is written to,
2022 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2023 * after the page is finished with, and before put_page is called.
2025 * get_user_pages is typically used for fewer-copy IO operations, to get a
2026 * handle on the memory by some means other than accesses via the user virtual
2027 * addresses. The pages may be submitted for DMA to devices or accessed via
2028 * their kernel linear mapping (via the kmap APIs). Care should be taken to
2029 * use the correct cache flushing APIs.
2031 * See also get_user_pages_fast, for performance critical applications.
2033 long get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
2034 unsigned long start
, unsigned long nr_pages
, int write
,
2035 int force
, struct page
**pages
, struct vm_area_struct
**vmas
)
2037 int flags
= FOLL_TOUCH
;
2042 flags
|= FOLL_WRITE
;
2044 flags
|= FOLL_FORCE
;
2046 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
,
2049 EXPORT_SYMBOL(get_user_pages
);
2052 * get_dump_page() - pin user page in memory while writing it to core dump
2053 * @addr: user address
2055 * Returns struct page pointer of user page pinned for dump,
2056 * to be freed afterwards by page_cache_release() or put_page().
2058 * Returns NULL on any kind of failure - a hole must then be inserted into
2059 * the corefile, to preserve alignment with its headers; and also returns
2060 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2061 * allowing a hole to be left in the corefile to save diskspace.
2063 * Called without mmap_sem, but after all other threads have been killed.
2065 #ifdef CONFIG_ELF_CORE
2066 struct page
*get_dump_page(unsigned long addr
)
2068 struct vm_area_struct
*vma
;
2071 if (__get_user_pages(current
, current
->mm
, addr
, 1,
2072 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
,
2075 flush_cache_page(vma
, addr
, page_to_pfn(page
));
2078 #endif /* CONFIG_ELF_CORE */
2080 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
2083 pgd_t
* pgd
= pgd_offset(mm
, addr
);
2084 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
2086 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
2088 VM_BUG_ON(pmd_trans_huge(*pmd
));
2089 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
2096 * This is the old fallback for page remapping.
2098 * For historical reasons, it only allows reserved pages. Only
2099 * old drivers should use this, and they needed to mark their
2100 * pages reserved for the old functions anyway.
2102 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
2103 struct page
*page
, pgprot_t prot
)
2105 struct mm_struct
*mm
= vma
->vm_mm
;
2114 flush_dcache_page(page
);
2115 pte
= get_locked_pte(mm
, addr
, &ptl
);
2119 if (!pte_none(*pte
))
2122 /* Ok, finally just insert the thing.. */
2124 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
2125 page_add_file_rmap(page
);
2126 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
2129 pte_unmap_unlock(pte
, ptl
);
2132 pte_unmap_unlock(pte
, ptl
);
2138 * vm_insert_page - insert single page into user vma
2139 * @vma: user vma to map to
2140 * @addr: target user address of this page
2141 * @page: source kernel page
2143 * This allows drivers to insert individual pages they've allocated
2146 * The page has to be a nice clean _individual_ kernel allocation.
2147 * If you allocate a compound page, you need to have marked it as
2148 * such (__GFP_COMP), or manually just split the page up yourself
2149 * (see split_page()).
2151 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2152 * took an arbitrary page protection parameter. This doesn't allow
2153 * that. Your vma protection will have to be set up correctly, which
2154 * means that if you want a shared writable mapping, you'd better
2155 * ask for a shared writable mapping!
2157 * The page does not need to be reserved.
2159 * Usually this function is called from f_op->mmap() handler
2160 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2161 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2162 * function from other places, for example from page-fault handler.
2164 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
2167 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2169 if (!page_count(page
))
2171 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
2172 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
2173 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
2174 vma
->vm_flags
|= VM_MIXEDMAP
;
2176 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
2178 EXPORT_SYMBOL(vm_insert_page
);
2180 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
2181 unsigned long pfn
, pgprot_t prot
)
2183 struct mm_struct
*mm
= vma
->vm_mm
;
2189 pte
= get_locked_pte(mm
, addr
, &ptl
);
2193 if (!pte_none(*pte
))
2196 /* Ok, finally just insert the thing.. */
2197 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
2198 set_pte_at(mm
, addr
, pte
, entry
);
2199 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
2203 pte_unmap_unlock(pte
, ptl
);
2209 * vm_insert_pfn - insert single pfn into user vma
2210 * @vma: user vma to map to
2211 * @addr: target user address of this page
2212 * @pfn: source kernel pfn
2214 * Similar to vm_insert_page, this allows drivers to insert individual pages
2215 * they've allocated into a user vma. Same comments apply.
2217 * This function should only be called from a vm_ops->fault handler, and
2218 * in that case the handler should return NULL.
2220 * vma cannot be a COW mapping.
2222 * As this is called only for pages that do not currently exist, we
2223 * do not need to flush old virtual caches or the TLB.
2225 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
2229 pgprot_t pgprot
= vma
->vm_page_prot
;
2231 * Technically, architectures with pte_special can avoid all these
2232 * restrictions (same for remap_pfn_range). However we would like
2233 * consistency in testing and feature parity among all, so we should
2234 * try to keep these invariants in place for everybody.
2236 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
2237 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
2238 (VM_PFNMAP
|VM_MIXEDMAP
));
2239 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
2240 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
2242 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2244 if (track_pfn_insert(vma
, &pgprot
, pfn
))
2247 ret
= insert_pfn(vma
, addr
, pfn
, pgprot
);
2251 EXPORT_SYMBOL(vm_insert_pfn
);
2253 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
2256 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
2258 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2262 * If we don't have pte special, then we have to use the pfn_valid()
2263 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2264 * refcount the page if pfn_valid is true (hence insert_page rather
2265 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2266 * without pte special, it would there be refcounted as a normal page.
2268 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
2271 page
= pfn_to_page(pfn
);
2272 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
2274 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
2276 EXPORT_SYMBOL(vm_insert_mixed
);
2279 * maps a range of physical memory into the requested pages. the old
2280 * mappings are removed. any references to nonexistent pages results
2281 * in null mappings (currently treated as "copy-on-access")
2283 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2284 unsigned long addr
, unsigned long end
,
2285 unsigned long pfn
, pgprot_t prot
)
2290 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2293 arch_enter_lazy_mmu_mode();
2295 BUG_ON(!pte_none(*pte
));
2296 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
2298 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
2299 arch_leave_lazy_mmu_mode();
2300 pte_unmap_unlock(pte
- 1, ptl
);
2304 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2305 unsigned long addr
, unsigned long end
,
2306 unsigned long pfn
, pgprot_t prot
)
2311 pfn
-= addr
>> PAGE_SHIFT
;
2312 pmd
= pmd_alloc(mm
, pud
, addr
);
2315 VM_BUG_ON(pmd_trans_huge(*pmd
));
2317 next
= pmd_addr_end(addr
, end
);
2318 if (remap_pte_range(mm
, pmd
, addr
, next
,
2319 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
2321 } while (pmd
++, addr
= next
, addr
!= end
);
2325 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2326 unsigned long addr
, unsigned long end
,
2327 unsigned long pfn
, pgprot_t prot
)
2332 pfn
-= addr
>> PAGE_SHIFT
;
2333 pud
= pud_alloc(mm
, pgd
, addr
);
2337 next
= pud_addr_end(addr
, end
);
2338 if (remap_pmd_range(mm
, pud
, addr
, next
,
2339 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
2341 } while (pud
++, addr
= next
, addr
!= end
);
2346 * remap_pfn_range - remap kernel memory to userspace
2347 * @vma: user vma to map to
2348 * @addr: target user address to start at
2349 * @pfn: physical address of kernel memory
2350 * @size: size of map area
2351 * @prot: page protection flags for this mapping
2353 * Note: this is only safe if the mm semaphore is held when called.
2355 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
2356 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
2360 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2361 struct mm_struct
*mm
= vma
->vm_mm
;
2365 * Physically remapped pages are special. Tell the
2366 * rest of the world about it:
2367 * VM_IO tells people not to look at these pages
2368 * (accesses can have side effects).
2369 * VM_PFNMAP tells the core MM that the base pages are just
2370 * raw PFN mappings, and do not have a "struct page" associated
2373 * Disable vma merging and expanding with mremap().
2375 * Omit vma from core dump, even when VM_IO turned off.
2377 * There's a horrible special case to handle copy-on-write
2378 * behaviour that some programs depend on. We mark the "original"
2379 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2380 * See vm_normal_page() for details.
2382 if (is_cow_mapping(vma
->vm_flags
)) {
2383 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
2385 vma
->vm_pgoff
= pfn
;
2388 err
= track_pfn_remap(vma
, &prot
, pfn
, addr
, PAGE_ALIGN(size
));
2392 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
2394 BUG_ON(addr
>= end
);
2395 pfn
-= addr
>> PAGE_SHIFT
;
2396 pgd
= pgd_offset(mm
, addr
);
2397 flush_cache_range(vma
, addr
, end
);
2399 next
= pgd_addr_end(addr
, end
);
2400 err
= remap_pud_range(mm
, pgd
, addr
, next
,
2401 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2404 } while (pgd
++, addr
= next
, addr
!= end
);
2407 untrack_pfn(vma
, pfn
, PAGE_ALIGN(size
));
2411 EXPORT_SYMBOL(remap_pfn_range
);
2414 * vm_iomap_memory - remap memory to userspace
2415 * @vma: user vma to map to
2416 * @start: start of area
2417 * @len: size of area
2419 * This is a simplified io_remap_pfn_range() for common driver use. The
2420 * driver just needs to give us the physical memory range to be mapped,
2421 * we'll figure out the rest from the vma information.
2423 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2424 * whatever write-combining details or similar.
2426 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
2428 unsigned long vm_len
, pfn
, pages
;
2430 /* Check that the physical memory area passed in looks valid */
2431 if (start
+ len
< start
)
2434 * You *really* shouldn't map things that aren't page-aligned,
2435 * but we've historically allowed it because IO memory might
2436 * just have smaller alignment.
2438 len
+= start
& ~PAGE_MASK
;
2439 pfn
= start
>> PAGE_SHIFT
;
2440 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
2441 if (pfn
+ pages
< pfn
)
2444 /* We start the mapping 'vm_pgoff' pages into the area */
2445 if (vma
->vm_pgoff
> pages
)
2447 pfn
+= vma
->vm_pgoff
;
2448 pages
-= vma
->vm_pgoff
;
2450 /* Can we fit all of the mapping? */
2451 vm_len
= vma
->vm_end
- vma
->vm_start
;
2452 if (vm_len
>> PAGE_SHIFT
> pages
)
2455 /* Ok, let it rip */
2456 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
2458 EXPORT_SYMBOL(vm_iomap_memory
);
2460 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2461 unsigned long addr
, unsigned long end
,
2462 pte_fn_t fn
, void *data
)
2467 spinlock_t
*uninitialized_var(ptl
);
2469 pte
= (mm
== &init_mm
) ?
2470 pte_alloc_kernel(pmd
, addr
) :
2471 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2475 BUG_ON(pmd_huge(*pmd
));
2477 arch_enter_lazy_mmu_mode();
2479 token
= pmd_pgtable(*pmd
);
2482 err
= fn(pte
++, token
, addr
, data
);
2485 } while (addr
+= PAGE_SIZE
, addr
!= end
);
2487 arch_leave_lazy_mmu_mode();
2490 pte_unmap_unlock(pte
-1, ptl
);
2494 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2495 unsigned long addr
, unsigned long end
,
2496 pte_fn_t fn
, void *data
)
2502 BUG_ON(pud_huge(*pud
));
2504 pmd
= pmd_alloc(mm
, pud
, addr
);
2508 next
= pmd_addr_end(addr
, end
);
2509 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
2512 } while (pmd
++, addr
= next
, addr
!= end
);
2516 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2517 unsigned long addr
, unsigned long end
,
2518 pte_fn_t fn
, void *data
)
2524 pud
= pud_alloc(mm
, pgd
, addr
);
2528 next
= pud_addr_end(addr
, end
);
2529 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
2532 } while (pud
++, addr
= next
, addr
!= end
);
2537 * Scan a region of virtual memory, filling in page tables as necessary
2538 * and calling a provided function on each leaf page table.
2540 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
2541 unsigned long size
, pte_fn_t fn
, void *data
)
2545 unsigned long end
= addr
+ size
;
2548 BUG_ON(addr
>= end
);
2549 pgd
= pgd_offset(mm
, addr
);
2551 next
= pgd_addr_end(addr
, end
);
2552 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
2555 } while (pgd
++, addr
= next
, addr
!= end
);
2559 EXPORT_SYMBOL_GPL(apply_to_page_range
);
2562 * handle_pte_fault chooses page fault handler according to an entry
2563 * which was read non-atomically. Before making any commitment, on
2564 * those architectures or configurations (e.g. i386 with PAE) which
2565 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2566 * must check under lock before unmapping the pte and proceeding
2567 * (but do_wp_page is only called after already making such a check;
2568 * and do_anonymous_page can safely check later on).
2570 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
2571 pte_t
*page_table
, pte_t orig_pte
)
2574 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2575 if (sizeof(pte_t
) > sizeof(unsigned long)) {
2576 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
2578 same
= pte_same(*page_table
, orig_pte
);
2582 pte_unmap(page_table
);
2586 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
2588 debug_dma_assert_idle(src
);
2591 * If the source page was a PFN mapping, we don't have
2592 * a "struct page" for it. We do a best-effort copy by
2593 * just copying from the original user address. If that
2594 * fails, we just zero-fill it. Live with it.
2596 if (unlikely(!src
)) {
2597 void *kaddr
= kmap_atomic(dst
);
2598 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
2601 * This really shouldn't fail, because the page is there
2602 * in the page tables. But it might just be unreadable,
2603 * in which case we just give up and fill the result with
2606 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
2608 kunmap_atomic(kaddr
);
2609 flush_dcache_page(dst
);
2611 copy_user_highpage(dst
, src
, va
, vma
);
2615 * Notify the address space that the page is about to become writable so that
2616 * it can prohibit this or wait for the page to get into an appropriate state.
2618 * We do this without the lock held, so that it can sleep if it needs to.
2620 static int do_page_mkwrite(struct vm_area_struct
*vma
, struct page
*page
,
2621 unsigned long address
)
2623 struct vm_fault vmf
;
2626 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
2627 vmf
.pgoff
= page
->index
;
2628 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2631 ret
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2632 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2634 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
2636 if (!page
->mapping
) {
2638 return 0; /* retry */
2640 ret
|= VM_FAULT_LOCKED
;
2642 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2647 * This routine handles present pages, when users try to write
2648 * to a shared page. It is done by copying the page to a new address
2649 * and decrementing the shared-page counter for the old page.
2651 * Note that this routine assumes that the protection checks have been
2652 * done by the caller (the low-level page fault routine in most cases).
2653 * Thus we can safely just mark it writable once we've done any necessary
2656 * We also mark the page dirty at this point even though the page will
2657 * change only once the write actually happens. This avoids a few races,
2658 * and potentially makes it more efficient.
2660 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2661 * but allow concurrent faults), with pte both mapped and locked.
2662 * We return with mmap_sem still held, but pte unmapped and unlocked.
2664 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2665 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2666 spinlock_t
*ptl
, pte_t orig_pte
)
2669 struct page
*old_page
, *new_page
= NULL
;
2672 int page_mkwrite
= 0;
2673 struct page
*dirty_page
= NULL
;
2674 unsigned long mmun_start
= 0; /* For mmu_notifiers */
2675 unsigned long mmun_end
= 0; /* For mmu_notifiers */
2677 old_page
= vm_normal_page(vma
, address
, orig_pte
);
2680 * VM_MIXEDMAP !pfn_valid() case
2682 * We should not cow pages in a shared writeable mapping.
2683 * Just mark the pages writable as we can't do any dirty
2684 * accounting on raw pfn maps.
2686 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2687 (VM_WRITE
|VM_SHARED
))
2693 * Take out anonymous pages first, anonymous shared vmas are
2694 * not dirty accountable.
2696 if (PageAnon(old_page
) && !PageKsm(old_page
)) {
2697 if (!trylock_page(old_page
)) {
2698 page_cache_get(old_page
);
2699 pte_unmap_unlock(page_table
, ptl
);
2700 lock_page(old_page
);
2701 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2703 if (!pte_same(*page_table
, orig_pte
)) {
2704 unlock_page(old_page
);
2707 page_cache_release(old_page
);
2709 if (reuse_swap_page(old_page
)) {
2711 * The page is all ours. Move it to our anon_vma so
2712 * the rmap code will not search our parent or siblings.
2713 * Protected against the rmap code by the page lock.
2715 page_move_anon_rmap(old_page
, vma
, address
);
2716 unlock_page(old_page
);
2719 unlock_page(old_page
);
2720 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2721 (VM_WRITE
|VM_SHARED
))) {
2723 * Only catch write-faults on shared writable pages,
2724 * read-only shared pages can get COWed by
2725 * get_user_pages(.write=1, .force=1).
2727 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2729 page_cache_get(old_page
);
2730 pte_unmap_unlock(page_table
, ptl
);
2731 tmp
= do_page_mkwrite(vma
, old_page
, address
);
2732 if (unlikely(!tmp
|| (tmp
&
2733 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2734 page_cache_release(old_page
);
2738 * Since we dropped the lock we need to revalidate
2739 * the PTE as someone else may have changed it. If
2740 * they did, we just return, as we can count on the
2741 * MMU to tell us if they didn't also make it writable.
2743 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2745 if (!pte_same(*page_table
, orig_pte
)) {
2746 unlock_page(old_page
);
2752 dirty_page
= old_page
;
2753 get_page(dirty_page
);
2757 * Clear the pages cpupid information as the existing
2758 * information potentially belongs to a now completely
2759 * unrelated process.
2762 page_cpupid_xchg_last(old_page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2764 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2765 entry
= pte_mkyoung(orig_pte
);
2766 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2767 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
2768 update_mmu_cache(vma
, address
, page_table
);
2769 pte_unmap_unlock(page_table
, ptl
);
2770 ret
|= VM_FAULT_WRITE
;
2776 * Yes, Virginia, this is actually required to prevent a race
2777 * with clear_page_dirty_for_io() from clearing the page dirty
2778 * bit after it clear all dirty ptes, but before a racing
2779 * do_wp_page installs a dirty pte.
2781 * do_shared_fault is protected similarly.
2783 if (!page_mkwrite
) {
2784 wait_on_page_locked(dirty_page
);
2785 set_page_dirty_balance(dirty_page
);
2786 /* file_update_time outside page_lock */
2788 file_update_time(vma
->vm_file
);
2790 put_page(dirty_page
);
2792 struct address_space
*mapping
= dirty_page
->mapping
;
2794 set_page_dirty(dirty_page
);
2795 unlock_page(dirty_page
);
2796 page_cache_release(dirty_page
);
2799 * Some device drivers do not set page.mapping
2800 * but still dirty their pages
2802 balance_dirty_pages_ratelimited(mapping
);
2810 * Ok, we need to copy. Oh, well..
2812 page_cache_get(old_page
);
2814 pte_unmap_unlock(page_table
, ptl
);
2816 if (unlikely(anon_vma_prepare(vma
)))
2819 if (is_zero_pfn(pte_pfn(orig_pte
))) {
2820 new_page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2824 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2827 cow_user_page(new_page
, old_page
, address
, vma
);
2829 __SetPageUptodate(new_page
);
2831 if (mem_cgroup_charge_anon(new_page
, mm
, GFP_KERNEL
))
2834 mmun_start
= address
& PAGE_MASK
;
2835 mmun_end
= mmun_start
+ PAGE_SIZE
;
2836 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2839 * Re-check the pte - we dropped the lock
2841 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2842 if (likely(pte_same(*page_table
, orig_pte
))) {
2844 if (!PageAnon(old_page
)) {
2845 dec_mm_counter_fast(mm
, MM_FILEPAGES
);
2846 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2849 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2850 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2851 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2852 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2854 * Clear the pte entry and flush it first, before updating the
2855 * pte with the new entry. This will avoid a race condition
2856 * seen in the presence of one thread doing SMC and another
2859 ptep_clear_flush(vma
, address
, page_table
);
2860 page_add_new_anon_rmap(new_page
, vma
, address
);
2862 * We call the notify macro here because, when using secondary
2863 * mmu page tables (such as kvm shadow page tables), we want the
2864 * new page to be mapped directly into the secondary page table.
2866 set_pte_at_notify(mm
, address
, page_table
, entry
);
2867 update_mmu_cache(vma
, address
, page_table
);
2870 * Only after switching the pte to the new page may
2871 * we remove the mapcount here. Otherwise another
2872 * process may come and find the rmap count decremented
2873 * before the pte is switched to the new page, and
2874 * "reuse" the old page writing into it while our pte
2875 * here still points into it and can be read by other
2878 * The critical issue is to order this
2879 * page_remove_rmap with the ptp_clear_flush above.
2880 * Those stores are ordered by (if nothing else,)
2881 * the barrier present in the atomic_add_negative
2882 * in page_remove_rmap.
2884 * Then the TLB flush in ptep_clear_flush ensures that
2885 * no process can access the old page before the
2886 * decremented mapcount is visible. And the old page
2887 * cannot be reused until after the decremented
2888 * mapcount is visible. So transitively, TLBs to
2889 * old page will be flushed before it can be reused.
2891 page_remove_rmap(old_page
);
2894 /* Free the old page.. */
2895 new_page
= old_page
;
2896 ret
|= VM_FAULT_WRITE
;
2898 mem_cgroup_uncharge_page(new_page
);
2901 page_cache_release(new_page
);
2903 pte_unmap_unlock(page_table
, ptl
);
2904 if (mmun_end
> mmun_start
)
2905 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2908 * Don't let another task, with possibly unlocked vma,
2909 * keep the mlocked page.
2911 if ((ret
& VM_FAULT_WRITE
) && (vma
->vm_flags
& VM_LOCKED
)) {
2912 lock_page(old_page
); /* LRU manipulation */
2913 munlock_vma_page(old_page
);
2914 unlock_page(old_page
);
2916 page_cache_release(old_page
);
2920 page_cache_release(new_page
);
2923 page_cache_release(old_page
);
2924 return VM_FAULT_OOM
;
2927 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2928 unsigned long start_addr
, unsigned long end_addr
,
2929 struct zap_details
*details
)
2931 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2934 static inline void unmap_mapping_range_tree(struct rb_root
*root
,
2935 struct zap_details
*details
)
2937 struct vm_area_struct
*vma
;
2938 pgoff_t vba
, vea
, zba
, zea
;
2940 vma_interval_tree_foreach(vma
, root
,
2941 details
->first_index
, details
->last_index
) {
2943 vba
= vma
->vm_pgoff
;
2944 vea
= vba
+ vma_pages(vma
) - 1;
2945 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2946 zba
= details
->first_index
;
2949 zea
= details
->last_index
;
2953 unmap_mapping_range_vma(vma
,
2954 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2955 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2960 static inline void unmap_mapping_range_list(struct list_head
*head
,
2961 struct zap_details
*details
)
2963 struct vm_area_struct
*vma
;
2966 * In nonlinear VMAs there is no correspondence between virtual address
2967 * offset and file offset. So we must perform an exhaustive search
2968 * across *all* the pages in each nonlinear VMA, not just the pages
2969 * whose virtual address lies outside the file truncation point.
2971 list_for_each_entry(vma
, head
, shared
.nonlinear
) {
2972 details
->nonlinear_vma
= vma
;
2973 unmap_mapping_range_vma(vma
, vma
->vm_start
, vma
->vm_end
, details
);
2978 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2979 * @mapping: the address space containing mmaps to be unmapped.
2980 * @holebegin: byte in first page to unmap, relative to the start of
2981 * the underlying file. This will be rounded down to a PAGE_SIZE
2982 * boundary. Note that this is different from truncate_pagecache(), which
2983 * must keep the partial page. In contrast, we must get rid of
2985 * @holelen: size of prospective hole in bytes. This will be rounded
2986 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2988 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2989 * but 0 when invalidating pagecache, don't throw away private data.
2991 void unmap_mapping_range(struct address_space
*mapping
,
2992 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2994 struct zap_details details
;
2995 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2996 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2998 /* Check for overflow. */
2999 if (sizeof(holelen
) > sizeof(hlen
)) {
3001 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
3002 if (holeend
& ~(long long)ULONG_MAX
)
3003 hlen
= ULONG_MAX
- hba
+ 1;
3006 details
.check_mapping
= even_cows
? NULL
: mapping
;
3007 details
.nonlinear_vma
= NULL
;
3008 details
.first_index
= hba
;
3009 details
.last_index
= hba
+ hlen
- 1;
3010 if (details
.last_index
< details
.first_index
)
3011 details
.last_index
= ULONG_MAX
;
3014 mutex_lock(&mapping
->i_mmap_mutex
);
3015 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
)))
3016 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
3017 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
3018 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
3019 mutex_unlock(&mapping
->i_mmap_mutex
);
3021 EXPORT_SYMBOL(unmap_mapping_range
);
3024 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3025 * but allow concurrent faults), and pte mapped but not yet locked.
3026 * We return with mmap_sem still held, but pte unmapped and unlocked.
3028 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3029 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3030 unsigned int flags
, pte_t orig_pte
)
3033 struct page
*page
, *swapcache
;
3037 struct mem_cgroup
*ptr
;
3041 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
3044 entry
= pte_to_swp_entry(orig_pte
);
3045 if (unlikely(non_swap_entry(entry
))) {
3046 if (is_migration_entry(entry
)) {
3047 migration_entry_wait(mm
, pmd
, address
);
3048 } else if (is_hwpoison_entry(entry
)) {
3049 ret
= VM_FAULT_HWPOISON
;
3051 print_bad_pte(vma
, address
, orig_pte
, NULL
);
3052 ret
= VM_FAULT_SIGBUS
;
3056 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
3057 page
= lookup_swap_cache(entry
);
3059 page
= swapin_readahead(entry
,
3060 GFP_HIGHUSER_MOVABLE
, vma
, address
);
3063 * Back out if somebody else faulted in this pte
3064 * while we released the pte lock.
3066 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3067 if (likely(pte_same(*page_table
, orig_pte
)))
3069 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
3073 /* Had to read the page from swap area: Major fault */
3074 ret
= VM_FAULT_MAJOR
;
3075 count_vm_event(PGMAJFAULT
);
3076 mem_cgroup_count_vm_event(mm
, PGMAJFAULT
);
3077 } else if (PageHWPoison(page
)) {
3079 * hwpoisoned dirty swapcache pages are kept for killing
3080 * owner processes (which may be unknown at hwpoison time)
3082 ret
= VM_FAULT_HWPOISON
;
3083 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
3089 locked
= lock_page_or_retry(page
, mm
, flags
);
3091 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
3093 ret
|= VM_FAULT_RETRY
;
3098 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3099 * release the swapcache from under us. The page pin, and pte_same
3100 * test below, are not enough to exclude that. Even if it is still
3101 * swapcache, we need to check that the page's swap has not changed.
3103 if (unlikely(!PageSwapCache(page
) || page_private(page
) != entry
.val
))
3106 page
= ksm_might_need_to_copy(page
, vma
, address
);
3107 if (unlikely(!page
)) {
3113 if (mem_cgroup_try_charge_swapin(mm
, page
, GFP_KERNEL
, &ptr
)) {
3119 * Back out if somebody else already faulted in this pte.
3121 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3122 if (unlikely(!pte_same(*page_table
, orig_pte
)))
3125 if (unlikely(!PageUptodate(page
))) {
3126 ret
= VM_FAULT_SIGBUS
;
3131 * The page isn't present yet, go ahead with the fault.
3133 * Be careful about the sequence of operations here.
3134 * To get its accounting right, reuse_swap_page() must be called
3135 * while the page is counted on swap but not yet in mapcount i.e.
3136 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3137 * must be called after the swap_free(), or it will never succeed.
3138 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3139 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3140 * in page->private. In this case, a record in swap_cgroup is silently
3141 * discarded at swap_free().
3144 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
3145 dec_mm_counter_fast(mm
, MM_SWAPENTS
);
3146 pte
= mk_pte(page
, vma
->vm_page_prot
);
3147 if ((flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
)) {
3148 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
3149 flags
&= ~FAULT_FLAG_WRITE
;
3150 ret
|= VM_FAULT_WRITE
;
3153 flush_icache_page(vma
, page
);
3154 if (pte_swp_soft_dirty(orig_pte
))
3155 pte
= pte_mksoft_dirty(pte
);
3156 set_pte_at(mm
, address
, page_table
, pte
);
3157 if (page
== swapcache
)
3158 do_page_add_anon_rmap(page
, vma
, address
, exclusive
);
3159 else /* ksm created a completely new copy */
3160 page_add_new_anon_rmap(page
, vma
, address
);
3161 /* It's better to call commit-charge after rmap is established */
3162 mem_cgroup_commit_charge_swapin(page
, ptr
);
3165 if (vm_swap_full() || (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
3166 try_to_free_swap(page
);
3168 if (page
!= swapcache
) {
3170 * Hold the lock to avoid the swap entry to be reused
3171 * until we take the PT lock for the pte_same() check
3172 * (to avoid false positives from pte_same). For
3173 * further safety release the lock after the swap_free
3174 * so that the swap count won't change under a
3175 * parallel locked swapcache.
3177 unlock_page(swapcache
);
3178 page_cache_release(swapcache
);
3181 if (flags
& FAULT_FLAG_WRITE
) {
3182 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
3183 if (ret
& VM_FAULT_ERROR
)
3184 ret
&= VM_FAULT_ERROR
;
3188 /* No need to invalidate - it was non-present before */
3189 update_mmu_cache(vma
, address
, page_table
);
3191 pte_unmap_unlock(page_table
, ptl
);
3195 mem_cgroup_cancel_charge_swapin(ptr
);
3196 pte_unmap_unlock(page_table
, ptl
);
3200 page_cache_release(page
);
3201 if (page
!= swapcache
) {
3202 unlock_page(swapcache
);
3203 page_cache_release(swapcache
);
3209 * This is like a special single-page "expand_{down|up}wards()",
3210 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3211 * doesn't hit another vma.
3213 static inline int check_stack_guard_page(struct vm_area_struct
*vma
, unsigned long address
)
3215 address
&= PAGE_MASK
;
3216 if ((vma
->vm_flags
& VM_GROWSDOWN
) && address
== vma
->vm_start
) {
3217 struct vm_area_struct
*prev
= vma
->vm_prev
;
3220 * Is there a mapping abutting this one below?
3222 * That's only ok if it's the same stack mapping
3223 * that has gotten split..
3225 if (prev
&& prev
->vm_end
== address
)
3226 return prev
->vm_flags
& VM_GROWSDOWN
? 0 : -ENOMEM
;
3228 expand_downwards(vma
, address
- PAGE_SIZE
);
3230 if ((vma
->vm_flags
& VM_GROWSUP
) && address
+ PAGE_SIZE
== vma
->vm_end
) {
3231 struct vm_area_struct
*next
= vma
->vm_next
;
3233 /* As VM_GROWSDOWN but s/below/above/ */
3234 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
)
3235 return next
->vm_flags
& VM_GROWSUP
? 0 : -ENOMEM
;
3237 expand_upwards(vma
, address
+ PAGE_SIZE
);
3243 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3244 * but allow concurrent faults), and pte mapped but not yet locked.
3245 * We return with mmap_sem still held, but pte unmapped and unlocked.
3247 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3248 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3255 pte_unmap(page_table
);
3257 /* Check if we need to add a guard page to the stack */
3258 if (check_stack_guard_page(vma
, address
) < 0)
3259 return VM_FAULT_SIGBUS
;
3261 /* Use the zero-page for reads */
3262 if (!(flags
& FAULT_FLAG_WRITE
)) {
3263 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(address
),
3264 vma
->vm_page_prot
));
3265 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3266 if (!pte_none(*page_table
))
3271 /* Allocate our own private page. */
3272 if (unlikely(anon_vma_prepare(vma
)))
3274 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
3278 * The memory barrier inside __SetPageUptodate makes sure that
3279 * preceeding stores to the page contents become visible before
3280 * the set_pte_at() write.
3282 __SetPageUptodate(page
);
3284 if (mem_cgroup_charge_anon(page
, mm
, GFP_KERNEL
))
3287 entry
= mk_pte(page
, vma
->vm_page_prot
);
3288 if (vma
->vm_flags
& VM_WRITE
)
3289 entry
= pte_mkwrite(pte_mkdirty(entry
));
3291 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3292 if (!pte_none(*page_table
))
3295 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
3296 page_add_new_anon_rmap(page
, vma
, address
);
3298 set_pte_at(mm
, address
, page_table
, entry
);
3300 /* No need to invalidate - it was non-present before */
3301 update_mmu_cache(vma
, address
, page_table
);
3303 pte_unmap_unlock(page_table
, ptl
);
3306 mem_cgroup_uncharge_page(page
);
3307 page_cache_release(page
);
3310 page_cache_release(page
);
3312 return VM_FAULT_OOM
;
3315 static int __do_fault(struct vm_area_struct
*vma
, unsigned long address
,
3316 pgoff_t pgoff
, unsigned int flags
, struct page
**page
)
3318 struct vm_fault vmf
;
3321 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
3326 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
3327 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3330 if (unlikely(PageHWPoison(vmf
.page
))) {
3331 if (ret
& VM_FAULT_LOCKED
)
3332 unlock_page(vmf
.page
);
3333 page_cache_release(vmf
.page
);
3334 return VM_FAULT_HWPOISON
;
3337 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
3338 lock_page(vmf
.page
);
3340 VM_BUG_ON_PAGE(!PageLocked(vmf
.page
), vmf
.page
);
3347 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
3349 * @vma: virtual memory area
3350 * @address: user virtual address
3351 * @page: page to map
3352 * @pte: pointer to target page table entry
3353 * @write: true, if new entry is writable
3354 * @anon: true, if it's anonymous page
3356 * Caller must hold page table lock relevant for @pte.
3358 * Target users are page handler itself and implementations of
3359 * vm_ops->map_pages.
3361 void do_set_pte(struct vm_area_struct
*vma
, unsigned long address
,
3362 struct page
*page
, pte_t
*pte
, bool write
, bool anon
)
3366 flush_icache_page(vma
, page
);
3367 entry
= mk_pte(page
, vma
->vm_page_prot
);
3369 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3370 else if (pte_file(*pte
) && pte_file_soft_dirty(*pte
))
3371 pte_mksoft_dirty(entry
);
3373 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3374 page_add_new_anon_rmap(page
, vma
, address
);
3376 inc_mm_counter_fast(vma
->vm_mm
, MM_FILEPAGES
);
3377 page_add_file_rmap(page
);
3379 set_pte_at(vma
->vm_mm
, address
, pte
, entry
);
3381 /* no need to invalidate: a not-present page won't be cached */
3382 update_mmu_cache(vma
, address
, pte
);
3385 #define FAULT_AROUND_ORDER 4
3387 #ifdef CONFIG_DEBUG_FS
3388 static unsigned int fault_around_order
= FAULT_AROUND_ORDER
;
3390 static int fault_around_order_get(void *data
, u64
*val
)
3392 *val
= fault_around_order
;
3396 static int fault_around_order_set(void *data
, u64 val
)
3398 BUILD_BUG_ON((1UL << FAULT_AROUND_ORDER
) > PTRS_PER_PTE
);
3399 if (1UL << val
> PTRS_PER_PTE
)
3401 fault_around_order
= val
;
3404 DEFINE_SIMPLE_ATTRIBUTE(fault_around_order_fops
,
3405 fault_around_order_get
, fault_around_order_set
, "%llu\n");
3407 static int __init
fault_around_debugfs(void)
3411 ret
= debugfs_create_file("fault_around_order", 0644, NULL
, NULL
,
3412 &fault_around_order_fops
);
3414 pr_warn("Failed to create fault_around_order in debugfs");
3417 late_initcall(fault_around_debugfs
);
3419 static inline unsigned long fault_around_pages(void)
3421 return 1UL << fault_around_order
;
3424 static inline unsigned long fault_around_mask(void)
3426 return ~((1UL << (PAGE_SHIFT
+ fault_around_order
)) - 1);
3429 static inline unsigned long fault_around_pages(void)
3431 unsigned long nr_pages
;
3433 nr_pages
= 1UL << FAULT_AROUND_ORDER
;
3434 BUILD_BUG_ON(nr_pages
> PTRS_PER_PTE
);
3438 static inline unsigned long fault_around_mask(void)
3440 return ~((1UL << (PAGE_SHIFT
+ FAULT_AROUND_ORDER
)) - 1);
3444 static void do_fault_around(struct vm_area_struct
*vma
, unsigned long address
,
3445 pte_t
*pte
, pgoff_t pgoff
, unsigned int flags
)
3447 unsigned long start_addr
;
3449 struct vm_fault vmf
;
3452 start_addr
= max(address
& fault_around_mask(), vma
->vm_start
);
3453 off
= ((address
- start_addr
) >> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
3458 * max_pgoff is either end of page table or end of vma
3459 * or fault_around_pages() from pgoff, depending what is neast.
3461 max_pgoff
= pgoff
- ((start_addr
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1)) +
3463 max_pgoff
= min3(max_pgoff
, vma_pages(vma
) + vma
->vm_pgoff
- 1,
3464 pgoff
+ fault_around_pages() - 1);
3466 /* Check if it makes any sense to call ->map_pages */
3467 while (!pte_none(*pte
)) {
3468 if (++pgoff
> max_pgoff
)
3470 start_addr
+= PAGE_SIZE
;
3471 if (start_addr
>= vma
->vm_end
)
3476 vmf
.virtual_address
= (void __user
*) start_addr
;
3479 vmf
.max_pgoff
= max_pgoff
;
3481 vma
->vm_ops
->map_pages(vma
, &vmf
);
3484 static int do_read_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3485 unsigned long address
, pmd_t
*pmd
,
3486 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
3488 struct page
*fault_page
;
3494 * Let's call ->map_pages() first and use ->fault() as fallback
3495 * if page by the offset is not ready to be mapped (cold cache or
3498 if (vma
->vm_ops
->map_pages
) {
3499 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3500 do_fault_around(vma
, address
, pte
, pgoff
, flags
);
3501 if (!pte_same(*pte
, orig_pte
))
3503 pte_unmap_unlock(pte
, ptl
);
3506 ret
= __do_fault(vma
, address
, pgoff
, flags
, &fault_page
);
3507 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3510 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3511 if (unlikely(!pte_same(*pte
, orig_pte
))) {
3512 pte_unmap_unlock(pte
, ptl
);
3513 unlock_page(fault_page
);
3514 page_cache_release(fault_page
);
3517 do_set_pte(vma
, address
, fault_page
, pte
, false, false);
3518 unlock_page(fault_page
);
3520 pte_unmap_unlock(pte
, ptl
);
3524 static int do_cow_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3525 unsigned long address
, pmd_t
*pmd
,
3526 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
3528 struct page
*fault_page
, *new_page
;
3533 if (unlikely(anon_vma_prepare(vma
)))
3534 return VM_FAULT_OOM
;
3536 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
3538 return VM_FAULT_OOM
;
3540 if (mem_cgroup_charge_anon(new_page
, mm
, GFP_KERNEL
)) {
3541 page_cache_release(new_page
);
3542 return VM_FAULT_OOM
;
3545 ret
= __do_fault(vma
, address
, pgoff
, flags
, &fault_page
);
3546 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3549 copy_user_highpage(new_page
, fault_page
, address
, vma
);
3550 __SetPageUptodate(new_page
);
3552 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3553 if (unlikely(!pte_same(*pte
, orig_pte
))) {
3554 pte_unmap_unlock(pte
, ptl
);
3555 unlock_page(fault_page
);
3556 page_cache_release(fault_page
);
3559 do_set_pte(vma
, address
, new_page
, pte
, true, true);
3560 pte_unmap_unlock(pte
, ptl
);
3561 unlock_page(fault_page
);
3562 page_cache_release(fault_page
);
3565 mem_cgroup_uncharge_page(new_page
);
3566 page_cache_release(new_page
);
3570 static int do_shared_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3571 unsigned long address
, pmd_t
*pmd
,
3572 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
3574 struct page
*fault_page
;
3575 struct address_space
*mapping
;
3581 ret
= __do_fault(vma
, address
, pgoff
, flags
, &fault_page
);
3582 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3586 * Check if the backing address space wants to know that the page is
3587 * about to become writable
3589 if (vma
->vm_ops
->page_mkwrite
) {
3590 unlock_page(fault_page
);
3591 tmp
= do_page_mkwrite(vma
, fault_page
, address
);
3592 if (unlikely(!tmp
||
3593 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
3594 page_cache_release(fault_page
);
3599 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3600 if (unlikely(!pte_same(*pte
, orig_pte
))) {
3601 pte_unmap_unlock(pte
, ptl
);
3602 unlock_page(fault_page
);
3603 page_cache_release(fault_page
);
3606 do_set_pte(vma
, address
, fault_page
, pte
, true, false);
3607 pte_unmap_unlock(pte
, ptl
);
3609 if (set_page_dirty(fault_page
))
3611 mapping
= fault_page
->mapping
;
3612 unlock_page(fault_page
);
3613 if ((dirtied
|| vma
->vm_ops
->page_mkwrite
) && mapping
) {
3615 * Some device drivers do not set page.mapping but still
3618 balance_dirty_pages_ratelimited(mapping
);
3621 /* file_update_time outside page_lock */
3622 if (vma
->vm_file
&& !vma
->vm_ops
->page_mkwrite
)
3623 file_update_time(vma
->vm_file
);
3628 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3629 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3630 unsigned int flags
, pte_t orig_pte
)
3632 pgoff_t pgoff
= (((address
& PAGE_MASK
)
3633 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
3635 pte_unmap(page_table
);
3636 if (!(flags
& FAULT_FLAG_WRITE
))
3637 return do_read_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3639 if (!(vma
->vm_flags
& VM_SHARED
))
3640 return do_cow_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3642 return do_shared_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3646 * Fault of a previously existing named mapping. Repopulate the pte
3647 * from the encoded file_pte if possible. This enables swappable
3650 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3651 * but allow concurrent faults), and pte mapped but not yet locked.
3652 * We return with mmap_sem still held, but pte unmapped and unlocked.
3654 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3655 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3656 unsigned int flags
, pte_t orig_pte
)
3660 flags
|= FAULT_FLAG_NONLINEAR
;
3662 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
3665 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
3667 * Page table corrupted: show pte and kill process.
3669 print_bad_pte(vma
, address
, orig_pte
, NULL
);
3670 return VM_FAULT_SIGBUS
;
3673 pgoff
= pte_to_pgoff(orig_pte
);
3674 if (!(flags
& FAULT_FLAG_WRITE
))
3675 return do_read_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3677 if (!(vma
->vm_flags
& VM_SHARED
))
3678 return do_cow_fault(mm
, vma
, address
, pmd
, pgoff
, flags
,
3680 return do_shared_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3683 static int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3684 unsigned long addr
, int page_nid
,
3689 count_vm_numa_event(NUMA_HINT_FAULTS
);
3690 if (page_nid
== numa_node_id()) {
3691 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3692 *flags
|= TNF_FAULT_LOCAL
;
3695 return mpol_misplaced(page
, vma
, addr
);
3698 static int do_numa_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3699 unsigned long addr
, pte_t pte
, pte_t
*ptep
, pmd_t
*pmd
)
3701 struct page
*page
= NULL
;
3706 bool migrated
= false;
3710 * The "pte" at this point cannot be used safely without
3711 * validation through pte_unmap_same(). It's of NUMA type but
3712 * the pfn may be screwed if the read is non atomic.
3714 * ptep_modify_prot_start is not called as this is clearing
3715 * the _PAGE_NUMA bit and it is not really expected that there
3716 * would be concurrent hardware modifications to the PTE.
3718 ptl
= pte_lockptr(mm
, pmd
);
3720 if (unlikely(!pte_same(*ptep
, pte
))) {
3721 pte_unmap_unlock(ptep
, ptl
);
3725 pte
= pte_mknonnuma(pte
);
3726 set_pte_at(mm
, addr
, ptep
, pte
);
3727 update_mmu_cache(vma
, addr
, ptep
);
3729 page
= vm_normal_page(vma
, addr
, pte
);
3731 pte_unmap_unlock(ptep
, ptl
);
3734 BUG_ON(is_zero_pfn(page_to_pfn(page
)));
3737 * Avoid grouping on DSO/COW pages in specific and RO pages
3738 * in general, RO pages shouldn't hurt as much anyway since
3739 * they can be in shared cache state.
3741 if (!pte_write(pte
))
3742 flags
|= TNF_NO_GROUP
;
3745 * Flag if the page is shared between multiple address spaces. This
3746 * is later used when determining whether to group tasks together
3748 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
3749 flags
|= TNF_SHARED
;
3751 last_cpupid
= page_cpupid_last(page
);
3752 page_nid
= page_to_nid(page
);
3753 target_nid
= numa_migrate_prep(page
, vma
, addr
, page_nid
, &flags
);
3754 pte_unmap_unlock(ptep
, ptl
);
3755 if (target_nid
== -1) {
3760 /* Migrate to the requested node */
3761 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
3763 page_nid
= target_nid
;
3764 flags
|= TNF_MIGRATED
;
3769 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
3774 * These routines also need to handle stuff like marking pages dirty
3775 * and/or accessed for architectures that don't do it in hardware (most
3776 * RISC architectures). The early dirtying is also good on the i386.
3778 * There is also a hook called "update_mmu_cache()" that architectures
3779 * with external mmu caches can use to update those (ie the Sparc or
3780 * PowerPC hashed page tables that act as extended TLBs).
3782 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3783 * but allow concurrent faults), and pte mapped but not yet locked.
3784 * We return with mmap_sem still held, but pte unmapped and unlocked.
3786 static int handle_pte_fault(struct mm_struct
*mm
,
3787 struct vm_area_struct
*vma
, unsigned long address
,
3788 pte_t
*pte
, pmd_t
*pmd
, unsigned int flags
)
3794 if (!pte_present(entry
)) {
3795 if (pte_none(entry
)) {
3797 if (likely(vma
->vm_ops
->fault
))
3798 return do_linear_fault(mm
, vma
, address
,
3799 pte
, pmd
, flags
, entry
);
3801 return do_anonymous_page(mm
, vma
, address
,
3804 if (pte_file(entry
))
3805 return do_nonlinear_fault(mm
, vma
, address
,
3806 pte
, pmd
, flags
, entry
);
3807 return do_swap_page(mm
, vma
, address
,
3808 pte
, pmd
, flags
, entry
);
3811 if (pte_numa(entry
))
3812 return do_numa_page(mm
, vma
, address
, entry
, pte
, pmd
);
3814 ptl
= pte_lockptr(mm
, pmd
);
3816 if (unlikely(!pte_same(*pte
, entry
)))
3818 if (flags
& FAULT_FLAG_WRITE
) {
3819 if (!pte_write(entry
))
3820 return do_wp_page(mm
, vma
, address
,
3821 pte
, pmd
, ptl
, entry
);
3822 entry
= pte_mkdirty(entry
);
3824 entry
= pte_mkyoung(entry
);
3825 if (ptep_set_access_flags(vma
, address
, pte
, entry
, flags
& FAULT_FLAG_WRITE
)) {
3826 update_mmu_cache(vma
, address
, pte
);
3829 * This is needed only for protection faults but the arch code
3830 * is not yet telling us if this is a protection fault or not.
3831 * This still avoids useless tlb flushes for .text page faults
3834 if (flags
& FAULT_FLAG_WRITE
)
3835 flush_tlb_fix_spurious_fault(vma
, address
);
3838 pte_unmap_unlock(pte
, ptl
);
3843 * By the time we get here, we already hold the mm semaphore
3845 static int __handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3846 unsigned long address
, unsigned int flags
)
3853 if (unlikely(is_vm_hugetlb_page(vma
)))
3854 return hugetlb_fault(mm
, vma
, address
, flags
);
3856 pgd
= pgd_offset(mm
, address
);
3857 pud
= pud_alloc(mm
, pgd
, address
);
3859 return VM_FAULT_OOM
;
3860 pmd
= pmd_alloc(mm
, pud
, address
);
3862 return VM_FAULT_OOM
;
3863 if (pmd_none(*pmd
) && transparent_hugepage_enabled(vma
)) {
3864 int ret
= VM_FAULT_FALLBACK
;
3866 ret
= do_huge_pmd_anonymous_page(mm
, vma
, address
,
3868 if (!(ret
& VM_FAULT_FALLBACK
))
3871 pmd_t orig_pmd
= *pmd
;
3875 if (pmd_trans_huge(orig_pmd
)) {
3876 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
3879 * If the pmd is splitting, return and retry the
3880 * the fault. Alternative: wait until the split
3881 * is done, and goto retry.
3883 if (pmd_trans_splitting(orig_pmd
))
3886 if (pmd_numa(orig_pmd
))
3887 return do_huge_pmd_numa_page(mm
, vma
, address
,
3890 if (dirty
&& !pmd_write(orig_pmd
)) {
3891 ret
= do_huge_pmd_wp_page(mm
, vma
, address
, pmd
,
3893 if (!(ret
& VM_FAULT_FALLBACK
))
3896 huge_pmd_set_accessed(mm
, vma
, address
, pmd
,
3903 /* THP should already have been handled */
3904 BUG_ON(pmd_numa(*pmd
));
3907 * Use __pte_alloc instead of pte_alloc_map, because we can't
3908 * run pte_offset_map on the pmd, if an huge pmd could
3909 * materialize from under us from a different thread.
3911 if (unlikely(pmd_none(*pmd
)) &&
3912 unlikely(__pte_alloc(mm
, vma
, pmd
, address
)))
3913 return VM_FAULT_OOM
;
3914 /* if an huge pmd materialized from under us just retry later */
3915 if (unlikely(pmd_trans_huge(*pmd
)))
3918 * A regular pmd is established and it can't morph into a huge pmd
3919 * from under us anymore at this point because we hold the mmap_sem
3920 * read mode and khugepaged takes it in write mode. So now it's
3921 * safe to run pte_offset_map().
3923 pte
= pte_offset_map(pmd
, address
);
3925 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
3928 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3929 unsigned long address
, unsigned int flags
)
3933 __set_current_state(TASK_RUNNING
);
3935 count_vm_event(PGFAULT
);
3936 mem_cgroup_count_vm_event(mm
, PGFAULT
);
3938 /* do counter updates before entering really critical section. */
3939 check_sync_rss_stat(current
);
3942 * Enable the memcg OOM handling for faults triggered in user
3943 * space. Kernel faults are handled more gracefully.
3945 if (flags
& FAULT_FLAG_USER
)
3946 mem_cgroup_oom_enable();
3948 ret
= __handle_mm_fault(mm
, vma
, address
, flags
);
3950 if (flags
& FAULT_FLAG_USER
) {
3951 mem_cgroup_oom_disable();
3953 * The task may have entered a memcg OOM situation but
3954 * if the allocation error was handled gracefully (no
3955 * VM_FAULT_OOM), there is no need to kill anything.
3956 * Just clean up the OOM state peacefully.
3958 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
3959 mem_cgroup_oom_synchronize(false);
3965 #ifndef __PAGETABLE_PUD_FOLDED
3967 * Allocate page upper directory.
3968 * We've already handled the fast-path in-line.
3970 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3972 pud_t
*new = pud_alloc_one(mm
, address
);
3976 smp_wmb(); /* See comment in __pte_alloc */
3978 spin_lock(&mm
->page_table_lock
);
3979 if (pgd_present(*pgd
)) /* Another has populated it */
3982 pgd_populate(mm
, pgd
, new);
3983 spin_unlock(&mm
->page_table_lock
);
3986 #endif /* __PAGETABLE_PUD_FOLDED */
3988 #ifndef __PAGETABLE_PMD_FOLDED
3990 * Allocate page middle directory.
3991 * We've already handled the fast-path in-line.
3993 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3995 pmd_t
*new = pmd_alloc_one(mm
, address
);
3999 smp_wmb(); /* See comment in __pte_alloc */
4001 spin_lock(&mm
->page_table_lock
);
4002 #ifndef __ARCH_HAS_4LEVEL_HACK
4003 if (pud_present(*pud
)) /* Another has populated it */
4006 pud_populate(mm
, pud
, new);
4008 if (pgd_present(*pud
)) /* Another has populated it */
4011 pgd_populate(mm
, pud
, new);
4012 #endif /* __ARCH_HAS_4LEVEL_HACK */
4013 spin_unlock(&mm
->page_table_lock
);
4016 #endif /* __PAGETABLE_PMD_FOLDED */
4018 #if !defined(__HAVE_ARCH_GATE_AREA)
4020 #if defined(AT_SYSINFO_EHDR)
4021 static struct vm_area_struct gate_vma
;
4023 static int __init
gate_vma_init(void)
4025 gate_vma
.vm_mm
= NULL
;
4026 gate_vma
.vm_start
= FIXADDR_USER_START
;
4027 gate_vma
.vm_end
= FIXADDR_USER_END
;
4028 gate_vma
.vm_flags
= VM_READ
| VM_MAYREAD
| VM_EXEC
| VM_MAYEXEC
;
4029 gate_vma
.vm_page_prot
= __P101
;
4033 __initcall(gate_vma_init
);
4036 struct vm_area_struct
*get_gate_vma(struct mm_struct
*mm
)
4038 #ifdef AT_SYSINFO_EHDR
4045 int in_gate_area_no_mm(unsigned long addr
)
4047 #ifdef AT_SYSINFO_EHDR
4048 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
4054 #endif /* __HAVE_ARCH_GATE_AREA */
4056 static int __follow_pte(struct mm_struct
*mm
, unsigned long address
,
4057 pte_t
**ptepp
, spinlock_t
**ptlp
)
4064 pgd
= pgd_offset(mm
, address
);
4065 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
4068 pud
= pud_offset(pgd
, address
);
4069 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
4072 pmd
= pmd_offset(pud
, address
);
4073 VM_BUG_ON(pmd_trans_huge(*pmd
));
4074 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
4077 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
4081 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
4084 if (!pte_present(*ptep
))
4089 pte_unmap_unlock(ptep
, *ptlp
);
4094 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
4095 pte_t
**ptepp
, spinlock_t
**ptlp
)
4099 /* (void) is needed to make gcc happy */
4100 (void) __cond_lock(*ptlp
,
4101 !(res
= __follow_pte(mm
, address
, ptepp
, ptlp
)));
4106 * follow_pfn - look up PFN at a user virtual address
4107 * @vma: memory mapping
4108 * @address: user virtual address
4109 * @pfn: location to store found PFN
4111 * Only IO mappings and raw PFN mappings are allowed.
4113 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4115 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
4122 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4125 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
4128 *pfn
= pte_pfn(*ptep
);
4129 pte_unmap_unlock(ptep
, ptl
);
4132 EXPORT_SYMBOL(follow_pfn
);
4134 #ifdef CONFIG_HAVE_IOREMAP_PROT
4135 int follow_phys(struct vm_area_struct
*vma
,
4136 unsigned long address
, unsigned int flags
,
4137 unsigned long *prot
, resource_size_t
*phys
)
4143 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4146 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
4150 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
4153 *prot
= pgprot_val(pte_pgprot(pte
));
4154 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
4158 pte_unmap_unlock(ptep
, ptl
);
4163 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
4164 void *buf
, int len
, int write
)
4166 resource_size_t phys_addr
;
4167 unsigned long prot
= 0;
4168 void __iomem
*maddr
;
4169 int offset
= addr
& (PAGE_SIZE
-1);
4171 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
4174 maddr
= ioremap_prot(phys_addr
, PAGE_SIZE
, prot
);
4176 memcpy_toio(maddr
+ offset
, buf
, len
);
4178 memcpy_fromio(buf
, maddr
+ offset
, len
);
4183 EXPORT_SYMBOL_GPL(generic_access_phys
);
4187 * Access another process' address space as given in mm. If non-NULL, use the
4188 * given task for page fault accounting.
4190 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
4191 unsigned long addr
, void *buf
, int len
, int write
)
4193 struct vm_area_struct
*vma
;
4194 void *old_buf
= buf
;
4196 down_read(&mm
->mmap_sem
);
4197 /* ignore errors, just check how much was successfully transferred */
4199 int bytes
, ret
, offset
;
4201 struct page
*page
= NULL
;
4203 ret
= get_user_pages(tsk
, mm
, addr
, 1,
4204 write
, 1, &page
, &vma
);
4207 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4208 * we can access using slightly different code.
4210 #ifdef CONFIG_HAVE_IOREMAP_PROT
4211 vma
= find_vma(mm
, addr
);
4212 if (!vma
|| vma
->vm_start
> addr
)
4214 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
4215 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
4223 offset
= addr
& (PAGE_SIZE
-1);
4224 if (bytes
> PAGE_SIZE
-offset
)
4225 bytes
= PAGE_SIZE
-offset
;
4229 copy_to_user_page(vma
, page
, addr
,
4230 maddr
+ offset
, buf
, bytes
);
4231 set_page_dirty_lock(page
);
4233 copy_from_user_page(vma
, page
, addr
,
4234 buf
, maddr
+ offset
, bytes
);
4237 page_cache_release(page
);
4243 up_read(&mm
->mmap_sem
);
4245 return buf
- old_buf
;
4249 * access_remote_vm - access another process' address space
4250 * @mm: the mm_struct of the target address space
4251 * @addr: start address to access
4252 * @buf: source or destination buffer
4253 * @len: number of bytes to transfer
4254 * @write: whether the access is a write
4256 * The caller must hold a reference on @mm.
4258 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
4259 void *buf
, int len
, int write
)
4261 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
4265 * Access another process' address space.
4266 * Source/target buffer must be kernel space,
4267 * Do not walk the page table directly, use get_user_pages
4269 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
4270 void *buf
, int len
, int write
)
4272 struct mm_struct
*mm
;
4275 mm
= get_task_mm(tsk
);
4279 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
4286 * Print the name of a VMA.
4288 void print_vma_addr(char *prefix
, unsigned long ip
)
4290 struct mm_struct
*mm
= current
->mm
;
4291 struct vm_area_struct
*vma
;
4294 * Do not print if we are in atomic
4295 * contexts (in exception stacks, etc.):
4297 if (preempt_count())
4300 down_read(&mm
->mmap_sem
);
4301 vma
= find_vma(mm
, ip
);
4302 if (vma
&& vma
->vm_file
) {
4303 struct file
*f
= vma
->vm_file
;
4304 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
4308 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
4311 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
4313 vma
->vm_end
- vma
->vm_start
);
4314 free_page((unsigned long)buf
);
4317 up_read(&mm
->mmap_sem
);
4320 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4321 void might_fault(void)
4324 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4325 * holding the mmap_sem, this is safe because kernel memory doesn't
4326 * get paged out, therefore we'll never actually fault, and the
4327 * below annotations will generate false positives.
4329 if (segment_eq(get_fs(), KERNEL_DS
))
4333 * it would be nicer only to annotate paths which are not under
4334 * pagefault_disable, however that requires a larger audit and
4335 * providing helpers like get_user_atomic.
4340 __might_sleep(__FILE__
, __LINE__
, 0);
4343 might_lock_read(¤t
->mm
->mmap_sem
);
4345 EXPORT_SYMBOL(might_fault
);
4348 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4349 static void clear_gigantic_page(struct page
*page
,
4351 unsigned int pages_per_huge_page
)
4354 struct page
*p
= page
;
4357 for (i
= 0; i
< pages_per_huge_page
;
4358 i
++, p
= mem_map_next(p
, page
, i
)) {
4360 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
4363 void clear_huge_page(struct page
*page
,
4364 unsigned long addr
, unsigned int pages_per_huge_page
)
4368 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4369 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
4374 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4376 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
4380 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
4382 struct vm_area_struct
*vma
,
4383 unsigned int pages_per_huge_page
)
4386 struct page
*dst_base
= dst
;
4387 struct page
*src_base
= src
;
4389 for (i
= 0; i
< pages_per_huge_page
; ) {
4391 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
4394 dst
= mem_map_next(dst
, dst_base
, i
);
4395 src
= mem_map_next(src
, src_base
, i
);
4399 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
4400 unsigned long addr
, struct vm_area_struct
*vma
,
4401 unsigned int pages_per_huge_page
)
4405 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4406 copy_user_gigantic_page(dst
, src
, addr
, vma
,
4407 pages_per_huge_page
);
4412 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4414 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
4417 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4419 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4421 static struct kmem_cache
*page_ptl_cachep
;
4423 void __init
ptlock_cache_init(void)
4425 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
4429 bool ptlock_alloc(struct page
*page
)
4433 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
4440 void ptlock_free(struct page
*page
)
4442 kmem_cache_free(page_ptl_cachep
, page
->ptl
);