2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
57 fix mmap readahead to honour policy and enable policy for any page cache
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
62 handle mremap for shared memory (currently ignored for the policy)
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #include <linux/mempolicy.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
93 #include <linux/mmu_notifier.h>
95 #include <asm/tlbflush.h>
96 #include <asm/uaccess.h>
97 #include <linux/random.h>
102 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
103 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
105 static struct kmem_cache
*policy_cache
;
106 static struct kmem_cache
*sn_cache
;
108 /* Highest zone. An specific allocation for a zone below that is not
110 enum zone_type policy_zone
= 0;
113 * run-time system-wide default policy => local allocation
115 static struct mempolicy default_policy
= {
116 .refcnt
= ATOMIC_INIT(1), /* never free it */
117 .mode
= MPOL_PREFERRED
,
118 .flags
= MPOL_F_LOCAL
,
121 static struct mempolicy preferred_node_policy
[MAX_NUMNODES
];
123 static struct mempolicy
*get_task_policy(struct task_struct
*p
)
125 struct mempolicy
*pol
= p
->mempolicy
;
128 int node
= numa_node_id();
130 if (node
!= NUMA_NO_NODE
) {
131 pol
= &preferred_node_policy
[node
];
133 * preferred_node_policy is not initialised early in
144 static const struct mempolicy_operations
{
145 int (*create
)(struct mempolicy
*pol
, const nodemask_t
*nodes
);
147 * If read-side task has no lock to protect task->mempolicy, write-side
148 * task will rebind the task->mempolicy by two step. The first step is
149 * setting all the newly nodes, and the second step is cleaning all the
150 * disallowed nodes. In this way, we can avoid finding no node to alloc
152 * If we have a lock to protect task->mempolicy in read-side, we do
156 * MPOL_REBIND_ONCE - do rebind work at once
157 * MPOL_REBIND_STEP1 - set all the newly nodes
158 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
160 void (*rebind
)(struct mempolicy
*pol
, const nodemask_t
*nodes
,
161 enum mpol_rebind_step step
);
162 } mpol_ops
[MPOL_MAX
];
164 /* Check that the nodemask contains at least one populated zone */
165 static int is_valid_nodemask(const nodemask_t
*nodemask
)
167 return nodes_intersects(*nodemask
, node_states
[N_MEMORY
]);
170 static inline int mpol_store_user_nodemask(const struct mempolicy
*pol
)
172 return pol
->flags
& MPOL_MODE_FLAGS
;
175 static void mpol_relative_nodemask(nodemask_t
*ret
, const nodemask_t
*orig
,
176 const nodemask_t
*rel
)
179 nodes_fold(tmp
, *orig
, nodes_weight(*rel
));
180 nodes_onto(*ret
, tmp
, *rel
);
183 static int mpol_new_interleave(struct mempolicy
*pol
, const nodemask_t
*nodes
)
185 if (nodes_empty(*nodes
))
187 pol
->v
.nodes
= *nodes
;
191 static int mpol_new_preferred(struct mempolicy
*pol
, const nodemask_t
*nodes
)
194 pol
->flags
|= MPOL_F_LOCAL
; /* local allocation */
195 else if (nodes_empty(*nodes
))
196 return -EINVAL
; /* no allowed nodes */
198 pol
->v
.preferred_node
= first_node(*nodes
);
202 static int mpol_new_bind(struct mempolicy
*pol
, const nodemask_t
*nodes
)
204 if (!is_valid_nodemask(nodes
))
206 pol
->v
.nodes
= *nodes
;
211 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
212 * any, for the new policy. mpol_new() has already validated the nodes
213 * parameter with respect to the policy mode and flags. But, we need to
214 * handle an empty nodemask with MPOL_PREFERRED here.
216 * Must be called holding task's alloc_lock to protect task's mems_allowed
217 * and mempolicy. May also be called holding the mmap_semaphore for write.
219 static int mpol_set_nodemask(struct mempolicy
*pol
,
220 const nodemask_t
*nodes
, struct nodemask_scratch
*nsc
)
224 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
228 nodes_and(nsc
->mask1
,
229 cpuset_current_mems_allowed
, node_states
[N_MEMORY
]);
232 if (pol
->mode
== MPOL_PREFERRED
&& nodes_empty(*nodes
))
233 nodes
= NULL
; /* explicit local allocation */
235 if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
236 mpol_relative_nodemask(&nsc
->mask2
, nodes
,&nsc
->mask1
);
238 nodes_and(nsc
->mask2
, *nodes
, nsc
->mask1
);
240 if (mpol_store_user_nodemask(pol
))
241 pol
->w
.user_nodemask
= *nodes
;
243 pol
->w
.cpuset_mems_allowed
=
244 cpuset_current_mems_allowed
;
248 ret
= mpol_ops
[pol
->mode
].create(pol
, &nsc
->mask2
);
250 ret
= mpol_ops
[pol
->mode
].create(pol
, NULL
);
255 * This function just creates a new policy, does some check and simple
256 * initialization. You must invoke mpol_set_nodemask() to set nodes.
258 static struct mempolicy
*mpol_new(unsigned short mode
, unsigned short flags
,
261 struct mempolicy
*policy
;
263 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
264 mode
, flags
, nodes
? nodes_addr(*nodes
)[0] : NUMA_NO_NODE
);
266 if (mode
== MPOL_DEFAULT
) {
267 if (nodes
&& !nodes_empty(*nodes
))
268 return ERR_PTR(-EINVAL
);
274 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
275 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
276 * All other modes require a valid pointer to a non-empty nodemask.
278 if (mode
== MPOL_PREFERRED
) {
279 if (nodes_empty(*nodes
)) {
280 if (((flags
& MPOL_F_STATIC_NODES
) ||
281 (flags
& MPOL_F_RELATIVE_NODES
)))
282 return ERR_PTR(-EINVAL
);
284 } else if (mode
== MPOL_LOCAL
) {
285 if (!nodes_empty(*nodes
))
286 return ERR_PTR(-EINVAL
);
287 mode
= MPOL_PREFERRED
;
288 } else if (nodes_empty(*nodes
))
289 return ERR_PTR(-EINVAL
);
290 policy
= kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
292 return ERR_PTR(-ENOMEM
);
293 atomic_set(&policy
->refcnt
, 1);
295 policy
->flags
= flags
;
300 /* Slow path of a mpol destructor. */
301 void __mpol_put(struct mempolicy
*p
)
303 if (!atomic_dec_and_test(&p
->refcnt
))
305 kmem_cache_free(policy_cache
, p
);
308 static void mpol_rebind_default(struct mempolicy
*pol
, const nodemask_t
*nodes
,
309 enum mpol_rebind_step step
)
315 * MPOL_REBIND_ONCE - do rebind work at once
316 * MPOL_REBIND_STEP1 - set all the newly nodes
317 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
319 static void mpol_rebind_nodemask(struct mempolicy
*pol
, const nodemask_t
*nodes
,
320 enum mpol_rebind_step step
)
324 if (pol
->flags
& MPOL_F_STATIC_NODES
)
325 nodes_and(tmp
, pol
->w
.user_nodemask
, *nodes
);
326 else if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
327 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
330 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
333 if (step
== MPOL_REBIND_ONCE
|| step
== MPOL_REBIND_STEP1
) {
334 nodes_remap(tmp
, pol
->v
.nodes
,
335 pol
->w
.cpuset_mems_allowed
, *nodes
);
336 pol
->w
.cpuset_mems_allowed
= step
? tmp
: *nodes
;
337 } else if (step
== MPOL_REBIND_STEP2
) {
338 tmp
= pol
->w
.cpuset_mems_allowed
;
339 pol
->w
.cpuset_mems_allowed
= *nodes
;
344 if (nodes_empty(tmp
))
347 if (step
== MPOL_REBIND_STEP1
)
348 nodes_or(pol
->v
.nodes
, pol
->v
.nodes
, tmp
);
349 else if (step
== MPOL_REBIND_ONCE
|| step
== MPOL_REBIND_STEP2
)
354 if (!node_isset(current
->il_next
, tmp
)) {
355 current
->il_next
= next_node(current
->il_next
, tmp
);
356 if (current
->il_next
>= MAX_NUMNODES
)
357 current
->il_next
= first_node(tmp
);
358 if (current
->il_next
>= MAX_NUMNODES
)
359 current
->il_next
= numa_node_id();
363 static void mpol_rebind_preferred(struct mempolicy
*pol
,
364 const nodemask_t
*nodes
,
365 enum mpol_rebind_step step
)
369 if (pol
->flags
& MPOL_F_STATIC_NODES
) {
370 int node
= first_node(pol
->w
.user_nodemask
);
372 if (node_isset(node
, *nodes
)) {
373 pol
->v
.preferred_node
= node
;
374 pol
->flags
&= ~MPOL_F_LOCAL
;
376 pol
->flags
|= MPOL_F_LOCAL
;
377 } else if (pol
->flags
& MPOL_F_RELATIVE_NODES
) {
378 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
379 pol
->v
.preferred_node
= first_node(tmp
);
380 } else if (!(pol
->flags
& MPOL_F_LOCAL
)) {
381 pol
->v
.preferred_node
= node_remap(pol
->v
.preferred_node
,
382 pol
->w
.cpuset_mems_allowed
,
384 pol
->w
.cpuset_mems_allowed
= *nodes
;
389 * mpol_rebind_policy - Migrate a policy to a different set of nodes
391 * If read-side task has no lock to protect task->mempolicy, write-side
392 * task will rebind the task->mempolicy by two step. The first step is
393 * setting all the newly nodes, and the second step is cleaning all the
394 * disallowed nodes. In this way, we can avoid finding no node to alloc
396 * If we have a lock to protect task->mempolicy in read-side, we do
400 * MPOL_REBIND_ONCE - do rebind work at once
401 * MPOL_REBIND_STEP1 - set all the newly nodes
402 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
404 static void mpol_rebind_policy(struct mempolicy
*pol
, const nodemask_t
*newmask
,
405 enum mpol_rebind_step step
)
409 if (!mpol_store_user_nodemask(pol
) && step
== MPOL_REBIND_ONCE
&&
410 nodes_equal(pol
->w
.cpuset_mems_allowed
, *newmask
))
413 if (step
== MPOL_REBIND_STEP1
&& (pol
->flags
& MPOL_F_REBINDING
))
416 if (step
== MPOL_REBIND_STEP2
&& !(pol
->flags
& MPOL_F_REBINDING
))
419 if (step
== MPOL_REBIND_STEP1
)
420 pol
->flags
|= MPOL_F_REBINDING
;
421 else if (step
== MPOL_REBIND_STEP2
)
422 pol
->flags
&= ~MPOL_F_REBINDING
;
423 else if (step
>= MPOL_REBIND_NSTEP
)
426 mpol_ops
[pol
->mode
].rebind(pol
, newmask
, step
);
430 * Wrapper for mpol_rebind_policy() that just requires task
431 * pointer, and updates task mempolicy.
433 * Called with task's alloc_lock held.
436 void mpol_rebind_task(struct task_struct
*tsk
, const nodemask_t
*new,
437 enum mpol_rebind_step step
)
439 mpol_rebind_policy(tsk
->mempolicy
, new, step
);
443 * Rebind each vma in mm to new nodemask.
445 * Call holding a reference to mm. Takes mm->mmap_sem during call.
448 void mpol_rebind_mm(struct mm_struct
*mm
, nodemask_t
*new)
450 struct vm_area_struct
*vma
;
452 down_write(&mm
->mmap_sem
);
453 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
454 mpol_rebind_policy(vma
->vm_policy
, new, MPOL_REBIND_ONCE
);
455 up_write(&mm
->mmap_sem
);
458 static const struct mempolicy_operations mpol_ops
[MPOL_MAX
] = {
460 .rebind
= mpol_rebind_default
,
462 [MPOL_INTERLEAVE
] = {
463 .create
= mpol_new_interleave
,
464 .rebind
= mpol_rebind_nodemask
,
467 .create
= mpol_new_preferred
,
468 .rebind
= mpol_rebind_preferred
,
471 .create
= mpol_new_bind
,
472 .rebind
= mpol_rebind_nodemask
,
476 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
477 unsigned long flags
);
480 * Scan through pages checking if pages follow certain conditions,
481 * and move them to the pagelist if they do.
483 static int queue_pages_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
484 unsigned long addr
, unsigned long end
,
485 const nodemask_t
*nodes
, unsigned long flags
,
492 orig_pte
= pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
497 if (!pte_present(*pte
))
499 page
= vm_normal_page(vma
, addr
, *pte
);
503 * vm_normal_page() filters out zero pages, but there might
504 * still be PageReserved pages to skip, perhaps in a VDSO.
506 if (PageReserved(page
))
508 nid
= page_to_nid(page
);
509 if (node_isset(nid
, *nodes
) == !!(flags
& MPOL_MF_INVERT
))
512 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
))
513 migrate_page_add(page
, private, flags
);
516 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
517 pte_unmap_unlock(orig_pte
, ptl
);
521 static void queue_pages_hugetlb_pmd_range(struct vm_area_struct
*vma
,
522 pmd_t
*pmd
, const nodemask_t
*nodes
, unsigned long flags
,
525 #ifdef CONFIG_HUGETLB_PAGE
530 ptl
= huge_pte_lock(hstate_vma(vma
), vma
->vm_mm
, (pte_t
*)pmd
);
531 page
= pte_page(huge_ptep_get((pte_t
*)pmd
));
532 nid
= page_to_nid(page
);
533 if (node_isset(nid
, *nodes
) == !!(flags
& MPOL_MF_INVERT
))
535 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
536 if (flags
& (MPOL_MF_MOVE_ALL
) ||
537 (flags
& MPOL_MF_MOVE
&& page_mapcount(page
) == 1))
538 isolate_huge_page(page
, private);
546 static inline int queue_pages_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
547 unsigned long addr
, unsigned long end
,
548 const nodemask_t
*nodes
, unsigned long flags
,
554 pmd
= pmd_offset(pud
, addr
);
556 next
= pmd_addr_end(addr
, end
);
557 if (!pmd_present(*pmd
))
559 if (pmd_huge(*pmd
) && is_vm_hugetlb_page(vma
)) {
560 queue_pages_hugetlb_pmd_range(vma
, pmd
, nodes
,
564 split_huge_page_pmd(vma
, addr
, pmd
);
565 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
567 if (queue_pages_pte_range(vma
, pmd
, addr
, next
, nodes
,
570 } while (pmd
++, addr
= next
, addr
!= end
);
574 static inline int queue_pages_pud_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
575 unsigned long addr
, unsigned long end
,
576 const nodemask_t
*nodes
, unsigned long flags
,
582 pud
= pud_offset(pgd
, addr
);
584 next
= pud_addr_end(addr
, end
);
585 if (pud_huge(*pud
) && is_vm_hugetlb_page(vma
))
587 if (pud_none_or_clear_bad(pud
))
589 if (queue_pages_pmd_range(vma
, pud
, addr
, next
, nodes
,
592 } while (pud
++, addr
= next
, addr
!= end
);
596 static inline int queue_pages_pgd_range(struct vm_area_struct
*vma
,
597 unsigned long addr
, unsigned long end
,
598 const nodemask_t
*nodes
, unsigned long flags
,
604 pgd
= pgd_offset(vma
->vm_mm
, addr
);
606 next
= pgd_addr_end(addr
, end
);
607 if (pgd_none_or_clear_bad(pgd
))
609 if (queue_pages_pud_range(vma
, pgd
, addr
, next
, nodes
,
612 } while (pgd
++, addr
= next
, addr
!= end
);
616 #ifdef CONFIG_NUMA_BALANCING
618 * This is used to mark a range of virtual addresses to be inaccessible.
619 * These are later cleared by a NUMA hinting fault. Depending on these
620 * faults, pages may be migrated for better NUMA placement.
622 * This is assuming that NUMA faults are handled using PROT_NONE. If
623 * an architecture makes a different choice, it will need further
624 * changes to the core.
626 unsigned long change_prot_numa(struct vm_area_struct
*vma
,
627 unsigned long addr
, unsigned long end
)
631 nr_updated
= change_protection(vma
, addr
, end
, vma
->vm_page_prot
, 0, 1);
633 count_vm_numa_events(NUMA_PTE_UPDATES
, nr_updated
);
638 static unsigned long change_prot_numa(struct vm_area_struct
*vma
,
639 unsigned long addr
, unsigned long end
)
643 #endif /* CONFIG_NUMA_BALANCING */
646 * Walk through page tables and collect pages to be migrated.
648 * If pages found in a given range are on a set of nodes (determined by
649 * @nodes and @flags,) it's isolated and queued to the pagelist which is
650 * passed via @private.)
652 static struct vm_area_struct
*
653 queue_pages_range(struct mm_struct
*mm
, unsigned long start
, unsigned long end
,
654 const nodemask_t
*nodes
, unsigned long flags
, void *private)
657 struct vm_area_struct
*first
, *vma
, *prev
;
660 first
= find_vma(mm
, start
);
662 return ERR_PTR(-EFAULT
);
664 for (vma
= first
; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
) {
665 unsigned long endvma
= vma
->vm_end
;
669 if (vma
->vm_start
> start
)
670 start
= vma
->vm_start
;
672 if (!(flags
& MPOL_MF_DISCONTIG_OK
)) {
673 if (!vma
->vm_next
&& vma
->vm_end
< end
)
674 return ERR_PTR(-EFAULT
);
675 if (prev
&& prev
->vm_end
< vma
->vm_start
)
676 return ERR_PTR(-EFAULT
);
679 if (flags
& MPOL_MF_LAZY
) {
680 change_prot_numa(vma
, start
, endvma
);
684 if ((flags
& MPOL_MF_STRICT
) ||
685 ((flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) &&
686 vma_migratable(vma
))) {
688 err
= queue_pages_pgd_range(vma
, start
, endvma
, nodes
,
691 first
= ERR_PTR(err
);
702 * Apply policy to a single VMA
703 * This must be called with the mmap_sem held for writing.
705 static int vma_replace_policy(struct vm_area_struct
*vma
,
706 struct mempolicy
*pol
)
709 struct mempolicy
*old
;
710 struct mempolicy
*new;
712 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
713 vma
->vm_start
, vma
->vm_end
, vma
->vm_pgoff
,
714 vma
->vm_ops
, vma
->vm_file
,
715 vma
->vm_ops
? vma
->vm_ops
->set_policy
: NULL
);
721 if (vma
->vm_ops
&& vma
->vm_ops
->set_policy
) {
722 err
= vma
->vm_ops
->set_policy(vma
, new);
727 old
= vma
->vm_policy
;
728 vma
->vm_policy
= new; /* protected by mmap_sem */
737 /* Step 2: apply policy to a range and do splits. */
738 static int mbind_range(struct mm_struct
*mm
, unsigned long start
,
739 unsigned long end
, struct mempolicy
*new_pol
)
741 struct vm_area_struct
*next
;
742 struct vm_area_struct
*prev
;
743 struct vm_area_struct
*vma
;
746 unsigned long vmstart
;
749 vma
= find_vma(mm
, start
);
750 if (!vma
|| vma
->vm_start
> start
)
754 if (start
> vma
->vm_start
)
757 for (; vma
&& vma
->vm_start
< end
; prev
= vma
, vma
= next
) {
759 vmstart
= max(start
, vma
->vm_start
);
760 vmend
= min(end
, vma
->vm_end
);
762 if (mpol_equal(vma_policy(vma
), new_pol
))
765 pgoff
= vma
->vm_pgoff
+
766 ((vmstart
- vma
->vm_start
) >> PAGE_SHIFT
);
767 prev
= vma_merge(mm
, prev
, vmstart
, vmend
, vma
->vm_flags
,
768 vma
->anon_vma
, vma
->vm_file
, pgoff
,
773 if (mpol_equal(vma_policy(vma
), new_pol
))
775 /* vma_merge() joined vma && vma->next, case 8 */
778 if (vma
->vm_start
!= vmstart
) {
779 err
= split_vma(vma
->vm_mm
, vma
, vmstart
, 1);
783 if (vma
->vm_end
!= vmend
) {
784 err
= split_vma(vma
->vm_mm
, vma
, vmend
, 0);
789 err
= vma_replace_policy(vma
, new_pol
);
798 /* Set the process memory policy */
799 static long do_set_mempolicy(unsigned short mode
, unsigned short flags
,
802 struct mempolicy
*new, *old
;
803 struct mm_struct
*mm
= current
->mm
;
804 NODEMASK_SCRATCH(scratch
);
810 new = mpol_new(mode
, flags
, nodes
);
816 * prevent changing our mempolicy while show_numa_maps()
818 * Note: do_set_mempolicy() can be called at init time
822 down_write(&mm
->mmap_sem
);
824 ret
= mpol_set_nodemask(new, nodes
, scratch
);
826 task_unlock(current
);
828 up_write(&mm
->mmap_sem
);
832 old
= current
->mempolicy
;
833 current
->mempolicy
= new;
834 if (new && new->mode
== MPOL_INTERLEAVE
&&
835 nodes_weight(new->v
.nodes
))
836 current
->il_next
= first_node(new->v
.nodes
);
837 task_unlock(current
);
839 up_write(&mm
->mmap_sem
);
844 NODEMASK_SCRATCH_FREE(scratch
);
849 * Return nodemask for policy for get_mempolicy() query
851 * Called with task's alloc_lock held
853 static void get_policy_nodemask(struct mempolicy
*p
, nodemask_t
*nodes
)
856 if (p
== &default_policy
)
862 case MPOL_INTERLEAVE
:
866 if (!(p
->flags
& MPOL_F_LOCAL
))
867 node_set(p
->v
.preferred_node
, *nodes
);
868 /* else return empty node mask for local allocation */
875 static int lookup_node(struct mm_struct
*mm
, unsigned long addr
)
880 err
= get_user_pages(current
, mm
, addr
& PAGE_MASK
, 1, 0, 0, &p
, NULL
);
882 err
= page_to_nid(p
);
888 /* Retrieve NUMA policy */
889 static long do_get_mempolicy(int *policy
, nodemask_t
*nmask
,
890 unsigned long addr
, unsigned long flags
)
893 struct mm_struct
*mm
= current
->mm
;
894 struct vm_area_struct
*vma
= NULL
;
895 struct mempolicy
*pol
= current
->mempolicy
;
898 ~(unsigned long)(MPOL_F_NODE
|MPOL_F_ADDR
|MPOL_F_MEMS_ALLOWED
))
901 if (flags
& MPOL_F_MEMS_ALLOWED
) {
902 if (flags
& (MPOL_F_NODE
|MPOL_F_ADDR
))
904 *policy
= 0; /* just so it's initialized */
906 *nmask
= cpuset_current_mems_allowed
;
907 task_unlock(current
);
911 if (flags
& MPOL_F_ADDR
) {
913 * Do NOT fall back to task policy if the
914 * vma/shared policy at addr is NULL. We
915 * want to return MPOL_DEFAULT in this case.
917 down_read(&mm
->mmap_sem
);
918 vma
= find_vma_intersection(mm
, addr
, addr
+1);
920 up_read(&mm
->mmap_sem
);
923 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
)
924 pol
= vma
->vm_ops
->get_policy(vma
, addr
);
926 pol
= vma
->vm_policy
;
931 pol
= &default_policy
; /* indicates default behavior */
933 if (flags
& MPOL_F_NODE
) {
934 if (flags
& MPOL_F_ADDR
) {
935 err
= lookup_node(mm
, addr
);
939 } else if (pol
== current
->mempolicy
&&
940 pol
->mode
== MPOL_INTERLEAVE
) {
941 *policy
= current
->il_next
;
947 *policy
= pol
== &default_policy
? MPOL_DEFAULT
:
950 * Internal mempolicy flags must be masked off before exposing
951 * the policy to userspace.
953 *policy
|= (pol
->flags
& MPOL_MODE_FLAGS
);
957 up_read(¤t
->mm
->mmap_sem
);
963 if (mpol_store_user_nodemask(pol
)) {
964 *nmask
= pol
->w
.user_nodemask
;
967 get_policy_nodemask(pol
, nmask
);
968 task_unlock(current
);
975 up_read(¤t
->mm
->mmap_sem
);
979 #ifdef CONFIG_MIGRATION
983 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
987 * Avoid migrating a page that is shared with others.
989 if ((flags
& MPOL_MF_MOVE_ALL
) || page_mapcount(page
) == 1) {
990 if (!isolate_lru_page(page
)) {
991 list_add_tail(&page
->lru
, pagelist
);
992 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
993 page_is_file_cache(page
));
998 static struct page
*new_node_page(struct page
*page
, unsigned long node
, int **x
)
1001 return alloc_huge_page_node(page_hstate(compound_head(page
)),
1004 return alloc_pages_exact_node(node
, GFP_HIGHUSER_MOVABLE
, 0);
1008 * Migrate pages from one node to a target node.
1009 * Returns error or the number of pages not migrated.
1011 static int migrate_to_node(struct mm_struct
*mm
, int source
, int dest
,
1015 LIST_HEAD(pagelist
);
1019 node_set(source
, nmask
);
1022 * This does not "check" the range but isolates all pages that
1023 * need migration. Between passing in the full user address
1024 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1026 VM_BUG_ON(!(flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)));
1027 queue_pages_range(mm
, mm
->mmap
->vm_start
, mm
->task_size
, &nmask
,
1028 flags
| MPOL_MF_DISCONTIG_OK
, &pagelist
);
1030 if (!list_empty(&pagelist
)) {
1031 err
= migrate_pages(&pagelist
, new_node_page
, dest
,
1032 MIGRATE_SYNC
, MR_SYSCALL
);
1034 putback_movable_pages(&pagelist
);
1041 * Move pages between the two nodesets so as to preserve the physical
1042 * layout as much as possible.
1044 * Returns the number of page that could not be moved.
1046 int do_migrate_pages(struct mm_struct
*mm
, const nodemask_t
*from
,
1047 const nodemask_t
*to
, int flags
)
1053 err
= migrate_prep();
1057 down_read(&mm
->mmap_sem
);
1059 err
= migrate_vmas(mm
, from
, to
, flags
);
1064 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1065 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1066 * bit in 'tmp', and return that <source, dest> pair for migration.
1067 * The pair of nodemasks 'to' and 'from' define the map.
1069 * If no pair of bits is found that way, fallback to picking some
1070 * pair of 'source' and 'dest' bits that are not the same. If the
1071 * 'source' and 'dest' bits are the same, this represents a node
1072 * that will be migrating to itself, so no pages need move.
1074 * If no bits are left in 'tmp', or if all remaining bits left
1075 * in 'tmp' correspond to the same bit in 'to', return false
1076 * (nothing left to migrate).
1078 * This lets us pick a pair of nodes to migrate between, such that
1079 * if possible the dest node is not already occupied by some other
1080 * source node, minimizing the risk of overloading the memory on a
1081 * node that would happen if we migrated incoming memory to a node
1082 * before migrating outgoing memory source that same node.
1084 * A single scan of tmp is sufficient. As we go, we remember the
1085 * most recent <s, d> pair that moved (s != d). If we find a pair
1086 * that not only moved, but what's better, moved to an empty slot
1087 * (d is not set in tmp), then we break out then, with that pair.
1088 * Otherwise when we finish scanning from_tmp, we at least have the
1089 * most recent <s, d> pair that moved. If we get all the way through
1090 * the scan of tmp without finding any node that moved, much less
1091 * moved to an empty node, then there is nothing left worth migrating.
1095 while (!nodes_empty(tmp
)) {
1097 int source
= NUMA_NO_NODE
;
1100 for_each_node_mask(s
, tmp
) {
1103 * do_migrate_pages() tries to maintain the relative
1104 * node relationship of the pages established between
1105 * threads and memory areas.
1107 * However if the number of source nodes is not equal to
1108 * the number of destination nodes we can not preserve
1109 * this node relative relationship. In that case, skip
1110 * copying memory from a node that is in the destination
1113 * Example: [2,3,4] -> [3,4,5] moves everything.
1114 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1117 if ((nodes_weight(*from
) != nodes_weight(*to
)) &&
1118 (node_isset(s
, *to
)))
1121 d
= node_remap(s
, *from
, *to
);
1125 source
= s
; /* Node moved. Memorize */
1128 /* dest not in remaining from nodes? */
1129 if (!node_isset(dest
, tmp
))
1132 if (source
== NUMA_NO_NODE
)
1135 node_clear(source
, tmp
);
1136 err
= migrate_to_node(mm
, source
, dest
, flags
);
1143 up_read(&mm
->mmap_sem
);
1151 * Allocate a new page for page migration based on vma policy.
1152 * Start assuming that page is mapped by vma pointed to by @private.
1153 * Search forward from there, if not. N.B., this assumes that the
1154 * list of pages handed to migrate_pages()--which is how we get here--
1155 * is in virtual address order.
1157 static struct page
*new_vma_page(struct page
*page
, unsigned long private, int **x
)
1159 struct vm_area_struct
*vma
= (struct vm_area_struct
*)private;
1160 unsigned long uninitialized_var(address
);
1163 address
= page_address_in_vma(page
, vma
);
1164 if (address
!= -EFAULT
)
1169 if (PageHuge(page
)) {
1171 return alloc_huge_page_noerr(vma
, address
, 1);
1174 * if !vma, alloc_page_vma() will use task or system default policy
1176 return alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
1180 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
1181 unsigned long flags
)
1185 int do_migrate_pages(struct mm_struct
*mm
, const nodemask_t
*from
,
1186 const nodemask_t
*to
, int flags
)
1191 static struct page
*new_vma_page(struct page
*page
, unsigned long private, int **x
)
1197 static long do_mbind(unsigned long start
, unsigned long len
,
1198 unsigned short mode
, unsigned short mode_flags
,
1199 nodemask_t
*nmask
, unsigned long flags
)
1201 struct vm_area_struct
*vma
;
1202 struct mm_struct
*mm
= current
->mm
;
1203 struct mempolicy
*new;
1206 LIST_HEAD(pagelist
);
1208 if (flags
& ~(unsigned long)MPOL_MF_VALID
)
1210 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1213 if (start
& ~PAGE_MASK
)
1216 if (mode
== MPOL_DEFAULT
)
1217 flags
&= ~MPOL_MF_STRICT
;
1219 len
= (len
+ PAGE_SIZE
- 1) & PAGE_MASK
;
1227 new = mpol_new(mode
, mode_flags
, nmask
);
1229 return PTR_ERR(new);
1231 if (flags
& MPOL_MF_LAZY
)
1232 new->flags
|= MPOL_F_MOF
;
1235 * If we are using the default policy then operation
1236 * on discontinuous address spaces is okay after all
1239 flags
|= MPOL_MF_DISCONTIG_OK
;
1241 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1242 start
, start
+ len
, mode
, mode_flags
,
1243 nmask
? nodes_addr(*nmask
)[0] : NUMA_NO_NODE
);
1245 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
1247 err
= migrate_prep();
1252 NODEMASK_SCRATCH(scratch
);
1254 down_write(&mm
->mmap_sem
);
1256 err
= mpol_set_nodemask(new, nmask
, scratch
);
1257 task_unlock(current
);
1259 up_write(&mm
->mmap_sem
);
1262 NODEMASK_SCRATCH_FREE(scratch
);
1267 vma
= queue_pages_range(mm
, start
, end
, nmask
,
1268 flags
| MPOL_MF_INVERT
, &pagelist
);
1270 err
= PTR_ERR(vma
); /* maybe ... */
1272 err
= mbind_range(mm
, start
, end
, new);
1277 if (!list_empty(&pagelist
)) {
1278 WARN_ON_ONCE(flags
& MPOL_MF_LAZY
);
1279 nr_failed
= migrate_pages(&pagelist
, new_vma_page
,
1281 MIGRATE_SYNC
, MR_MEMPOLICY_MBIND
);
1283 putback_movable_pages(&pagelist
);
1286 if (nr_failed
&& (flags
& MPOL_MF_STRICT
))
1289 putback_movable_pages(&pagelist
);
1291 up_write(&mm
->mmap_sem
);
1298 * User space interface with variable sized bitmaps for nodelists.
1301 /* Copy a node mask from user space. */
1302 static int get_nodes(nodemask_t
*nodes
, const unsigned long __user
*nmask
,
1303 unsigned long maxnode
)
1306 unsigned long nlongs
;
1307 unsigned long endmask
;
1310 nodes_clear(*nodes
);
1311 if (maxnode
== 0 || !nmask
)
1313 if (maxnode
> PAGE_SIZE
*BITS_PER_BYTE
)
1316 nlongs
= BITS_TO_LONGS(maxnode
);
1317 if ((maxnode
% BITS_PER_LONG
) == 0)
1320 endmask
= (1UL << (maxnode
% BITS_PER_LONG
)) - 1;
1322 /* When the user specified more nodes than supported just check
1323 if the non supported part is all zero. */
1324 if (nlongs
> BITS_TO_LONGS(MAX_NUMNODES
)) {
1325 if (nlongs
> PAGE_SIZE
/sizeof(long))
1327 for (k
= BITS_TO_LONGS(MAX_NUMNODES
); k
< nlongs
; k
++) {
1329 if (get_user(t
, nmask
+ k
))
1331 if (k
== nlongs
- 1) {
1337 nlongs
= BITS_TO_LONGS(MAX_NUMNODES
);
1341 if (copy_from_user(nodes_addr(*nodes
), nmask
, nlongs
*sizeof(unsigned long)))
1343 nodes_addr(*nodes
)[nlongs
-1] &= endmask
;
1347 /* Copy a kernel node mask to user space */
1348 static int copy_nodes_to_user(unsigned long __user
*mask
, unsigned long maxnode
,
1351 unsigned long copy
= ALIGN(maxnode
-1, 64) / 8;
1352 const int nbytes
= BITS_TO_LONGS(MAX_NUMNODES
) * sizeof(long);
1354 if (copy
> nbytes
) {
1355 if (copy
> PAGE_SIZE
)
1357 if (clear_user((char __user
*)mask
+ nbytes
, copy
- nbytes
))
1361 return copy_to_user(mask
, nodes_addr(*nodes
), copy
) ? -EFAULT
: 0;
1364 SYSCALL_DEFINE6(mbind
, unsigned long, start
, unsigned long, len
,
1365 unsigned long, mode
, unsigned long __user
*, nmask
,
1366 unsigned long, maxnode
, unsigned, flags
)
1370 unsigned short mode_flags
;
1372 mode_flags
= mode
& MPOL_MODE_FLAGS
;
1373 mode
&= ~MPOL_MODE_FLAGS
;
1374 if (mode
>= MPOL_MAX
)
1376 if ((mode_flags
& MPOL_F_STATIC_NODES
) &&
1377 (mode_flags
& MPOL_F_RELATIVE_NODES
))
1379 err
= get_nodes(&nodes
, nmask
, maxnode
);
1382 return do_mbind(start
, len
, mode
, mode_flags
, &nodes
, flags
);
1385 /* Set the process memory policy */
1386 SYSCALL_DEFINE3(set_mempolicy
, int, mode
, unsigned long __user
*, nmask
,
1387 unsigned long, maxnode
)
1391 unsigned short flags
;
1393 flags
= mode
& MPOL_MODE_FLAGS
;
1394 mode
&= ~MPOL_MODE_FLAGS
;
1395 if ((unsigned int)mode
>= MPOL_MAX
)
1397 if ((flags
& MPOL_F_STATIC_NODES
) && (flags
& MPOL_F_RELATIVE_NODES
))
1399 err
= get_nodes(&nodes
, nmask
, maxnode
);
1402 return do_set_mempolicy(mode
, flags
, &nodes
);
1405 SYSCALL_DEFINE4(migrate_pages
, pid_t
, pid
, unsigned long, maxnode
,
1406 const unsigned long __user
*, old_nodes
,
1407 const unsigned long __user
*, new_nodes
)
1409 const struct cred
*cred
= current_cred(), *tcred
;
1410 struct mm_struct
*mm
= NULL
;
1411 struct task_struct
*task
;
1412 nodemask_t task_nodes
;
1416 NODEMASK_SCRATCH(scratch
);
1421 old
= &scratch
->mask1
;
1422 new = &scratch
->mask2
;
1424 err
= get_nodes(old
, old_nodes
, maxnode
);
1428 err
= get_nodes(new, new_nodes
, maxnode
);
1432 /* Find the mm_struct */
1434 task
= pid
? find_task_by_vpid(pid
) : current
;
1440 get_task_struct(task
);
1445 * Check if this process has the right to modify the specified
1446 * process. The right exists if the process has administrative
1447 * capabilities, superuser privileges or the same
1448 * userid as the target process.
1450 tcred
= __task_cred(task
);
1451 if (!uid_eq(cred
->euid
, tcred
->suid
) && !uid_eq(cred
->euid
, tcred
->uid
) &&
1452 !uid_eq(cred
->uid
, tcred
->suid
) && !uid_eq(cred
->uid
, tcred
->uid
) &&
1453 !capable(CAP_SYS_NICE
)) {
1460 task_nodes
= cpuset_mems_allowed(task
);
1461 /* Is the user allowed to access the target nodes? */
1462 if (!nodes_subset(*new, task_nodes
) && !capable(CAP_SYS_NICE
)) {
1467 if (!nodes_subset(*new, node_states
[N_MEMORY
])) {
1472 err
= security_task_movememory(task
);
1476 mm
= get_task_mm(task
);
1477 put_task_struct(task
);
1484 err
= do_migrate_pages(mm
, old
, new,
1485 capable(CAP_SYS_NICE
) ? MPOL_MF_MOVE_ALL
: MPOL_MF_MOVE
);
1489 NODEMASK_SCRATCH_FREE(scratch
);
1494 put_task_struct(task
);
1500 /* Retrieve NUMA policy */
1501 SYSCALL_DEFINE5(get_mempolicy
, int __user
*, policy
,
1502 unsigned long __user
*, nmask
, unsigned long, maxnode
,
1503 unsigned long, addr
, unsigned long, flags
)
1506 int uninitialized_var(pval
);
1509 if (nmask
!= NULL
&& maxnode
< MAX_NUMNODES
)
1512 err
= do_get_mempolicy(&pval
, &nodes
, addr
, flags
);
1517 if (policy
&& put_user(pval
, policy
))
1521 err
= copy_nodes_to_user(nmask
, maxnode
, &nodes
);
1526 #ifdef CONFIG_COMPAT
1528 COMPAT_SYSCALL_DEFINE5(get_mempolicy
, int __user
*, policy
,
1529 compat_ulong_t __user
*, nmask
,
1530 compat_ulong_t
, maxnode
,
1531 compat_ulong_t
, addr
, compat_ulong_t
, flags
)
1534 unsigned long __user
*nm
= NULL
;
1535 unsigned long nr_bits
, alloc_size
;
1536 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1538 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1539 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1542 nm
= compat_alloc_user_space(alloc_size
);
1544 err
= sys_get_mempolicy(policy
, nm
, nr_bits
+1, addr
, flags
);
1546 if (!err
&& nmask
) {
1547 unsigned long copy_size
;
1548 copy_size
= min_t(unsigned long, sizeof(bm
), alloc_size
);
1549 err
= copy_from_user(bm
, nm
, copy_size
);
1550 /* ensure entire bitmap is zeroed */
1551 err
|= clear_user(nmask
, ALIGN(maxnode
-1, 8) / 8);
1552 err
|= compat_put_bitmap(nmask
, bm
, nr_bits
);
1558 COMPAT_SYSCALL_DEFINE3(set_mempolicy
, int, mode
, compat_ulong_t __user
*, nmask
,
1559 compat_ulong_t
, maxnode
)
1562 unsigned long __user
*nm
= NULL
;
1563 unsigned long nr_bits
, alloc_size
;
1564 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1566 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1567 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1570 err
= compat_get_bitmap(bm
, nmask
, nr_bits
);
1571 nm
= compat_alloc_user_space(alloc_size
);
1572 err
|= copy_to_user(nm
, bm
, alloc_size
);
1578 return sys_set_mempolicy(mode
, nm
, nr_bits
+1);
1581 COMPAT_SYSCALL_DEFINE6(mbind
, compat_ulong_t
, start
, compat_ulong_t
, len
,
1582 compat_ulong_t
, mode
, compat_ulong_t __user
*, nmask
,
1583 compat_ulong_t
, maxnode
, compat_ulong_t
, flags
)
1586 unsigned long __user
*nm
= NULL
;
1587 unsigned long nr_bits
, alloc_size
;
1590 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1591 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1594 err
= compat_get_bitmap(nodes_addr(bm
), nmask
, nr_bits
);
1595 nm
= compat_alloc_user_space(alloc_size
);
1596 err
|= copy_to_user(nm
, nodes_addr(bm
), alloc_size
);
1602 return sys_mbind(start
, len
, mode
, nm
, nr_bits
+1, flags
);
1608 * get_vma_policy(@task, @vma, @addr)
1609 * @task - task for fallback if vma policy == default
1610 * @vma - virtual memory area whose policy is sought
1611 * @addr - address in @vma for shared policy lookup
1613 * Returns effective policy for a VMA at specified address.
1614 * Falls back to @task or system default policy, as necessary.
1615 * Current or other task's task mempolicy and non-shared vma policies must be
1616 * protected by task_lock(task) by the caller.
1617 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1618 * count--added by the get_policy() vm_op, as appropriate--to protect against
1619 * freeing by another task. It is the caller's responsibility to free the
1620 * extra reference for shared policies.
1622 struct mempolicy
*get_vma_policy(struct task_struct
*task
,
1623 struct vm_area_struct
*vma
, unsigned long addr
)
1625 struct mempolicy
*pol
= get_task_policy(task
);
1628 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
) {
1629 struct mempolicy
*vpol
= vma
->vm_ops
->get_policy(vma
,
1633 } else if (vma
->vm_policy
) {
1634 pol
= vma
->vm_policy
;
1637 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1638 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1639 * count on these policies which will be dropped by
1640 * mpol_cond_put() later
1642 if (mpol_needs_cond_ref(pol
))
1647 pol
= &default_policy
;
1651 bool vma_policy_mof(struct task_struct
*task
, struct vm_area_struct
*vma
)
1653 struct mempolicy
*pol
= get_task_policy(task
);
1655 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
) {
1658 pol
= vma
->vm_ops
->get_policy(vma
, vma
->vm_start
);
1659 if (pol
&& (pol
->flags
& MPOL_F_MOF
))
1664 } else if (vma
->vm_policy
) {
1665 pol
= vma
->vm_policy
;
1670 return default_policy
.flags
& MPOL_F_MOF
;
1672 return pol
->flags
& MPOL_F_MOF
;
1675 static int apply_policy_zone(struct mempolicy
*policy
, enum zone_type zone
)
1677 enum zone_type dynamic_policy_zone
= policy_zone
;
1679 BUG_ON(dynamic_policy_zone
== ZONE_MOVABLE
);
1682 * if policy->v.nodes has movable memory only,
1683 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1685 * policy->v.nodes is intersect with node_states[N_MEMORY].
1686 * so if the following test faile, it implies
1687 * policy->v.nodes has movable memory only.
1689 if (!nodes_intersects(policy
->v
.nodes
, node_states
[N_HIGH_MEMORY
]))
1690 dynamic_policy_zone
= ZONE_MOVABLE
;
1692 return zone
>= dynamic_policy_zone
;
1696 * Return a nodemask representing a mempolicy for filtering nodes for
1699 static nodemask_t
*policy_nodemask(gfp_t gfp
, struct mempolicy
*policy
)
1701 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1702 if (unlikely(policy
->mode
== MPOL_BIND
) &&
1703 apply_policy_zone(policy
, gfp_zone(gfp
)) &&
1704 cpuset_nodemask_valid_mems_allowed(&policy
->v
.nodes
))
1705 return &policy
->v
.nodes
;
1710 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1711 static struct zonelist
*policy_zonelist(gfp_t gfp
, struct mempolicy
*policy
,
1714 switch (policy
->mode
) {
1715 case MPOL_PREFERRED
:
1716 if (!(policy
->flags
& MPOL_F_LOCAL
))
1717 nd
= policy
->v
.preferred_node
;
1721 * Normally, MPOL_BIND allocations are node-local within the
1722 * allowed nodemask. However, if __GFP_THISNODE is set and the
1723 * current node isn't part of the mask, we use the zonelist for
1724 * the first node in the mask instead.
1726 if (unlikely(gfp
& __GFP_THISNODE
) &&
1727 unlikely(!node_isset(nd
, policy
->v
.nodes
)))
1728 nd
= first_node(policy
->v
.nodes
);
1733 return node_zonelist(nd
, gfp
);
1736 /* Do dynamic interleaving for a process */
1737 static unsigned interleave_nodes(struct mempolicy
*policy
)
1740 struct task_struct
*me
= current
;
1743 next
= next_node(nid
, policy
->v
.nodes
);
1744 if (next
>= MAX_NUMNODES
)
1745 next
= first_node(policy
->v
.nodes
);
1746 if (next
< MAX_NUMNODES
)
1752 * Depending on the memory policy provide a node from which to allocate the
1755 unsigned int mempolicy_slab_node(void)
1757 struct mempolicy
*policy
;
1758 int node
= numa_mem_id();
1763 policy
= current
->mempolicy
;
1764 if (!policy
|| policy
->flags
& MPOL_F_LOCAL
)
1767 switch (policy
->mode
) {
1768 case MPOL_PREFERRED
:
1770 * handled MPOL_F_LOCAL above
1772 return policy
->v
.preferred_node
;
1774 case MPOL_INTERLEAVE
:
1775 return interleave_nodes(policy
);
1779 * Follow bind policy behavior and start allocation at the
1782 struct zonelist
*zonelist
;
1784 enum zone_type highest_zoneidx
= gfp_zone(GFP_KERNEL
);
1785 zonelist
= &NODE_DATA(node
)->node_zonelists
[0];
1786 (void)first_zones_zonelist(zonelist
, highest_zoneidx
,
1789 return zone
? zone
->node
: node
;
1797 /* Do static interleaving for a VMA with known offset. */
1798 static unsigned offset_il_node(struct mempolicy
*pol
,
1799 struct vm_area_struct
*vma
, unsigned long off
)
1801 unsigned nnodes
= nodes_weight(pol
->v
.nodes
);
1804 int nid
= NUMA_NO_NODE
;
1807 return numa_node_id();
1808 target
= (unsigned int)off
% nnodes
;
1811 nid
= next_node(nid
, pol
->v
.nodes
);
1813 } while (c
<= target
);
1817 /* Determine a node number for interleave */
1818 static inline unsigned interleave_nid(struct mempolicy
*pol
,
1819 struct vm_area_struct
*vma
, unsigned long addr
, int shift
)
1825 * for small pages, there is no difference between
1826 * shift and PAGE_SHIFT, so the bit-shift is safe.
1827 * for huge pages, since vm_pgoff is in units of small
1828 * pages, we need to shift off the always 0 bits to get
1831 BUG_ON(shift
< PAGE_SHIFT
);
1832 off
= vma
->vm_pgoff
>> (shift
- PAGE_SHIFT
);
1833 off
+= (addr
- vma
->vm_start
) >> shift
;
1834 return offset_il_node(pol
, vma
, off
);
1836 return interleave_nodes(pol
);
1840 * Return the bit number of a random bit set in the nodemask.
1841 * (returns NUMA_NO_NODE if nodemask is empty)
1843 int node_random(const nodemask_t
*maskp
)
1845 int w
, bit
= NUMA_NO_NODE
;
1847 w
= nodes_weight(*maskp
);
1849 bit
= bitmap_ord_to_pos(maskp
->bits
,
1850 get_random_int() % w
, MAX_NUMNODES
);
1854 #ifdef CONFIG_HUGETLBFS
1856 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1857 * @vma = virtual memory area whose policy is sought
1858 * @addr = address in @vma for shared policy lookup and interleave policy
1859 * @gfp_flags = for requested zone
1860 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1861 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1863 * Returns a zonelist suitable for a huge page allocation and a pointer
1864 * to the struct mempolicy for conditional unref after allocation.
1865 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1866 * @nodemask for filtering the zonelist.
1868 * Must be protected by read_mems_allowed_begin()
1870 struct zonelist
*huge_zonelist(struct vm_area_struct
*vma
, unsigned long addr
,
1871 gfp_t gfp_flags
, struct mempolicy
**mpol
,
1872 nodemask_t
**nodemask
)
1874 struct zonelist
*zl
;
1876 *mpol
= get_vma_policy(current
, vma
, addr
);
1877 *nodemask
= NULL
; /* assume !MPOL_BIND */
1879 if (unlikely((*mpol
)->mode
== MPOL_INTERLEAVE
)) {
1880 zl
= node_zonelist(interleave_nid(*mpol
, vma
, addr
,
1881 huge_page_shift(hstate_vma(vma
))), gfp_flags
);
1883 zl
= policy_zonelist(gfp_flags
, *mpol
, numa_node_id());
1884 if ((*mpol
)->mode
== MPOL_BIND
)
1885 *nodemask
= &(*mpol
)->v
.nodes
;
1891 * init_nodemask_of_mempolicy
1893 * If the current task's mempolicy is "default" [NULL], return 'false'
1894 * to indicate default policy. Otherwise, extract the policy nodemask
1895 * for 'bind' or 'interleave' policy into the argument nodemask, or
1896 * initialize the argument nodemask to contain the single node for
1897 * 'preferred' or 'local' policy and return 'true' to indicate presence
1898 * of non-default mempolicy.
1900 * We don't bother with reference counting the mempolicy [mpol_get/put]
1901 * because the current task is examining it's own mempolicy and a task's
1902 * mempolicy is only ever changed by the task itself.
1904 * N.B., it is the caller's responsibility to free a returned nodemask.
1906 bool init_nodemask_of_mempolicy(nodemask_t
*mask
)
1908 struct mempolicy
*mempolicy
;
1911 if (!(mask
&& current
->mempolicy
))
1915 mempolicy
= current
->mempolicy
;
1916 switch (mempolicy
->mode
) {
1917 case MPOL_PREFERRED
:
1918 if (mempolicy
->flags
& MPOL_F_LOCAL
)
1919 nid
= numa_node_id();
1921 nid
= mempolicy
->v
.preferred_node
;
1922 init_nodemask_of_node(mask
, nid
);
1927 case MPOL_INTERLEAVE
:
1928 *mask
= mempolicy
->v
.nodes
;
1934 task_unlock(current
);
1941 * mempolicy_nodemask_intersects
1943 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1944 * policy. Otherwise, check for intersection between mask and the policy
1945 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1946 * policy, always return true since it may allocate elsewhere on fallback.
1948 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1950 bool mempolicy_nodemask_intersects(struct task_struct
*tsk
,
1951 const nodemask_t
*mask
)
1953 struct mempolicy
*mempolicy
;
1959 mempolicy
= tsk
->mempolicy
;
1963 switch (mempolicy
->mode
) {
1964 case MPOL_PREFERRED
:
1966 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1967 * allocate from, they may fallback to other nodes when oom.
1968 * Thus, it's possible for tsk to have allocated memory from
1973 case MPOL_INTERLEAVE
:
1974 ret
= nodes_intersects(mempolicy
->v
.nodes
, *mask
);
1984 /* Allocate a page in interleaved policy.
1985 Own path because it needs to do special accounting. */
1986 static struct page
*alloc_page_interleave(gfp_t gfp
, unsigned order
,
1989 struct zonelist
*zl
;
1992 zl
= node_zonelist(nid
, gfp
);
1993 page
= __alloc_pages(gfp
, order
, zl
);
1994 if (page
&& page_zone(page
) == zonelist_zone(&zl
->_zonerefs
[0]))
1995 inc_zone_page_state(page
, NUMA_INTERLEAVE_HIT
);
2000 * alloc_pages_vma - Allocate a page for a VMA.
2003 * %GFP_USER user allocation.
2004 * %GFP_KERNEL kernel allocations,
2005 * %GFP_HIGHMEM highmem/user allocations,
2006 * %GFP_FS allocation should not call back into a file system.
2007 * %GFP_ATOMIC don't sleep.
2009 * @order:Order of the GFP allocation.
2010 * @vma: Pointer to VMA or NULL if not available.
2011 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2013 * This function allocates a page from the kernel page pool and applies
2014 * a NUMA policy associated with the VMA or the current process.
2015 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2016 * mm_struct of the VMA to prevent it from going away. Should be used for
2017 * all allocations for pages that will be mapped into
2018 * user space. Returns NULL when no page can be allocated.
2020 * Should be called with the mm_sem of the vma hold.
2023 alloc_pages_vma(gfp_t gfp
, int order
, struct vm_area_struct
*vma
,
2024 unsigned long addr
, int node
)
2026 struct mempolicy
*pol
;
2028 unsigned int cpuset_mems_cookie
;
2031 pol
= get_vma_policy(current
, vma
, addr
);
2032 cpuset_mems_cookie
= read_mems_allowed_begin();
2034 if (unlikely(pol
->mode
== MPOL_INTERLEAVE
)) {
2037 nid
= interleave_nid(pol
, vma
, addr
, PAGE_SHIFT
+ order
);
2039 page
= alloc_page_interleave(gfp
, order
, nid
);
2040 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
2045 page
= __alloc_pages_nodemask(gfp
, order
,
2046 policy_zonelist(gfp
, pol
, node
),
2047 policy_nodemask(gfp
, pol
));
2048 if (unlikely(mpol_needs_cond_ref(pol
)))
2050 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
2056 * alloc_pages_current - Allocate pages.
2059 * %GFP_USER user allocation,
2060 * %GFP_KERNEL kernel allocation,
2061 * %GFP_HIGHMEM highmem allocation,
2062 * %GFP_FS don't call back into a file system.
2063 * %GFP_ATOMIC don't sleep.
2064 * @order: Power of two of allocation size in pages. 0 is a single page.
2066 * Allocate a page from the kernel page pool. When not in
2067 * interrupt context and apply the current process NUMA policy.
2068 * Returns NULL when no page can be allocated.
2070 * Don't call cpuset_update_task_memory_state() unless
2071 * 1) it's ok to take cpuset_sem (can WAIT), and
2072 * 2) allocating for current task (not interrupt).
2074 struct page
*alloc_pages_current(gfp_t gfp
, unsigned order
)
2076 struct mempolicy
*pol
= get_task_policy(current
);
2078 unsigned int cpuset_mems_cookie
;
2080 if (!pol
|| in_interrupt() || (gfp
& __GFP_THISNODE
))
2081 pol
= &default_policy
;
2084 cpuset_mems_cookie
= read_mems_allowed_begin();
2087 * No reference counting needed for current->mempolicy
2088 * nor system default_policy
2090 if (pol
->mode
== MPOL_INTERLEAVE
)
2091 page
= alloc_page_interleave(gfp
, order
, interleave_nodes(pol
));
2093 page
= __alloc_pages_nodemask(gfp
, order
,
2094 policy_zonelist(gfp
, pol
, numa_node_id()),
2095 policy_nodemask(gfp
, pol
));
2097 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
2102 EXPORT_SYMBOL(alloc_pages_current
);
2104 int vma_dup_policy(struct vm_area_struct
*src
, struct vm_area_struct
*dst
)
2106 struct mempolicy
*pol
= mpol_dup(vma_policy(src
));
2109 return PTR_ERR(pol
);
2110 dst
->vm_policy
= pol
;
2115 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2116 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2117 * with the mems_allowed returned by cpuset_mems_allowed(). This
2118 * keeps mempolicies cpuset relative after its cpuset moves. See
2119 * further kernel/cpuset.c update_nodemask().
2121 * current's mempolicy may be rebinded by the other task(the task that changes
2122 * cpuset's mems), so we needn't do rebind work for current task.
2125 /* Slow path of a mempolicy duplicate */
2126 struct mempolicy
*__mpol_dup(struct mempolicy
*old
)
2128 struct mempolicy
*new = kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
2131 return ERR_PTR(-ENOMEM
);
2133 /* task's mempolicy is protected by alloc_lock */
2134 if (old
== current
->mempolicy
) {
2137 task_unlock(current
);
2142 if (current_cpuset_is_being_rebound()) {
2143 nodemask_t mems
= cpuset_mems_allowed(current
);
2144 if (new->flags
& MPOL_F_REBINDING
)
2145 mpol_rebind_policy(new, &mems
, MPOL_REBIND_STEP2
);
2147 mpol_rebind_policy(new, &mems
, MPOL_REBIND_ONCE
);
2150 atomic_set(&new->refcnt
, 1);
2154 /* Slow path of a mempolicy comparison */
2155 bool __mpol_equal(struct mempolicy
*a
, struct mempolicy
*b
)
2159 if (a
->mode
!= b
->mode
)
2161 if (a
->flags
!= b
->flags
)
2163 if (mpol_store_user_nodemask(a
))
2164 if (!nodes_equal(a
->w
.user_nodemask
, b
->w
.user_nodemask
))
2170 case MPOL_INTERLEAVE
:
2171 return !!nodes_equal(a
->v
.nodes
, b
->v
.nodes
);
2172 case MPOL_PREFERRED
:
2173 return a
->v
.preferred_node
== b
->v
.preferred_node
;
2181 * Shared memory backing store policy support.
2183 * Remember policies even when nobody has shared memory mapped.
2184 * The policies are kept in Red-Black tree linked from the inode.
2185 * They are protected by the sp->lock spinlock, which should be held
2186 * for any accesses to the tree.
2189 /* lookup first element intersecting start-end */
2190 /* Caller holds sp->lock */
2191 static struct sp_node
*
2192 sp_lookup(struct shared_policy
*sp
, unsigned long start
, unsigned long end
)
2194 struct rb_node
*n
= sp
->root
.rb_node
;
2197 struct sp_node
*p
= rb_entry(n
, struct sp_node
, nd
);
2199 if (start
>= p
->end
)
2201 else if (end
<= p
->start
)
2209 struct sp_node
*w
= NULL
;
2210 struct rb_node
*prev
= rb_prev(n
);
2213 w
= rb_entry(prev
, struct sp_node
, nd
);
2214 if (w
->end
<= start
)
2218 return rb_entry(n
, struct sp_node
, nd
);
2221 /* Insert a new shared policy into the list. */
2222 /* Caller holds sp->lock */
2223 static void sp_insert(struct shared_policy
*sp
, struct sp_node
*new)
2225 struct rb_node
**p
= &sp
->root
.rb_node
;
2226 struct rb_node
*parent
= NULL
;
2231 nd
= rb_entry(parent
, struct sp_node
, nd
);
2232 if (new->start
< nd
->start
)
2234 else if (new->end
> nd
->end
)
2235 p
= &(*p
)->rb_right
;
2239 rb_link_node(&new->nd
, parent
, p
);
2240 rb_insert_color(&new->nd
, &sp
->root
);
2241 pr_debug("inserting %lx-%lx: %d\n", new->start
, new->end
,
2242 new->policy
? new->policy
->mode
: 0);
2245 /* Find shared policy intersecting idx */
2247 mpol_shared_policy_lookup(struct shared_policy
*sp
, unsigned long idx
)
2249 struct mempolicy
*pol
= NULL
;
2252 if (!sp
->root
.rb_node
)
2254 spin_lock(&sp
->lock
);
2255 sn
= sp_lookup(sp
, idx
, idx
+1);
2257 mpol_get(sn
->policy
);
2260 spin_unlock(&sp
->lock
);
2264 static void sp_free(struct sp_node
*n
)
2266 mpol_put(n
->policy
);
2267 kmem_cache_free(sn_cache
, n
);
2271 * mpol_misplaced - check whether current page node is valid in policy
2273 * @page - page to be checked
2274 * @vma - vm area where page mapped
2275 * @addr - virtual address where page mapped
2277 * Lookup current policy node id for vma,addr and "compare to" page's
2281 * -1 - not misplaced, page is in the right node
2282 * node - node id where the page should be
2284 * Policy determination "mimics" alloc_page_vma().
2285 * Called from fault path where we know the vma and faulting address.
2287 int mpol_misplaced(struct page
*page
, struct vm_area_struct
*vma
, unsigned long addr
)
2289 struct mempolicy
*pol
;
2291 int curnid
= page_to_nid(page
);
2292 unsigned long pgoff
;
2293 int thiscpu
= raw_smp_processor_id();
2294 int thisnid
= cpu_to_node(thiscpu
);
2300 pol
= get_vma_policy(current
, vma
, addr
);
2301 if (!(pol
->flags
& MPOL_F_MOF
))
2304 switch (pol
->mode
) {
2305 case MPOL_INTERLEAVE
:
2306 BUG_ON(addr
>= vma
->vm_end
);
2307 BUG_ON(addr
< vma
->vm_start
);
2309 pgoff
= vma
->vm_pgoff
;
2310 pgoff
+= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
2311 polnid
= offset_il_node(pol
, vma
, pgoff
);
2314 case MPOL_PREFERRED
:
2315 if (pol
->flags
& MPOL_F_LOCAL
)
2316 polnid
= numa_node_id();
2318 polnid
= pol
->v
.preferred_node
;
2323 * allows binding to multiple nodes.
2324 * use current page if in policy nodemask,
2325 * else select nearest allowed node, if any.
2326 * If no allowed nodes, use current [!misplaced].
2328 if (node_isset(curnid
, pol
->v
.nodes
))
2330 (void)first_zones_zonelist(
2331 node_zonelist(numa_node_id(), GFP_HIGHUSER
),
2332 gfp_zone(GFP_HIGHUSER
),
2333 &pol
->v
.nodes
, &zone
);
2334 polnid
= zone
->node
;
2341 /* Migrate the page towards the node whose CPU is referencing it */
2342 if (pol
->flags
& MPOL_F_MORON
) {
2345 if (!should_numa_migrate_memory(current
, page
, curnid
, thiscpu
))
2349 if (curnid
!= polnid
)
2357 static void sp_delete(struct shared_policy
*sp
, struct sp_node
*n
)
2359 pr_debug("deleting %lx-l%lx\n", n
->start
, n
->end
);
2360 rb_erase(&n
->nd
, &sp
->root
);
2364 static void sp_node_init(struct sp_node
*node
, unsigned long start
,
2365 unsigned long end
, struct mempolicy
*pol
)
2367 node
->start
= start
;
2372 static struct sp_node
*sp_alloc(unsigned long start
, unsigned long end
,
2373 struct mempolicy
*pol
)
2376 struct mempolicy
*newpol
;
2378 n
= kmem_cache_alloc(sn_cache
, GFP_KERNEL
);
2382 newpol
= mpol_dup(pol
);
2383 if (IS_ERR(newpol
)) {
2384 kmem_cache_free(sn_cache
, n
);
2387 newpol
->flags
|= MPOL_F_SHARED
;
2388 sp_node_init(n
, start
, end
, newpol
);
2393 /* Replace a policy range. */
2394 static int shared_policy_replace(struct shared_policy
*sp
, unsigned long start
,
2395 unsigned long end
, struct sp_node
*new)
2398 struct sp_node
*n_new
= NULL
;
2399 struct mempolicy
*mpol_new
= NULL
;
2403 spin_lock(&sp
->lock
);
2404 n
= sp_lookup(sp
, start
, end
);
2405 /* Take care of old policies in the same range. */
2406 while (n
&& n
->start
< end
) {
2407 struct rb_node
*next
= rb_next(&n
->nd
);
2408 if (n
->start
>= start
) {
2414 /* Old policy spanning whole new range. */
2419 *mpol_new
= *n
->policy
;
2420 atomic_set(&mpol_new
->refcnt
, 1);
2421 sp_node_init(n_new
, end
, n
->end
, mpol_new
);
2423 sp_insert(sp
, n_new
);
2432 n
= rb_entry(next
, struct sp_node
, nd
);
2436 spin_unlock(&sp
->lock
);
2443 kmem_cache_free(sn_cache
, n_new
);
2448 spin_unlock(&sp
->lock
);
2450 n_new
= kmem_cache_alloc(sn_cache
, GFP_KERNEL
);
2453 mpol_new
= kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
2460 * mpol_shared_policy_init - initialize shared policy for inode
2461 * @sp: pointer to inode shared policy
2462 * @mpol: struct mempolicy to install
2464 * Install non-NULL @mpol in inode's shared policy rb-tree.
2465 * On entry, the current task has a reference on a non-NULL @mpol.
2466 * This must be released on exit.
2467 * This is called at get_inode() calls and we can use GFP_KERNEL.
2469 void mpol_shared_policy_init(struct shared_policy
*sp
, struct mempolicy
*mpol
)
2473 sp
->root
= RB_ROOT
; /* empty tree == default mempolicy */
2474 spin_lock_init(&sp
->lock
);
2477 struct vm_area_struct pvma
;
2478 struct mempolicy
*new;
2479 NODEMASK_SCRATCH(scratch
);
2483 /* contextualize the tmpfs mount point mempolicy */
2484 new = mpol_new(mpol
->mode
, mpol
->flags
, &mpol
->w
.user_nodemask
);
2486 goto free_scratch
; /* no valid nodemask intersection */
2489 ret
= mpol_set_nodemask(new, &mpol
->w
.user_nodemask
, scratch
);
2490 task_unlock(current
);
2494 /* Create pseudo-vma that contains just the policy */
2495 memset(&pvma
, 0, sizeof(struct vm_area_struct
));
2496 pvma
.vm_end
= TASK_SIZE
; /* policy covers entire file */
2497 mpol_set_shared_policy(sp
, &pvma
, new); /* adds ref */
2500 mpol_put(new); /* drop initial ref */
2502 NODEMASK_SCRATCH_FREE(scratch
);
2504 mpol_put(mpol
); /* drop our incoming ref on sb mpol */
2508 int mpol_set_shared_policy(struct shared_policy
*info
,
2509 struct vm_area_struct
*vma
, struct mempolicy
*npol
)
2512 struct sp_node
*new = NULL
;
2513 unsigned long sz
= vma_pages(vma
);
2515 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2517 sz
, npol
? npol
->mode
: -1,
2518 npol
? npol
->flags
: -1,
2519 npol
? nodes_addr(npol
->v
.nodes
)[0] : NUMA_NO_NODE
);
2522 new = sp_alloc(vma
->vm_pgoff
, vma
->vm_pgoff
+ sz
, npol
);
2526 err
= shared_policy_replace(info
, vma
->vm_pgoff
, vma
->vm_pgoff
+sz
, new);
2532 /* Free a backing policy store on inode delete. */
2533 void mpol_free_shared_policy(struct shared_policy
*p
)
2536 struct rb_node
*next
;
2538 if (!p
->root
.rb_node
)
2540 spin_lock(&p
->lock
);
2541 next
= rb_first(&p
->root
);
2543 n
= rb_entry(next
, struct sp_node
, nd
);
2544 next
= rb_next(&n
->nd
);
2547 spin_unlock(&p
->lock
);
2550 #ifdef CONFIG_NUMA_BALANCING
2551 static int __initdata numabalancing_override
;
2553 static void __init
check_numabalancing_enable(void)
2555 bool numabalancing_default
= false;
2557 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED
))
2558 numabalancing_default
= true;
2560 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2561 if (numabalancing_override
)
2562 set_numabalancing_state(numabalancing_override
== 1);
2564 if (nr_node_ids
> 1 && !numabalancing_override
) {
2565 pr_info("%s automatic NUMA balancing. "
2566 "Configure with numa_balancing= or the "
2567 "kernel.numa_balancing sysctl",
2568 numabalancing_default
? "Enabling" : "Disabling");
2569 set_numabalancing_state(numabalancing_default
);
2573 static int __init
setup_numabalancing(char *str
)
2579 if (!strcmp(str
, "enable")) {
2580 numabalancing_override
= 1;
2582 } else if (!strcmp(str
, "disable")) {
2583 numabalancing_override
= -1;
2588 pr_warn("Unable to parse numa_balancing=\n");
2592 __setup("numa_balancing=", setup_numabalancing
);
2594 static inline void __init
check_numabalancing_enable(void)
2597 #endif /* CONFIG_NUMA_BALANCING */
2599 /* assumes fs == KERNEL_DS */
2600 void __init
numa_policy_init(void)
2602 nodemask_t interleave_nodes
;
2603 unsigned long largest
= 0;
2604 int nid
, prefer
= 0;
2606 policy_cache
= kmem_cache_create("numa_policy",
2607 sizeof(struct mempolicy
),
2608 0, SLAB_PANIC
, NULL
);
2610 sn_cache
= kmem_cache_create("shared_policy_node",
2611 sizeof(struct sp_node
),
2612 0, SLAB_PANIC
, NULL
);
2614 for_each_node(nid
) {
2615 preferred_node_policy
[nid
] = (struct mempolicy
) {
2616 .refcnt
= ATOMIC_INIT(1),
2617 .mode
= MPOL_PREFERRED
,
2618 .flags
= MPOL_F_MOF
| MPOL_F_MORON
,
2619 .v
= { .preferred_node
= nid
, },
2624 * Set interleaving policy for system init. Interleaving is only
2625 * enabled across suitably sized nodes (default is >= 16MB), or
2626 * fall back to the largest node if they're all smaller.
2628 nodes_clear(interleave_nodes
);
2629 for_each_node_state(nid
, N_MEMORY
) {
2630 unsigned long total_pages
= node_present_pages(nid
);
2632 /* Preserve the largest node */
2633 if (largest
< total_pages
) {
2634 largest
= total_pages
;
2638 /* Interleave this node? */
2639 if ((total_pages
<< PAGE_SHIFT
) >= (16 << 20))
2640 node_set(nid
, interleave_nodes
);
2643 /* All too small, use the largest */
2644 if (unlikely(nodes_empty(interleave_nodes
)))
2645 node_set(prefer
, interleave_nodes
);
2647 if (do_set_mempolicy(MPOL_INTERLEAVE
, 0, &interleave_nodes
))
2648 printk("numa_policy_init: interleaving failed\n");
2650 check_numabalancing_enable();
2653 /* Reset policy of current process to default */
2654 void numa_default_policy(void)
2656 do_set_mempolicy(MPOL_DEFAULT
, 0, NULL
);
2660 * Parse and format mempolicy from/to strings
2664 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2666 static const char * const policy_modes
[] =
2668 [MPOL_DEFAULT
] = "default",
2669 [MPOL_PREFERRED
] = "prefer",
2670 [MPOL_BIND
] = "bind",
2671 [MPOL_INTERLEAVE
] = "interleave",
2672 [MPOL_LOCAL
] = "local",
2678 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2679 * @str: string containing mempolicy to parse
2680 * @mpol: pointer to struct mempolicy pointer, returned on success.
2683 * <mode>[=<flags>][:<nodelist>]
2685 * On success, returns 0, else 1
2687 int mpol_parse_str(char *str
, struct mempolicy
**mpol
)
2689 struct mempolicy
*new = NULL
;
2690 unsigned short mode
;
2691 unsigned short mode_flags
;
2693 char *nodelist
= strchr(str
, ':');
2694 char *flags
= strchr(str
, '=');
2698 /* NUL-terminate mode or flags string */
2700 if (nodelist_parse(nodelist
, nodes
))
2702 if (!nodes_subset(nodes
, node_states
[N_MEMORY
]))
2708 *flags
++ = '\0'; /* terminate mode string */
2710 for (mode
= 0; mode
< MPOL_MAX
; mode
++) {
2711 if (!strcmp(str
, policy_modes
[mode
])) {
2715 if (mode
>= MPOL_MAX
)
2719 case MPOL_PREFERRED
:
2721 * Insist on a nodelist of one node only
2724 char *rest
= nodelist
;
2725 while (isdigit(*rest
))
2731 case MPOL_INTERLEAVE
:
2733 * Default to online nodes with memory if no nodelist
2736 nodes
= node_states
[N_MEMORY
];
2740 * Don't allow a nodelist; mpol_new() checks flags
2744 mode
= MPOL_PREFERRED
;
2748 * Insist on a empty nodelist
2755 * Insist on a nodelist
2764 * Currently, we only support two mutually exclusive
2767 if (!strcmp(flags
, "static"))
2768 mode_flags
|= MPOL_F_STATIC_NODES
;
2769 else if (!strcmp(flags
, "relative"))
2770 mode_flags
|= MPOL_F_RELATIVE_NODES
;
2775 new = mpol_new(mode
, mode_flags
, &nodes
);
2780 * Save nodes for mpol_to_str() to show the tmpfs mount options
2781 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2783 if (mode
!= MPOL_PREFERRED
)
2784 new->v
.nodes
= nodes
;
2786 new->v
.preferred_node
= first_node(nodes
);
2788 new->flags
|= MPOL_F_LOCAL
;
2791 * Save nodes for contextualization: this will be used to "clone"
2792 * the mempolicy in a specific context [cpuset] at a later time.
2794 new->w
.user_nodemask
= nodes
;
2799 /* Restore string for error message */
2808 #endif /* CONFIG_TMPFS */
2811 * mpol_to_str - format a mempolicy structure for printing
2812 * @buffer: to contain formatted mempolicy string
2813 * @maxlen: length of @buffer
2814 * @pol: pointer to mempolicy to be formatted
2816 * Convert @pol into a string. If @buffer is too short, truncate the string.
2817 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2818 * longest flag, "relative", and to display at least a few node ids.
2820 void mpol_to_str(char *buffer
, int maxlen
, struct mempolicy
*pol
)
2823 nodemask_t nodes
= NODE_MASK_NONE
;
2824 unsigned short mode
= MPOL_DEFAULT
;
2825 unsigned short flags
= 0;
2827 if (pol
&& pol
!= &default_policy
&& !(pol
->flags
& MPOL_F_MORON
)) {
2835 case MPOL_PREFERRED
:
2836 if (flags
& MPOL_F_LOCAL
)
2839 node_set(pol
->v
.preferred_node
, nodes
);
2842 case MPOL_INTERLEAVE
:
2843 nodes
= pol
->v
.nodes
;
2847 snprintf(p
, maxlen
, "unknown");
2851 p
+= snprintf(p
, maxlen
, "%s", policy_modes
[mode
]);
2853 if (flags
& MPOL_MODE_FLAGS
) {
2854 p
+= snprintf(p
, buffer
+ maxlen
- p
, "=");
2857 * Currently, the only defined flags are mutually exclusive
2859 if (flags
& MPOL_F_STATIC_NODES
)
2860 p
+= snprintf(p
, buffer
+ maxlen
- p
, "static");
2861 else if (flags
& MPOL_F_RELATIVE_NODES
)
2862 p
+= snprintf(p
, buffer
+ maxlen
- p
, "relative");
2865 if (!nodes_empty(nodes
)) {
2866 p
+= snprintf(p
, buffer
+ maxlen
- p
, ":");
2867 p
+= nodelist_scnprintf(p
, buffer
+ maxlen
- p
, nodes
);