3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
91 #include <linux/poison.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/cpuset.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/notifier.h>
101 #include <linux/kallsyms.h>
102 #include <linux/cpu.h>
103 #include <linux/sysctl.h>
104 #include <linux/module.h>
105 #include <linux/rcupdate.h>
106 #include <linux/string.h>
107 #include <linux/uaccess.h>
108 #include <linux/nodemask.h>
109 #include <linux/kmemleak.h>
110 #include <linux/mempolicy.h>
111 #include <linux/mutex.h>
112 #include <linux/fault-inject.h>
113 #include <linux/rtmutex.h>
114 #include <linux/reciprocal_div.h>
115 #include <linux/debugobjects.h>
116 #include <linux/kmemcheck.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
120 #include <net/sock.h>
122 #include <asm/cacheflush.h>
123 #include <asm/tlbflush.h>
124 #include <asm/page.h>
126 #include <trace/events/kmem.h>
128 #include "internal.h"
133 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
134 * 0 for faster, smaller code (especially in the critical paths).
136 * STATS - 1 to collect stats for /proc/slabinfo.
137 * 0 for faster, smaller code (especially in the critical paths).
139 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
142 #ifdef CONFIG_DEBUG_SLAB
145 #define FORCED_DEBUG 1
149 #define FORCED_DEBUG 0
152 /* Shouldn't this be in a header file somewhere? */
153 #define BYTES_PER_WORD sizeof(void *)
154 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156 #ifndef ARCH_KMALLOC_FLAGS
157 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
160 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
161 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163 #if FREELIST_BYTE_INDEX
164 typedef unsigned char freelist_idx_t
;
166 typedef unsigned short freelist_idx_t
;
169 #define SLAB_OBJ_MAX_NUM (1 << sizeof(freelist_idx_t) * BITS_PER_BYTE)
172 * true if a page was allocated from pfmemalloc reserves for network-based
175 static bool pfmemalloc_active __read_mostly
;
181 * - LIFO ordering, to hand out cache-warm objects from _alloc
182 * - reduce the number of linked list operations
183 * - reduce spinlock operations
185 * The limit is stored in the per-cpu structure to reduce the data cache
192 unsigned int batchcount
;
193 unsigned int touched
;
196 * Must have this definition in here for the proper
197 * alignment of array_cache. Also simplifies accessing
200 * Entries should not be directly dereferenced as
201 * entries belonging to slabs marked pfmemalloc will
202 * have the lower bits set SLAB_OBJ_PFMEMALLOC
206 #define SLAB_OBJ_PFMEMALLOC 1
207 static inline bool is_obj_pfmemalloc(void *objp
)
209 return (unsigned long)objp
& SLAB_OBJ_PFMEMALLOC
;
212 static inline void set_obj_pfmemalloc(void **objp
)
214 *objp
= (void *)((unsigned long)*objp
| SLAB_OBJ_PFMEMALLOC
);
218 static inline void clear_obj_pfmemalloc(void **objp
)
220 *objp
= (void *)((unsigned long)*objp
& ~SLAB_OBJ_PFMEMALLOC
);
224 * bootstrap: The caches do not work without cpuarrays anymore, but the
225 * cpuarrays are allocated from the generic caches...
227 #define BOOT_CPUCACHE_ENTRIES 1
228 struct arraycache_init
{
229 struct array_cache cache
;
230 void *entries
[BOOT_CPUCACHE_ENTRIES
];
234 * Need this for bootstrapping a per node allocator.
236 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
237 static struct kmem_cache_node __initdata init_kmem_cache_node
[NUM_INIT_LISTS
];
238 #define CACHE_CACHE 0
239 #define SIZE_AC MAX_NUMNODES
240 #define SIZE_NODE (2 * MAX_NUMNODES)
242 static int drain_freelist(struct kmem_cache
*cache
,
243 struct kmem_cache_node
*n
, int tofree
);
244 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int len
,
246 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
);
247 static void cache_reap(struct work_struct
*unused
);
249 static int slab_early_init
= 1;
251 #define INDEX_AC kmalloc_index(sizeof(struct arraycache_init))
252 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
254 static void kmem_cache_node_init(struct kmem_cache_node
*parent
)
256 INIT_LIST_HEAD(&parent
->slabs_full
);
257 INIT_LIST_HEAD(&parent
->slabs_partial
);
258 INIT_LIST_HEAD(&parent
->slabs_free
);
259 parent
->shared
= NULL
;
260 parent
->alien
= NULL
;
261 parent
->colour_next
= 0;
262 spin_lock_init(&parent
->list_lock
);
263 parent
->free_objects
= 0;
264 parent
->free_touched
= 0;
267 #define MAKE_LIST(cachep, listp, slab, nodeid) \
269 INIT_LIST_HEAD(listp); \
270 list_splice(&(cachep->node[nodeid]->slab), listp); \
273 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
275 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
276 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
277 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
280 #define CFLGS_OFF_SLAB (0x80000000UL)
281 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
283 #define BATCHREFILL_LIMIT 16
285 * Optimization question: fewer reaps means less probability for unnessary
286 * cpucache drain/refill cycles.
288 * OTOH the cpuarrays can contain lots of objects,
289 * which could lock up otherwise freeable slabs.
291 #define REAPTIMEOUT_AC (2*HZ)
292 #define REAPTIMEOUT_NODE (4*HZ)
295 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
296 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
297 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
298 #define STATS_INC_GROWN(x) ((x)->grown++)
299 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
300 #define STATS_SET_HIGH(x) \
302 if ((x)->num_active > (x)->high_mark) \
303 (x)->high_mark = (x)->num_active; \
305 #define STATS_INC_ERR(x) ((x)->errors++)
306 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
307 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
308 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
309 #define STATS_SET_FREEABLE(x, i) \
311 if ((x)->max_freeable < i) \
312 (x)->max_freeable = i; \
314 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
315 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
316 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
317 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
319 #define STATS_INC_ACTIVE(x) do { } while (0)
320 #define STATS_DEC_ACTIVE(x) do { } while (0)
321 #define STATS_INC_ALLOCED(x) do { } while (0)
322 #define STATS_INC_GROWN(x) do { } while (0)
323 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
324 #define STATS_SET_HIGH(x) do { } while (0)
325 #define STATS_INC_ERR(x) do { } while (0)
326 #define STATS_INC_NODEALLOCS(x) do { } while (0)
327 #define STATS_INC_NODEFREES(x) do { } while (0)
328 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
329 #define STATS_SET_FREEABLE(x, i) do { } while (0)
330 #define STATS_INC_ALLOCHIT(x) do { } while (0)
331 #define STATS_INC_ALLOCMISS(x) do { } while (0)
332 #define STATS_INC_FREEHIT(x) do { } while (0)
333 #define STATS_INC_FREEMISS(x) do { } while (0)
339 * memory layout of objects:
341 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
342 * the end of an object is aligned with the end of the real
343 * allocation. Catches writes behind the end of the allocation.
344 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
346 * cachep->obj_offset: The real object.
347 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
348 * cachep->size - 1* BYTES_PER_WORD: last caller address
349 * [BYTES_PER_WORD long]
351 static int obj_offset(struct kmem_cache
*cachep
)
353 return cachep
->obj_offset
;
356 static unsigned long long *dbg_redzone1(struct kmem_cache
*cachep
, void *objp
)
358 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
359 return (unsigned long long*) (objp
+ obj_offset(cachep
) -
360 sizeof(unsigned long long));
363 static unsigned long long *dbg_redzone2(struct kmem_cache
*cachep
, void *objp
)
365 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
366 if (cachep
->flags
& SLAB_STORE_USER
)
367 return (unsigned long long *)(objp
+ cachep
->size
-
368 sizeof(unsigned long long) -
370 return (unsigned long long *) (objp
+ cachep
->size
-
371 sizeof(unsigned long long));
374 static void **dbg_userword(struct kmem_cache
*cachep
, void *objp
)
376 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
377 return (void **)(objp
+ cachep
->size
- BYTES_PER_WORD
);
382 #define obj_offset(x) 0
383 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
384 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
385 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
390 * Do not go above this order unless 0 objects fit into the slab or
391 * overridden on the command line.
393 #define SLAB_MAX_ORDER_HI 1
394 #define SLAB_MAX_ORDER_LO 0
395 static int slab_max_order
= SLAB_MAX_ORDER_LO
;
396 static bool slab_max_order_set __initdata
;
398 static inline struct kmem_cache
*virt_to_cache(const void *obj
)
400 struct page
*page
= virt_to_head_page(obj
);
401 return page
->slab_cache
;
404 static inline void *index_to_obj(struct kmem_cache
*cache
, struct page
*page
,
407 return page
->s_mem
+ cache
->size
* idx
;
411 * We want to avoid an expensive divide : (offset / cache->size)
412 * Using the fact that size is a constant for a particular cache,
413 * we can replace (offset / cache->size) by
414 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
416 static inline unsigned int obj_to_index(const struct kmem_cache
*cache
,
417 const struct page
*page
, void *obj
)
419 u32 offset
= (obj
- page
->s_mem
);
420 return reciprocal_divide(offset
, cache
->reciprocal_buffer_size
);
423 static struct arraycache_init initarray_generic
=
424 { {0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
426 /* internal cache of cache description objs */
427 static struct kmem_cache kmem_cache_boot
= {
429 .limit
= BOOT_CPUCACHE_ENTRIES
,
431 .size
= sizeof(struct kmem_cache
),
432 .name
= "kmem_cache",
435 #define BAD_ALIEN_MAGIC 0x01020304ul
437 #ifdef CONFIG_LOCKDEP
440 * Slab sometimes uses the kmalloc slabs to store the slab headers
441 * for other slabs "off slab".
442 * The locking for this is tricky in that it nests within the locks
443 * of all other slabs in a few places; to deal with this special
444 * locking we put on-slab caches into a separate lock-class.
446 * We set lock class for alien array caches which are up during init.
447 * The lock annotation will be lost if all cpus of a node goes down and
448 * then comes back up during hotplug
450 static struct lock_class_key on_slab_l3_key
;
451 static struct lock_class_key on_slab_alc_key
;
453 static struct lock_class_key debugobj_l3_key
;
454 static struct lock_class_key debugobj_alc_key
;
456 static void slab_set_lock_classes(struct kmem_cache
*cachep
,
457 struct lock_class_key
*l3_key
, struct lock_class_key
*alc_key
,
460 struct array_cache
**alc
;
461 struct kmem_cache_node
*n
;
468 lockdep_set_class(&n
->list_lock
, l3_key
);
471 * FIXME: This check for BAD_ALIEN_MAGIC
472 * should go away when common slab code is taught to
473 * work even without alien caches.
474 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
475 * for alloc_alien_cache,
477 if (!alc
|| (unsigned long)alc
== BAD_ALIEN_MAGIC
)
481 lockdep_set_class(&alc
[r
]->lock
, alc_key
);
485 static void slab_set_debugobj_lock_classes_node(struct kmem_cache
*cachep
, int node
)
487 slab_set_lock_classes(cachep
, &debugobj_l3_key
, &debugobj_alc_key
, node
);
490 static void slab_set_debugobj_lock_classes(struct kmem_cache
*cachep
)
494 for_each_online_node(node
)
495 slab_set_debugobj_lock_classes_node(cachep
, node
);
498 static void init_node_lock_keys(int q
)
505 for (i
= 1; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
506 struct kmem_cache_node
*n
;
507 struct kmem_cache
*cache
= kmalloc_caches
[i
];
513 if (!n
|| OFF_SLAB(cache
))
516 slab_set_lock_classes(cache
, &on_slab_l3_key
,
517 &on_slab_alc_key
, q
);
521 static void on_slab_lock_classes_node(struct kmem_cache
*cachep
, int q
)
523 if (!cachep
->node
[q
])
526 slab_set_lock_classes(cachep
, &on_slab_l3_key
,
527 &on_slab_alc_key
, q
);
530 static inline void on_slab_lock_classes(struct kmem_cache
*cachep
)
534 VM_BUG_ON(OFF_SLAB(cachep
));
536 on_slab_lock_classes_node(cachep
, node
);
539 static inline void init_lock_keys(void)
544 init_node_lock_keys(node
);
547 static void init_node_lock_keys(int q
)
551 static inline void init_lock_keys(void)
555 static inline void on_slab_lock_classes(struct kmem_cache
*cachep
)
559 static inline void on_slab_lock_classes_node(struct kmem_cache
*cachep
, int node
)
563 static void slab_set_debugobj_lock_classes_node(struct kmem_cache
*cachep
, int node
)
567 static void slab_set_debugobj_lock_classes(struct kmem_cache
*cachep
)
572 static DEFINE_PER_CPU(struct delayed_work
, slab_reap_work
);
574 static inline struct array_cache
*cpu_cache_get(struct kmem_cache
*cachep
)
576 return cachep
->array
[smp_processor_id()];
579 static int calculate_nr_objs(size_t slab_size
, size_t buffer_size
,
580 size_t idx_size
, size_t align
)
583 size_t freelist_size
;
586 * Ignore padding for the initial guess. The padding
587 * is at most @align-1 bytes, and @buffer_size is at
588 * least @align. In the worst case, this result will
589 * be one greater than the number of objects that fit
590 * into the memory allocation when taking the padding
593 nr_objs
= slab_size
/ (buffer_size
+ idx_size
);
596 * This calculated number will be either the right
597 * amount, or one greater than what we want.
599 freelist_size
= slab_size
- nr_objs
* buffer_size
;
600 if (freelist_size
< ALIGN(nr_objs
* idx_size
, align
))
607 * Calculate the number of objects and left-over bytes for a given buffer size.
609 static void cache_estimate(unsigned long gfporder
, size_t buffer_size
,
610 size_t align
, int flags
, size_t *left_over
,
615 size_t slab_size
= PAGE_SIZE
<< gfporder
;
618 * The slab management structure can be either off the slab or
619 * on it. For the latter case, the memory allocated for a
622 * - One unsigned int for each object
623 * - Padding to respect alignment of @align
624 * - @buffer_size bytes for each object
626 * If the slab management structure is off the slab, then the
627 * alignment will already be calculated into the size. Because
628 * the slabs are all pages aligned, the objects will be at the
629 * correct alignment when allocated.
631 if (flags
& CFLGS_OFF_SLAB
) {
633 nr_objs
= slab_size
/ buffer_size
;
636 nr_objs
= calculate_nr_objs(slab_size
, buffer_size
,
637 sizeof(freelist_idx_t
), align
);
638 mgmt_size
= ALIGN(nr_objs
* sizeof(freelist_idx_t
), align
);
641 *left_over
= slab_size
- nr_objs
*buffer_size
- mgmt_size
;
645 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
647 static void __slab_error(const char *function
, struct kmem_cache
*cachep
,
650 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
651 function
, cachep
->name
, msg
);
653 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
658 * By default on NUMA we use alien caches to stage the freeing of
659 * objects allocated from other nodes. This causes massive memory
660 * inefficiencies when using fake NUMA setup to split memory into a
661 * large number of small nodes, so it can be disabled on the command
665 static int use_alien_caches __read_mostly
= 1;
666 static int __init
noaliencache_setup(char *s
)
668 use_alien_caches
= 0;
671 __setup("noaliencache", noaliencache_setup
);
673 static int __init
slab_max_order_setup(char *str
)
675 get_option(&str
, &slab_max_order
);
676 slab_max_order
= slab_max_order
< 0 ? 0 :
677 min(slab_max_order
, MAX_ORDER
- 1);
678 slab_max_order_set
= true;
682 __setup("slab_max_order=", slab_max_order_setup
);
686 * Special reaping functions for NUMA systems called from cache_reap().
687 * These take care of doing round robin flushing of alien caches (containing
688 * objects freed on different nodes from which they were allocated) and the
689 * flushing of remote pcps by calling drain_node_pages.
691 static DEFINE_PER_CPU(unsigned long, slab_reap_node
);
693 static void init_reap_node(int cpu
)
697 node
= next_node(cpu_to_mem(cpu
), node_online_map
);
698 if (node
== MAX_NUMNODES
)
699 node
= first_node(node_online_map
);
701 per_cpu(slab_reap_node
, cpu
) = node
;
704 static void next_reap_node(void)
706 int node
= __this_cpu_read(slab_reap_node
);
708 node
= next_node(node
, node_online_map
);
709 if (unlikely(node
>= MAX_NUMNODES
))
710 node
= first_node(node_online_map
);
711 __this_cpu_write(slab_reap_node
, node
);
715 #define init_reap_node(cpu) do { } while (0)
716 #define next_reap_node(void) do { } while (0)
720 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
721 * via the workqueue/eventd.
722 * Add the CPU number into the expiration time to minimize the possibility of
723 * the CPUs getting into lockstep and contending for the global cache chain
726 static void start_cpu_timer(int cpu
)
728 struct delayed_work
*reap_work
= &per_cpu(slab_reap_work
, cpu
);
731 * When this gets called from do_initcalls via cpucache_init(),
732 * init_workqueues() has already run, so keventd will be setup
735 if (keventd_up() && reap_work
->work
.func
== NULL
) {
737 INIT_DEFERRABLE_WORK(reap_work
, cache_reap
);
738 schedule_delayed_work_on(cpu
, reap_work
,
739 __round_jiffies_relative(HZ
, cpu
));
743 static struct array_cache
*alloc_arraycache(int node
, int entries
,
744 int batchcount
, gfp_t gfp
)
746 int memsize
= sizeof(void *) * entries
+ sizeof(struct array_cache
);
747 struct array_cache
*nc
= NULL
;
749 nc
= kmalloc_node(memsize
, gfp
, node
);
751 * The array_cache structures contain pointers to free object.
752 * However, when such objects are allocated or transferred to another
753 * cache the pointers are not cleared and they could be counted as
754 * valid references during a kmemleak scan. Therefore, kmemleak must
755 * not scan such objects.
757 kmemleak_no_scan(nc
);
761 nc
->batchcount
= batchcount
;
763 spin_lock_init(&nc
->lock
);
768 static inline bool is_slab_pfmemalloc(struct page
*page
)
770 return PageSlabPfmemalloc(page
);
773 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
774 static void recheck_pfmemalloc_active(struct kmem_cache
*cachep
,
775 struct array_cache
*ac
)
777 struct kmem_cache_node
*n
= cachep
->node
[numa_mem_id()];
781 if (!pfmemalloc_active
)
784 spin_lock_irqsave(&n
->list_lock
, flags
);
785 list_for_each_entry(page
, &n
->slabs_full
, lru
)
786 if (is_slab_pfmemalloc(page
))
789 list_for_each_entry(page
, &n
->slabs_partial
, lru
)
790 if (is_slab_pfmemalloc(page
))
793 list_for_each_entry(page
, &n
->slabs_free
, lru
)
794 if (is_slab_pfmemalloc(page
))
797 pfmemalloc_active
= false;
799 spin_unlock_irqrestore(&n
->list_lock
, flags
);
802 static void *__ac_get_obj(struct kmem_cache
*cachep
, struct array_cache
*ac
,
803 gfp_t flags
, bool force_refill
)
806 void *objp
= ac
->entry
[--ac
->avail
];
808 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
809 if (unlikely(is_obj_pfmemalloc(objp
))) {
810 struct kmem_cache_node
*n
;
812 if (gfp_pfmemalloc_allowed(flags
)) {
813 clear_obj_pfmemalloc(&objp
);
817 /* The caller cannot use PFMEMALLOC objects, find another one */
818 for (i
= 0; i
< ac
->avail
; i
++) {
819 /* If a !PFMEMALLOC object is found, swap them */
820 if (!is_obj_pfmemalloc(ac
->entry
[i
])) {
822 ac
->entry
[i
] = ac
->entry
[ac
->avail
];
823 ac
->entry
[ac
->avail
] = objp
;
829 * If there are empty slabs on the slabs_free list and we are
830 * being forced to refill the cache, mark this one !pfmemalloc.
832 n
= cachep
->node
[numa_mem_id()];
833 if (!list_empty(&n
->slabs_free
) && force_refill
) {
834 struct page
*page
= virt_to_head_page(objp
);
835 ClearPageSlabPfmemalloc(page
);
836 clear_obj_pfmemalloc(&objp
);
837 recheck_pfmemalloc_active(cachep
, ac
);
841 /* No !PFMEMALLOC objects available */
849 static inline void *ac_get_obj(struct kmem_cache
*cachep
,
850 struct array_cache
*ac
, gfp_t flags
, bool force_refill
)
854 if (unlikely(sk_memalloc_socks()))
855 objp
= __ac_get_obj(cachep
, ac
, flags
, force_refill
);
857 objp
= ac
->entry
[--ac
->avail
];
862 static void *__ac_put_obj(struct kmem_cache
*cachep
, struct array_cache
*ac
,
865 if (unlikely(pfmemalloc_active
)) {
866 /* Some pfmemalloc slabs exist, check if this is one */
867 struct page
*page
= virt_to_head_page(objp
);
868 if (PageSlabPfmemalloc(page
))
869 set_obj_pfmemalloc(&objp
);
875 static inline void ac_put_obj(struct kmem_cache
*cachep
, struct array_cache
*ac
,
878 if (unlikely(sk_memalloc_socks()))
879 objp
= __ac_put_obj(cachep
, ac
, objp
);
881 ac
->entry
[ac
->avail
++] = objp
;
885 * Transfer objects in one arraycache to another.
886 * Locking must be handled by the caller.
888 * Return the number of entries transferred.
890 static int transfer_objects(struct array_cache
*to
,
891 struct array_cache
*from
, unsigned int max
)
893 /* Figure out how many entries to transfer */
894 int nr
= min3(from
->avail
, max
, to
->limit
- to
->avail
);
899 memcpy(to
->entry
+ to
->avail
, from
->entry
+ from
->avail
-nr
,
909 #define drain_alien_cache(cachep, alien) do { } while (0)
910 #define reap_alien(cachep, n) do { } while (0)
912 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
914 return (struct array_cache
**)BAD_ALIEN_MAGIC
;
917 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
921 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
926 static inline void *alternate_node_alloc(struct kmem_cache
*cachep
,
932 static inline void *____cache_alloc_node(struct kmem_cache
*cachep
,
933 gfp_t flags
, int nodeid
)
938 #else /* CONFIG_NUMA */
940 static void *____cache_alloc_node(struct kmem_cache
*, gfp_t
, int);
941 static void *alternate_node_alloc(struct kmem_cache
*, gfp_t
);
943 static struct array_cache
**alloc_alien_cache(int node
, int limit
, gfp_t gfp
)
945 struct array_cache
**ac_ptr
;
946 int memsize
= sizeof(void *) * nr_node_ids
;
951 ac_ptr
= kzalloc_node(memsize
, gfp
, node
);
954 if (i
== node
|| !node_online(i
))
956 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d, gfp
);
958 for (i
--; i
>= 0; i
--)
968 static void free_alien_cache(struct array_cache
**ac_ptr
)
979 static void __drain_alien_cache(struct kmem_cache
*cachep
,
980 struct array_cache
*ac
, int node
)
982 struct kmem_cache_node
*n
= cachep
->node
[node
];
985 spin_lock(&n
->list_lock
);
987 * Stuff objects into the remote nodes shared array first.
988 * That way we could avoid the overhead of putting the objects
989 * into the free lists and getting them back later.
992 transfer_objects(n
->shared
, ac
, ac
->limit
);
994 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
996 spin_unlock(&n
->list_lock
);
1001 * Called from cache_reap() to regularly drain alien caches round robin.
1003 static void reap_alien(struct kmem_cache
*cachep
, struct kmem_cache_node
*n
)
1005 int node
= __this_cpu_read(slab_reap_node
);
1008 struct array_cache
*ac
= n
->alien
[node
];
1010 if (ac
&& ac
->avail
&& spin_trylock_irq(&ac
->lock
)) {
1011 __drain_alien_cache(cachep
, ac
, node
);
1012 spin_unlock_irq(&ac
->lock
);
1017 static void drain_alien_cache(struct kmem_cache
*cachep
,
1018 struct array_cache
**alien
)
1021 struct array_cache
*ac
;
1022 unsigned long flags
;
1024 for_each_online_node(i
) {
1027 spin_lock_irqsave(&ac
->lock
, flags
);
1028 __drain_alien_cache(cachep
, ac
, i
);
1029 spin_unlock_irqrestore(&ac
->lock
, flags
);
1034 static inline int cache_free_alien(struct kmem_cache
*cachep
, void *objp
)
1036 int nodeid
= page_to_nid(virt_to_page(objp
));
1037 struct kmem_cache_node
*n
;
1038 struct array_cache
*alien
= NULL
;
1041 node
= numa_mem_id();
1044 * Make sure we are not freeing a object from another node to the array
1045 * cache on this cpu.
1047 if (likely(nodeid
== node
))
1050 n
= cachep
->node
[node
];
1051 STATS_INC_NODEFREES(cachep
);
1052 if (n
->alien
&& n
->alien
[nodeid
]) {
1053 alien
= n
->alien
[nodeid
];
1054 spin_lock(&alien
->lock
);
1055 if (unlikely(alien
->avail
== alien
->limit
)) {
1056 STATS_INC_ACOVERFLOW(cachep
);
1057 __drain_alien_cache(cachep
, alien
, nodeid
);
1059 ac_put_obj(cachep
, alien
, objp
);
1060 spin_unlock(&alien
->lock
);
1062 spin_lock(&(cachep
->node
[nodeid
])->list_lock
);
1063 free_block(cachep
, &objp
, 1, nodeid
);
1064 spin_unlock(&(cachep
->node
[nodeid
])->list_lock
);
1071 * Allocates and initializes node for a node on each slab cache, used for
1072 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
1073 * will be allocated off-node since memory is not yet online for the new node.
1074 * When hotplugging memory or a cpu, existing node are not replaced if
1077 * Must hold slab_mutex.
1079 static int init_cache_node_node(int node
)
1081 struct kmem_cache
*cachep
;
1082 struct kmem_cache_node
*n
;
1083 const int memsize
= sizeof(struct kmem_cache_node
);
1085 list_for_each_entry(cachep
, &slab_caches
, list
) {
1087 * Set up the kmem_cache_node for cpu before we can
1088 * begin anything. Make sure some other cpu on this
1089 * node has not already allocated this
1091 if (!cachep
->node
[node
]) {
1092 n
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
1095 kmem_cache_node_init(n
);
1096 n
->next_reap
= jiffies
+ REAPTIMEOUT_NODE
+
1097 ((unsigned long)cachep
) % REAPTIMEOUT_NODE
;
1100 * The kmem_cache_nodes don't come and go as CPUs
1101 * come and go. slab_mutex is sufficient
1104 cachep
->node
[node
] = n
;
1107 spin_lock_irq(&cachep
->node
[node
]->list_lock
);
1108 cachep
->node
[node
]->free_limit
=
1109 (1 + nr_cpus_node(node
)) *
1110 cachep
->batchcount
+ cachep
->num
;
1111 spin_unlock_irq(&cachep
->node
[node
]->list_lock
);
1116 static inline int slabs_tofree(struct kmem_cache
*cachep
,
1117 struct kmem_cache_node
*n
)
1119 return (n
->free_objects
+ cachep
->num
- 1) / cachep
->num
;
1122 static void cpuup_canceled(long cpu
)
1124 struct kmem_cache
*cachep
;
1125 struct kmem_cache_node
*n
= NULL
;
1126 int node
= cpu_to_mem(cpu
);
1127 const struct cpumask
*mask
= cpumask_of_node(node
);
1129 list_for_each_entry(cachep
, &slab_caches
, list
) {
1130 struct array_cache
*nc
;
1131 struct array_cache
*shared
;
1132 struct array_cache
**alien
;
1134 /* cpu is dead; no one can alloc from it. */
1135 nc
= cachep
->array
[cpu
];
1136 cachep
->array
[cpu
] = NULL
;
1137 n
= cachep
->node
[node
];
1140 goto free_array_cache
;
1142 spin_lock_irq(&n
->list_lock
);
1144 /* Free limit for this kmem_cache_node */
1145 n
->free_limit
-= cachep
->batchcount
;
1147 free_block(cachep
, nc
->entry
, nc
->avail
, node
);
1149 if (!cpumask_empty(mask
)) {
1150 spin_unlock_irq(&n
->list_lock
);
1151 goto free_array_cache
;
1156 free_block(cachep
, shared
->entry
,
1157 shared
->avail
, node
);
1164 spin_unlock_irq(&n
->list_lock
);
1168 drain_alien_cache(cachep
, alien
);
1169 free_alien_cache(alien
);
1175 * In the previous loop, all the objects were freed to
1176 * the respective cache's slabs, now we can go ahead and
1177 * shrink each nodelist to its limit.
1179 list_for_each_entry(cachep
, &slab_caches
, list
) {
1180 n
= cachep
->node
[node
];
1183 drain_freelist(cachep
, n
, slabs_tofree(cachep
, n
));
1187 static int cpuup_prepare(long cpu
)
1189 struct kmem_cache
*cachep
;
1190 struct kmem_cache_node
*n
= NULL
;
1191 int node
= cpu_to_mem(cpu
);
1195 * We need to do this right in the beginning since
1196 * alloc_arraycache's are going to use this list.
1197 * kmalloc_node allows us to add the slab to the right
1198 * kmem_cache_node and not this cpu's kmem_cache_node
1200 err
= init_cache_node_node(node
);
1205 * Now we can go ahead with allocating the shared arrays and
1208 list_for_each_entry(cachep
, &slab_caches
, list
) {
1209 struct array_cache
*nc
;
1210 struct array_cache
*shared
= NULL
;
1211 struct array_cache
**alien
= NULL
;
1213 nc
= alloc_arraycache(node
, cachep
->limit
,
1214 cachep
->batchcount
, GFP_KERNEL
);
1217 if (cachep
->shared
) {
1218 shared
= alloc_arraycache(node
,
1219 cachep
->shared
* cachep
->batchcount
,
1220 0xbaadf00d, GFP_KERNEL
);
1226 if (use_alien_caches
) {
1227 alien
= alloc_alien_cache(node
, cachep
->limit
, GFP_KERNEL
);
1234 cachep
->array
[cpu
] = nc
;
1235 n
= cachep
->node
[node
];
1238 spin_lock_irq(&n
->list_lock
);
1241 * We are serialised from CPU_DEAD or
1242 * CPU_UP_CANCELLED by the cpucontrol lock
1253 spin_unlock_irq(&n
->list_lock
);
1255 free_alien_cache(alien
);
1256 if (cachep
->flags
& SLAB_DEBUG_OBJECTS
)
1257 slab_set_debugobj_lock_classes_node(cachep
, node
);
1258 else if (!OFF_SLAB(cachep
) &&
1259 !(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
1260 on_slab_lock_classes_node(cachep
, node
);
1262 init_node_lock_keys(node
);
1266 cpuup_canceled(cpu
);
1270 static int cpuup_callback(struct notifier_block
*nfb
,
1271 unsigned long action
, void *hcpu
)
1273 long cpu
= (long)hcpu
;
1277 case CPU_UP_PREPARE
:
1278 case CPU_UP_PREPARE_FROZEN
:
1279 mutex_lock(&slab_mutex
);
1280 err
= cpuup_prepare(cpu
);
1281 mutex_unlock(&slab_mutex
);
1284 case CPU_ONLINE_FROZEN
:
1285 start_cpu_timer(cpu
);
1287 #ifdef CONFIG_HOTPLUG_CPU
1288 case CPU_DOWN_PREPARE
:
1289 case CPU_DOWN_PREPARE_FROZEN
:
1291 * Shutdown cache reaper. Note that the slab_mutex is
1292 * held so that if cache_reap() is invoked it cannot do
1293 * anything expensive but will only modify reap_work
1294 * and reschedule the timer.
1296 cancel_delayed_work_sync(&per_cpu(slab_reap_work
, cpu
));
1297 /* Now the cache_reaper is guaranteed to be not running. */
1298 per_cpu(slab_reap_work
, cpu
).work
.func
= NULL
;
1300 case CPU_DOWN_FAILED
:
1301 case CPU_DOWN_FAILED_FROZEN
:
1302 start_cpu_timer(cpu
);
1305 case CPU_DEAD_FROZEN
:
1307 * Even if all the cpus of a node are down, we don't free the
1308 * kmem_cache_node of any cache. This to avoid a race between
1309 * cpu_down, and a kmalloc allocation from another cpu for
1310 * memory from the node of the cpu going down. The node
1311 * structure is usually allocated from kmem_cache_create() and
1312 * gets destroyed at kmem_cache_destroy().
1316 case CPU_UP_CANCELED
:
1317 case CPU_UP_CANCELED_FROZEN
:
1318 mutex_lock(&slab_mutex
);
1319 cpuup_canceled(cpu
);
1320 mutex_unlock(&slab_mutex
);
1323 return notifier_from_errno(err
);
1326 static struct notifier_block cpucache_notifier
= {
1327 &cpuup_callback
, NULL
, 0
1330 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1332 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1333 * Returns -EBUSY if all objects cannot be drained so that the node is not
1336 * Must hold slab_mutex.
1338 static int __meminit
drain_cache_node_node(int node
)
1340 struct kmem_cache
*cachep
;
1343 list_for_each_entry(cachep
, &slab_caches
, list
) {
1344 struct kmem_cache_node
*n
;
1346 n
= cachep
->node
[node
];
1350 drain_freelist(cachep
, n
, slabs_tofree(cachep
, n
));
1352 if (!list_empty(&n
->slabs_full
) ||
1353 !list_empty(&n
->slabs_partial
)) {
1361 static int __meminit
slab_memory_callback(struct notifier_block
*self
,
1362 unsigned long action
, void *arg
)
1364 struct memory_notify
*mnb
= arg
;
1368 nid
= mnb
->status_change_nid
;
1373 case MEM_GOING_ONLINE
:
1374 mutex_lock(&slab_mutex
);
1375 ret
= init_cache_node_node(nid
);
1376 mutex_unlock(&slab_mutex
);
1378 case MEM_GOING_OFFLINE
:
1379 mutex_lock(&slab_mutex
);
1380 ret
= drain_cache_node_node(nid
);
1381 mutex_unlock(&slab_mutex
);
1385 case MEM_CANCEL_ONLINE
:
1386 case MEM_CANCEL_OFFLINE
:
1390 return notifier_from_errno(ret
);
1392 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1395 * swap the static kmem_cache_node with kmalloced memory
1397 static void __init
init_list(struct kmem_cache
*cachep
, struct kmem_cache_node
*list
,
1400 struct kmem_cache_node
*ptr
;
1402 ptr
= kmalloc_node(sizeof(struct kmem_cache_node
), GFP_NOWAIT
, nodeid
);
1405 memcpy(ptr
, list
, sizeof(struct kmem_cache_node
));
1407 * Do not assume that spinlocks can be initialized via memcpy:
1409 spin_lock_init(&ptr
->list_lock
);
1411 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
1412 cachep
->node
[nodeid
] = ptr
;
1416 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1417 * size of kmem_cache_node.
1419 static void __init
set_up_node(struct kmem_cache
*cachep
, int index
)
1423 for_each_online_node(node
) {
1424 cachep
->node
[node
] = &init_kmem_cache_node
[index
+ node
];
1425 cachep
->node
[node
]->next_reap
= jiffies
+
1427 ((unsigned long)cachep
) % REAPTIMEOUT_NODE
;
1432 * The memory after the last cpu cache pointer is used for the
1435 static void setup_node_pointer(struct kmem_cache
*cachep
)
1437 cachep
->node
= (struct kmem_cache_node
**)&cachep
->array
[nr_cpu_ids
];
1441 * Initialisation. Called after the page allocator have been initialised and
1442 * before smp_init().
1444 void __init
kmem_cache_init(void)
1448 BUILD_BUG_ON(sizeof(((struct page
*)NULL
)->lru
) <
1449 sizeof(struct rcu_head
));
1450 kmem_cache
= &kmem_cache_boot
;
1451 setup_node_pointer(kmem_cache
);
1453 if (num_possible_nodes() == 1)
1454 use_alien_caches
= 0;
1456 for (i
= 0; i
< NUM_INIT_LISTS
; i
++)
1457 kmem_cache_node_init(&init_kmem_cache_node
[i
]);
1459 set_up_node(kmem_cache
, CACHE_CACHE
);
1462 * Fragmentation resistance on low memory - only use bigger
1463 * page orders on machines with more than 32MB of memory if
1464 * not overridden on the command line.
1466 if (!slab_max_order_set
&& totalram_pages
> (32 << 20) >> PAGE_SHIFT
)
1467 slab_max_order
= SLAB_MAX_ORDER_HI
;
1469 /* Bootstrap is tricky, because several objects are allocated
1470 * from caches that do not exist yet:
1471 * 1) initialize the kmem_cache cache: it contains the struct
1472 * kmem_cache structures of all caches, except kmem_cache itself:
1473 * kmem_cache is statically allocated.
1474 * Initially an __init data area is used for the head array and the
1475 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1476 * array at the end of the bootstrap.
1477 * 2) Create the first kmalloc cache.
1478 * The struct kmem_cache for the new cache is allocated normally.
1479 * An __init data area is used for the head array.
1480 * 3) Create the remaining kmalloc caches, with minimally sized
1482 * 4) Replace the __init data head arrays for kmem_cache and the first
1483 * kmalloc cache with kmalloc allocated arrays.
1484 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1485 * the other cache's with kmalloc allocated memory.
1486 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1489 /* 1) create the kmem_cache */
1492 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1494 create_boot_cache(kmem_cache
, "kmem_cache",
1495 offsetof(struct kmem_cache
, array
[nr_cpu_ids
]) +
1496 nr_node_ids
* sizeof(struct kmem_cache_node
*),
1497 SLAB_HWCACHE_ALIGN
);
1498 list_add(&kmem_cache
->list
, &slab_caches
);
1500 /* 2+3) create the kmalloc caches */
1503 * Initialize the caches that provide memory for the array cache and the
1504 * kmem_cache_node structures first. Without this, further allocations will
1508 kmalloc_caches
[INDEX_AC
] = create_kmalloc_cache("kmalloc-ac",
1509 kmalloc_size(INDEX_AC
), ARCH_KMALLOC_FLAGS
);
1511 if (INDEX_AC
!= INDEX_NODE
)
1512 kmalloc_caches
[INDEX_NODE
] =
1513 create_kmalloc_cache("kmalloc-node",
1514 kmalloc_size(INDEX_NODE
), ARCH_KMALLOC_FLAGS
);
1516 slab_early_init
= 0;
1518 /* 4) Replace the bootstrap head arrays */
1520 struct array_cache
*ptr
;
1522 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1524 memcpy(ptr
, cpu_cache_get(kmem_cache
),
1525 sizeof(struct arraycache_init
));
1527 * Do not assume that spinlocks can be initialized via memcpy:
1529 spin_lock_init(&ptr
->lock
);
1531 kmem_cache
->array
[smp_processor_id()] = ptr
;
1533 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_NOWAIT
);
1535 BUG_ON(cpu_cache_get(kmalloc_caches
[INDEX_AC
])
1536 != &initarray_generic
.cache
);
1537 memcpy(ptr
, cpu_cache_get(kmalloc_caches
[INDEX_AC
]),
1538 sizeof(struct arraycache_init
));
1540 * Do not assume that spinlocks can be initialized via memcpy:
1542 spin_lock_init(&ptr
->lock
);
1544 kmalloc_caches
[INDEX_AC
]->array
[smp_processor_id()] = ptr
;
1546 /* 5) Replace the bootstrap kmem_cache_node */
1550 for_each_online_node(nid
) {
1551 init_list(kmem_cache
, &init_kmem_cache_node
[CACHE_CACHE
+ nid
], nid
);
1553 init_list(kmalloc_caches
[INDEX_AC
],
1554 &init_kmem_cache_node
[SIZE_AC
+ nid
], nid
);
1556 if (INDEX_AC
!= INDEX_NODE
) {
1557 init_list(kmalloc_caches
[INDEX_NODE
],
1558 &init_kmem_cache_node
[SIZE_NODE
+ nid
], nid
);
1563 create_kmalloc_caches(ARCH_KMALLOC_FLAGS
);
1566 void __init
kmem_cache_init_late(void)
1568 struct kmem_cache
*cachep
;
1572 /* 6) resize the head arrays to their final sizes */
1573 mutex_lock(&slab_mutex
);
1574 list_for_each_entry(cachep
, &slab_caches
, list
)
1575 if (enable_cpucache(cachep
, GFP_NOWAIT
))
1577 mutex_unlock(&slab_mutex
);
1579 /* Annotate slab for lockdep -- annotate the malloc caches */
1586 * Register a cpu startup notifier callback that initializes
1587 * cpu_cache_get for all new cpus
1589 register_cpu_notifier(&cpucache_notifier
);
1593 * Register a memory hotplug callback that initializes and frees
1596 hotplug_memory_notifier(slab_memory_callback
, SLAB_CALLBACK_PRI
);
1600 * The reap timers are started later, with a module init call: That part
1601 * of the kernel is not yet operational.
1605 static int __init
cpucache_init(void)
1610 * Register the timers that return unneeded pages to the page allocator
1612 for_each_online_cpu(cpu
)
1613 start_cpu_timer(cpu
);
1619 __initcall(cpucache_init
);
1621 static noinline
void
1622 slab_out_of_memory(struct kmem_cache
*cachep
, gfp_t gfpflags
, int nodeid
)
1624 struct kmem_cache_node
*n
;
1626 unsigned long flags
;
1630 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1632 printk(KERN_WARNING
" cache: %s, object size: %d, order: %d\n",
1633 cachep
->name
, cachep
->size
, cachep
->gfporder
);
1635 for_each_online_node(node
) {
1636 unsigned long active_objs
= 0, num_objs
= 0, free_objects
= 0;
1637 unsigned long active_slabs
= 0, num_slabs
= 0;
1639 n
= cachep
->node
[node
];
1643 spin_lock_irqsave(&n
->list_lock
, flags
);
1644 list_for_each_entry(page
, &n
->slabs_full
, lru
) {
1645 active_objs
+= cachep
->num
;
1648 list_for_each_entry(page
, &n
->slabs_partial
, lru
) {
1649 active_objs
+= page
->active
;
1652 list_for_each_entry(page
, &n
->slabs_free
, lru
)
1655 free_objects
+= n
->free_objects
;
1656 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1658 num_slabs
+= active_slabs
;
1659 num_objs
= num_slabs
* cachep
->num
;
1661 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1662 node
, active_slabs
, num_slabs
, active_objs
, num_objs
,
1668 * Interface to system's page allocator. No need to hold the cache-lock.
1670 * If we requested dmaable memory, we will get it. Even if we
1671 * did not request dmaable memory, we might get it, but that
1672 * would be relatively rare and ignorable.
1674 static struct page
*kmem_getpages(struct kmem_cache
*cachep
, gfp_t flags
,
1680 flags
|= cachep
->allocflags
;
1681 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1682 flags
|= __GFP_RECLAIMABLE
;
1684 page
= alloc_pages_exact_node(nodeid
, flags
| __GFP_NOTRACK
, cachep
->gfporder
);
1686 if (!(flags
& __GFP_NOWARN
) && printk_ratelimit())
1687 slab_out_of_memory(cachep
, flags
, nodeid
);
1691 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1692 if (unlikely(page
->pfmemalloc
))
1693 pfmemalloc_active
= true;
1695 nr_pages
= (1 << cachep
->gfporder
);
1696 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1697 add_zone_page_state(page_zone(page
),
1698 NR_SLAB_RECLAIMABLE
, nr_pages
);
1700 add_zone_page_state(page_zone(page
),
1701 NR_SLAB_UNRECLAIMABLE
, nr_pages
);
1702 __SetPageSlab(page
);
1703 if (page
->pfmemalloc
)
1704 SetPageSlabPfmemalloc(page
);
1705 memcg_bind_pages(cachep
, cachep
->gfporder
);
1707 if (kmemcheck_enabled
&& !(cachep
->flags
& SLAB_NOTRACK
)) {
1708 kmemcheck_alloc_shadow(page
, cachep
->gfporder
, flags
, nodeid
);
1711 kmemcheck_mark_uninitialized_pages(page
, nr_pages
);
1713 kmemcheck_mark_unallocated_pages(page
, nr_pages
);
1720 * Interface to system's page release.
1722 static void kmem_freepages(struct kmem_cache
*cachep
, struct page
*page
)
1724 const unsigned long nr_freed
= (1 << cachep
->gfporder
);
1726 kmemcheck_free_shadow(page
, cachep
->gfporder
);
1728 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1729 sub_zone_page_state(page_zone(page
),
1730 NR_SLAB_RECLAIMABLE
, nr_freed
);
1732 sub_zone_page_state(page_zone(page
),
1733 NR_SLAB_UNRECLAIMABLE
, nr_freed
);
1735 BUG_ON(!PageSlab(page
));
1736 __ClearPageSlabPfmemalloc(page
);
1737 __ClearPageSlab(page
);
1738 page_mapcount_reset(page
);
1739 page
->mapping
= NULL
;
1741 memcg_release_pages(cachep
, cachep
->gfporder
);
1742 if (current
->reclaim_state
)
1743 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1744 __free_memcg_kmem_pages(page
, cachep
->gfporder
);
1747 static void kmem_rcu_free(struct rcu_head
*head
)
1749 struct kmem_cache
*cachep
;
1752 page
= container_of(head
, struct page
, rcu_head
);
1753 cachep
= page
->slab_cache
;
1755 kmem_freepages(cachep
, page
);
1760 #ifdef CONFIG_DEBUG_PAGEALLOC
1761 static void store_stackinfo(struct kmem_cache
*cachep
, unsigned long *addr
,
1762 unsigned long caller
)
1764 int size
= cachep
->object_size
;
1766 addr
= (unsigned long *)&((char *)addr
)[obj_offset(cachep
)];
1768 if (size
< 5 * sizeof(unsigned long))
1771 *addr
++ = 0x12345678;
1773 *addr
++ = smp_processor_id();
1774 size
-= 3 * sizeof(unsigned long);
1776 unsigned long *sptr
= &caller
;
1777 unsigned long svalue
;
1779 while (!kstack_end(sptr
)) {
1781 if (kernel_text_address(svalue
)) {
1783 size
-= sizeof(unsigned long);
1784 if (size
<= sizeof(unsigned long))
1790 *addr
++ = 0x87654321;
1794 static void poison_obj(struct kmem_cache
*cachep
, void *addr
, unsigned char val
)
1796 int size
= cachep
->object_size
;
1797 addr
= &((char *)addr
)[obj_offset(cachep
)];
1799 memset(addr
, val
, size
);
1800 *(unsigned char *)(addr
+ size
- 1) = POISON_END
;
1803 static void dump_line(char *data
, int offset
, int limit
)
1806 unsigned char error
= 0;
1809 printk(KERN_ERR
"%03x: ", offset
);
1810 for (i
= 0; i
< limit
; i
++) {
1811 if (data
[offset
+ i
] != POISON_FREE
) {
1812 error
= data
[offset
+ i
];
1816 print_hex_dump(KERN_CONT
, "", 0, 16, 1,
1817 &data
[offset
], limit
, 1);
1819 if (bad_count
== 1) {
1820 error
^= POISON_FREE
;
1821 if (!(error
& (error
- 1))) {
1822 printk(KERN_ERR
"Single bit error detected. Probably "
1825 printk(KERN_ERR
"Run memtest86+ or a similar memory "
1828 printk(KERN_ERR
"Run a memory test tool.\n");
1837 static void print_objinfo(struct kmem_cache
*cachep
, void *objp
, int lines
)
1842 if (cachep
->flags
& SLAB_RED_ZONE
) {
1843 printk(KERN_ERR
"Redzone: 0x%llx/0x%llx.\n",
1844 *dbg_redzone1(cachep
, objp
),
1845 *dbg_redzone2(cachep
, objp
));
1848 if (cachep
->flags
& SLAB_STORE_USER
) {
1849 printk(KERN_ERR
"Last user: [<%p>](%pSR)\n",
1850 *dbg_userword(cachep
, objp
),
1851 *dbg_userword(cachep
, objp
));
1853 realobj
= (char *)objp
+ obj_offset(cachep
);
1854 size
= cachep
->object_size
;
1855 for (i
= 0; i
< size
&& lines
; i
+= 16, lines
--) {
1858 if (i
+ limit
> size
)
1860 dump_line(realobj
, i
, limit
);
1864 static void check_poison_obj(struct kmem_cache
*cachep
, void *objp
)
1870 realobj
= (char *)objp
+ obj_offset(cachep
);
1871 size
= cachep
->object_size
;
1873 for (i
= 0; i
< size
; i
++) {
1874 char exp
= POISON_FREE
;
1877 if (realobj
[i
] != exp
) {
1883 "Slab corruption (%s): %s start=%p, len=%d\n",
1884 print_tainted(), cachep
->name
, realobj
, size
);
1885 print_objinfo(cachep
, objp
, 0);
1887 /* Hexdump the affected line */
1890 if (i
+ limit
> size
)
1892 dump_line(realobj
, i
, limit
);
1895 /* Limit to 5 lines */
1901 /* Print some data about the neighboring objects, if they
1904 struct page
*page
= virt_to_head_page(objp
);
1907 objnr
= obj_to_index(cachep
, page
, objp
);
1909 objp
= index_to_obj(cachep
, page
, objnr
- 1);
1910 realobj
= (char *)objp
+ obj_offset(cachep
);
1911 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1913 print_objinfo(cachep
, objp
, 2);
1915 if (objnr
+ 1 < cachep
->num
) {
1916 objp
= index_to_obj(cachep
, page
, objnr
+ 1);
1917 realobj
= (char *)objp
+ obj_offset(cachep
);
1918 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1920 print_objinfo(cachep
, objp
, 2);
1927 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
,
1931 for (i
= 0; i
< cachep
->num
; i
++) {
1932 void *objp
= index_to_obj(cachep
, page
, i
);
1934 if (cachep
->flags
& SLAB_POISON
) {
1935 #ifdef CONFIG_DEBUG_PAGEALLOC
1936 if (cachep
->size
% PAGE_SIZE
== 0 &&
1938 kernel_map_pages(virt_to_page(objp
),
1939 cachep
->size
/ PAGE_SIZE
, 1);
1941 check_poison_obj(cachep
, objp
);
1943 check_poison_obj(cachep
, objp
);
1946 if (cachep
->flags
& SLAB_RED_ZONE
) {
1947 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1948 slab_error(cachep
, "start of a freed object "
1950 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1951 slab_error(cachep
, "end of a freed object "
1957 static void slab_destroy_debugcheck(struct kmem_cache
*cachep
,
1964 * slab_destroy - destroy and release all objects in a slab
1965 * @cachep: cache pointer being destroyed
1966 * @page: page pointer being destroyed
1968 * Destroy all the objs in a slab, and release the mem back to the system.
1969 * Before calling the slab must have been unlinked from the cache. The
1970 * cache-lock is not held/needed.
1972 static void slab_destroy(struct kmem_cache
*cachep
, struct page
*page
)
1976 freelist
= page
->freelist
;
1977 slab_destroy_debugcheck(cachep
, page
);
1978 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1979 struct rcu_head
*head
;
1982 * RCU free overloads the RCU head over the LRU.
1983 * slab_page has been overloeaded over the LRU,
1984 * however it is not used from now on so that
1985 * we can use it safely.
1987 head
= (void *)&page
->rcu_head
;
1988 call_rcu(head
, kmem_rcu_free
);
1991 kmem_freepages(cachep
, page
);
1995 * From now on, we don't use freelist
1996 * although actual page can be freed in rcu context
1998 if (OFF_SLAB(cachep
))
1999 kmem_cache_free(cachep
->freelist_cache
, freelist
);
2003 * calculate_slab_order - calculate size (page order) of slabs
2004 * @cachep: pointer to the cache that is being created
2005 * @size: size of objects to be created in this cache.
2006 * @align: required alignment for the objects.
2007 * @flags: slab allocation flags
2009 * Also calculates the number of objects per slab.
2011 * This could be made much more intelligent. For now, try to avoid using
2012 * high order pages for slabs. When the gfp() functions are more friendly
2013 * towards high-order requests, this should be changed.
2015 static size_t calculate_slab_order(struct kmem_cache
*cachep
,
2016 size_t size
, size_t align
, unsigned long flags
)
2018 unsigned long offslab_limit
;
2019 size_t left_over
= 0;
2022 for (gfporder
= 0; gfporder
<= KMALLOC_MAX_ORDER
; gfporder
++) {
2026 cache_estimate(gfporder
, size
, align
, flags
, &remainder
, &num
);
2030 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
2031 if (num
> SLAB_OBJ_MAX_NUM
)
2034 if (flags
& CFLGS_OFF_SLAB
) {
2036 * Max number of objs-per-slab for caches which
2037 * use off-slab slabs. Needed to avoid a possible
2038 * looping condition in cache_grow().
2040 offslab_limit
= size
;
2041 offslab_limit
/= sizeof(freelist_idx_t
);
2043 if (num
> offslab_limit
)
2047 /* Found something acceptable - save it away */
2049 cachep
->gfporder
= gfporder
;
2050 left_over
= remainder
;
2053 * A VFS-reclaimable slab tends to have most allocations
2054 * as GFP_NOFS and we really don't want to have to be allocating
2055 * higher-order pages when we are unable to shrink dcache.
2057 if (flags
& SLAB_RECLAIM_ACCOUNT
)
2061 * Large number of objects is good, but very large slabs are
2062 * currently bad for the gfp()s.
2064 if (gfporder
>= slab_max_order
)
2068 * Acceptable internal fragmentation?
2070 if (left_over
* 8 <= (PAGE_SIZE
<< gfporder
))
2076 static int __init_refok
setup_cpu_cache(struct kmem_cache
*cachep
, gfp_t gfp
)
2078 if (slab_state
>= FULL
)
2079 return enable_cpucache(cachep
, gfp
);
2081 if (slab_state
== DOWN
) {
2083 * Note: Creation of first cache (kmem_cache).
2084 * The setup_node is taken care
2085 * of by the caller of __kmem_cache_create
2087 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2088 slab_state
= PARTIAL
;
2089 } else if (slab_state
== PARTIAL
) {
2091 * Note: the second kmem_cache_create must create the cache
2092 * that's used by kmalloc(24), otherwise the creation of
2093 * further caches will BUG().
2095 cachep
->array
[smp_processor_id()] = &initarray_generic
.cache
;
2098 * If the cache that's used by kmalloc(sizeof(kmem_cache_node)) is
2099 * the second cache, then we need to set up all its node/,
2100 * otherwise the creation of further caches will BUG().
2102 set_up_node(cachep
, SIZE_AC
);
2103 if (INDEX_AC
== INDEX_NODE
)
2104 slab_state
= PARTIAL_NODE
;
2106 slab_state
= PARTIAL_ARRAYCACHE
;
2108 /* Remaining boot caches */
2109 cachep
->array
[smp_processor_id()] =
2110 kmalloc(sizeof(struct arraycache_init
), gfp
);
2112 if (slab_state
== PARTIAL_ARRAYCACHE
) {
2113 set_up_node(cachep
, SIZE_NODE
);
2114 slab_state
= PARTIAL_NODE
;
2117 for_each_online_node(node
) {
2118 cachep
->node
[node
] =
2119 kmalloc_node(sizeof(struct kmem_cache_node
),
2121 BUG_ON(!cachep
->node
[node
]);
2122 kmem_cache_node_init(cachep
->node
[node
]);
2126 cachep
->node
[numa_mem_id()]->next_reap
=
2127 jiffies
+ REAPTIMEOUT_NODE
+
2128 ((unsigned long)cachep
) % REAPTIMEOUT_NODE
;
2130 cpu_cache_get(cachep
)->avail
= 0;
2131 cpu_cache_get(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
2132 cpu_cache_get(cachep
)->batchcount
= 1;
2133 cpu_cache_get(cachep
)->touched
= 0;
2134 cachep
->batchcount
= 1;
2135 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
2140 * __kmem_cache_create - Create a cache.
2141 * @cachep: cache management descriptor
2142 * @flags: SLAB flags
2144 * Returns a ptr to the cache on success, NULL on failure.
2145 * Cannot be called within a int, but can be interrupted.
2146 * The @ctor is run when new pages are allocated by the cache.
2150 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2151 * to catch references to uninitialised memory.
2153 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2154 * for buffer overruns.
2156 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2157 * cacheline. This can be beneficial if you're counting cycles as closely
2161 __kmem_cache_create (struct kmem_cache
*cachep
, unsigned long flags
)
2163 size_t left_over
, freelist_size
, ralign
;
2166 size_t size
= cachep
->size
;
2171 * Enable redzoning and last user accounting, except for caches with
2172 * large objects, if the increased size would increase the object size
2173 * above the next power of two: caches with object sizes just above a
2174 * power of two have a significant amount of internal fragmentation.
2176 if (size
< 4096 || fls(size
- 1) == fls(size
-1 + REDZONE_ALIGN
+
2177 2 * sizeof(unsigned long long)))
2178 flags
|= SLAB_RED_ZONE
| SLAB_STORE_USER
;
2179 if (!(flags
& SLAB_DESTROY_BY_RCU
))
2180 flags
|= SLAB_POISON
;
2182 if (flags
& SLAB_DESTROY_BY_RCU
)
2183 BUG_ON(flags
& SLAB_POISON
);
2187 * Check that size is in terms of words. This is needed to avoid
2188 * unaligned accesses for some archs when redzoning is used, and makes
2189 * sure any on-slab bufctl's are also correctly aligned.
2191 if (size
& (BYTES_PER_WORD
- 1)) {
2192 size
+= (BYTES_PER_WORD
- 1);
2193 size
&= ~(BYTES_PER_WORD
- 1);
2197 * Redzoning and user store require word alignment or possibly larger.
2198 * Note this will be overridden by architecture or caller mandated
2199 * alignment if either is greater than BYTES_PER_WORD.
2201 if (flags
& SLAB_STORE_USER
)
2202 ralign
= BYTES_PER_WORD
;
2204 if (flags
& SLAB_RED_ZONE
) {
2205 ralign
= REDZONE_ALIGN
;
2206 /* If redzoning, ensure that the second redzone is suitably
2207 * aligned, by adjusting the object size accordingly. */
2208 size
+= REDZONE_ALIGN
- 1;
2209 size
&= ~(REDZONE_ALIGN
- 1);
2212 /* 3) caller mandated alignment */
2213 if (ralign
< cachep
->align
) {
2214 ralign
= cachep
->align
;
2216 /* disable debug if necessary */
2217 if (ralign
> __alignof__(unsigned long long))
2218 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2222 cachep
->align
= ralign
;
2224 if (slab_is_available())
2229 setup_node_pointer(cachep
);
2233 * Both debugging options require word-alignment which is calculated
2236 if (flags
& SLAB_RED_ZONE
) {
2237 /* add space for red zone words */
2238 cachep
->obj_offset
+= sizeof(unsigned long long);
2239 size
+= 2 * sizeof(unsigned long long);
2241 if (flags
& SLAB_STORE_USER
) {
2242 /* user store requires one word storage behind the end of
2243 * the real object. But if the second red zone needs to be
2244 * aligned to 64 bits, we must allow that much space.
2246 if (flags
& SLAB_RED_ZONE
)
2247 size
+= REDZONE_ALIGN
;
2249 size
+= BYTES_PER_WORD
;
2251 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2252 if (size
>= kmalloc_size(INDEX_NODE
+ 1)
2253 && cachep
->object_size
> cache_line_size()
2254 && ALIGN(size
, cachep
->align
) < PAGE_SIZE
) {
2255 cachep
->obj_offset
+= PAGE_SIZE
- ALIGN(size
, cachep
->align
);
2262 * Determine if the slab management is 'on' or 'off' slab.
2263 * (bootstrapping cannot cope with offslab caches so don't do
2264 * it too early on. Always use on-slab management when
2265 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2267 if ((size
>= (PAGE_SIZE
>> 5)) && !slab_early_init
&&
2268 !(flags
& SLAB_NOLEAKTRACE
))
2270 * Size is large, assume best to place the slab management obj
2271 * off-slab (should allow better packing of objs).
2273 flags
|= CFLGS_OFF_SLAB
;
2275 size
= ALIGN(size
, cachep
->align
);
2277 * We should restrict the number of objects in a slab to implement
2278 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2280 if (FREELIST_BYTE_INDEX
&& size
< SLAB_OBJ_MIN_SIZE
)
2281 size
= ALIGN(SLAB_OBJ_MIN_SIZE
, cachep
->align
);
2283 left_over
= calculate_slab_order(cachep
, size
, cachep
->align
, flags
);
2289 ALIGN(cachep
->num
* sizeof(freelist_idx_t
), cachep
->align
);
2292 * If the slab has been placed off-slab, and we have enough space then
2293 * move it on-slab. This is at the expense of any extra colouring.
2295 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= freelist_size
) {
2296 flags
&= ~CFLGS_OFF_SLAB
;
2297 left_over
-= freelist_size
;
2300 if (flags
& CFLGS_OFF_SLAB
) {
2301 /* really off slab. No need for manual alignment */
2302 freelist_size
= cachep
->num
* sizeof(freelist_idx_t
);
2304 #ifdef CONFIG_PAGE_POISONING
2305 /* If we're going to use the generic kernel_map_pages()
2306 * poisoning, then it's going to smash the contents of
2307 * the redzone and userword anyhow, so switch them off.
2309 if (size
% PAGE_SIZE
== 0 && flags
& SLAB_POISON
)
2310 flags
&= ~(SLAB_RED_ZONE
| SLAB_STORE_USER
);
2314 cachep
->colour_off
= cache_line_size();
2315 /* Offset must be a multiple of the alignment. */
2316 if (cachep
->colour_off
< cachep
->align
)
2317 cachep
->colour_off
= cachep
->align
;
2318 cachep
->colour
= left_over
/ cachep
->colour_off
;
2319 cachep
->freelist_size
= freelist_size
;
2320 cachep
->flags
= flags
;
2321 cachep
->allocflags
= __GFP_COMP
;
2322 if (CONFIG_ZONE_DMA_FLAG
&& (flags
& SLAB_CACHE_DMA
))
2323 cachep
->allocflags
|= GFP_DMA
;
2324 cachep
->size
= size
;
2325 cachep
->reciprocal_buffer_size
= reciprocal_value(size
);
2327 if (flags
& CFLGS_OFF_SLAB
) {
2328 cachep
->freelist_cache
= kmalloc_slab(freelist_size
, 0u);
2330 * This is a possibility for one of the kmalloc_{dma,}_caches.
2331 * But since we go off slab only for object size greater than
2332 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
2333 * in ascending order,this should not happen at all.
2334 * But leave a BUG_ON for some lucky dude.
2336 BUG_ON(ZERO_OR_NULL_PTR(cachep
->freelist_cache
));
2339 err
= setup_cpu_cache(cachep
, gfp
);
2341 __kmem_cache_shutdown(cachep
);
2345 if (flags
& SLAB_DEBUG_OBJECTS
) {
2347 * Would deadlock through slab_destroy()->call_rcu()->
2348 * debug_object_activate()->kmem_cache_alloc().
2350 WARN_ON_ONCE(flags
& SLAB_DESTROY_BY_RCU
);
2352 slab_set_debugobj_lock_classes(cachep
);
2353 } else if (!OFF_SLAB(cachep
) && !(flags
& SLAB_DESTROY_BY_RCU
))
2354 on_slab_lock_classes(cachep
);
2360 static void check_irq_off(void)
2362 BUG_ON(!irqs_disabled());
2365 static void check_irq_on(void)
2367 BUG_ON(irqs_disabled());
2370 static void check_spinlock_acquired(struct kmem_cache
*cachep
)
2374 assert_spin_locked(&cachep
->node
[numa_mem_id()]->list_lock
);
2378 static void check_spinlock_acquired_node(struct kmem_cache
*cachep
, int node
)
2382 assert_spin_locked(&cachep
->node
[node
]->list_lock
);
2387 #define check_irq_off() do { } while(0)
2388 #define check_irq_on() do { } while(0)
2389 #define check_spinlock_acquired(x) do { } while(0)
2390 #define check_spinlock_acquired_node(x, y) do { } while(0)
2393 static void drain_array(struct kmem_cache
*cachep
, struct kmem_cache_node
*n
,
2394 struct array_cache
*ac
,
2395 int force
, int node
);
2397 static void do_drain(void *arg
)
2399 struct kmem_cache
*cachep
= arg
;
2400 struct array_cache
*ac
;
2401 int node
= numa_mem_id();
2404 ac
= cpu_cache_get(cachep
);
2405 spin_lock(&cachep
->node
[node
]->list_lock
);
2406 free_block(cachep
, ac
->entry
, ac
->avail
, node
);
2407 spin_unlock(&cachep
->node
[node
]->list_lock
);
2411 static void drain_cpu_caches(struct kmem_cache
*cachep
)
2413 struct kmem_cache_node
*n
;
2416 on_each_cpu(do_drain
, cachep
, 1);
2418 for_each_online_node(node
) {
2419 n
= cachep
->node
[node
];
2421 drain_alien_cache(cachep
, n
->alien
);
2424 for_each_online_node(node
) {
2425 n
= cachep
->node
[node
];
2427 drain_array(cachep
, n
, n
->shared
, 1, node
);
2432 * Remove slabs from the list of free slabs.
2433 * Specify the number of slabs to drain in tofree.
2435 * Returns the actual number of slabs released.
2437 static int drain_freelist(struct kmem_cache
*cache
,
2438 struct kmem_cache_node
*n
, int tofree
)
2440 struct list_head
*p
;
2445 while (nr_freed
< tofree
&& !list_empty(&n
->slabs_free
)) {
2447 spin_lock_irq(&n
->list_lock
);
2448 p
= n
->slabs_free
.prev
;
2449 if (p
== &n
->slabs_free
) {
2450 spin_unlock_irq(&n
->list_lock
);
2454 page
= list_entry(p
, struct page
, lru
);
2456 BUG_ON(page
->active
);
2458 list_del(&page
->lru
);
2460 * Safe to drop the lock. The slab is no longer linked
2463 n
->free_objects
-= cache
->num
;
2464 spin_unlock_irq(&n
->list_lock
);
2465 slab_destroy(cache
, page
);
2472 /* Called with slab_mutex held to protect against cpu hotplug */
2473 static int __cache_shrink(struct kmem_cache
*cachep
)
2476 struct kmem_cache_node
*n
;
2478 drain_cpu_caches(cachep
);
2481 for_each_online_node(i
) {
2482 n
= cachep
->node
[i
];
2486 drain_freelist(cachep
, n
, slabs_tofree(cachep
, n
));
2488 ret
+= !list_empty(&n
->slabs_full
) ||
2489 !list_empty(&n
->slabs_partial
);
2491 return (ret
? 1 : 0);
2495 * kmem_cache_shrink - Shrink a cache.
2496 * @cachep: The cache to shrink.
2498 * Releases as many slabs as possible for a cache.
2499 * To help debugging, a zero exit status indicates all slabs were released.
2501 int kmem_cache_shrink(struct kmem_cache
*cachep
)
2504 BUG_ON(!cachep
|| in_interrupt());
2507 mutex_lock(&slab_mutex
);
2508 ret
= __cache_shrink(cachep
);
2509 mutex_unlock(&slab_mutex
);
2513 EXPORT_SYMBOL(kmem_cache_shrink
);
2515 int __kmem_cache_shutdown(struct kmem_cache
*cachep
)
2518 struct kmem_cache_node
*n
;
2519 int rc
= __cache_shrink(cachep
);
2524 for_each_online_cpu(i
)
2525 kfree(cachep
->array
[i
]);
2527 /* NUMA: free the node structures */
2528 for_each_online_node(i
) {
2529 n
= cachep
->node
[i
];
2532 free_alien_cache(n
->alien
);
2540 * Get the memory for a slab management obj.
2542 * For a slab cache when the slab descriptor is off-slab, the
2543 * slab descriptor can't come from the same cache which is being created,
2544 * Because if it is the case, that means we defer the creation of
2545 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2546 * And we eventually call down to __kmem_cache_create(), which
2547 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2548 * This is a "chicken-and-egg" problem.
2550 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2551 * which are all initialized during kmem_cache_init().
2553 static void *alloc_slabmgmt(struct kmem_cache
*cachep
,
2554 struct page
*page
, int colour_off
,
2555 gfp_t local_flags
, int nodeid
)
2558 void *addr
= page_address(page
);
2560 if (OFF_SLAB(cachep
)) {
2561 /* Slab management obj is off-slab. */
2562 freelist
= kmem_cache_alloc_node(cachep
->freelist_cache
,
2563 local_flags
, nodeid
);
2567 freelist
= addr
+ colour_off
;
2568 colour_off
+= cachep
->freelist_size
;
2571 page
->s_mem
= addr
+ colour_off
;
2575 static inline freelist_idx_t
get_free_obj(struct page
*page
, unsigned char idx
)
2577 return ((freelist_idx_t
*)page
->freelist
)[idx
];
2580 static inline void set_free_obj(struct page
*page
,
2581 unsigned char idx
, freelist_idx_t val
)
2583 ((freelist_idx_t
*)(page
->freelist
))[idx
] = val
;
2586 static void cache_init_objs(struct kmem_cache
*cachep
,
2591 for (i
= 0; i
< cachep
->num
; i
++) {
2592 void *objp
= index_to_obj(cachep
, page
, i
);
2594 /* need to poison the objs? */
2595 if (cachep
->flags
& SLAB_POISON
)
2596 poison_obj(cachep
, objp
, POISON_FREE
);
2597 if (cachep
->flags
& SLAB_STORE_USER
)
2598 *dbg_userword(cachep
, objp
) = NULL
;
2600 if (cachep
->flags
& SLAB_RED_ZONE
) {
2601 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2602 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2605 * Constructors are not allowed to allocate memory from the same
2606 * cache which they are a constructor for. Otherwise, deadlock.
2607 * They must also be threaded.
2609 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2610 cachep
->ctor(objp
+ obj_offset(cachep
));
2612 if (cachep
->flags
& SLAB_RED_ZONE
) {
2613 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2614 slab_error(cachep
, "constructor overwrote the"
2615 " end of an object");
2616 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2617 slab_error(cachep
, "constructor overwrote the"
2618 " start of an object");
2620 if ((cachep
->size
% PAGE_SIZE
) == 0 &&
2621 OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2622 kernel_map_pages(virt_to_page(objp
),
2623 cachep
->size
/ PAGE_SIZE
, 0);
2628 set_free_obj(page
, i
, i
);
2632 static void kmem_flagcheck(struct kmem_cache
*cachep
, gfp_t flags
)
2634 if (CONFIG_ZONE_DMA_FLAG
) {
2635 if (flags
& GFP_DMA
)
2636 BUG_ON(!(cachep
->allocflags
& GFP_DMA
));
2638 BUG_ON(cachep
->allocflags
& GFP_DMA
);
2642 static void *slab_get_obj(struct kmem_cache
*cachep
, struct page
*page
,
2647 objp
= index_to_obj(cachep
, page
, get_free_obj(page
, page
->active
));
2650 WARN_ON(page_to_nid(virt_to_page(objp
)) != nodeid
);
2656 static void slab_put_obj(struct kmem_cache
*cachep
, struct page
*page
,
2657 void *objp
, int nodeid
)
2659 unsigned int objnr
= obj_to_index(cachep
, page
, objp
);
2663 /* Verify that the slab belongs to the intended node */
2664 WARN_ON(page_to_nid(virt_to_page(objp
)) != nodeid
);
2666 /* Verify double free bug */
2667 for (i
= page
->active
; i
< cachep
->num
; i
++) {
2668 if (get_free_obj(page
, i
) == objnr
) {
2669 printk(KERN_ERR
"slab: double free detected in cache "
2670 "'%s', objp %p\n", cachep
->name
, objp
);
2676 set_free_obj(page
, page
->active
, objnr
);
2680 * Map pages beginning at addr to the given cache and slab. This is required
2681 * for the slab allocator to be able to lookup the cache and slab of a
2682 * virtual address for kfree, ksize, and slab debugging.
2684 static void slab_map_pages(struct kmem_cache
*cache
, struct page
*page
,
2687 page
->slab_cache
= cache
;
2688 page
->freelist
= freelist
;
2692 * Grow (by 1) the number of slabs within a cache. This is called by
2693 * kmem_cache_alloc() when there are no active objs left in a cache.
2695 static int cache_grow(struct kmem_cache
*cachep
,
2696 gfp_t flags
, int nodeid
, struct page
*page
)
2701 struct kmem_cache_node
*n
;
2704 * Be lazy and only check for valid flags here, keeping it out of the
2705 * critical path in kmem_cache_alloc().
2707 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
2708 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
2710 /* Take the node list lock to change the colour_next on this node */
2712 n
= cachep
->node
[nodeid
];
2713 spin_lock(&n
->list_lock
);
2715 /* Get colour for the slab, and cal the next value. */
2716 offset
= n
->colour_next
;
2718 if (n
->colour_next
>= cachep
->colour
)
2720 spin_unlock(&n
->list_lock
);
2722 offset
*= cachep
->colour_off
;
2724 if (local_flags
& __GFP_WAIT
)
2728 * The test for missing atomic flag is performed here, rather than
2729 * the more obvious place, simply to reduce the critical path length
2730 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2731 * will eventually be caught here (where it matters).
2733 kmem_flagcheck(cachep
, flags
);
2736 * Get mem for the objs. Attempt to allocate a physical page from
2740 page
= kmem_getpages(cachep
, local_flags
, nodeid
);
2744 /* Get slab management. */
2745 freelist
= alloc_slabmgmt(cachep
, page
, offset
,
2746 local_flags
& ~GFP_CONSTRAINT_MASK
, nodeid
);
2750 slab_map_pages(cachep
, page
, freelist
);
2752 cache_init_objs(cachep
, page
);
2754 if (local_flags
& __GFP_WAIT
)
2755 local_irq_disable();
2757 spin_lock(&n
->list_lock
);
2759 /* Make slab active. */
2760 list_add_tail(&page
->lru
, &(n
->slabs_free
));
2761 STATS_INC_GROWN(cachep
);
2762 n
->free_objects
+= cachep
->num
;
2763 spin_unlock(&n
->list_lock
);
2766 kmem_freepages(cachep
, page
);
2768 if (local_flags
& __GFP_WAIT
)
2769 local_irq_disable();
2776 * Perform extra freeing checks:
2777 * - detect bad pointers.
2778 * - POISON/RED_ZONE checking
2780 static void kfree_debugcheck(const void *objp
)
2782 if (!virt_addr_valid(objp
)) {
2783 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2784 (unsigned long)objp
);
2789 static inline void verify_redzone_free(struct kmem_cache
*cache
, void *obj
)
2791 unsigned long long redzone1
, redzone2
;
2793 redzone1
= *dbg_redzone1(cache
, obj
);
2794 redzone2
= *dbg_redzone2(cache
, obj
);
2799 if (redzone1
== RED_ACTIVE
&& redzone2
== RED_ACTIVE
)
2802 if (redzone1
== RED_INACTIVE
&& redzone2
== RED_INACTIVE
)
2803 slab_error(cache
, "double free detected");
2805 slab_error(cache
, "memory outside object was overwritten");
2807 printk(KERN_ERR
"%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2808 obj
, redzone1
, redzone2
);
2811 static void *cache_free_debugcheck(struct kmem_cache
*cachep
, void *objp
,
2812 unsigned long caller
)
2817 BUG_ON(virt_to_cache(objp
) != cachep
);
2819 objp
-= obj_offset(cachep
);
2820 kfree_debugcheck(objp
);
2821 page
= virt_to_head_page(objp
);
2823 if (cachep
->flags
& SLAB_RED_ZONE
) {
2824 verify_redzone_free(cachep
, objp
);
2825 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2826 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2828 if (cachep
->flags
& SLAB_STORE_USER
)
2829 *dbg_userword(cachep
, objp
) = (void *)caller
;
2831 objnr
= obj_to_index(cachep
, page
, objp
);
2833 BUG_ON(objnr
>= cachep
->num
);
2834 BUG_ON(objp
!= index_to_obj(cachep
, page
, objnr
));
2836 if (cachep
->flags
& SLAB_POISON
) {
2837 #ifdef CONFIG_DEBUG_PAGEALLOC
2838 if ((cachep
->size
% PAGE_SIZE
)==0 && OFF_SLAB(cachep
)) {
2839 store_stackinfo(cachep
, objp
, caller
);
2840 kernel_map_pages(virt_to_page(objp
),
2841 cachep
->size
/ PAGE_SIZE
, 0);
2843 poison_obj(cachep
, objp
, POISON_FREE
);
2846 poison_obj(cachep
, objp
, POISON_FREE
);
2853 #define kfree_debugcheck(x) do { } while(0)
2854 #define cache_free_debugcheck(x,objp,z) (objp)
2857 static void *cache_alloc_refill(struct kmem_cache
*cachep
, gfp_t flags
,
2861 struct kmem_cache_node
*n
;
2862 struct array_cache
*ac
;
2866 node
= numa_mem_id();
2867 if (unlikely(force_refill
))
2870 ac
= cpu_cache_get(cachep
);
2871 batchcount
= ac
->batchcount
;
2872 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2874 * If there was little recent activity on this cache, then
2875 * perform only a partial refill. Otherwise we could generate
2878 batchcount
= BATCHREFILL_LIMIT
;
2880 n
= cachep
->node
[node
];
2882 BUG_ON(ac
->avail
> 0 || !n
);
2883 spin_lock(&n
->list_lock
);
2885 /* See if we can refill from the shared array */
2886 if (n
->shared
&& transfer_objects(ac
, n
->shared
, batchcount
)) {
2887 n
->shared
->touched
= 1;
2891 while (batchcount
> 0) {
2892 struct list_head
*entry
;
2894 /* Get slab alloc is to come from. */
2895 entry
= n
->slabs_partial
.next
;
2896 if (entry
== &n
->slabs_partial
) {
2897 n
->free_touched
= 1;
2898 entry
= n
->slabs_free
.next
;
2899 if (entry
== &n
->slabs_free
)
2903 page
= list_entry(entry
, struct page
, lru
);
2904 check_spinlock_acquired(cachep
);
2907 * The slab was either on partial or free list so
2908 * there must be at least one object available for
2911 BUG_ON(page
->active
>= cachep
->num
);
2913 while (page
->active
< cachep
->num
&& batchcount
--) {
2914 STATS_INC_ALLOCED(cachep
);
2915 STATS_INC_ACTIVE(cachep
);
2916 STATS_SET_HIGH(cachep
);
2918 ac_put_obj(cachep
, ac
, slab_get_obj(cachep
, page
,
2922 /* move slabp to correct slabp list: */
2923 list_del(&page
->lru
);
2924 if (page
->active
== cachep
->num
)
2925 list_add(&page
->lru
, &n
->slabs_full
);
2927 list_add(&page
->lru
, &n
->slabs_partial
);
2931 n
->free_objects
-= ac
->avail
;
2933 spin_unlock(&n
->list_lock
);
2935 if (unlikely(!ac
->avail
)) {
2938 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, node
, NULL
);
2940 /* cache_grow can reenable interrupts, then ac could change. */
2941 ac
= cpu_cache_get(cachep
);
2942 node
= numa_mem_id();
2944 /* no objects in sight? abort */
2945 if (!x
&& (ac
->avail
== 0 || force_refill
))
2948 if (!ac
->avail
) /* objects refilled by interrupt? */
2953 return ac_get_obj(cachep
, ac
, flags
, force_refill
);
2956 static inline void cache_alloc_debugcheck_before(struct kmem_cache
*cachep
,
2959 might_sleep_if(flags
& __GFP_WAIT
);
2961 kmem_flagcheck(cachep
, flags
);
2966 static void *cache_alloc_debugcheck_after(struct kmem_cache
*cachep
,
2967 gfp_t flags
, void *objp
, unsigned long caller
)
2971 if (cachep
->flags
& SLAB_POISON
) {
2972 #ifdef CONFIG_DEBUG_PAGEALLOC
2973 if ((cachep
->size
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
2974 kernel_map_pages(virt_to_page(objp
),
2975 cachep
->size
/ PAGE_SIZE
, 1);
2977 check_poison_obj(cachep
, objp
);
2979 check_poison_obj(cachep
, objp
);
2981 poison_obj(cachep
, objp
, POISON_INUSE
);
2983 if (cachep
->flags
& SLAB_STORE_USER
)
2984 *dbg_userword(cachep
, objp
) = (void *)caller
;
2986 if (cachep
->flags
& SLAB_RED_ZONE
) {
2987 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
||
2988 *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
2989 slab_error(cachep
, "double free, or memory outside"
2990 " object was overwritten");
2992 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2993 objp
, *dbg_redzone1(cachep
, objp
),
2994 *dbg_redzone2(cachep
, objp
));
2996 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
2997 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
2999 objp
+= obj_offset(cachep
);
3000 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
)
3002 if (ARCH_SLAB_MINALIGN
&&
3003 ((unsigned long)objp
& (ARCH_SLAB_MINALIGN
-1))) {
3004 printk(KERN_ERR
"0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3005 objp
, (int)ARCH_SLAB_MINALIGN
);
3010 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3013 static bool slab_should_failslab(struct kmem_cache
*cachep
, gfp_t flags
)
3015 if (cachep
== kmem_cache
)
3018 return should_failslab(cachep
->object_size
, flags
, cachep
->flags
);
3021 static inline void *____cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3024 struct array_cache
*ac
;
3025 bool force_refill
= false;
3029 ac
= cpu_cache_get(cachep
);
3030 if (likely(ac
->avail
)) {
3032 objp
= ac_get_obj(cachep
, ac
, flags
, false);
3035 * Allow for the possibility all avail objects are not allowed
3036 * by the current flags
3039 STATS_INC_ALLOCHIT(cachep
);
3042 force_refill
= true;
3045 STATS_INC_ALLOCMISS(cachep
);
3046 objp
= cache_alloc_refill(cachep
, flags
, force_refill
);
3048 * the 'ac' may be updated by cache_alloc_refill(),
3049 * and kmemleak_erase() requires its correct value.
3051 ac
= cpu_cache_get(cachep
);
3055 * To avoid a false negative, if an object that is in one of the
3056 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3057 * treat the array pointers as a reference to the object.
3060 kmemleak_erase(&ac
->entry
[ac
->avail
]);
3066 * Try allocating on another node if PF_SPREAD_SLAB is a mempolicy is set.
3068 * If we are in_interrupt, then process context, including cpusets and
3069 * mempolicy, may not apply and should not be used for allocation policy.
3071 static void *alternate_node_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3073 int nid_alloc
, nid_here
;
3075 if (in_interrupt() || (flags
& __GFP_THISNODE
))
3077 nid_alloc
= nid_here
= numa_mem_id();
3078 if (cpuset_do_slab_mem_spread() && (cachep
->flags
& SLAB_MEM_SPREAD
))
3079 nid_alloc
= cpuset_slab_spread_node();
3080 else if (current
->mempolicy
)
3081 nid_alloc
= mempolicy_slab_node();
3082 if (nid_alloc
!= nid_here
)
3083 return ____cache_alloc_node(cachep
, flags
, nid_alloc
);
3088 * Fallback function if there was no memory available and no objects on a
3089 * certain node and fall back is permitted. First we scan all the
3090 * available node for available objects. If that fails then we
3091 * perform an allocation without specifying a node. This allows the page
3092 * allocator to do its reclaim / fallback magic. We then insert the
3093 * slab into the proper nodelist and then allocate from it.
3095 static void *fallback_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3097 struct zonelist
*zonelist
;
3101 enum zone_type high_zoneidx
= gfp_zone(flags
);
3104 unsigned int cpuset_mems_cookie
;
3106 if (flags
& __GFP_THISNODE
)
3109 local_flags
= flags
& (GFP_CONSTRAINT_MASK
|GFP_RECLAIM_MASK
);
3112 cpuset_mems_cookie
= read_mems_allowed_begin();
3113 zonelist
= node_zonelist(mempolicy_slab_node(), flags
);
3117 * Look through allowed nodes for objects available
3118 * from existing per node queues.
3120 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
3121 nid
= zone_to_nid(zone
);
3123 if (cpuset_zone_allowed_hardwall(zone
, flags
) &&
3125 cache
->node
[nid
]->free_objects
) {
3126 obj
= ____cache_alloc_node(cache
,
3127 flags
| GFP_THISNODE
, nid
);
3135 * This allocation will be performed within the constraints
3136 * of the current cpuset / memory policy requirements.
3137 * We may trigger various forms of reclaim on the allowed
3138 * set and go into memory reserves if necessary.
3142 if (local_flags
& __GFP_WAIT
)
3144 kmem_flagcheck(cache
, flags
);
3145 page
= kmem_getpages(cache
, local_flags
, numa_mem_id());
3146 if (local_flags
& __GFP_WAIT
)
3147 local_irq_disable();
3150 * Insert into the appropriate per node queues
3152 nid
= page_to_nid(page
);
3153 if (cache_grow(cache
, flags
, nid
, page
)) {
3154 obj
= ____cache_alloc_node(cache
,
3155 flags
| GFP_THISNODE
, nid
);
3158 * Another processor may allocate the
3159 * objects in the slab since we are
3160 * not holding any locks.
3164 /* cache_grow already freed obj */
3170 if (unlikely(!obj
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
3176 * A interface to enable slab creation on nodeid
3178 static void *____cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
,
3181 struct list_head
*entry
;
3183 struct kmem_cache_node
*n
;
3187 VM_BUG_ON(nodeid
> num_online_nodes());
3188 n
= cachep
->node
[nodeid
];
3193 spin_lock(&n
->list_lock
);
3194 entry
= n
->slabs_partial
.next
;
3195 if (entry
== &n
->slabs_partial
) {
3196 n
->free_touched
= 1;
3197 entry
= n
->slabs_free
.next
;
3198 if (entry
== &n
->slabs_free
)
3202 page
= list_entry(entry
, struct page
, lru
);
3203 check_spinlock_acquired_node(cachep
, nodeid
);
3205 STATS_INC_NODEALLOCS(cachep
);
3206 STATS_INC_ACTIVE(cachep
);
3207 STATS_SET_HIGH(cachep
);
3209 BUG_ON(page
->active
== cachep
->num
);
3211 obj
= slab_get_obj(cachep
, page
, nodeid
);
3213 /* move slabp to correct slabp list: */
3214 list_del(&page
->lru
);
3216 if (page
->active
== cachep
->num
)
3217 list_add(&page
->lru
, &n
->slabs_full
);
3219 list_add(&page
->lru
, &n
->slabs_partial
);
3221 spin_unlock(&n
->list_lock
);
3225 spin_unlock(&n
->list_lock
);
3226 x
= cache_grow(cachep
, flags
| GFP_THISNODE
, nodeid
, NULL
);
3230 return fallback_alloc(cachep
, flags
);
3236 static __always_inline
void *
3237 slab_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
,
3238 unsigned long caller
)
3240 unsigned long save_flags
;
3242 int slab_node
= numa_mem_id();
3244 flags
&= gfp_allowed_mask
;
3246 lockdep_trace_alloc(flags
);
3248 if (slab_should_failslab(cachep
, flags
))
3251 cachep
= memcg_kmem_get_cache(cachep
, flags
);
3253 cache_alloc_debugcheck_before(cachep
, flags
);
3254 local_irq_save(save_flags
);
3256 if (nodeid
== NUMA_NO_NODE
)
3259 if (unlikely(!cachep
->node
[nodeid
])) {
3260 /* Node not bootstrapped yet */
3261 ptr
= fallback_alloc(cachep
, flags
);
3265 if (nodeid
== slab_node
) {
3267 * Use the locally cached objects if possible.
3268 * However ____cache_alloc does not allow fallback
3269 * to other nodes. It may fail while we still have
3270 * objects on other nodes available.
3272 ptr
= ____cache_alloc(cachep
, flags
);
3276 /* ___cache_alloc_node can fall back to other nodes */
3277 ptr
= ____cache_alloc_node(cachep
, flags
, nodeid
);
3279 local_irq_restore(save_flags
);
3280 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, caller
);
3281 kmemleak_alloc_recursive(ptr
, cachep
->object_size
, 1, cachep
->flags
,
3285 kmemcheck_slab_alloc(cachep
, flags
, ptr
, cachep
->object_size
);
3286 if (unlikely(flags
& __GFP_ZERO
))
3287 memset(ptr
, 0, cachep
->object_size
);
3293 static __always_inline
void *
3294 __do_cache_alloc(struct kmem_cache
*cache
, gfp_t flags
)
3298 if (current
->mempolicy
|| unlikely(current
->flags
& PF_SPREAD_SLAB
)) {
3299 objp
= alternate_node_alloc(cache
, flags
);
3303 objp
= ____cache_alloc(cache
, flags
);
3306 * We may just have run out of memory on the local node.
3307 * ____cache_alloc_node() knows how to locate memory on other nodes
3310 objp
= ____cache_alloc_node(cache
, flags
, numa_mem_id());
3317 static __always_inline
void *
3318 __do_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3320 return ____cache_alloc(cachep
, flags
);
3323 #endif /* CONFIG_NUMA */
3325 static __always_inline
void *
3326 slab_alloc(struct kmem_cache
*cachep
, gfp_t flags
, unsigned long caller
)
3328 unsigned long save_flags
;
3331 flags
&= gfp_allowed_mask
;
3333 lockdep_trace_alloc(flags
);
3335 if (slab_should_failslab(cachep
, flags
))
3338 cachep
= memcg_kmem_get_cache(cachep
, flags
);
3340 cache_alloc_debugcheck_before(cachep
, flags
);
3341 local_irq_save(save_flags
);
3342 objp
= __do_cache_alloc(cachep
, flags
);
3343 local_irq_restore(save_flags
);
3344 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
, caller
);
3345 kmemleak_alloc_recursive(objp
, cachep
->object_size
, 1, cachep
->flags
,
3350 kmemcheck_slab_alloc(cachep
, flags
, objp
, cachep
->object_size
);
3351 if (unlikely(flags
& __GFP_ZERO
))
3352 memset(objp
, 0, cachep
->object_size
);
3359 * Caller needs to acquire correct kmem_cache_node's list_lock
3361 static void free_block(struct kmem_cache
*cachep
, void **objpp
, int nr_objects
,
3365 struct kmem_cache_node
*n
;
3367 for (i
= 0; i
< nr_objects
; i
++) {
3371 clear_obj_pfmemalloc(&objpp
[i
]);
3374 page
= virt_to_head_page(objp
);
3375 n
= cachep
->node
[node
];
3376 list_del(&page
->lru
);
3377 check_spinlock_acquired_node(cachep
, node
);
3378 slab_put_obj(cachep
, page
, objp
, node
);
3379 STATS_DEC_ACTIVE(cachep
);
3382 /* fixup slab chains */
3383 if (page
->active
== 0) {
3384 if (n
->free_objects
> n
->free_limit
) {
3385 n
->free_objects
-= cachep
->num
;
3386 /* No need to drop any previously held
3387 * lock here, even if we have a off-slab slab
3388 * descriptor it is guaranteed to come from
3389 * a different cache, refer to comments before
3392 slab_destroy(cachep
, page
);
3394 list_add(&page
->lru
, &n
->slabs_free
);
3397 /* Unconditionally move a slab to the end of the
3398 * partial list on free - maximum time for the
3399 * other objects to be freed, too.
3401 list_add_tail(&page
->lru
, &n
->slabs_partial
);
3406 static void cache_flusharray(struct kmem_cache
*cachep
, struct array_cache
*ac
)
3409 struct kmem_cache_node
*n
;
3410 int node
= numa_mem_id();
3412 batchcount
= ac
->batchcount
;
3414 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
3417 n
= cachep
->node
[node
];
3418 spin_lock(&n
->list_lock
);
3420 struct array_cache
*shared_array
= n
->shared
;
3421 int max
= shared_array
->limit
- shared_array
->avail
;
3423 if (batchcount
> max
)
3425 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
3426 ac
->entry
, sizeof(void *) * batchcount
);
3427 shared_array
->avail
+= batchcount
;
3432 free_block(cachep
, ac
->entry
, batchcount
, node
);
3437 struct list_head
*p
;
3439 p
= n
->slabs_free
.next
;
3440 while (p
!= &(n
->slabs_free
)) {
3443 page
= list_entry(p
, struct page
, lru
);
3444 BUG_ON(page
->active
);
3449 STATS_SET_FREEABLE(cachep
, i
);
3452 spin_unlock(&n
->list_lock
);
3453 ac
->avail
-= batchcount
;
3454 memmove(ac
->entry
, &(ac
->entry
[batchcount
]), sizeof(void *)*ac
->avail
);
3458 * Release an obj back to its cache. If the obj has a constructed state, it must
3459 * be in this state _before_ it is released. Called with disabled ints.
3461 static inline void __cache_free(struct kmem_cache
*cachep
, void *objp
,
3462 unsigned long caller
)
3464 struct array_cache
*ac
= cpu_cache_get(cachep
);
3467 kmemleak_free_recursive(objp
, cachep
->flags
);
3468 objp
= cache_free_debugcheck(cachep
, objp
, caller
);
3470 kmemcheck_slab_free(cachep
, objp
, cachep
->object_size
);
3473 * Skip calling cache_free_alien() when the platform is not numa.
3474 * This will avoid cache misses that happen while accessing slabp (which
3475 * is per page memory reference) to get nodeid. Instead use a global
3476 * variable to skip the call, which is mostly likely to be present in
3479 if (nr_online_nodes
> 1 && cache_free_alien(cachep
, objp
))
3482 if (likely(ac
->avail
< ac
->limit
)) {
3483 STATS_INC_FREEHIT(cachep
);
3485 STATS_INC_FREEMISS(cachep
);
3486 cache_flusharray(cachep
, ac
);
3489 ac_put_obj(cachep
, ac
, objp
);
3493 * kmem_cache_alloc - Allocate an object
3494 * @cachep: The cache to allocate from.
3495 * @flags: See kmalloc().
3497 * Allocate an object from this cache. The flags are only relevant
3498 * if the cache has no available objects.
3500 void *kmem_cache_alloc(struct kmem_cache
*cachep
, gfp_t flags
)
3502 void *ret
= slab_alloc(cachep
, flags
, _RET_IP_
);
3504 trace_kmem_cache_alloc(_RET_IP_
, ret
,
3505 cachep
->object_size
, cachep
->size
, flags
);
3509 EXPORT_SYMBOL(kmem_cache_alloc
);
3511 #ifdef CONFIG_TRACING
3513 kmem_cache_alloc_trace(struct kmem_cache
*cachep
, gfp_t flags
, size_t size
)
3517 ret
= slab_alloc(cachep
, flags
, _RET_IP_
);
3519 trace_kmalloc(_RET_IP_
, ret
,
3520 size
, cachep
->size
, flags
);
3523 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
3528 * kmem_cache_alloc_node - Allocate an object on the specified node
3529 * @cachep: The cache to allocate from.
3530 * @flags: See kmalloc().
3531 * @nodeid: node number of the target node.
3533 * Identical to kmem_cache_alloc but it will allocate memory on the given
3534 * node, which can improve the performance for cpu bound structures.
3536 * Fallback to other node is possible if __GFP_THISNODE is not set.
3538 void *kmem_cache_alloc_node(struct kmem_cache
*cachep
, gfp_t flags
, int nodeid
)
3540 void *ret
= slab_alloc_node(cachep
, flags
, nodeid
, _RET_IP_
);
3542 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
3543 cachep
->object_size
, cachep
->size
,
3548 EXPORT_SYMBOL(kmem_cache_alloc_node
);
3550 #ifdef CONFIG_TRACING
3551 void *kmem_cache_alloc_node_trace(struct kmem_cache
*cachep
,
3558 ret
= slab_alloc_node(cachep
, flags
, nodeid
, _RET_IP_
);
3560 trace_kmalloc_node(_RET_IP_
, ret
,
3565 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
3568 static __always_inline
void *
3569 __do_kmalloc_node(size_t size
, gfp_t flags
, int node
, unsigned long caller
)
3571 struct kmem_cache
*cachep
;
3573 cachep
= kmalloc_slab(size
, flags
);
3574 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3576 return kmem_cache_alloc_node_trace(cachep
, flags
, node
, size
);
3579 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3580 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3582 return __do_kmalloc_node(size
, flags
, node
, _RET_IP_
);
3584 EXPORT_SYMBOL(__kmalloc_node
);
3586 void *__kmalloc_node_track_caller(size_t size
, gfp_t flags
,
3587 int node
, unsigned long caller
)
3589 return __do_kmalloc_node(size
, flags
, node
, caller
);
3591 EXPORT_SYMBOL(__kmalloc_node_track_caller
);
3593 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3595 return __do_kmalloc_node(size
, flags
, node
, 0);
3597 EXPORT_SYMBOL(__kmalloc_node
);
3598 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3599 #endif /* CONFIG_NUMA */
3602 * __do_kmalloc - allocate memory
3603 * @size: how many bytes of memory are required.
3604 * @flags: the type of memory to allocate (see kmalloc).
3605 * @caller: function caller for debug tracking of the caller
3607 static __always_inline
void *__do_kmalloc(size_t size
, gfp_t flags
,
3608 unsigned long caller
)
3610 struct kmem_cache
*cachep
;
3613 cachep
= kmalloc_slab(size
, flags
);
3614 if (unlikely(ZERO_OR_NULL_PTR(cachep
)))
3616 ret
= slab_alloc(cachep
, flags
, caller
);
3618 trace_kmalloc(caller
, ret
,
3619 size
, cachep
->size
, flags
);
3625 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3626 void *__kmalloc(size_t size
, gfp_t flags
)
3628 return __do_kmalloc(size
, flags
, _RET_IP_
);
3630 EXPORT_SYMBOL(__kmalloc
);
3632 void *__kmalloc_track_caller(size_t size
, gfp_t flags
, unsigned long caller
)
3634 return __do_kmalloc(size
, flags
, caller
);
3636 EXPORT_SYMBOL(__kmalloc_track_caller
);
3639 void *__kmalloc(size_t size
, gfp_t flags
)
3641 return __do_kmalloc(size
, flags
, 0);
3643 EXPORT_SYMBOL(__kmalloc
);
3647 * kmem_cache_free - Deallocate an object
3648 * @cachep: The cache the allocation was from.
3649 * @objp: The previously allocated object.
3651 * Free an object which was previously allocated from this
3654 void kmem_cache_free(struct kmem_cache
*cachep
, void *objp
)
3656 unsigned long flags
;
3657 cachep
= cache_from_obj(cachep
, objp
);
3661 local_irq_save(flags
);
3662 debug_check_no_locks_freed(objp
, cachep
->object_size
);
3663 if (!(cachep
->flags
& SLAB_DEBUG_OBJECTS
))
3664 debug_check_no_obj_freed(objp
, cachep
->object_size
);
3665 __cache_free(cachep
, objp
, _RET_IP_
);
3666 local_irq_restore(flags
);
3668 trace_kmem_cache_free(_RET_IP_
, objp
);
3670 EXPORT_SYMBOL(kmem_cache_free
);
3673 * kfree - free previously allocated memory
3674 * @objp: pointer returned by kmalloc.
3676 * If @objp is NULL, no operation is performed.
3678 * Don't free memory not originally allocated by kmalloc()
3679 * or you will run into trouble.
3681 void kfree(const void *objp
)
3683 struct kmem_cache
*c
;
3684 unsigned long flags
;
3686 trace_kfree(_RET_IP_
, objp
);
3688 if (unlikely(ZERO_OR_NULL_PTR(objp
)))
3690 local_irq_save(flags
);
3691 kfree_debugcheck(objp
);
3692 c
= virt_to_cache(objp
);
3693 debug_check_no_locks_freed(objp
, c
->object_size
);
3695 debug_check_no_obj_freed(objp
, c
->object_size
);
3696 __cache_free(c
, (void *)objp
, _RET_IP_
);
3697 local_irq_restore(flags
);
3699 EXPORT_SYMBOL(kfree
);
3702 * This initializes kmem_cache_node or resizes various caches for all nodes.
3704 static int alloc_kmem_cache_node(struct kmem_cache
*cachep
, gfp_t gfp
)
3707 struct kmem_cache_node
*n
;
3708 struct array_cache
*new_shared
;
3709 struct array_cache
**new_alien
= NULL
;
3711 for_each_online_node(node
) {
3713 if (use_alien_caches
) {
3714 new_alien
= alloc_alien_cache(node
, cachep
->limit
, gfp
);
3720 if (cachep
->shared
) {
3721 new_shared
= alloc_arraycache(node
,
3722 cachep
->shared
*cachep
->batchcount
,
3725 free_alien_cache(new_alien
);
3730 n
= cachep
->node
[node
];
3732 struct array_cache
*shared
= n
->shared
;
3734 spin_lock_irq(&n
->list_lock
);
3737 free_block(cachep
, shared
->entry
,
3738 shared
->avail
, node
);
3740 n
->shared
= new_shared
;
3742 n
->alien
= new_alien
;
3745 n
->free_limit
= (1 + nr_cpus_node(node
)) *
3746 cachep
->batchcount
+ cachep
->num
;
3747 spin_unlock_irq(&n
->list_lock
);
3749 free_alien_cache(new_alien
);
3752 n
= kmalloc_node(sizeof(struct kmem_cache_node
), gfp
, node
);
3754 free_alien_cache(new_alien
);
3759 kmem_cache_node_init(n
);
3760 n
->next_reap
= jiffies
+ REAPTIMEOUT_NODE
+
3761 ((unsigned long)cachep
) % REAPTIMEOUT_NODE
;
3762 n
->shared
= new_shared
;
3763 n
->alien
= new_alien
;
3764 n
->free_limit
= (1 + nr_cpus_node(node
)) *
3765 cachep
->batchcount
+ cachep
->num
;
3766 cachep
->node
[node
] = n
;
3771 if (!cachep
->list
.next
) {
3772 /* Cache is not active yet. Roll back what we did */
3775 if (cachep
->node
[node
]) {
3776 n
= cachep
->node
[node
];
3779 free_alien_cache(n
->alien
);
3781 cachep
->node
[node
] = NULL
;
3789 struct ccupdate_struct
{
3790 struct kmem_cache
*cachep
;
3791 struct array_cache
*new[0];
3794 static void do_ccupdate_local(void *info
)
3796 struct ccupdate_struct
*new = info
;
3797 struct array_cache
*old
;
3800 old
= cpu_cache_get(new->cachep
);
3802 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3803 new->new[smp_processor_id()] = old
;
3806 /* Always called with the slab_mutex held */
3807 static int __do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3808 int batchcount
, int shared
, gfp_t gfp
)
3810 struct ccupdate_struct
*new;
3813 new = kzalloc(sizeof(*new) + nr_cpu_ids
* sizeof(struct array_cache
*),
3818 for_each_online_cpu(i
) {
3819 new->new[i
] = alloc_arraycache(cpu_to_mem(i
), limit
,
3822 for (i
--; i
>= 0; i
--)
3828 new->cachep
= cachep
;
3830 on_each_cpu(do_ccupdate_local
, (void *)new, 1);
3833 cachep
->batchcount
= batchcount
;
3834 cachep
->limit
= limit
;
3835 cachep
->shared
= shared
;
3837 for_each_online_cpu(i
) {
3838 struct array_cache
*ccold
= new->new[i
];
3841 spin_lock_irq(&cachep
->node
[cpu_to_mem(i
)]->list_lock
);
3842 free_block(cachep
, ccold
->entry
, ccold
->avail
, cpu_to_mem(i
));
3843 spin_unlock_irq(&cachep
->node
[cpu_to_mem(i
)]->list_lock
);
3847 return alloc_kmem_cache_node(cachep
, gfp
);
3850 static int do_tune_cpucache(struct kmem_cache
*cachep
, int limit
,
3851 int batchcount
, int shared
, gfp_t gfp
)
3854 struct kmem_cache
*c
= NULL
;
3857 ret
= __do_tune_cpucache(cachep
, limit
, batchcount
, shared
, gfp
);
3859 if (slab_state
< FULL
)
3862 if ((ret
< 0) || !is_root_cache(cachep
))
3865 VM_BUG_ON(!mutex_is_locked(&slab_mutex
));
3866 for_each_memcg_cache_index(i
) {
3867 c
= cache_from_memcg_idx(cachep
, i
);
3869 /* return value determined by the parent cache only */
3870 __do_tune_cpucache(c
, limit
, batchcount
, shared
, gfp
);
3876 /* Called with slab_mutex held always */
3877 static int enable_cpucache(struct kmem_cache
*cachep
, gfp_t gfp
)
3884 if (!is_root_cache(cachep
)) {
3885 struct kmem_cache
*root
= memcg_root_cache(cachep
);
3886 limit
= root
->limit
;
3887 shared
= root
->shared
;
3888 batchcount
= root
->batchcount
;
3891 if (limit
&& shared
&& batchcount
)
3894 * The head array serves three purposes:
3895 * - create a LIFO ordering, i.e. return objects that are cache-warm
3896 * - reduce the number of spinlock operations.
3897 * - reduce the number of linked list operations on the slab and
3898 * bufctl chains: array operations are cheaper.
3899 * The numbers are guessed, we should auto-tune as described by
3902 if (cachep
->size
> 131072)
3904 else if (cachep
->size
> PAGE_SIZE
)
3906 else if (cachep
->size
> 1024)
3908 else if (cachep
->size
> 256)
3914 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3915 * allocation behaviour: Most allocs on one cpu, most free operations
3916 * on another cpu. For these cases, an efficient object passing between
3917 * cpus is necessary. This is provided by a shared array. The array
3918 * replaces Bonwick's magazine layer.
3919 * On uniprocessor, it's functionally equivalent (but less efficient)
3920 * to a larger limit. Thus disabled by default.
3923 if (cachep
->size
<= PAGE_SIZE
&& num_possible_cpus() > 1)
3928 * With debugging enabled, large batchcount lead to excessively long
3929 * periods with disabled local interrupts. Limit the batchcount
3934 batchcount
= (limit
+ 1) / 2;
3936 err
= do_tune_cpucache(cachep
, limit
, batchcount
, shared
, gfp
);
3938 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
3939 cachep
->name
, -err
);
3944 * Drain an array if it contains any elements taking the node lock only if
3945 * necessary. Note that the node listlock also protects the array_cache
3946 * if drain_array() is used on the shared array.
3948 static void drain_array(struct kmem_cache
*cachep
, struct kmem_cache_node
*n
,
3949 struct array_cache
*ac
, int force
, int node
)
3953 if (!ac
|| !ac
->avail
)
3955 if (ac
->touched
&& !force
) {
3958 spin_lock_irq(&n
->list_lock
);
3960 tofree
= force
? ac
->avail
: (ac
->limit
+ 4) / 5;
3961 if (tofree
> ac
->avail
)
3962 tofree
= (ac
->avail
+ 1) / 2;
3963 free_block(cachep
, ac
->entry
, tofree
, node
);
3964 ac
->avail
-= tofree
;
3965 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
3966 sizeof(void *) * ac
->avail
);
3968 spin_unlock_irq(&n
->list_lock
);
3973 * cache_reap - Reclaim memory from caches.
3974 * @w: work descriptor
3976 * Called from workqueue/eventd every few seconds.
3978 * - clear the per-cpu caches for this CPU.
3979 * - return freeable pages to the main free memory pool.
3981 * If we cannot acquire the cache chain mutex then just give up - we'll try
3982 * again on the next iteration.
3984 static void cache_reap(struct work_struct
*w
)
3986 struct kmem_cache
*searchp
;
3987 struct kmem_cache_node
*n
;
3988 int node
= numa_mem_id();
3989 struct delayed_work
*work
= to_delayed_work(w
);
3991 if (!mutex_trylock(&slab_mutex
))
3992 /* Give up. Setup the next iteration. */
3995 list_for_each_entry(searchp
, &slab_caches
, list
) {
3999 * We only take the node lock if absolutely necessary and we
4000 * have established with reasonable certainty that
4001 * we can do some work if the lock was obtained.
4003 n
= searchp
->node
[node
];
4005 reap_alien(searchp
, n
);
4007 drain_array(searchp
, n
, cpu_cache_get(searchp
), 0, node
);
4010 * These are racy checks but it does not matter
4011 * if we skip one check or scan twice.
4013 if (time_after(n
->next_reap
, jiffies
))
4016 n
->next_reap
= jiffies
+ REAPTIMEOUT_NODE
;
4018 drain_array(searchp
, n
, n
->shared
, 0, node
);
4020 if (n
->free_touched
)
4021 n
->free_touched
= 0;
4025 freed
= drain_freelist(searchp
, n
, (n
->free_limit
+
4026 5 * searchp
->num
- 1) / (5 * searchp
->num
));
4027 STATS_ADD_REAPED(searchp
, freed
);
4033 mutex_unlock(&slab_mutex
);
4036 /* Set up the next iteration */
4037 schedule_delayed_work(work
, round_jiffies_relative(REAPTIMEOUT_AC
));
4040 #ifdef CONFIG_SLABINFO
4041 void get_slabinfo(struct kmem_cache
*cachep
, struct slabinfo
*sinfo
)
4044 unsigned long active_objs
;
4045 unsigned long num_objs
;
4046 unsigned long active_slabs
= 0;
4047 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
4051 struct kmem_cache_node
*n
;
4055 for_each_online_node(node
) {
4056 n
= cachep
->node
[node
];
4061 spin_lock_irq(&n
->list_lock
);
4063 list_for_each_entry(page
, &n
->slabs_full
, lru
) {
4064 if (page
->active
!= cachep
->num
&& !error
)
4065 error
= "slabs_full accounting error";
4066 active_objs
+= cachep
->num
;
4069 list_for_each_entry(page
, &n
->slabs_partial
, lru
) {
4070 if (page
->active
== cachep
->num
&& !error
)
4071 error
= "slabs_partial accounting error";
4072 if (!page
->active
&& !error
)
4073 error
= "slabs_partial accounting error";
4074 active_objs
+= page
->active
;
4077 list_for_each_entry(page
, &n
->slabs_free
, lru
) {
4078 if (page
->active
&& !error
)
4079 error
= "slabs_free accounting error";
4082 free_objects
+= n
->free_objects
;
4084 shared_avail
+= n
->shared
->avail
;
4086 spin_unlock_irq(&n
->list_lock
);
4088 num_slabs
+= active_slabs
;
4089 num_objs
= num_slabs
* cachep
->num
;
4090 if (num_objs
- active_objs
!= free_objects
&& !error
)
4091 error
= "free_objects accounting error";
4093 name
= cachep
->name
;
4095 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
4097 sinfo
->active_objs
= active_objs
;
4098 sinfo
->num_objs
= num_objs
;
4099 sinfo
->active_slabs
= active_slabs
;
4100 sinfo
->num_slabs
= num_slabs
;
4101 sinfo
->shared_avail
= shared_avail
;
4102 sinfo
->limit
= cachep
->limit
;
4103 sinfo
->batchcount
= cachep
->batchcount
;
4104 sinfo
->shared
= cachep
->shared
;
4105 sinfo
->objects_per_slab
= cachep
->num
;
4106 sinfo
->cache_order
= cachep
->gfporder
;
4109 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*cachep
)
4113 unsigned long high
= cachep
->high_mark
;
4114 unsigned long allocs
= cachep
->num_allocations
;
4115 unsigned long grown
= cachep
->grown
;
4116 unsigned long reaped
= cachep
->reaped
;
4117 unsigned long errors
= cachep
->errors
;
4118 unsigned long max_freeable
= cachep
->max_freeable
;
4119 unsigned long node_allocs
= cachep
->node_allocs
;
4120 unsigned long node_frees
= cachep
->node_frees
;
4121 unsigned long overflows
= cachep
->node_overflow
;
4123 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu "
4124 "%4lu %4lu %4lu %4lu %4lu",
4125 allocs
, high
, grown
,
4126 reaped
, errors
, max_freeable
, node_allocs
,
4127 node_frees
, overflows
);
4131 unsigned long allochit
= atomic_read(&cachep
->allochit
);
4132 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
4133 unsigned long freehit
= atomic_read(&cachep
->freehit
);
4134 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
4136 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
4137 allochit
, allocmiss
, freehit
, freemiss
);
4142 #define MAX_SLABINFO_WRITE 128
4144 * slabinfo_write - Tuning for the slab allocator
4146 * @buffer: user buffer
4147 * @count: data length
4150 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
4151 size_t count
, loff_t
*ppos
)
4153 char kbuf
[MAX_SLABINFO_WRITE
+ 1], *tmp
;
4154 int limit
, batchcount
, shared
, res
;
4155 struct kmem_cache
*cachep
;
4157 if (count
> MAX_SLABINFO_WRITE
)
4159 if (copy_from_user(&kbuf
, buffer
, count
))
4161 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
4163 tmp
= strchr(kbuf
, ' ');
4168 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
4171 /* Find the cache in the chain of caches. */
4172 mutex_lock(&slab_mutex
);
4174 list_for_each_entry(cachep
, &slab_caches
, list
) {
4175 if (!strcmp(cachep
->name
, kbuf
)) {
4176 if (limit
< 1 || batchcount
< 1 ||
4177 batchcount
> limit
|| shared
< 0) {
4180 res
= do_tune_cpucache(cachep
, limit
,
4187 mutex_unlock(&slab_mutex
);
4193 #ifdef CONFIG_DEBUG_SLAB_LEAK
4195 static void *leaks_start(struct seq_file
*m
, loff_t
*pos
)
4197 mutex_lock(&slab_mutex
);
4198 return seq_list_start(&slab_caches
, *pos
);
4201 static inline int add_caller(unsigned long *n
, unsigned long v
)
4211 unsigned long *q
= p
+ 2 * i
;
4225 memmove(p
+ 2, p
, n
[1] * 2 * sizeof(unsigned long) - ((void *)p
- (void *)n
));
4231 static void handle_slab(unsigned long *n
, struct kmem_cache
*c
,
4239 for (i
= 0, p
= page
->s_mem
; i
< c
->num
; i
++, p
+= c
->size
) {
4242 for (j
= page
->active
; j
< c
->num
; j
++) {
4243 /* Skip freed item */
4244 if (get_free_obj(page
, j
) == i
) {
4252 if (!add_caller(n
, (unsigned long)*dbg_userword(c
, p
)))
4257 static void show_symbol(struct seq_file
*m
, unsigned long address
)
4259 #ifdef CONFIG_KALLSYMS
4260 unsigned long offset
, size
;
4261 char modname
[MODULE_NAME_LEN
], name
[KSYM_NAME_LEN
];
4263 if (lookup_symbol_attrs(address
, &size
, &offset
, modname
, name
) == 0) {
4264 seq_printf(m
, "%s+%#lx/%#lx", name
, offset
, size
);
4266 seq_printf(m
, " [%s]", modname
);
4270 seq_printf(m
, "%p", (void *)address
);
4273 static int leaks_show(struct seq_file
*m
, void *p
)
4275 struct kmem_cache
*cachep
= list_entry(p
, struct kmem_cache
, list
);
4277 struct kmem_cache_node
*n
;
4279 unsigned long *x
= m
->private;
4283 if (!(cachep
->flags
& SLAB_STORE_USER
))
4285 if (!(cachep
->flags
& SLAB_RED_ZONE
))
4288 /* OK, we can do it */
4292 for_each_online_node(node
) {
4293 n
= cachep
->node
[node
];
4298 spin_lock_irq(&n
->list_lock
);
4300 list_for_each_entry(page
, &n
->slabs_full
, lru
)
4301 handle_slab(x
, cachep
, page
);
4302 list_for_each_entry(page
, &n
->slabs_partial
, lru
)
4303 handle_slab(x
, cachep
, page
);
4304 spin_unlock_irq(&n
->list_lock
);
4306 name
= cachep
->name
;
4308 /* Increase the buffer size */
4309 mutex_unlock(&slab_mutex
);
4310 m
->private = kzalloc(x
[0] * 4 * sizeof(unsigned long), GFP_KERNEL
);
4312 /* Too bad, we are really out */
4314 mutex_lock(&slab_mutex
);
4317 *(unsigned long *)m
->private = x
[0] * 2;
4319 mutex_lock(&slab_mutex
);
4320 /* Now make sure this entry will be retried */
4324 for (i
= 0; i
< x
[1]; i
++) {
4325 seq_printf(m
, "%s: %lu ", name
, x
[2*i
+3]);
4326 show_symbol(m
, x
[2*i
+2]);
4333 static const struct seq_operations slabstats_op
= {
4334 .start
= leaks_start
,
4340 static int slabstats_open(struct inode
*inode
, struct file
*file
)
4342 unsigned long *n
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
4345 ret
= seq_open(file
, &slabstats_op
);
4347 struct seq_file
*m
= file
->private_data
;
4348 *n
= PAGE_SIZE
/ (2 * sizeof(unsigned long));
4357 static const struct file_operations proc_slabstats_operations
= {
4358 .open
= slabstats_open
,
4360 .llseek
= seq_lseek
,
4361 .release
= seq_release_private
,
4365 static int __init
slab_proc_init(void)
4367 #ifdef CONFIG_DEBUG_SLAB_LEAK
4368 proc_create("slab_allocators", 0, NULL
, &proc_slabstats_operations
);
4372 module_init(slab_proc_init
);
4376 * ksize - get the actual amount of memory allocated for a given object
4377 * @objp: Pointer to the object
4379 * kmalloc may internally round up allocations and return more memory
4380 * than requested. ksize() can be used to determine the actual amount of
4381 * memory allocated. The caller may use this additional memory, even though
4382 * a smaller amount of memory was initially specified with the kmalloc call.
4383 * The caller must guarantee that objp points to a valid object previously
4384 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4385 * must not be freed during the duration of the call.
4387 size_t ksize(const void *objp
)
4390 if (unlikely(objp
== ZERO_SIZE_PTR
))
4393 return virt_to_cache(objp
)->object_size
;
4395 EXPORT_SYMBOL(ksize
);