fix a kmap leak in virtio_console
[linux/fpc-iii.git] / arch / arm / kernel / perf_event.c
blob789d846a9184531a1c9c05cc97a54966101a13e2
1 #undef DEBUG
3 /*
4 * ARM performance counter support.
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
11 * code.
13 #define pr_fmt(fmt) "hw perfevents: " fmt
15 #include <linux/kernel.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/uaccess.h>
20 #include <asm/irq_regs.h>
21 #include <asm/pmu.h>
22 #include <asm/stacktrace.h>
24 static int
25 armpmu_map_cache_event(const unsigned (*cache_map)
26 [PERF_COUNT_HW_CACHE_MAX]
27 [PERF_COUNT_HW_CACHE_OP_MAX]
28 [PERF_COUNT_HW_CACHE_RESULT_MAX],
29 u64 config)
31 unsigned int cache_type, cache_op, cache_result, ret;
33 cache_type = (config >> 0) & 0xff;
34 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
35 return -EINVAL;
37 cache_op = (config >> 8) & 0xff;
38 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
39 return -EINVAL;
41 cache_result = (config >> 16) & 0xff;
42 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
43 return -EINVAL;
45 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
47 if (ret == CACHE_OP_UNSUPPORTED)
48 return -ENOENT;
50 return ret;
53 static int
54 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
56 int mapping;
58 if (config >= PERF_COUNT_HW_MAX)
59 return -EINVAL;
61 mapping = (*event_map)[config];
62 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
65 static int
66 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
68 return (int)(config & raw_event_mask);
71 int
72 armpmu_map_event(struct perf_event *event,
73 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
74 const unsigned (*cache_map)
75 [PERF_COUNT_HW_CACHE_MAX]
76 [PERF_COUNT_HW_CACHE_OP_MAX]
77 [PERF_COUNT_HW_CACHE_RESULT_MAX],
78 u32 raw_event_mask)
80 u64 config = event->attr.config;
82 switch (event->attr.type) {
83 case PERF_TYPE_HARDWARE:
84 return armpmu_map_hw_event(event_map, config);
85 case PERF_TYPE_HW_CACHE:
86 return armpmu_map_cache_event(cache_map, config);
87 case PERF_TYPE_RAW:
88 return armpmu_map_raw_event(raw_event_mask, config);
91 return -ENOENT;
94 int armpmu_event_set_period(struct perf_event *event)
96 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
97 struct hw_perf_event *hwc = &event->hw;
98 s64 left = local64_read(&hwc->period_left);
99 s64 period = hwc->sample_period;
100 int ret = 0;
102 if (unlikely(left <= -period)) {
103 left = period;
104 local64_set(&hwc->period_left, left);
105 hwc->last_period = period;
106 ret = 1;
109 if (unlikely(left <= 0)) {
110 left += period;
111 local64_set(&hwc->period_left, left);
112 hwc->last_period = period;
113 ret = 1;
116 if (left > (s64)armpmu->max_period)
117 left = armpmu->max_period;
119 local64_set(&hwc->prev_count, (u64)-left);
121 armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
123 perf_event_update_userpage(event);
125 return ret;
128 u64 armpmu_event_update(struct perf_event *event)
130 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
131 struct hw_perf_event *hwc = &event->hw;
132 u64 delta, prev_raw_count, new_raw_count;
134 again:
135 prev_raw_count = local64_read(&hwc->prev_count);
136 new_raw_count = armpmu->read_counter(event);
138 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
139 new_raw_count) != prev_raw_count)
140 goto again;
142 delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
144 local64_add(delta, &event->count);
145 local64_sub(delta, &hwc->period_left);
147 return new_raw_count;
150 static void
151 armpmu_read(struct perf_event *event)
153 armpmu_event_update(event);
156 static void
157 armpmu_stop(struct perf_event *event, int flags)
159 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
160 struct hw_perf_event *hwc = &event->hw;
163 * ARM pmu always has to update the counter, so ignore
164 * PERF_EF_UPDATE, see comments in armpmu_start().
166 if (!(hwc->state & PERF_HES_STOPPED)) {
167 armpmu->disable(event);
168 armpmu_event_update(event);
169 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
173 static void armpmu_start(struct perf_event *event, int flags)
175 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
176 struct hw_perf_event *hwc = &event->hw;
179 * ARM pmu always has to reprogram the period, so ignore
180 * PERF_EF_RELOAD, see the comment below.
182 if (flags & PERF_EF_RELOAD)
183 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
185 hwc->state = 0;
187 * Set the period again. Some counters can't be stopped, so when we
188 * were stopped we simply disabled the IRQ source and the counter
189 * may have been left counting. If we don't do this step then we may
190 * get an interrupt too soon or *way* too late if the overflow has
191 * happened since disabling.
193 armpmu_event_set_period(event);
194 armpmu->enable(event);
197 static void
198 armpmu_del(struct perf_event *event, int flags)
200 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
201 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
202 struct hw_perf_event *hwc = &event->hw;
203 int idx = hwc->idx;
205 armpmu_stop(event, PERF_EF_UPDATE);
206 hw_events->events[idx] = NULL;
207 clear_bit(idx, hw_events->used_mask);
209 perf_event_update_userpage(event);
212 static int
213 armpmu_add(struct perf_event *event, int flags)
215 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
216 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
217 struct hw_perf_event *hwc = &event->hw;
218 int idx;
219 int err = 0;
221 perf_pmu_disable(event->pmu);
223 /* If we don't have a space for the counter then finish early. */
224 idx = armpmu->get_event_idx(hw_events, event);
225 if (idx < 0) {
226 err = idx;
227 goto out;
231 * If there is an event in the counter we are going to use then make
232 * sure it is disabled.
234 event->hw.idx = idx;
235 armpmu->disable(event);
236 hw_events->events[idx] = event;
238 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
239 if (flags & PERF_EF_START)
240 armpmu_start(event, PERF_EF_RELOAD);
242 /* Propagate our changes to the userspace mapping. */
243 perf_event_update_userpage(event);
245 out:
246 perf_pmu_enable(event->pmu);
247 return err;
250 static int
251 validate_event(struct pmu_hw_events *hw_events,
252 struct perf_event *event)
254 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
256 if (is_software_event(event))
257 return 1;
259 if (event->state < PERF_EVENT_STATE_OFF)
260 return 1;
262 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
263 return 1;
265 return armpmu->get_event_idx(hw_events, event) >= 0;
268 static int
269 validate_group(struct perf_event *event)
271 struct perf_event *sibling, *leader = event->group_leader;
272 struct pmu_hw_events fake_pmu;
273 DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
276 * Initialise the fake PMU. We only need to populate the
277 * used_mask for the purposes of validation.
279 memset(fake_used_mask, 0, sizeof(fake_used_mask));
280 fake_pmu.used_mask = fake_used_mask;
282 if (!validate_event(&fake_pmu, leader))
283 return -EINVAL;
285 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
286 if (!validate_event(&fake_pmu, sibling))
287 return -EINVAL;
290 if (!validate_event(&fake_pmu, event))
291 return -EINVAL;
293 return 0;
296 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
298 struct arm_pmu *armpmu = (struct arm_pmu *) dev;
299 struct platform_device *plat_device = armpmu->plat_device;
300 struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
302 if (plat && plat->handle_irq)
303 return plat->handle_irq(irq, dev, armpmu->handle_irq);
304 else
305 return armpmu->handle_irq(irq, dev);
308 static void
309 armpmu_release_hardware(struct arm_pmu *armpmu)
311 armpmu->free_irq(armpmu);
312 pm_runtime_put_sync(&armpmu->plat_device->dev);
315 static int
316 armpmu_reserve_hardware(struct arm_pmu *armpmu)
318 int err;
319 struct platform_device *pmu_device = armpmu->plat_device;
321 if (!pmu_device)
322 return -ENODEV;
324 pm_runtime_get_sync(&pmu_device->dev);
325 err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
326 if (err) {
327 armpmu_release_hardware(armpmu);
328 return err;
331 return 0;
334 static void
335 hw_perf_event_destroy(struct perf_event *event)
337 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
338 atomic_t *active_events = &armpmu->active_events;
339 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
341 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
342 armpmu_release_hardware(armpmu);
343 mutex_unlock(pmu_reserve_mutex);
347 static int
348 event_requires_mode_exclusion(struct perf_event_attr *attr)
350 return attr->exclude_idle || attr->exclude_user ||
351 attr->exclude_kernel || attr->exclude_hv;
354 static int
355 __hw_perf_event_init(struct perf_event *event)
357 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
358 struct hw_perf_event *hwc = &event->hw;
359 int mapping;
361 mapping = armpmu->map_event(event);
363 if (mapping < 0) {
364 pr_debug("event %x:%llx not supported\n", event->attr.type,
365 event->attr.config);
366 return mapping;
370 * We don't assign an index until we actually place the event onto
371 * hardware. Use -1 to signify that we haven't decided where to put it
372 * yet. For SMP systems, each core has it's own PMU so we can't do any
373 * clever allocation or constraints checking at this point.
375 hwc->idx = -1;
376 hwc->config_base = 0;
377 hwc->config = 0;
378 hwc->event_base = 0;
381 * Check whether we need to exclude the counter from certain modes.
383 if ((!armpmu->set_event_filter ||
384 armpmu->set_event_filter(hwc, &event->attr)) &&
385 event_requires_mode_exclusion(&event->attr)) {
386 pr_debug("ARM performance counters do not support "
387 "mode exclusion\n");
388 return -EOPNOTSUPP;
392 * Store the event encoding into the config_base field.
394 hwc->config_base |= (unsigned long)mapping;
396 if (!hwc->sample_period) {
398 * For non-sampling runs, limit the sample_period to half
399 * of the counter width. That way, the new counter value
400 * is far less likely to overtake the previous one unless
401 * you have some serious IRQ latency issues.
403 hwc->sample_period = armpmu->max_period >> 1;
404 hwc->last_period = hwc->sample_period;
405 local64_set(&hwc->period_left, hwc->sample_period);
408 if (event->group_leader != event) {
409 if (validate_group(event) != 0)
410 return -EINVAL;
413 return 0;
416 static int armpmu_event_init(struct perf_event *event)
418 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
419 int err = 0;
420 atomic_t *active_events = &armpmu->active_events;
422 /* does not support taken branch sampling */
423 if (has_branch_stack(event))
424 return -EOPNOTSUPP;
426 if (armpmu->map_event(event) == -ENOENT)
427 return -ENOENT;
429 event->destroy = hw_perf_event_destroy;
431 if (!atomic_inc_not_zero(active_events)) {
432 mutex_lock(&armpmu->reserve_mutex);
433 if (atomic_read(active_events) == 0)
434 err = armpmu_reserve_hardware(armpmu);
436 if (!err)
437 atomic_inc(active_events);
438 mutex_unlock(&armpmu->reserve_mutex);
441 if (err)
442 return err;
444 err = __hw_perf_event_init(event);
445 if (err)
446 hw_perf_event_destroy(event);
448 return err;
451 static void armpmu_enable(struct pmu *pmu)
453 struct arm_pmu *armpmu = to_arm_pmu(pmu);
454 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
455 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
457 if (enabled)
458 armpmu->start(armpmu);
461 static void armpmu_disable(struct pmu *pmu)
463 struct arm_pmu *armpmu = to_arm_pmu(pmu);
464 armpmu->stop(armpmu);
467 #ifdef CONFIG_PM_RUNTIME
468 static int armpmu_runtime_resume(struct device *dev)
470 struct arm_pmu_platdata *plat = dev_get_platdata(dev);
472 if (plat && plat->runtime_resume)
473 return plat->runtime_resume(dev);
475 return 0;
478 static int armpmu_runtime_suspend(struct device *dev)
480 struct arm_pmu_platdata *plat = dev_get_platdata(dev);
482 if (plat && plat->runtime_suspend)
483 return plat->runtime_suspend(dev);
485 return 0;
487 #endif
489 const struct dev_pm_ops armpmu_dev_pm_ops = {
490 SET_RUNTIME_PM_OPS(armpmu_runtime_suspend, armpmu_runtime_resume, NULL)
493 static void armpmu_init(struct arm_pmu *armpmu)
495 atomic_set(&armpmu->active_events, 0);
496 mutex_init(&armpmu->reserve_mutex);
498 armpmu->pmu = (struct pmu) {
499 .pmu_enable = armpmu_enable,
500 .pmu_disable = armpmu_disable,
501 .event_init = armpmu_event_init,
502 .add = armpmu_add,
503 .del = armpmu_del,
504 .start = armpmu_start,
505 .stop = armpmu_stop,
506 .read = armpmu_read,
510 int armpmu_register(struct arm_pmu *armpmu, int type)
512 armpmu_init(armpmu);
513 pm_runtime_enable(&armpmu->plat_device->dev);
514 pr_info("enabled with %s PMU driver, %d counters available\n",
515 armpmu->name, armpmu->num_events);
516 return perf_pmu_register(&armpmu->pmu, armpmu->name, type);
520 * Callchain handling code.
524 * The registers we're interested in are at the end of the variable
525 * length saved register structure. The fp points at the end of this
526 * structure so the address of this struct is:
527 * (struct frame_tail *)(xxx->fp)-1
529 * This code has been adapted from the ARM OProfile support.
531 struct frame_tail {
532 struct frame_tail __user *fp;
533 unsigned long sp;
534 unsigned long lr;
535 } __attribute__((packed));
538 * Get the return address for a single stackframe and return a pointer to the
539 * next frame tail.
541 static struct frame_tail __user *
542 user_backtrace(struct frame_tail __user *tail,
543 struct perf_callchain_entry *entry)
545 struct frame_tail buftail;
547 /* Also check accessibility of one struct frame_tail beyond */
548 if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
549 return NULL;
550 if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
551 return NULL;
553 perf_callchain_store(entry, buftail.lr);
556 * Frame pointers should strictly progress back up the stack
557 * (towards higher addresses).
559 if (tail + 1 >= buftail.fp)
560 return NULL;
562 return buftail.fp - 1;
565 void
566 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
568 struct frame_tail __user *tail;
570 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
571 /* We don't support guest os callchain now */
572 return;
575 perf_callchain_store(entry, regs->ARM_pc);
576 tail = (struct frame_tail __user *)regs->ARM_fp - 1;
578 while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
579 tail && !((unsigned long)tail & 0x3))
580 tail = user_backtrace(tail, entry);
584 * Gets called by walk_stackframe() for every stackframe. This will be called
585 * whist unwinding the stackframe and is like a subroutine return so we use
586 * the PC.
588 static int
589 callchain_trace(struct stackframe *fr,
590 void *data)
592 struct perf_callchain_entry *entry = data;
593 perf_callchain_store(entry, fr->pc);
594 return 0;
597 void
598 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
600 struct stackframe fr;
602 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
603 /* We don't support guest os callchain now */
604 return;
607 fr.fp = regs->ARM_fp;
608 fr.sp = regs->ARM_sp;
609 fr.lr = regs->ARM_lr;
610 fr.pc = regs->ARM_pc;
611 walk_stackframe(&fr, callchain_trace, entry);
614 unsigned long perf_instruction_pointer(struct pt_regs *regs)
616 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
617 return perf_guest_cbs->get_guest_ip();
619 return instruction_pointer(regs);
622 unsigned long perf_misc_flags(struct pt_regs *regs)
624 int misc = 0;
626 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
627 if (perf_guest_cbs->is_user_mode())
628 misc |= PERF_RECORD_MISC_GUEST_USER;
629 else
630 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
631 } else {
632 if (user_mode(regs))
633 misc |= PERF_RECORD_MISC_USER;
634 else
635 misc |= PERF_RECORD_MISC_KERNEL;
638 return misc;