fix a kmap leak in virtio_console
[linux/fpc-iii.git] / arch / arm / mm / mmu.c
blob4f08c133cc255e2e2c2b93a0f28b79caaf3fc795
1 /*
2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/sections.h>
26 #include <asm/setup.h>
27 #include <asm/smp_plat.h>
28 #include <asm/tlb.h>
29 #include <asm/highmem.h>
30 #include <asm/system_info.h>
31 #include <asm/traps.h>
32 #include <asm/procinfo.h>
33 #include <asm/memory.h>
35 #include <asm/mach/arch.h>
36 #include <asm/mach/map.h>
37 #include <asm/mach/pci.h>
39 #include "mm.h"
40 #include "tcm.h"
43 * empty_zero_page is a special page that is used for
44 * zero-initialized data and COW.
46 struct page *empty_zero_page;
47 EXPORT_SYMBOL(empty_zero_page);
50 * The pmd table for the upper-most set of pages.
52 pmd_t *top_pmd;
54 #define CPOLICY_UNCACHED 0
55 #define CPOLICY_BUFFERED 1
56 #define CPOLICY_WRITETHROUGH 2
57 #define CPOLICY_WRITEBACK 3
58 #define CPOLICY_WRITEALLOC 4
60 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
61 static unsigned int ecc_mask __initdata = 0;
62 pgprot_t pgprot_user;
63 pgprot_t pgprot_kernel;
64 pgprot_t pgprot_hyp_device;
65 pgprot_t pgprot_s2;
66 pgprot_t pgprot_s2_device;
68 EXPORT_SYMBOL(pgprot_user);
69 EXPORT_SYMBOL(pgprot_kernel);
71 struct cachepolicy {
72 const char policy[16];
73 unsigned int cr_mask;
74 pmdval_t pmd;
75 pteval_t pte;
76 pteval_t pte_s2;
79 #ifdef CONFIG_ARM_LPAE
80 #define s2_policy(policy) policy
81 #else
82 #define s2_policy(policy) 0
83 #endif
85 static struct cachepolicy cache_policies[] __initdata = {
87 .policy = "uncached",
88 .cr_mask = CR_W|CR_C,
89 .pmd = PMD_SECT_UNCACHED,
90 .pte = L_PTE_MT_UNCACHED,
91 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
92 }, {
93 .policy = "buffered",
94 .cr_mask = CR_C,
95 .pmd = PMD_SECT_BUFFERED,
96 .pte = L_PTE_MT_BUFFERABLE,
97 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
98 }, {
99 .policy = "writethrough",
100 .cr_mask = 0,
101 .pmd = PMD_SECT_WT,
102 .pte = L_PTE_MT_WRITETHROUGH,
103 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
104 }, {
105 .policy = "writeback",
106 .cr_mask = 0,
107 .pmd = PMD_SECT_WB,
108 .pte = L_PTE_MT_WRITEBACK,
109 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
110 }, {
111 .policy = "writealloc",
112 .cr_mask = 0,
113 .pmd = PMD_SECT_WBWA,
114 .pte = L_PTE_MT_WRITEALLOC,
115 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
119 #ifdef CONFIG_CPU_CP15
121 * These are useful for identifying cache coherency
122 * problems by allowing the cache or the cache and
123 * writebuffer to be turned off. (Note: the write
124 * buffer should not be on and the cache off).
126 static int __init early_cachepolicy(char *p)
128 int i;
130 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
131 int len = strlen(cache_policies[i].policy);
133 if (memcmp(p, cache_policies[i].policy, len) == 0) {
134 cachepolicy = i;
135 cr_alignment &= ~cache_policies[i].cr_mask;
136 cr_no_alignment &= ~cache_policies[i].cr_mask;
137 break;
140 if (i == ARRAY_SIZE(cache_policies))
141 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
143 * This restriction is partly to do with the way we boot; it is
144 * unpredictable to have memory mapped using two different sets of
145 * memory attributes (shared, type, and cache attribs). We can not
146 * change these attributes once the initial assembly has setup the
147 * page tables.
149 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
150 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
151 cachepolicy = CPOLICY_WRITEBACK;
153 flush_cache_all();
154 set_cr(cr_alignment);
155 return 0;
157 early_param("cachepolicy", early_cachepolicy);
159 static int __init early_nocache(char *__unused)
161 char *p = "buffered";
162 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
163 early_cachepolicy(p);
164 return 0;
166 early_param("nocache", early_nocache);
168 static int __init early_nowrite(char *__unused)
170 char *p = "uncached";
171 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
172 early_cachepolicy(p);
173 return 0;
175 early_param("nowb", early_nowrite);
177 #ifndef CONFIG_ARM_LPAE
178 static int __init early_ecc(char *p)
180 if (memcmp(p, "on", 2) == 0)
181 ecc_mask = PMD_PROTECTION;
182 else if (memcmp(p, "off", 3) == 0)
183 ecc_mask = 0;
184 return 0;
186 early_param("ecc", early_ecc);
187 #endif
189 static int __init noalign_setup(char *__unused)
191 cr_alignment &= ~CR_A;
192 cr_no_alignment &= ~CR_A;
193 set_cr(cr_alignment);
194 return 1;
196 __setup("noalign", noalign_setup);
198 #ifndef CONFIG_SMP
199 void adjust_cr(unsigned long mask, unsigned long set)
201 unsigned long flags;
203 mask &= ~CR_A;
205 set &= mask;
207 local_irq_save(flags);
209 cr_no_alignment = (cr_no_alignment & ~mask) | set;
210 cr_alignment = (cr_alignment & ~mask) | set;
212 set_cr((get_cr() & ~mask) | set);
214 local_irq_restore(flags);
216 #endif
218 #else /* ifdef CONFIG_CPU_CP15 */
220 static int __init early_cachepolicy(char *p)
222 pr_warning("cachepolicy kernel parameter not supported without cp15\n");
224 early_param("cachepolicy", early_cachepolicy);
226 static int __init noalign_setup(char *__unused)
228 pr_warning("noalign kernel parameter not supported without cp15\n");
230 __setup("noalign", noalign_setup);
232 #endif /* ifdef CONFIG_CPU_CP15 / else */
234 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
235 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
237 static struct mem_type mem_types[] = {
238 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
239 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
240 L_PTE_SHARED,
241 .prot_l1 = PMD_TYPE_TABLE,
242 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
243 .domain = DOMAIN_IO,
245 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
246 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
247 .prot_l1 = PMD_TYPE_TABLE,
248 .prot_sect = PROT_SECT_DEVICE,
249 .domain = DOMAIN_IO,
251 [MT_DEVICE_CACHED] = { /* ioremap_cached */
252 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
253 .prot_l1 = PMD_TYPE_TABLE,
254 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
255 .domain = DOMAIN_IO,
257 [MT_DEVICE_WC] = { /* ioremap_wc */
258 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
259 .prot_l1 = PMD_TYPE_TABLE,
260 .prot_sect = PROT_SECT_DEVICE,
261 .domain = DOMAIN_IO,
263 [MT_UNCACHED] = {
264 .prot_pte = PROT_PTE_DEVICE,
265 .prot_l1 = PMD_TYPE_TABLE,
266 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
267 .domain = DOMAIN_IO,
269 [MT_CACHECLEAN] = {
270 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
271 .domain = DOMAIN_KERNEL,
273 #ifndef CONFIG_ARM_LPAE
274 [MT_MINICLEAN] = {
275 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
276 .domain = DOMAIN_KERNEL,
278 #endif
279 [MT_LOW_VECTORS] = {
280 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
281 L_PTE_RDONLY,
282 .prot_l1 = PMD_TYPE_TABLE,
283 .domain = DOMAIN_USER,
285 [MT_HIGH_VECTORS] = {
286 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
287 L_PTE_USER | L_PTE_RDONLY,
288 .prot_l1 = PMD_TYPE_TABLE,
289 .domain = DOMAIN_USER,
291 [MT_MEMORY_RWX] = {
292 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
293 .prot_l1 = PMD_TYPE_TABLE,
294 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
295 .domain = DOMAIN_KERNEL,
297 [MT_MEMORY_RW] = {
298 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
299 L_PTE_XN,
300 .prot_l1 = PMD_TYPE_TABLE,
301 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
302 .domain = DOMAIN_KERNEL,
304 [MT_ROM] = {
305 .prot_sect = PMD_TYPE_SECT,
306 .domain = DOMAIN_KERNEL,
308 [MT_MEMORY_RWX_NONCACHED] = {
309 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
310 L_PTE_MT_BUFFERABLE,
311 .prot_l1 = PMD_TYPE_TABLE,
312 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
313 .domain = DOMAIN_KERNEL,
315 [MT_MEMORY_RW_DTCM] = {
316 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
317 L_PTE_XN,
318 .prot_l1 = PMD_TYPE_TABLE,
319 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
320 .domain = DOMAIN_KERNEL,
322 [MT_MEMORY_RWX_ITCM] = {
323 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
324 .prot_l1 = PMD_TYPE_TABLE,
325 .domain = DOMAIN_KERNEL,
327 [MT_MEMORY_RW_SO] = {
328 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
329 L_PTE_MT_UNCACHED | L_PTE_XN,
330 .prot_l1 = PMD_TYPE_TABLE,
331 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
332 PMD_SECT_UNCACHED | PMD_SECT_XN,
333 .domain = DOMAIN_KERNEL,
335 [MT_MEMORY_DMA_READY] = {
336 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
337 L_PTE_XN,
338 .prot_l1 = PMD_TYPE_TABLE,
339 .domain = DOMAIN_KERNEL,
343 const struct mem_type *get_mem_type(unsigned int type)
345 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
347 EXPORT_SYMBOL(get_mem_type);
349 #define PTE_SET_FN(_name, pteop) \
350 static int pte_set_##_name(pte_t *ptep, pgtable_t token, unsigned long addr, \
351 void *data) \
353 pte_t pte = pteop(*ptep); \
355 set_pte_ext(ptep, pte, 0); \
356 return 0; \
359 #define SET_MEMORY_FN(_name, callback) \
360 int set_memory_##_name(unsigned long addr, int numpages) \
362 unsigned long start = addr; \
363 unsigned long size = PAGE_SIZE*numpages; \
364 unsigned end = start + size; \
366 if (start < MODULES_VADDR || start >= MODULES_END) \
367 return -EINVAL;\
369 if (end < MODULES_VADDR || end >= MODULES_END) \
370 return -EINVAL; \
372 apply_to_page_range(&init_mm, start, size, callback, NULL); \
373 flush_tlb_kernel_range(start, end); \
374 return 0;\
377 PTE_SET_FN(ro, pte_wrprotect)
378 PTE_SET_FN(rw, pte_mkwrite)
379 PTE_SET_FN(x, pte_mkexec)
380 PTE_SET_FN(nx, pte_mknexec)
382 SET_MEMORY_FN(ro, pte_set_ro)
383 SET_MEMORY_FN(rw, pte_set_rw)
384 SET_MEMORY_FN(x, pte_set_x)
385 SET_MEMORY_FN(nx, pte_set_nx)
388 * Adjust the PMD section entries according to the CPU in use.
390 static void __init build_mem_type_table(void)
392 struct cachepolicy *cp;
393 unsigned int cr = get_cr();
394 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
395 pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
396 int cpu_arch = cpu_architecture();
397 int i;
399 if (cpu_arch < CPU_ARCH_ARMv6) {
400 #if defined(CONFIG_CPU_DCACHE_DISABLE)
401 if (cachepolicy > CPOLICY_BUFFERED)
402 cachepolicy = CPOLICY_BUFFERED;
403 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
404 if (cachepolicy > CPOLICY_WRITETHROUGH)
405 cachepolicy = CPOLICY_WRITETHROUGH;
406 #endif
408 if (cpu_arch < CPU_ARCH_ARMv5) {
409 if (cachepolicy >= CPOLICY_WRITEALLOC)
410 cachepolicy = CPOLICY_WRITEBACK;
411 ecc_mask = 0;
413 if (is_smp())
414 cachepolicy = CPOLICY_WRITEALLOC;
417 * Strip out features not present on earlier architectures.
418 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
419 * without extended page tables don't have the 'Shared' bit.
421 if (cpu_arch < CPU_ARCH_ARMv5)
422 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
423 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
424 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
425 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
426 mem_types[i].prot_sect &= ~PMD_SECT_S;
429 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
430 * "update-able on write" bit on ARM610). However, Xscale and
431 * Xscale3 require this bit to be cleared.
433 if (cpu_is_xscale() || cpu_is_xsc3()) {
434 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
435 mem_types[i].prot_sect &= ~PMD_BIT4;
436 mem_types[i].prot_l1 &= ~PMD_BIT4;
438 } else if (cpu_arch < CPU_ARCH_ARMv6) {
439 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
440 if (mem_types[i].prot_l1)
441 mem_types[i].prot_l1 |= PMD_BIT4;
442 if (mem_types[i].prot_sect)
443 mem_types[i].prot_sect |= PMD_BIT4;
448 * Mark the device areas according to the CPU/architecture.
450 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
451 if (!cpu_is_xsc3()) {
453 * Mark device regions on ARMv6+ as execute-never
454 * to prevent speculative instruction fetches.
456 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
457 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
458 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
459 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
461 /* Also setup NX memory mapping */
462 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
464 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
466 * For ARMv7 with TEX remapping,
467 * - shared device is SXCB=1100
468 * - nonshared device is SXCB=0100
469 * - write combine device mem is SXCB=0001
470 * (Uncached Normal memory)
472 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
473 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
474 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
475 } else if (cpu_is_xsc3()) {
477 * For Xscale3,
478 * - shared device is TEXCB=00101
479 * - nonshared device is TEXCB=01000
480 * - write combine device mem is TEXCB=00100
481 * (Inner/Outer Uncacheable in xsc3 parlance)
483 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
484 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
485 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
486 } else {
488 * For ARMv6 and ARMv7 without TEX remapping,
489 * - shared device is TEXCB=00001
490 * - nonshared device is TEXCB=01000
491 * - write combine device mem is TEXCB=00100
492 * (Uncached Normal in ARMv6 parlance).
494 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
495 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
496 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
498 } else {
500 * On others, write combining is "Uncached/Buffered"
502 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
506 * Now deal with the memory-type mappings
508 cp = &cache_policies[cachepolicy];
509 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
510 s2_pgprot = cp->pte_s2;
511 hyp_device_pgprot = s2_device_pgprot = mem_types[MT_DEVICE].prot_pte;
514 * ARMv6 and above have extended page tables.
516 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
517 #ifndef CONFIG_ARM_LPAE
519 * Mark cache clean areas and XIP ROM read only
520 * from SVC mode and no access from userspace.
522 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
523 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
524 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
525 #endif
527 if (is_smp()) {
529 * Mark memory with the "shared" attribute
530 * for SMP systems
532 user_pgprot |= L_PTE_SHARED;
533 kern_pgprot |= L_PTE_SHARED;
534 vecs_pgprot |= L_PTE_SHARED;
535 s2_pgprot |= L_PTE_SHARED;
536 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
537 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
538 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
539 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
540 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
541 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
542 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
543 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
544 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
545 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
546 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
551 * Non-cacheable Normal - intended for memory areas that must
552 * not cause dirty cache line writebacks when used
554 if (cpu_arch >= CPU_ARCH_ARMv6) {
555 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
556 /* Non-cacheable Normal is XCB = 001 */
557 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
558 PMD_SECT_BUFFERED;
559 } else {
560 /* For both ARMv6 and non-TEX-remapping ARMv7 */
561 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
562 PMD_SECT_TEX(1);
564 } else {
565 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
568 #ifdef CONFIG_ARM_LPAE
570 * Do not generate access flag faults for the kernel mappings.
572 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
573 mem_types[i].prot_pte |= PTE_EXT_AF;
574 if (mem_types[i].prot_sect)
575 mem_types[i].prot_sect |= PMD_SECT_AF;
577 kern_pgprot |= PTE_EXT_AF;
578 vecs_pgprot |= PTE_EXT_AF;
579 #endif
581 for (i = 0; i < 16; i++) {
582 pteval_t v = pgprot_val(protection_map[i]);
583 protection_map[i] = __pgprot(v | user_pgprot);
586 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
587 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
589 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
590 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
591 L_PTE_DIRTY | kern_pgprot);
592 pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
593 pgprot_s2_device = __pgprot(s2_device_pgprot);
594 pgprot_hyp_device = __pgprot(hyp_device_pgprot);
596 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
597 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
598 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
599 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
600 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
601 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
602 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
603 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
604 mem_types[MT_ROM].prot_sect |= cp->pmd;
606 switch (cp->pmd) {
607 case PMD_SECT_WT:
608 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
609 break;
610 case PMD_SECT_WB:
611 case PMD_SECT_WBWA:
612 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
613 break;
615 pr_info("Memory policy: %sData cache %s\n",
616 ecc_mask ? "ECC enabled, " : "", cp->policy);
618 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
619 struct mem_type *t = &mem_types[i];
620 if (t->prot_l1)
621 t->prot_l1 |= PMD_DOMAIN(t->domain);
622 if (t->prot_sect)
623 t->prot_sect |= PMD_DOMAIN(t->domain);
627 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
628 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
629 unsigned long size, pgprot_t vma_prot)
631 if (!pfn_valid(pfn))
632 return pgprot_noncached(vma_prot);
633 else if (file->f_flags & O_SYNC)
634 return pgprot_writecombine(vma_prot);
635 return vma_prot;
637 EXPORT_SYMBOL(phys_mem_access_prot);
638 #endif
640 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
642 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
644 void *ptr = __va(memblock_alloc(sz, align));
645 memset(ptr, 0, sz);
646 return ptr;
649 static void __init *early_alloc(unsigned long sz)
651 return early_alloc_aligned(sz, sz);
654 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
656 if (pmd_none(*pmd)) {
657 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
658 __pmd_populate(pmd, __pa(pte), prot);
660 BUG_ON(pmd_bad(*pmd));
661 return pte_offset_kernel(pmd, addr);
664 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
665 unsigned long end, unsigned long pfn,
666 const struct mem_type *type)
668 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
669 do {
670 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
671 pfn++;
672 } while (pte++, addr += PAGE_SIZE, addr != end);
675 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
676 unsigned long end, phys_addr_t phys,
677 const struct mem_type *type)
679 pmd_t *p = pmd;
681 #ifndef CONFIG_ARM_LPAE
683 * In classic MMU format, puds and pmds are folded in to
684 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
685 * group of L1 entries making up one logical pointer to
686 * an L2 table (2MB), where as PMDs refer to the individual
687 * L1 entries (1MB). Hence increment to get the correct
688 * offset for odd 1MB sections.
689 * (See arch/arm/include/asm/pgtable-2level.h)
691 if (addr & SECTION_SIZE)
692 pmd++;
693 #endif
694 do {
695 *pmd = __pmd(phys | type->prot_sect);
696 phys += SECTION_SIZE;
697 } while (pmd++, addr += SECTION_SIZE, addr != end);
699 flush_pmd_entry(p);
702 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
703 unsigned long end, phys_addr_t phys,
704 const struct mem_type *type)
706 pmd_t *pmd = pmd_offset(pud, addr);
707 unsigned long next;
709 do {
711 * With LPAE, we must loop over to map
712 * all the pmds for the given range.
714 next = pmd_addr_end(addr, end);
717 * Try a section mapping - addr, next and phys must all be
718 * aligned to a section boundary.
720 if (type->prot_sect &&
721 ((addr | next | phys) & ~SECTION_MASK) == 0) {
722 __map_init_section(pmd, addr, next, phys, type);
723 } else {
724 alloc_init_pte(pmd, addr, next,
725 __phys_to_pfn(phys), type);
728 phys += next - addr;
730 } while (pmd++, addr = next, addr != end);
733 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
734 unsigned long end, phys_addr_t phys,
735 const struct mem_type *type)
737 pud_t *pud = pud_offset(pgd, addr);
738 unsigned long next;
740 do {
741 next = pud_addr_end(addr, end);
742 alloc_init_pmd(pud, addr, next, phys, type);
743 phys += next - addr;
744 } while (pud++, addr = next, addr != end);
747 #ifndef CONFIG_ARM_LPAE
748 static void __init create_36bit_mapping(struct map_desc *md,
749 const struct mem_type *type)
751 unsigned long addr, length, end;
752 phys_addr_t phys;
753 pgd_t *pgd;
755 addr = md->virtual;
756 phys = __pfn_to_phys(md->pfn);
757 length = PAGE_ALIGN(md->length);
759 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
760 printk(KERN_ERR "MM: CPU does not support supersection "
761 "mapping for 0x%08llx at 0x%08lx\n",
762 (long long)__pfn_to_phys((u64)md->pfn), addr);
763 return;
766 /* N.B. ARMv6 supersections are only defined to work with domain 0.
767 * Since domain assignments can in fact be arbitrary, the
768 * 'domain == 0' check below is required to insure that ARMv6
769 * supersections are only allocated for domain 0 regardless
770 * of the actual domain assignments in use.
772 if (type->domain) {
773 printk(KERN_ERR "MM: invalid domain in supersection "
774 "mapping for 0x%08llx at 0x%08lx\n",
775 (long long)__pfn_to_phys((u64)md->pfn), addr);
776 return;
779 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
780 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
781 " at 0x%08lx invalid alignment\n",
782 (long long)__pfn_to_phys((u64)md->pfn), addr);
783 return;
787 * Shift bits [35:32] of address into bits [23:20] of PMD
788 * (See ARMv6 spec).
790 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
792 pgd = pgd_offset_k(addr);
793 end = addr + length;
794 do {
795 pud_t *pud = pud_offset(pgd, addr);
796 pmd_t *pmd = pmd_offset(pud, addr);
797 int i;
799 for (i = 0; i < 16; i++)
800 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
802 addr += SUPERSECTION_SIZE;
803 phys += SUPERSECTION_SIZE;
804 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
805 } while (addr != end);
807 #endif /* !CONFIG_ARM_LPAE */
810 * Create the page directory entries and any necessary
811 * page tables for the mapping specified by `md'. We
812 * are able to cope here with varying sizes and address
813 * offsets, and we take full advantage of sections and
814 * supersections.
816 static void __init create_mapping(struct map_desc *md)
818 unsigned long addr, length, end;
819 phys_addr_t phys;
820 const struct mem_type *type;
821 pgd_t *pgd;
823 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
824 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
825 " at 0x%08lx in user region\n",
826 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
827 return;
830 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
831 md->virtual >= PAGE_OFFSET &&
832 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
833 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
834 " at 0x%08lx out of vmalloc space\n",
835 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
838 type = &mem_types[md->type];
840 #ifndef CONFIG_ARM_LPAE
842 * Catch 36-bit addresses
844 if (md->pfn >= 0x100000) {
845 create_36bit_mapping(md, type);
846 return;
848 #endif
850 addr = md->virtual & PAGE_MASK;
851 phys = __pfn_to_phys(md->pfn);
852 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
854 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
855 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
856 "be mapped using pages, ignoring.\n",
857 (long long)__pfn_to_phys(md->pfn), addr);
858 return;
861 pgd = pgd_offset_k(addr);
862 end = addr + length;
863 do {
864 unsigned long next = pgd_addr_end(addr, end);
866 alloc_init_pud(pgd, addr, next, phys, type);
868 phys += next - addr;
869 addr = next;
870 } while (pgd++, addr != end);
874 * Create the architecture specific mappings
876 void __init iotable_init(struct map_desc *io_desc, int nr)
878 struct map_desc *md;
879 struct vm_struct *vm;
880 struct static_vm *svm;
882 if (!nr)
883 return;
885 svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
887 for (md = io_desc; nr; md++, nr--) {
888 create_mapping(md);
890 vm = &svm->vm;
891 vm->addr = (void *)(md->virtual & PAGE_MASK);
892 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
893 vm->phys_addr = __pfn_to_phys(md->pfn);
894 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
895 vm->flags |= VM_ARM_MTYPE(md->type);
896 vm->caller = iotable_init;
897 add_static_vm_early(svm++);
901 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
902 void *caller)
904 struct vm_struct *vm;
905 struct static_vm *svm;
907 svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
909 vm = &svm->vm;
910 vm->addr = (void *)addr;
911 vm->size = size;
912 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
913 vm->caller = caller;
914 add_static_vm_early(svm);
917 #ifndef CONFIG_ARM_LPAE
920 * The Linux PMD is made of two consecutive section entries covering 2MB
921 * (see definition in include/asm/pgtable-2level.h). However a call to
922 * create_mapping() may optimize static mappings by using individual
923 * 1MB section mappings. This leaves the actual PMD potentially half
924 * initialized if the top or bottom section entry isn't used, leaving it
925 * open to problems if a subsequent ioremap() or vmalloc() tries to use
926 * the virtual space left free by that unused section entry.
928 * Let's avoid the issue by inserting dummy vm entries covering the unused
929 * PMD halves once the static mappings are in place.
932 static void __init pmd_empty_section_gap(unsigned long addr)
934 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
937 static void __init fill_pmd_gaps(void)
939 struct static_vm *svm;
940 struct vm_struct *vm;
941 unsigned long addr, next = 0;
942 pmd_t *pmd;
944 list_for_each_entry(svm, &static_vmlist, list) {
945 vm = &svm->vm;
946 addr = (unsigned long)vm->addr;
947 if (addr < next)
948 continue;
951 * Check if this vm starts on an odd section boundary.
952 * If so and the first section entry for this PMD is free
953 * then we block the corresponding virtual address.
955 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
956 pmd = pmd_off_k(addr);
957 if (pmd_none(*pmd))
958 pmd_empty_section_gap(addr & PMD_MASK);
962 * Then check if this vm ends on an odd section boundary.
963 * If so and the second section entry for this PMD is empty
964 * then we block the corresponding virtual address.
966 addr += vm->size;
967 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
968 pmd = pmd_off_k(addr) + 1;
969 if (pmd_none(*pmd))
970 pmd_empty_section_gap(addr);
973 /* no need to look at any vm entry until we hit the next PMD */
974 next = (addr + PMD_SIZE - 1) & PMD_MASK;
978 #else
979 #define fill_pmd_gaps() do { } while (0)
980 #endif
982 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
983 static void __init pci_reserve_io(void)
985 struct static_vm *svm;
987 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
988 if (svm)
989 return;
991 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
993 #else
994 #define pci_reserve_io() do { } while (0)
995 #endif
997 #ifdef CONFIG_DEBUG_LL
998 void __init debug_ll_io_init(void)
1000 struct map_desc map;
1002 debug_ll_addr(&map.pfn, &map.virtual);
1003 if (!map.pfn || !map.virtual)
1004 return;
1005 map.pfn = __phys_to_pfn(map.pfn);
1006 map.virtual &= PAGE_MASK;
1007 map.length = PAGE_SIZE;
1008 map.type = MT_DEVICE;
1009 iotable_init(&map, 1);
1011 #endif
1013 static void * __initdata vmalloc_min =
1014 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1017 * vmalloc=size forces the vmalloc area to be exactly 'size'
1018 * bytes. This can be used to increase (or decrease) the vmalloc
1019 * area - the default is 240m.
1021 static int __init early_vmalloc(char *arg)
1023 unsigned long vmalloc_reserve = memparse(arg, NULL);
1025 if (vmalloc_reserve < SZ_16M) {
1026 vmalloc_reserve = SZ_16M;
1027 printk(KERN_WARNING
1028 "vmalloc area too small, limiting to %luMB\n",
1029 vmalloc_reserve >> 20);
1032 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1033 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1034 printk(KERN_WARNING
1035 "vmalloc area is too big, limiting to %luMB\n",
1036 vmalloc_reserve >> 20);
1039 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1040 return 0;
1042 early_param("vmalloc", early_vmalloc);
1044 phys_addr_t arm_lowmem_limit __initdata = 0;
1046 void __init sanity_check_meminfo(void)
1048 phys_addr_t memblock_limit = 0;
1049 int i, j, highmem = 0;
1050 phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
1052 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
1053 struct membank *bank = &meminfo.bank[j];
1054 phys_addr_t size_limit;
1056 *bank = meminfo.bank[i];
1057 size_limit = bank->size;
1059 if (bank->start >= vmalloc_limit)
1060 highmem = 1;
1061 else
1062 size_limit = vmalloc_limit - bank->start;
1064 bank->highmem = highmem;
1066 #ifdef CONFIG_HIGHMEM
1068 * Split those memory banks which are partially overlapping
1069 * the vmalloc area greatly simplifying things later.
1071 if (!highmem && bank->size > size_limit) {
1072 if (meminfo.nr_banks >= NR_BANKS) {
1073 printk(KERN_CRIT "NR_BANKS too low, "
1074 "ignoring high memory\n");
1075 } else {
1076 memmove(bank + 1, bank,
1077 (meminfo.nr_banks - i) * sizeof(*bank));
1078 meminfo.nr_banks++;
1079 i++;
1080 bank[1].size -= size_limit;
1081 bank[1].start = vmalloc_limit;
1082 bank[1].highmem = highmem = 1;
1083 j++;
1085 bank->size = size_limit;
1087 #else
1089 * Highmem banks not allowed with !CONFIG_HIGHMEM.
1091 if (highmem) {
1092 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1093 "(!CONFIG_HIGHMEM).\n",
1094 (unsigned long long)bank->start,
1095 (unsigned long long)bank->start + bank->size - 1);
1096 continue;
1100 * Check whether this memory bank would partially overlap
1101 * the vmalloc area.
1103 if (bank->size > size_limit) {
1104 printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1105 "to -%.8llx (vmalloc region overlap).\n",
1106 (unsigned long long)bank->start,
1107 (unsigned long long)bank->start + bank->size - 1,
1108 (unsigned long long)bank->start + size_limit - 1);
1109 bank->size = size_limit;
1111 #endif
1112 if (!bank->highmem) {
1113 phys_addr_t bank_end = bank->start + bank->size;
1115 if (bank_end > arm_lowmem_limit)
1116 arm_lowmem_limit = bank_end;
1119 * Find the first non-section-aligned page, and point
1120 * memblock_limit at it. This relies on rounding the
1121 * limit down to be section-aligned, which happens at
1122 * the end of this function.
1124 * With this algorithm, the start or end of almost any
1125 * bank can be non-section-aligned. The only exception
1126 * is that the start of the bank 0 must be section-
1127 * aligned, since otherwise memory would need to be
1128 * allocated when mapping the start of bank 0, which
1129 * occurs before any free memory is mapped.
1131 if (!memblock_limit) {
1132 if (!IS_ALIGNED(bank->start, SECTION_SIZE))
1133 memblock_limit = bank->start;
1134 else if (!IS_ALIGNED(bank_end, SECTION_SIZE))
1135 memblock_limit = bank_end;
1138 j++;
1140 #ifdef CONFIG_HIGHMEM
1141 if (highmem) {
1142 const char *reason = NULL;
1144 if (cache_is_vipt_aliasing()) {
1146 * Interactions between kmap and other mappings
1147 * make highmem support with aliasing VIPT caches
1148 * rather difficult.
1150 reason = "with VIPT aliasing cache";
1152 if (reason) {
1153 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1154 reason);
1155 while (j > 0 && meminfo.bank[j - 1].highmem)
1156 j--;
1159 #endif
1160 meminfo.nr_banks = j;
1161 high_memory = __va(arm_lowmem_limit - 1) + 1;
1164 * Round the memblock limit down to a section size. This
1165 * helps to ensure that we will allocate memory from the
1166 * last full section, which should be mapped.
1168 if (memblock_limit)
1169 memblock_limit = round_down(memblock_limit, SECTION_SIZE);
1170 if (!memblock_limit)
1171 memblock_limit = arm_lowmem_limit;
1173 memblock_set_current_limit(memblock_limit);
1176 static inline void prepare_page_table(void)
1178 unsigned long addr;
1179 phys_addr_t end;
1182 * Clear out all the mappings below the kernel image.
1184 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1185 pmd_clear(pmd_off_k(addr));
1187 #ifdef CONFIG_XIP_KERNEL
1188 /* The XIP kernel is mapped in the module area -- skip over it */
1189 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1190 #endif
1191 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1192 pmd_clear(pmd_off_k(addr));
1195 * Find the end of the first block of lowmem.
1197 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1198 if (end >= arm_lowmem_limit)
1199 end = arm_lowmem_limit;
1202 * Clear out all the kernel space mappings, except for the first
1203 * memory bank, up to the vmalloc region.
1205 for (addr = __phys_to_virt(end);
1206 addr < VMALLOC_START; addr += PMD_SIZE)
1207 pmd_clear(pmd_off_k(addr));
1210 #ifdef CONFIG_ARM_LPAE
1211 /* the first page is reserved for pgd */
1212 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1213 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1214 #else
1215 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1216 #endif
1219 * Reserve the special regions of memory
1221 void __init arm_mm_memblock_reserve(void)
1224 * Reserve the page tables. These are already in use,
1225 * and can only be in node 0.
1227 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1229 #ifdef CONFIG_SA1111
1231 * Because of the SA1111 DMA bug, we want to preserve our
1232 * precious DMA-able memory...
1234 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1235 #endif
1239 * Set up the device mappings. Since we clear out the page tables for all
1240 * mappings above VMALLOC_START, we will remove any debug device mappings.
1241 * This means you have to be careful how you debug this function, or any
1242 * called function. This means you can't use any function or debugging
1243 * method which may touch any device, otherwise the kernel _will_ crash.
1245 static void __init devicemaps_init(const struct machine_desc *mdesc)
1247 struct map_desc map;
1248 unsigned long addr;
1249 void *vectors;
1252 * Allocate the vector page early.
1254 vectors = early_alloc(PAGE_SIZE * 2);
1256 early_trap_init(vectors);
1258 for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1259 pmd_clear(pmd_off_k(addr));
1262 * Map the kernel if it is XIP.
1263 * It is always first in the modulearea.
1265 #ifdef CONFIG_XIP_KERNEL
1266 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1267 map.virtual = MODULES_VADDR;
1268 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1269 map.type = MT_ROM;
1270 create_mapping(&map);
1271 #endif
1274 * Map the cache flushing regions.
1276 #ifdef FLUSH_BASE
1277 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1278 map.virtual = FLUSH_BASE;
1279 map.length = SZ_1M;
1280 map.type = MT_CACHECLEAN;
1281 create_mapping(&map);
1282 #endif
1283 #ifdef FLUSH_BASE_MINICACHE
1284 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1285 map.virtual = FLUSH_BASE_MINICACHE;
1286 map.length = SZ_1M;
1287 map.type = MT_MINICLEAN;
1288 create_mapping(&map);
1289 #endif
1292 * Create a mapping for the machine vectors at the high-vectors
1293 * location (0xffff0000). If we aren't using high-vectors, also
1294 * create a mapping at the low-vectors virtual address.
1296 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1297 map.virtual = 0xffff0000;
1298 map.length = PAGE_SIZE;
1299 #ifdef CONFIG_KUSER_HELPERS
1300 map.type = MT_HIGH_VECTORS;
1301 #else
1302 map.type = MT_LOW_VECTORS;
1303 #endif
1304 create_mapping(&map);
1306 if (!vectors_high()) {
1307 map.virtual = 0;
1308 map.length = PAGE_SIZE * 2;
1309 map.type = MT_LOW_VECTORS;
1310 create_mapping(&map);
1313 /* Now create a kernel read-only mapping */
1314 map.pfn += 1;
1315 map.virtual = 0xffff0000 + PAGE_SIZE;
1316 map.length = PAGE_SIZE;
1317 map.type = MT_LOW_VECTORS;
1318 create_mapping(&map);
1321 * Ask the machine support to map in the statically mapped devices.
1323 if (mdesc->map_io)
1324 mdesc->map_io();
1325 else
1326 debug_ll_io_init();
1327 fill_pmd_gaps();
1329 /* Reserve fixed i/o space in VMALLOC region */
1330 pci_reserve_io();
1333 * Finally flush the caches and tlb to ensure that we're in a
1334 * consistent state wrt the writebuffer. This also ensures that
1335 * any write-allocated cache lines in the vector page are written
1336 * back. After this point, we can start to touch devices again.
1338 local_flush_tlb_all();
1339 flush_cache_all();
1342 static void __init kmap_init(void)
1344 #ifdef CONFIG_HIGHMEM
1345 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1346 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1347 #endif
1350 static void __init map_lowmem(void)
1352 struct memblock_region *reg;
1353 unsigned long kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
1354 unsigned long kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1356 /* Map all the lowmem memory banks. */
1357 for_each_memblock(memory, reg) {
1358 phys_addr_t start = reg->base;
1359 phys_addr_t end = start + reg->size;
1360 struct map_desc map;
1362 if (end > arm_lowmem_limit)
1363 end = arm_lowmem_limit;
1364 if (start >= end)
1365 break;
1367 if (end < kernel_x_start || start >= kernel_x_end) {
1368 map.pfn = __phys_to_pfn(start);
1369 map.virtual = __phys_to_virt(start);
1370 map.length = end - start;
1371 map.type = MT_MEMORY_RWX;
1373 create_mapping(&map);
1374 } else {
1375 /* This better cover the entire kernel */
1376 if (start < kernel_x_start) {
1377 map.pfn = __phys_to_pfn(start);
1378 map.virtual = __phys_to_virt(start);
1379 map.length = kernel_x_start - start;
1380 map.type = MT_MEMORY_RW;
1382 create_mapping(&map);
1385 map.pfn = __phys_to_pfn(kernel_x_start);
1386 map.virtual = __phys_to_virt(kernel_x_start);
1387 map.length = kernel_x_end - kernel_x_start;
1388 map.type = MT_MEMORY_RWX;
1390 create_mapping(&map);
1392 if (kernel_x_end < end) {
1393 map.pfn = __phys_to_pfn(kernel_x_end);
1394 map.virtual = __phys_to_virt(kernel_x_end);
1395 map.length = end - kernel_x_end;
1396 map.type = MT_MEMORY_RW;
1398 create_mapping(&map);
1404 #ifdef CONFIG_ARM_LPAE
1406 * early_paging_init() recreates boot time page table setup, allowing machines
1407 * to switch over to a high (>4G) address space on LPAE systems
1409 void __init early_paging_init(const struct machine_desc *mdesc,
1410 struct proc_info_list *procinfo)
1412 pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags;
1413 unsigned long map_start, map_end;
1414 pgd_t *pgd0, *pgdk;
1415 pud_t *pud0, *pudk, *pud_start;
1416 pmd_t *pmd0, *pmdk;
1417 phys_addr_t phys;
1418 int i;
1420 if (!(mdesc->init_meminfo))
1421 return;
1423 /* remap kernel code and data */
1424 map_start = init_mm.start_code;
1425 map_end = init_mm.brk;
1427 /* get a handle on things... */
1428 pgd0 = pgd_offset_k(0);
1429 pud_start = pud0 = pud_offset(pgd0, 0);
1430 pmd0 = pmd_offset(pud0, 0);
1432 pgdk = pgd_offset_k(map_start);
1433 pudk = pud_offset(pgdk, map_start);
1434 pmdk = pmd_offset(pudk, map_start);
1436 mdesc->init_meminfo();
1438 /* Run the patch stub to update the constants */
1439 fixup_pv_table(&__pv_table_begin,
1440 (&__pv_table_end - &__pv_table_begin) << 2);
1443 * Cache cleaning operations for self-modifying code
1444 * We should clean the entries by MVA but running a
1445 * for loop over every pv_table entry pointer would
1446 * just complicate the code.
1448 flush_cache_louis();
1449 dsb();
1450 isb();
1452 /* remap level 1 table */
1453 for (i = 0; i < PTRS_PER_PGD; pud0++, i++) {
1454 set_pud(pud0,
1455 __pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
1456 pmd0 += PTRS_PER_PMD;
1459 /* remap pmds for kernel mapping */
1460 phys = __pa(map_start) & PMD_MASK;
1461 do {
1462 *pmdk++ = __pmd(phys | pmdprot);
1463 phys += PMD_SIZE;
1464 } while (phys < map_end);
1466 flush_cache_all();
1467 cpu_switch_mm(pgd0, &init_mm);
1468 cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET);
1469 local_flush_bp_all();
1470 local_flush_tlb_all();
1473 #else
1475 void __init early_paging_init(const struct machine_desc *mdesc,
1476 struct proc_info_list *procinfo)
1478 if (mdesc->init_meminfo)
1479 mdesc->init_meminfo();
1482 #endif
1485 * paging_init() sets up the page tables, initialises the zone memory
1486 * maps, and sets up the zero page, bad page and bad page tables.
1488 void __init paging_init(const struct machine_desc *mdesc)
1490 void *zero_page;
1492 build_mem_type_table();
1493 prepare_page_table();
1494 map_lowmem();
1495 dma_contiguous_remap();
1496 devicemaps_init(mdesc);
1497 kmap_init();
1498 tcm_init();
1500 top_pmd = pmd_off_k(0xffff0000);
1502 /* allocate the zero page. */
1503 zero_page = early_alloc(PAGE_SIZE);
1505 bootmem_init();
1507 empty_zero_page = virt_to_page(zero_page);
1508 __flush_dcache_page(NULL, empty_zero_page);