2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/sections.h>
26 #include <asm/setup.h>
27 #include <asm/smp_plat.h>
29 #include <asm/highmem.h>
30 #include <asm/system_info.h>
31 #include <asm/traps.h>
32 #include <asm/procinfo.h>
33 #include <asm/memory.h>
35 #include <asm/mach/arch.h>
36 #include <asm/mach/map.h>
37 #include <asm/mach/pci.h>
43 * empty_zero_page is a special page that is used for
44 * zero-initialized data and COW.
46 struct page
*empty_zero_page
;
47 EXPORT_SYMBOL(empty_zero_page
);
50 * The pmd table for the upper-most set of pages.
54 #define CPOLICY_UNCACHED 0
55 #define CPOLICY_BUFFERED 1
56 #define CPOLICY_WRITETHROUGH 2
57 #define CPOLICY_WRITEBACK 3
58 #define CPOLICY_WRITEALLOC 4
60 static unsigned int cachepolicy __initdata
= CPOLICY_WRITEBACK
;
61 static unsigned int ecc_mask __initdata
= 0;
63 pgprot_t pgprot_kernel
;
64 pgprot_t pgprot_hyp_device
;
66 pgprot_t pgprot_s2_device
;
68 EXPORT_SYMBOL(pgprot_user
);
69 EXPORT_SYMBOL(pgprot_kernel
);
72 const char policy
[16];
79 #ifdef CONFIG_ARM_LPAE
80 #define s2_policy(policy) policy
82 #define s2_policy(policy) 0
85 static struct cachepolicy cache_policies
[] __initdata
= {
89 .pmd
= PMD_SECT_UNCACHED
,
90 .pte
= L_PTE_MT_UNCACHED
,
91 .pte_s2
= s2_policy(L_PTE_S2_MT_UNCACHED
),
95 .pmd
= PMD_SECT_BUFFERED
,
96 .pte
= L_PTE_MT_BUFFERABLE
,
97 .pte_s2
= s2_policy(L_PTE_S2_MT_UNCACHED
),
99 .policy
= "writethrough",
102 .pte
= L_PTE_MT_WRITETHROUGH
,
103 .pte_s2
= s2_policy(L_PTE_S2_MT_WRITETHROUGH
),
105 .policy
= "writeback",
108 .pte
= L_PTE_MT_WRITEBACK
,
109 .pte_s2
= s2_policy(L_PTE_S2_MT_WRITEBACK
),
111 .policy
= "writealloc",
113 .pmd
= PMD_SECT_WBWA
,
114 .pte
= L_PTE_MT_WRITEALLOC
,
115 .pte_s2
= s2_policy(L_PTE_S2_MT_WRITEBACK
),
119 #ifdef CONFIG_CPU_CP15
121 * These are useful for identifying cache coherency
122 * problems by allowing the cache or the cache and
123 * writebuffer to be turned off. (Note: the write
124 * buffer should not be on and the cache off).
126 static int __init
early_cachepolicy(char *p
)
130 for (i
= 0; i
< ARRAY_SIZE(cache_policies
); i
++) {
131 int len
= strlen(cache_policies
[i
].policy
);
133 if (memcmp(p
, cache_policies
[i
].policy
, len
) == 0) {
135 cr_alignment
&= ~cache_policies
[i
].cr_mask
;
136 cr_no_alignment
&= ~cache_policies
[i
].cr_mask
;
140 if (i
== ARRAY_SIZE(cache_policies
))
141 printk(KERN_ERR
"ERROR: unknown or unsupported cache policy\n");
143 * This restriction is partly to do with the way we boot; it is
144 * unpredictable to have memory mapped using two different sets of
145 * memory attributes (shared, type, and cache attribs). We can not
146 * change these attributes once the initial assembly has setup the
149 if (cpu_architecture() >= CPU_ARCH_ARMv6
) {
150 printk(KERN_WARNING
"Only cachepolicy=writeback supported on ARMv6 and later\n");
151 cachepolicy
= CPOLICY_WRITEBACK
;
154 set_cr(cr_alignment
);
157 early_param("cachepolicy", early_cachepolicy
);
159 static int __init
early_nocache(char *__unused
)
161 char *p
= "buffered";
162 printk(KERN_WARNING
"nocache is deprecated; use cachepolicy=%s\n", p
);
163 early_cachepolicy(p
);
166 early_param("nocache", early_nocache
);
168 static int __init
early_nowrite(char *__unused
)
170 char *p
= "uncached";
171 printk(KERN_WARNING
"nowb is deprecated; use cachepolicy=%s\n", p
);
172 early_cachepolicy(p
);
175 early_param("nowb", early_nowrite
);
177 #ifndef CONFIG_ARM_LPAE
178 static int __init
early_ecc(char *p
)
180 if (memcmp(p
, "on", 2) == 0)
181 ecc_mask
= PMD_PROTECTION
;
182 else if (memcmp(p
, "off", 3) == 0)
186 early_param("ecc", early_ecc
);
189 static int __init
noalign_setup(char *__unused
)
191 cr_alignment
&= ~CR_A
;
192 cr_no_alignment
&= ~CR_A
;
193 set_cr(cr_alignment
);
196 __setup("noalign", noalign_setup
);
199 void adjust_cr(unsigned long mask
, unsigned long set
)
207 local_irq_save(flags
);
209 cr_no_alignment
= (cr_no_alignment
& ~mask
) | set
;
210 cr_alignment
= (cr_alignment
& ~mask
) | set
;
212 set_cr((get_cr() & ~mask
) | set
);
214 local_irq_restore(flags
);
218 #else /* ifdef CONFIG_CPU_CP15 */
220 static int __init
early_cachepolicy(char *p
)
222 pr_warning("cachepolicy kernel parameter not supported without cp15\n");
224 early_param("cachepolicy", early_cachepolicy
);
226 static int __init
noalign_setup(char *__unused
)
228 pr_warning("noalign kernel parameter not supported without cp15\n");
230 __setup("noalign", noalign_setup
);
232 #endif /* ifdef CONFIG_CPU_CP15 / else */
234 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
235 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
237 static struct mem_type mem_types
[] = {
238 [MT_DEVICE
] = { /* Strongly ordered / ARMv6 shared device */
239 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_SHARED
|
241 .prot_l1
= PMD_TYPE_TABLE
,
242 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_S
,
245 [MT_DEVICE_NONSHARED
] = { /* ARMv6 non-shared device */
246 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_NONSHARED
,
247 .prot_l1
= PMD_TYPE_TABLE
,
248 .prot_sect
= PROT_SECT_DEVICE
,
251 [MT_DEVICE_CACHED
] = { /* ioremap_cached */
252 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_CACHED
,
253 .prot_l1
= PMD_TYPE_TABLE
,
254 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_WB
,
257 [MT_DEVICE_WC
] = { /* ioremap_wc */
258 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_WC
,
259 .prot_l1
= PMD_TYPE_TABLE
,
260 .prot_sect
= PROT_SECT_DEVICE
,
264 .prot_pte
= PROT_PTE_DEVICE
,
265 .prot_l1
= PMD_TYPE_TABLE
,
266 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
270 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
271 .domain
= DOMAIN_KERNEL
,
273 #ifndef CONFIG_ARM_LPAE
275 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
| PMD_SECT_MINICACHE
,
276 .domain
= DOMAIN_KERNEL
,
280 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
282 .prot_l1
= PMD_TYPE_TABLE
,
283 .domain
= DOMAIN_USER
,
285 [MT_HIGH_VECTORS
] = {
286 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
287 L_PTE_USER
| L_PTE_RDONLY
,
288 .prot_l1
= PMD_TYPE_TABLE
,
289 .domain
= DOMAIN_USER
,
292 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
293 .prot_l1
= PMD_TYPE_TABLE
,
294 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
295 .domain
= DOMAIN_KERNEL
,
298 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
300 .prot_l1
= PMD_TYPE_TABLE
,
301 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
302 .domain
= DOMAIN_KERNEL
,
305 .prot_sect
= PMD_TYPE_SECT
,
306 .domain
= DOMAIN_KERNEL
,
308 [MT_MEMORY_RWX_NONCACHED
] = {
309 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
311 .prot_l1
= PMD_TYPE_TABLE
,
312 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
313 .domain
= DOMAIN_KERNEL
,
315 [MT_MEMORY_RW_DTCM
] = {
316 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
318 .prot_l1
= PMD_TYPE_TABLE
,
319 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
320 .domain
= DOMAIN_KERNEL
,
322 [MT_MEMORY_RWX_ITCM
] = {
323 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
324 .prot_l1
= PMD_TYPE_TABLE
,
325 .domain
= DOMAIN_KERNEL
,
327 [MT_MEMORY_RW_SO
] = {
328 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
329 L_PTE_MT_UNCACHED
| L_PTE_XN
,
330 .prot_l1
= PMD_TYPE_TABLE
,
331 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
| PMD_SECT_S
|
332 PMD_SECT_UNCACHED
| PMD_SECT_XN
,
333 .domain
= DOMAIN_KERNEL
,
335 [MT_MEMORY_DMA_READY
] = {
336 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
338 .prot_l1
= PMD_TYPE_TABLE
,
339 .domain
= DOMAIN_KERNEL
,
343 const struct mem_type
*get_mem_type(unsigned int type
)
345 return type
< ARRAY_SIZE(mem_types
) ? &mem_types
[type
] : NULL
;
347 EXPORT_SYMBOL(get_mem_type
);
349 #define PTE_SET_FN(_name, pteop) \
350 static int pte_set_##_name(pte_t *ptep, pgtable_t token, unsigned long addr, \
353 pte_t pte = pteop(*ptep); \
355 set_pte_ext(ptep, pte, 0); \
359 #define SET_MEMORY_FN(_name, callback) \
360 int set_memory_##_name(unsigned long addr, int numpages) \
362 unsigned long start = addr; \
363 unsigned long size = PAGE_SIZE*numpages; \
364 unsigned end = start + size; \
366 if (start < MODULES_VADDR || start >= MODULES_END) \
369 if (end < MODULES_VADDR || end >= MODULES_END) \
372 apply_to_page_range(&init_mm, start, size, callback, NULL); \
373 flush_tlb_kernel_range(start, end); \
377 PTE_SET_FN(ro
, pte_wrprotect
)
378 PTE_SET_FN(rw
, pte_mkwrite
)
379 PTE_SET_FN(x
, pte_mkexec
)
380 PTE_SET_FN(nx
, pte_mknexec
)
382 SET_MEMORY_FN(ro
, pte_set_ro
)
383 SET_MEMORY_FN(rw
, pte_set_rw
)
384 SET_MEMORY_FN(x
, pte_set_x
)
385 SET_MEMORY_FN(nx
, pte_set_nx
)
388 * Adjust the PMD section entries according to the CPU in use.
390 static void __init
build_mem_type_table(void)
392 struct cachepolicy
*cp
;
393 unsigned int cr
= get_cr();
394 pteval_t user_pgprot
, kern_pgprot
, vecs_pgprot
;
395 pteval_t hyp_device_pgprot
, s2_pgprot
, s2_device_pgprot
;
396 int cpu_arch
= cpu_architecture();
399 if (cpu_arch
< CPU_ARCH_ARMv6
) {
400 #if defined(CONFIG_CPU_DCACHE_DISABLE)
401 if (cachepolicy
> CPOLICY_BUFFERED
)
402 cachepolicy
= CPOLICY_BUFFERED
;
403 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
404 if (cachepolicy
> CPOLICY_WRITETHROUGH
)
405 cachepolicy
= CPOLICY_WRITETHROUGH
;
408 if (cpu_arch
< CPU_ARCH_ARMv5
) {
409 if (cachepolicy
>= CPOLICY_WRITEALLOC
)
410 cachepolicy
= CPOLICY_WRITEBACK
;
414 cachepolicy
= CPOLICY_WRITEALLOC
;
417 * Strip out features not present on earlier architectures.
418 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
419 * without extended page tables don't have the 'Shared' bit.
421 if (cpu_arch
< CPU_ARCH_ARMv5
)
422 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
423 mem_types
[i
].prot_sect
&= ~PMD_SECT_TEX(7);
424 if ((cpu_arch
< CPU_ARCH_ARMv6
|| !(cr
& CR_XP
)) && !cpu_is_xsc3())
425 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
426 mem_types
[i
].prot_sect
&= ~PMD_SECT_S
;
429 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
430 * "update-able on write" bit on ARM610). However, Xscale and
431 * Xscale3 require this bit to be cleared.
433 if (cpu_is_xscale() || cpu_is_xsc3()) {
434 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
435 mem_types
[i
].prot_sect
&= ~PMD_BIT4
;
436 mem_types
[i
].prot_l1
&= ~PMD_BIT4
;
438 } else if (cpu_arch
< CPU_ARCH_ARMv6
) {
439 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
440 if (mem_types
[i
].prot_l1
)
441 mem_types
[i
].prot_l1
|= PMD_BIT4
;
442 if (mem_types
[i
].prot_sect
)
443 mem_types
[i
].prot_sect
|= PMD_BIT4
;
448 * Mark the device areas according to the CPU/architecture.
450 if (cpu_is_xsc3() || (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
))) {
451 if (!cpu_is_xsc3()) {
453 * Mark device regions on ARMv6+ as execute-never
454 * to prevent speculative instruction fetches.
456 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_XN
;
457 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_XN
;
458 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_XN
;
459 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_XN
;
461 /* Also setup NX memory mapping */
462 mem_types
[MT_MEMORY_RW
].prot_sect
|= PMD_SECT_XN
;
464 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
466 * For ARMv7 with TEX remapping,
467 * - shared device is SXCB=1100
468 * - nonshared device is SXCB=0100
469 * - write combine device mem is SXCB=0001
470 * (Uncached Normal memory)
472 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1);
473 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(1);
474 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
475 } else if (cpu_is_xsc3()) {
478 * - shared device is TEXCB=00101
479 * - nonshared device is TEXCB=01000
480 * - write combine device mem is TEXCB=00100
481 * (Inner/Outer Uncacheable in xsc3 parlance)
483 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED
;
484 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
485 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
488 * For ARMv6 and ARMv7 without TEX remapping,
489 * - shared device is TEXCB=00001
490 * - nonshared device is TEXCB=01000
491 * - write combine device mem is TEXCB=00100
492 * (Uncached Normal in ARMv6 parlance).
494 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_BUFFERED
;
495 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
496 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
500 * On others, write combining is "Uncached/Buffered"
502 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
506 * Now deal with the memory-type mappings
508 cp
= &cache_policies
[cachepolicy
];
509 vecs_pgprot
= kern_pgprot
= user_pgprot
= cp
->pte
;
510 s2_pgprot
= cp
->pte_s2
;
511 hyp_device_pgprot
= s2_device_pgprot
= mem_types
[MT_DEVICE
].prot_pte
;
514 * ARMv6 and above have extended page tables.
516 if (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
)) {
517 #ifndef CONFIG_ARM_LPAE
519 * Mark cache clean areas and XIP ROM read only
520 * from SVC mode and no access from userspace.
522 mem_types
[MT_ROM
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
523 mem_types
[MT_MINICLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
524 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
529 * Mark memory with the "shared" attribute
532 user_pgprot
|= L_PTE_SHARED
;
533 kern_pgprot
|= L_PTE_SHARED
;
534 vecs_pgprot
|= L_PTE_SHARED
;
535 s2_pgprot
|= L_PTE_SHARED
;
536 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_S
;
537 mem_types
[MT_DEVICE_WC
].prot_pte
|= L_PTE_SHARED
;
538 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_S
;
539 mem_types
[MT_DEVICE_CACHED
].prot_pte
|= L_PTE_SHARED
;
540 mem_types
[MT_MEMORY_RWX
].prot_sect
|= PMD_SECT_S
;
541 mem_types
[MT_MEMORY_RWX
].prot_pte
|= L_PTE_SHARED
;
542 mem_types
[MT_MEMORY_RW
].prot_sect
|= PMD_SECT_S
;
543 mem_types
[MT_MEMORY_RW
].prot_pte
|= L_PTE_SHARED
;
544 mem_types
[MT_MEMORY_DMA_READY
].prot_pte
|= L_PTE_SHARED
;
545 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|= PMD_SECT_S
;
546 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_pte
|= L_PTE_SHARED
;
551 * Non-cacheable Normal - intended for memory areas that must
552 * not cause dirty cache line writebacks when used
554 if (cpu_arch
>= CPU_ARCH_ARMv6
) {
555 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
556 /* Non-cacheable Normal is XCB = 001 */
557 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|=
560 /* For both ARMv6 and non-TEX-remapping ARMv7 */
561 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|=
565 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|= PMD_SECT_BUFFERABLE
;
568 #ifdef CONFIG_ARM_LPAE
570 * Do not generate access flag faults for the kernel mappings.
572 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
573 mem_types
[i
].prot_pte
|= PTE_EXT_AF
;
574 if (mem_types
[i
].prot_sect
)
575 mem_types
[i
].prot_sect
|= PMD_SECT_AF
;
577 kern_pgprot
|= PTE_EXT_AF
;
578 vecs_pgprot
|= PTE_EXT_AF
;
581 for (i
= 0; i
< 16; i
++) {
582 pteval_t v
= pgprot_val(protection_map
[i
]);
583 protection_map
[i
] = __pgprot(v
| user_pgprot
);
586 mem_types
[MT_LOW_VECTORS
].prot_pte
|= vecs_pgprot
;
587 mem_types
[MT_HIGH_VECTORS
].prot_pte
|= vecs_pgprot
;
589 pgprot_user
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
| user_pgprot
);
590 pgprot_kernel
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
|
591 L_PTE_DIRTY
| kern_pgprot
);
592 pgprot_s2
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
| s2_pgprot
);
593 pgprot_s2_device
= __pgprot(s2_device_pgprot
);
594 pgprot_hyp_device
= __pgprot(hyp_device_pgprot
);
596 mem_types
[MT_LOW_VECTORS
].prot_l1
|= ecc_mask
;
597 mem_types
[MT_HIGH_VECTORS
].prot_l1
|= ecc_mask
;
598 mem_types
[MT_MEMORY_RWX
].prot_sect
|= ecc_mask
| cp
->pmd
;
599 mem_types
[MT_MEMORY_RWX
].prot_pte
|= kern_pgprot
;
600 mem_types
[MT_MEMORY_RW
].prot_sect
|= ecc_mask
| cp
->pmd
;
601 mem_types
[MT_MEMORY_RW
].prot_pte
|= kern_pgprot
;
602 mem_types
[MT_MEMORY_DMA_READY
].prot_pte
|= kern_pgprot
;
603 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|= ecc_mask
;
604 mem_types
[MT_ROM
].prot_sect
|= cp
->pmd
;
608 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WT
;
612 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WB
;
615 pr_info("Memory policy: %sData cache %s\n",
616 ecc_mask
? "ECC enabled, " : "", cp
->policy
);
618 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
619 struct mem_type
*t
= &mem_types
[i
];
621 t
->prot_l1
|= PMD_DOMAIN(t
->domain
);
623 t
->prot_sect
|= PMD_DOMAIN(t
->domain
);
627 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
628 pgprot_t
phys_mem_access_prot(struct file
*file
, unsigned long pfn
,
629 unsigned long size
, pgprot_t vma_prot
)
632 return pgprot_noncached(vma_prot
);
633 else if (file
->f_flags
& O_SYNC
)
634 return pgprot_writecombine(vma_prot
);
637 EXPORT_SYMBOL(phys_mem_access_prot
);
640 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
642 static void __init
*early_alloc_aligned(unsigned long sz
, unsigned long align
)
644 void *ptr
= __va(memblock_alloc(sz
, align
));
649 static void __init
*early_alloc(unsigned long sz
)
651 return early_alloc_aligned(sz
, sz
);
654 static pte_t
* __init
early_pte_alloc(pmd_t
*pmd
, unsigned long addr
, unsigned long prot
)
656 if (pmd_none(*pmd
)) {
657 pte_t
*pte
= early_alloc(PTE_HWTABLE_OFF
+ PTE_HWTABLE_SIZE
);
658 __pmd_populate(pmd
, __pa(pte
), prot
);
660 BUG_ON(pmd_bad(*pmd
));
661 return pte_offset_kernel(pmd
, addr
);
664 static void __init
alloc_init_pte(pmd_t
*pmd
, unsigned long addr
,
665 unsigned long end
, unsigned long pfn
,
666 const struct mem_type
*type
)
668 pte_t
*pte
= early_pte_alloc(pmd
, addr
, type
->prot_l1
);
670 set_pte_ext(pte
, pfn_pte(pfn
, __pgprot(type
->prot_pte
)), 0);
672 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
675 static void __init
__map_init_section(pmd_t
*pmd
, unsigned long addr
,
676 unsigned long end
, phys_addr_t phys
,
677 const struct mem_type
*type
)
681 #ifndef CONFIG_ARM_LPAE
683 * In classic MMU format, puds and pmds are folded in to
684 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
685 * group of L1 entries making up one logical pointer to
686 * an L2 table (2MB), where as PMDs refer to the individual
687 * L1 entries (1MB). Hence increment to get the correct
688 * offset for odd 1MB sections.
689 * (See arch/arm/include/asm/pgtable-2level.h)
691 if (addr
& SECTION_SIZE
)
695 *pmd
= __pmd(phys
| type
->prot_sect
);
696 phys
+= SECTION_SIZE
;
697 } while (pmd
++, addr
+= SECTION_SIZE
, addr
!= end
);
702 static void __init
alloc_init_pmd(pud_t
*pud
, unsigned long addr
,
703 unsigned long end
, phys_addr_t phys
,
704 const struct mem_type
*type
)
706 pmd_t
*pmd
= pmd_offset(pud
, addr
);
711 * With LPAE, we must loop over to map
712 * all the pmds for the given range.
714 next
= pmd_addr_end(addr
, end
);
717 * Try a section mapping - addr, next and phys must all be
718 * aligned to a section boundary.
720 if (type
->prot_sect
&&
721 ((addr
| next
| phys
) & ~SECTION_MASK
) == 0) {
722 __map_init_section(pmd
, addr
, next
, phys
, type
);
724 alloc_init_pte(pmd
, addr
, next
,
725 __phys_to_pfn(phys
), type
);
730 } while (pmd
++, addr
= next
, addr
!= end
);
733 static void __init
alloc_init_pud(pgd_t
*pgd
, unsigned long addr
,
734 unsigned long end
, phys_addr_t phys
,
735 const struct mem_type
*type
)
737 pud_t
*pud
= pud_offset(pgd
, addr
);
741 next
= pud_addr_end(addr
, end
);
742 alloc_init_pmd(pud
, addr
, next
, phys
, type
);
744 } while (pud
++, addr
= next
, addr
!= end
);
747 #ifndef CONFIG_ARM_LPAE
748 static void __init
create_36bit_mapping(struct map_desc
*md
,
749 const struct mem_type
*type
)
751 unsigned long addr
, length
, end
;
756 phys
= __pfn_to_phys(md
->pfn
);
757 length
= PAGE_ALIGN(md
->length
);
759 if (!(cpu_architecture() >= CPU_ARCH_ARMv6
|| cpu_is_xsc3())) {
760 printk(KERN_ERR
"MM: CPU does not support supersection "
761 "mapping for 0x%08llx at 0x%08lx\n",
762 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
766 /* N.B. ARMv6 supersections are only defined to work with domain 0.
767 * Since domain assignments can in fact be arbitrary, the
768 * 'domain == 0' check below is required to insure that ARMv6
769 * supersections are only allocated for domain 0 regardless
770 * of the actual domain assignments in use.
773 printk(KERN_ERR
"MM: invalid domain in supersection "
774 "mapping for 0x%08llx at 0x%08lx\n",
775 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
779 if ((addr
| length
| __pfn_to_phys(md
->pfn
)) & ~SUPERSECTION_MASK
) {
780 printk(KERN_ERR
"MM: cannot create mapping for 0x%08llx"
781 " at 0x%08lx invalid alignment\n",
782 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
787 * Shift bits [35:32] of address into bits [23:20] of PMD
790 phys
|= (((md
->pfn
>> (32 - PAGE_SHIFT
)) & 0xF) << 20);
792 pgd
= pgd_offset_k(addr
);
795 pud_t
*pud
= pud_offset(pgd
, addr
);
796 pmd_t
*pmd
= pmd_offset(pud
, addr
);
799 for (i
= 0; i
< 16; i
++)
800 *pmd
++ = __pmd(phys
| type
->prot_sect
| PMD_SECT_SUPER
);
802 addr
+= SUPERSECTION_SIZE
;
803 phys
+= SUPERSECTION_SIZE
;
804 pgd
+= SUPERSECTION_SIZE
>> PGDIR_SHIFT
;
805 } while (addr
!= end
);
807 #endif /* !CONFIG_ARM_LPAE */
810 * Create the page directory entries and any necessary
811 * page tables for the mapping specified by `md'. We
812 * are able to cope here with varying sizes and address
813 * offsets, and we take full advantage of sections and
816 static void __init
create_mapping(struct map_desc
*md
)
818 unsigned long addr
, length
, end
;
820 const struct mem_type
*type
;
823 if (md
->virtual != vectors_base() && md
->virtual < TASK_SIZE
) {
824 printk(KERN_WARNING
"BUG: not creating mapping for 0x%08llx"
825 " at 0x%08lx in user region\n",
826 (long long)__pfn_to_phys((u64
)md
->pfn
), md
->virtual);
830 if ((md
->type
== MT_DEVICE
|| md
->type
== MT_ROM
) &&
831 md
->virtual >= PAGE_OFFSET
&&
832 (md
->virtual < VMALLOC_START
|| md
->virtual >= VMALLOC_END
)) {
833 printk(KERN_WARNING
"BUG: mapping for 0x%08llx"
834 " at 0x%08lx out of vmalloc space\n",
835 (long long)__pfn_to_phys((u64
)md
->pfn
), md
->virtual);
838 type
= &mem_types
[md
->type
];
840 #ifndef CONFIG_ARM_LPAE
842 * Catch 36-bit addresses
844 if (md
->pfn
>= 0x100000) {
845 create_36bit_mapping(md
, type
);
850 addr
= md
->virtual & PAGE_MASK
;
851 phys
= __pfn_to_phys(md
->pfn
);
852 length
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
854 if (type
->prot_l1
== 0 && ((addr
| phys
| length
) & ~SECTION_MASK
)) {
855 printk(KERN_WARNING
"BUG: map for 0x%08llx at 0x%08lx can not "
856 "be mapped using pages, ignoring.\n",
857 (long long)__pfn_to_phys(md
->pfn
), addr
);
861 pgd
= pgd_offset_k(addr
);
864 unsigned long next
= pgd_addr_end(addr
, end
);
866 alloc_init_pud(pgd
, addr
, next
, phys
, type
);
870 } while (pgd
++, addr
!= end
);
874 * Create the architecture specific mappings
876 void __init
iotable_init(struct map_desc
*io_desc
, int nr
)
879 struct vm_struct
*vm
;
880 struct static_vm
*svm
;
885 svm
= early_alloc_aligned(sizeof(*svm
) * nr
, __alignof__(*svm
));
887 for (md
= io_desc
; nr
; md
++, nr
--) {
891 vm
->addr
= (void *)(md
->virtual & PAGE_MASK
);
892 vm
->size
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
893 vm
->phys_addr
= __pfn_to_phys(md
->pfn
);
894 vm
->flags
= VM_IOREMAP
| VM_ARM_STATIC_MAPPING
;
895 vm
->flags
|= VM_ARM_MTYPE(md
->type
);
896 vm
->caller
= iotable_init
;
897 add_static_vm_early(svm
++);
901 void __init
vm_reserve_area_early(unsigned long addr
, unsigned long size
,
904 struct vm_struct
*vm
;
905 struct static_vm
*svm
;
907 svm
= early_alloc_aligned(sizeof(*svm
), __alignof__(*svm
));
910 vm
->addr
= (void *)addr
;
912 vm
->flags
= VM_IOREMAP
| VM_ARM_EMPTY_MAPPING
;
914 add_static_vm_early(svm
);
917 #ifndef CONFIG_ARM_LPAE
920 * The Linux PMD is made of two consecutive section entries covering 2MB
921 * (see definition in include/asm/pgtable-2level.h). However a call to
922 * create_mapping() may optimize static mappings by using individual
923 * 1MB section mappings. This leaves the actual PMD potentially half
924 * initialized if the top or bottom section entry isn't used, leaving it
925 * open to problems if a subsequent ioremap() or vmalloc() tries to use
926 * the virtual space left free by that unused section entry.
928 * Let's avoid the issue by inserting dummy vm entries covering the unused
929 * PMD halves once the static mappings are in place.
932 static void __init
pmd_empty_section_gap(unsigned long addr
)
934 vm_reserve_area_early(addr
, SECTION_SIZE
, pmd_empty_section_gap
);
937 static void __init
fill_pmd_gaps(void)
939 struct static_vm
*svm
;
940 struct vm_struct
*vm
;
941 unsigned long addr
, next
= 0;
944 list_for_each_entry(svm
, &static_vmlist
, list
) {
946 addr
= (unsigned long)vm
->addr
;
951 * Check if this vm starts on an odd section boundary.
952 * If so and the first section entry for this PMD is free
953 * then we block the corresponding virtual address.
955 if ((addr
& ~PMD_MASK
) == SECTION_SIZE
) {
956 pmd
= pmd_off_k(addr
);
958 pmd_empty_section_gap(addr
& PMD_MASK
);
962 * Then check if this vm ends on an odd section boundary.
963 * If so and the second section entry for this PMD is empty
964 * then we block the corresponding virtual address.
967 if ((addr
& ~PMD_MASK
) == SECTION_SIZE
) {
968 pmd
= pmd_off_k(addr
) + 1;
970 pmd_empty_section_gap(addr
);
973 /* no need to look at any vm entry until we hit the next PMD */
974 next
= (addr
+ PMD_SIZE
- 1) & PMD_MASK
;
979 #define fill_pmd_gaps() do { } while (0)
982 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
983 static void __init
pci_reserve_io(void)
985 struct static_vm
*svm
;
987 svm
= find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE
);
991 vm_reserve_area_early(PCI_IO_VIRT_BASE
, SZ_2M
, pci_reserve_io
);
994 #define pci_reserve_io() do { } while (0)
997 #ifdef CONFIG_DEBUG_LL
998 void __init
debug_ll_io_init(void)
1000 struct map_desc map
;
1002 debug_ll_addr(&map
.pfn
, &map
.virtual);
1003 if (!map
.pfn
|| !map
.virtual)
1005 map
.pfn
= __phys_to_pfn(map
.pfn
);
1006 map
.virtual &= PAGE_MASK
;
1007 map
.length
= PAGE_SIZE
;
1008 map
.type
= MT_DEVICE
;
1009 iotable_init(&map
, 1);
1013 static void * __initdata vmalloc_min
=
1014 (void *)(VMALLOC_END
- (240 << 20) - VMALLOC_OFFSET
);
1017 * vmalloc=size forces the vmalloc area to be exactly 'size'
1018 * bytes. This can be used to increase (or decrease) the vmalloc
1019 * area - the default is 240m.
1021 static int __init
early_vmalloc(char *arg
)
1023 unsigned long vmalloc_reserve
= memparse(arg
, NULL
);
1025 if (vmalloc_reserve
< SZ_16M
) {
1026 vmalloc_reserve
= SZ_16M
;
1028 "vmalloc area too small, limiting to %luMB\n",
1029 vmalloc_reserve
>> 20);
1032 if (vmalloc_reserve
> VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
)) {
1033 vmalloc_reserve
= VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
);
1035 "vmalloc area is too big, limiting to %luMB\n",
1036 vmalloc_reserve
>> 20);
1039 vmalloc_min
= (void *)(VMALLOC_END
- vmalloc_reserve
);
1042 early_param("vmalloc", early_vmalloc
);
1044 phys_addr_t arm_lowmem_limit __initdata
= 0;
1046 void __init
sanity_check_meminfo(void)
1048 phys_addr_t memblock_limit
= 0;
1049 int i
, j
, highmem
= 0;
1050 phys_addr_t vmalloc_limit
= __pa(vmalloc_min
- 1) + 1;
1052 for (i
= 0, j
= 0; i
< meminfo
.nr_banks
; i
++) {
1053 struct membank
*bank
= &meminfo
.bank
[j
];
1054 phys_addr_t size_limit
;
1056 *bank
= meminfo
.bank
[i
];
1057 size_limit
= bank
->size
;
1059 if (bank
->start
>= vmalloc_limit
)
1062 size_limit
= vmalloc_limit
- bank
->start
;
1064 bank
->highmem
= highmem
;
1066 #ifdef CONFIG_HIGHMEM
1068 * Split those memory banks which are partially overlapping
1069 * the vmalloc area greatly simplifying things later.
1071 if (!highmem
&& bank
->size
> size_limit
) {
1072 if (meminfo
.nr_banks
>= NR_BANKS
) {
1073 printk(KERN_CRIT
"NR_BANKS too low, "
1074 "ignoring high memory\n");
1076 memmove(bank
+ 1, bank
,
1077 (meminfo
.nr_banks
- i
) * sizeof(*bank
));
1080 bank
[1].size
-= size_limit
;
1081 bank
[1].start
= vmalloc_limit
;
1082 bank
[1].highmem
= highmem
= 1;
1085 bank
->size
= size_limit
;
1089 * Highmem banks not allowed with !CONFIG_HIGHMEM.
1092 printk(KERN_NOTICE
"Ignoring RAM at %.8llx-%.8llx "
1093 "(!CONFIG_HIGHMEM).\n",
1094 (unsigned long long)bank
->start
,
1095 (unsigned long long)bank
->start
+ bank
->size
- 1);
1100 * Check whether this memory bank would partially overlap
1103 if (bank
->size
> size_limit
) {
1104 printk(KERN_NOTICE
"Truncating RAM at %.8llx-%.8llx "
1105 "to -%.8llx (vmalloc region overlap).\n",
1106 (unsigned long long)bank
->start
,
1107 (unsigned long long)bank
->start
+ bank
->size
- 1,
1108 (unsigned long long)bank
->start
+ size_limit
- 1);
1109 bank
->size
= size_limit
;
1112 if (!bank
->highmem
) {
1113 phys_addr_t bank_end
= bank
->start
+ bank
->size
;
1115 if (bank_end
> arm_lowmem_limit
)
1116 arm_lowmem_limit
= bank_end
;
1119 * Find the first non-section-aligned page, and point
1120 * memblock_limit at it. This relies on rounding the
1121 * limit down to be section-aligned, which happens at
1122 * the end of this function.
1124 * With this algorithm, the start or end of almost any
1125 * bank can be non-section-aligned. The only exception
1126 * is that the start of the bank 0 must be section-
1127 * aligned, since otherwise memory would need to be
1128 * allocated when mapping the start of bank 0, which
1129 * occurs before any free memory is mapped.
1131 if (!memblock_limit
) {
1132 if (!IS_ALIGNED(bank
->start
, SECTION_SIZE
))
1133 memblock_limit
= bank
->start
;
1134 else if (!IS_ALIGNED(bank_end
, SECTION_SIZE
))
1135 memblock_limit
= bank_end
;
1140 #ifdef CONFIG_HIGHMEM
1142 const char *reason
= NULL
;
1144 if (cache_is_vipt_aliasing()) {
1146 * Interactions between kmap and other mappings
1147 * make highmem support with aliasing VIPT caches
1150 reason
= "with VIPT aliasing cache";
1153 printk(KERN_CRIT
"HIGHMEM is not supported %s, ignoring high memory\n",
1155 while (j
> 0 && meminfo
.bank
[j
- 1].highmem
)
1160 meminfo
.nr_banks
= j
;
1161 high_memory
= __va(arm_lowmem_limit
- 1) + 1;
1164 * Round the memblock limit down to a section size. This
1165 * helps to ensure that we will allocate memory from the
1166 * last full section, which should be mapped.
1169 memblock_limit
= round_down(memblock_limit
, SECTION_SIZE
);
1170 if (!memblock_limit
)
1171 memblock_limit
= arm_lowmem_limit
;
1173 memblock_set_current_limit(memblock_limit
);
1176 static inline void prepare_page_table(void)
1182 * Clear out all the mappings below the kernel image.
1184 for (addr
= 0; addr
< MODULES_VADDR
; addr
+= PMD_SIZE
)
1185 pmd_clear(pmd_off_k(addr
));
1187 #ifdef CONFIG_XIP_KERNEL
1188 /* The XIP kernel is mapped in the module area -- skip over it */
1189 addr
= ((unsigned long)_etext
+ PMD_SIZE
- 1) & PMD_MASK
;
1191 for ( ; addr
< PAGE_OFFSET
; addr
+= PMD_SIZE
)
1192 pmd_clear(pmd_off_k(addr
));
1195 * Find the end of the first block of lowmem.
1197 end
= memblock
.memory
.regions
[0].base
+ memblock
.memory
.regions
[0].size
;
1198 if (end
>= arm_lowmem_limit
)
1199 end
= arm_lowmem_limit
;
1202 * Clear out all the kernel space mappings, except for the first
1203 * memory bank, up to the vmalloc region.
1205 for (addr
= __phys_to_virt(end
);
1206 addr
< VMALLOC_START
; addr
+= PMD_SIZE
)
1207 pmd_clear(pmd_off_k(addr
));
1210 #ifdef CONFIG_ARM_LPAE
1211 /* the first page is reserved for pgd */
1212 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1213 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1215 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1219 * Reserve the special regions of memory
1221 void __init
arm_mm_memblock_reserve(void)
1224 * Reserve the page tables. These are already in use,
1225 * and can only be in node 0.
1227 memblock_reserve(__pa(swapper_pg_dir
), SWAPPER_PG_DIR_SIZE
);
1229 #ifdef CONFIG_SA1111
1231 * Because of the SA1111 DMA bug, we want to preserve our
1232 * precious DMA-able memory...
1234 memblock_reserve(PHYS_OFFSET
, __pa(swapper_pg_dir
) - PHYS_OFFSET
);
1239 * Set up the device mappings. Since we clear out the page tables for all
1240 * mappings above VMALLOC_START, we will remove any debug device mappings.
1241 * This means you have to be careful how you debug this function, or any
1242 * called function. This means you can't use any function or debugging
1243 * method which may touch any device, otherwise the kernel _will_ crash.
1245 static void __init
devicemaps_init(const struct machine_desc
*mdesc
)
1247 struct map_desc map
;
1252 * Allocate the vector page early.
1254 vectors
= early_alloc(PAGE_SIZE
* 2);
1256 early_trap_init(vectors
);
1258 for (addr
= VMALLOC_START
; addr
; addr
+= PMD_SIZE
)
1259 pmd_clear(pmd_off_k(addr
));
1262 * Map the kernel if it is XIP.
1263 * It is always first in the modulearea.
1265 #ifdef CONFIG_XIP_KERNEL
1266 map
.pfn
= __phys_to_pfn(CONFIG_XIP_PHYS_ADDR
& SECTION_MASK
);
1267 map
.virtual = MODULES_VADDR
;
1268 map
.length
= ((unsigned long)_etext
- map
.virtual + ~SECTION_MASK
) & SECTION_MASK
;
1270 create_mapping(&map
);
1274 * Map the cache flushing regions.
1277 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
);
1278 map
.virtual = FLUSH_BASE
;
1280 map
.type
= MT_CACHECLEAN
;
1281 create_mapping(&map
);
1283 #ifdef FLUSH_BASE_MINICACHE
1284 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
+ SZ_1M
);
1285 map
.virtual = FLUSH_BASE_MINICACHE
;
1287 map
.type
= MT_MINICLEAN
;
1288 create_mapping(&map
);
1292 * Create a mapping for the machine vectors at the high-vectors
1293 * location (0xffff0000). If we aren't using high-vectors, also
1294 * create a mapping at the low-vectors virtual address.
1296 map
.pfn
= __phys_to_pfn(virt_to_phys(vectors
));
1297 map
.virtual = 0xffff0000;
1298 map
.length
= PAGE_SIZE
;
1299 #ifdef CONFIG_KUSER_HELPERS
1300 map
.type
= MT_HIGH_VECTORS
;
1302 map
.type
= MT_LOW_VECTORS
;
1304 create_mapping(&map
);
1306 if (!vectors_high()) {
1308 map
.length
= PAGE_SIZE
* 2;
1309 map
.type
= MT_LOW_VECTORS
;
1310 create_mapping(&map
);
1313 /* Now create a kernel read-only mapping */
1315 map
.virtual = 0xffff0000 + PAGE_SIZE
;
1316 map
.length
= PAGE_SIZE
;
1317 map
.type
= MT_LOW_VECTORS
;
1318 create_mapping(&map
);
1321 * Ask the machine support to map in the statically mapped devices.
1329 /* Reserve fixed i/o space in VMALLOC region */
1333 * Finally flush the caches and tlb to ensure that we're in a
1334 * consistent state wrt the writebuffer. This also ensures that
1335 * any write-allocated cache lines in the vector page are written
1336 * back. After this point, we can start to touch devices again.
1338 local_flush_tlb_all();
1342 static void __init
kmap_init(void)
1344 #ifdef CONFIG_HIGHMEM
1345 pkmap_page_table
= early_pte_alloc(pmd_off_k(PKMAP_BASE
),
1346 PKMAP_BASE
, _PAGE_KERNEL_TABLE
);
1350 static void __init
map_lowmem(void)
1352 struct memblock_region
*reg
;
1353 unsigned long kernel_x_start
= round_down(__pa(_stext
), SECTION_SIZE
);
1354 unsigned long kernel_x_end
= round_up(__pa(__init_end
), SECTION_SIZE
);
1356 /* Map all the lowmem memory banks. */
1357 for_each_memblock(memory
, reg
) {
1358 phys_addr_t start
= reg
->base
;
1359 phys_addr_t end
= start
+ reg
->size
;
1360 struct map_desc map
;
1362 if (end
> arm_lowmem_limit
)
1363 end
= arm_lowmem_limit
;
1367 if (end
< kernel_x_start
|| start
>= kernel_x_end
) {
1368 map
.pfn
= __phys_to_pfn(start
);
1369 map
.virtual = __phys_to_virt(start
);
1370 map
.length
= end
- start
;
1371 map
.type
= MT_MEMORY_RWX
;
1373 create_mapping(&map
);
1375 /* This better cover the entire kernel */
1376 if (start
< kernel_x_start
) {
1377 map
.pfn
= __phys_to_pfn(start
);
1378 map
.virtual = __phys_to_virt(start
);
1379 map
.length
= kernel_x_start
- start
;
1380 map
.type
= MT_MEMORY_RW
;
1382 create_mapping(&map
);
1385 map
.pfn
= __phys_to_pfn(kernel_x_start
);
1386 map
.virtual = __phys_to_virt(kernel_x_start
);
1387 map
.length
= kernel_x_end
- kernel_x_start
;
1388 map
.type
= MT_MEMORY_RWX
;
1390 create_mapping(&map
);
1392 if (kernel_x_end
< end
) {
1393 map
.pfn
= __phys_to_pfn(kernel_x_end
);
1394 map
.virtual = __phys_to_virt(kernel_x_end
);
1395 map
.length
= end
- kernel_x_end
;
1396 map
.type
= MT_MEMORY_RW
;
1398 create_mapping(&map
);
1404 #ifdef CONFIG_ARM_LPAE
1406 * early_paging_init() recreates boot time page table setup, allowing machines
1407 * to switch over to a high (>4G) address space on LPAE systems
1409 void __init
early_paging_init(const struct machine_desc
*mdesc
,
1410 struct proc_info_list
*procinfo
)
1412 pmdval_t pmdprot
= procinfo
->__cpu_mm_mmu_flags
;
1413 unsigned long map_start
, map_end
;
1415 pud_t
*pud0
, *pudk
, *pud_start
;
1420 if (!(mdesc
->init_meminfo
))
1423 /* remap kernel code and data */
1424 map_start
= init_mm
.start_code
;
1425 map_end
= init_mm
.brk
;
1427 /* get a handle on things... */
1428 pgd0
= pgd_offset_k(0);
1429 pud_start
= pud0
= pud_offset(pgd0
, 0);
1430 pmd0
= pmd_offset(pud0
, 0);
1432 pgdk
= pgd_offset_k(map_start
);
1433 pudk
= pud_offset(pgdk
, map_start
);
1434 pmdk
= pmd_offset(pudk
, map_start
);
1436 mdesc
->init_meminfo();
1438 /* Run the patch stub to update the constants */
1439 fixup_pv_table(&__pv_table_begin
,
1440 (&__pv_table_end
- &__pv_table_begin
) << 2);
1443 * Cache cleaning operations for self-modifying code
1444 * We should clean the entries by MVA but running a
1445 * for loop over every pv_table entry pointer would
1446 * just complicate the code.
1448 flush_cache_louis();
1452 /* remap level 1 table */
1453 for (i
= 0; i
< PTRS_PER_PGD
; pud0
++, i
++) {
1455 __pud(__pa(pmd0
) | PMD_TYPE_TABLE
| L_PGD_SWAPPER
));
1456 pmd0
+= PTRS_PER_PMD
;
1459 /* remap pmds for kernel mapping */
1460 phys
= __pa(map_start
) & PMD_MASK
;
1462 *pmdk
++ = __pmd(phys
| pmdprot
);
1464 } while (phys
< map_end
);
1467 cpu_switch_mm(pgd0
, &init_mm
);
1468 cpu_set_ttbr(1, __pa(pgd0
) + TTBR1_OFFSET
);
1469 local_flush_bp_all();
1470 local_flush_tlb_all();
1475 void __init
early_paging_init(const struct machine_desc
*mdesc
,
1476 struct proc_info_list
*procinfo
)
1478 if (mdesc
->init_meminfo
)
1479 mdesc
->init_meminfo();
1485 * paging_init() sets up the page tables, initialises the zone memory
1486 * maps, and sets up the zero page, bad page and bad page tables.
1488 void __init
paging_init(const struct machine_desc
*mdesc
)
1492 build_mem_type_table();
1493 prepare_page_table();
1495 dma_contiguous_remap();
1496 devicemaps_init(mdesc
);
1500 top_pmd
= pmd_off_k(0xffff0000);
1502 /* allocate the zero page. */
1503 zero_page
= early_alloc(PAGE_SIZE
);
1507 empty_zero_page
= virt_to_page(zero_page
);
1508 __flush_dcache_page(NULL
, empty_zero_page
);