fix a kmap leak in virtio_console
[linux/fpc-iii.git] / arch / arm / mm / nommu.c
blob55764a7ef1f021934ba2f0b0136fc1b1df2a2799
1 /*
2 * linux/arch/arm/mm/nommu.c
4 * ARM uCLinux supporting functions.
5 */
6 #include <linux/module.h>
7 #include <linux/mm.h>
8 #include <linux/pagemap.h>
9 #include <linux/io.h>
10 #include <linux/memblock.h>
11 #include <linux/kernel.h>
13 #include <asm/cacheflush.h>
14 #include <asm/sections.h>
15 #include <asm/page.h>
16 #include <asm/setup.h>
17 #include <asm/traps.h>
18 #include <asm/mach/arch.h>
19 #include <asm/cputype.h>
20 #include <asm/mpu.h>
21 #include <asm/procinfo.h>
23 #include "mm.h"
25 #ifdef CONFIG_ARM_MPU
26 struct mpu_rgn_info mpu_rgn_info;
28 /* Region number */
29 static void rgnr_write(u32 v)
31 asm("mcr p15, 0, %0, c6, c2, 0" : : "r" (v));
34 /* Data-side / unified region attributes */
36 /* Region access control register */
37 static void dracr_write(u32 v)
39 asm("mcr p15, 0, %0, c6, c1, 4" : : "r" (v));
42 /* Region size register */
43 static void drsr_write(u32 v)
45 asm("mcr p15, 0, %0, c6, c1, 2" : : "r" (v));
48 /* Region base address register */
49 static void drbar_write(u32 v)
51 asm("mcr p15, 0, %0, c6, c1, 0" : : "r" (v));
54 static u32 drbar_read(void)
56 u32 v;
57 asm("mrc p15, 0, %0, c6, c1, 0" : "=r" (v));
58 return v;
60 /* Optional instruction-side region attributes */
62 /* I-side Region access control register */
63 static void iracr_write(u32 v)
65 asm("mcr p15, 0, %0, c6, c1, 5" : : "r" (v));
68 /* I-side Region size register */
69 static void irsr_write(u32 v)
71 asm("mcr p15, 0, %0, c6, c1, 3" : : "r" (v));
74 /* I-side Region base address register */
75 static void irbar_write(u32 v)
77 asm("mcr p15, 0, %0, c6, c1, 1" : : "r" (v));
80 static unsigned long irbar_read(void)
82 unsigned long v;
83 asm("mrc p15, 0, %0, c6, c1, 1" : "=r" (v));
84 return v;
87 /* MPU initialisation functions */
88 void __init sanity_check_meminfo_mpu(void)
90 int i;
91 struct membank *bank = meminfo.bank;
92 phys_addr_t phys_offset = PHYS_OFFSET;
93 phys_addr_t aligned_region_size, specified_mem_size, rounded_mem_size;
95 /* Initially only use memory continuous from PHYS_OFFSET */
96 if (bank_phys_start(&bank[0]) != phys_offset)
97 panic("First memory bank must be contiguous from PHYS_OFFSET");
99 /* Banks have already been sorted by start address */
100 for (i = 1; i < meminfo.nr_banks; i++) {
101 if (bank[i].start <= bank_phys_end(&bank[0]) &&
102 bank_phys_end(&bank[i]) > bank_phys_end(&bank[0])) {
103 bank[0].size = bank_phys_end(&bank[i]) - bank[0].start;
104 } else {
105 pr_notice("Ignoring RAM after 0x%.8lx. "
106 "First non-contiguous (ignored) bank start: 0x%.8lx\n",
107 (unsigned long)bank_phys_end(&bank[0]),
108 (unsigned long)bank_phys_start(&bank[i]));
109 break;
112 /* All contiguous banks are now merged in to the first bank */
113 meminfo.nr_banks = 1;
114 specified_mem_size = bank[0].size;
117 * MPU has curious alignment requirements: Size must be power of 2, and
118 * region start must be aligned to the region size
120 if (phys_offset != 0)
121 pr_info("PHYS_OFFSET != 0 => MPU Region size constrained by alignment requirements\n");
124 * Maximum aligned region might overflow phys_addr_t if phys_offset is
125 * 0. Hence we keep everything below 4G until we take the smaller of
126 * the aligned_region_size and rounded_mem_size, one of which is
127 * guaranteed to be smaller than the maximum physical address.
129 aligned_region_size = (phys_offset - 1) ^ (phys_offset);
130 /* Find the max power-of-two sized region that fits inside our bank */
131 rounded_mem_size = (1 << __fls(bank[0].size)) - 1;
133 /* The actual region size is the smaller of the two */
134 aligned_region_size = aligned_region_size < rounded_mem_size
135 ? aligned_region_size + 1
136 : rounded_mem_size + 1;
138 if (aligned_region_size != specified_mem_size)
139 pr_warn("Truncating memory from 0x%.8lx to 0x%.8lx (MPU region constraints)",
140 (unsigned long)specified_mem_size,
141 (unsigned long)aligned_region_size);
143 meminfo.bank[0].size = aligned_region_size;
144 pr_debug("MPU Region from 0x%.8lx size 0x%.8lx (end 0x%.8lx))\n",
145 (unsigned long)phys_offset,
146 (unsigned long)aligned_region_size,
147 (unsigned long)bank_phys_end(&bank[0]));
151 static int mpu_present(void)
153 return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7);
156 static int mpu_max_regions(void)
159 * We don't support a different number of I/D side regions so if we
160 * have separate instruction and data memory maps then return
161 * whichever side has a smaller number of supported regions.
163 u32 dregions, iregions, mpuir;
164 mpuir = read_cpuid(CPUID_MPUIR);
166 dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION;
168 /* Check for separate d-side and i-side memory maps */
169 if (mpuir & MPUIR_nU)
170 iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION;
172 /* Use the smallest of the two maxima */
173 return min(dregions, iregions);
176 static int mpu_iside_independent(void)
178 /* MPUIR.nU specifies whether there is *not* a unified memory map */
179 return read_cpuid(CPUID_MPUIR) & MPUIR_nU;
182 static int mpu_min_region_order(void)
184 u32 drbar_result, irbar_result;
185 /* We've kept a region free for this probing */
186 rgnr_write(MPU_PROBE_REGION);
187 isb();
189 * As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum
190 * region order
192 drbar_write(0xFFFFFFFC);
193 drbar_result = irbar_result = drbar_read();
194 drbar_write(0x0);
195 /* If the MPU is non-unified, we use the larger of the two minima*/
196 if (mpu_iside_independent()) {
197 irbar_write(0xFFFFFFFC);
198 irbar_result = irbar_read();
199 irbar_write(0x0);
201 isb(); /* Ensure that MPU region operations have completed */
202 /* Return whichever result is larger */
203 return __ffs(max(drbar_result, irbar_result));
206 static int mpu_setup_region(unsigned int number, phys_addr_t start,
207 unsigned int size_order, unsigned int properties)
209 u32 size_data;
211 /* We kept a region free for probing resolution of MPU regions*/
212 if (number > mpu_max_regions() || number == MPU_PROBE_REGION)
213 return -ENOENT;
215 if (size_order > 32)
216 return -ENOMEM;
218 if (size_order < mpu_min_region_order())
219 return -ENOMEM;
221 /* Writing N to bits 5:1 (RSR_SZ) specifies region size 2^N+1 */
222 size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN;
224 dsb(); /* Ensure all previous data accesses occur with old mappings */
225 rgnr_write(number);
226 isb();
227 drbar_write(start);
228 dracr_write(properties);
229 isb(); /* Propagate properties before enabling region */
230 drsr_write(size_data);
232 /* Check for independent I-side registers */
233 if (mpu_iside_independent()) {
234 irbar_write(start);
235 iracr_write(properties);
236 isb();
237 irsr_write(size_data);
239 isb();
241 /* Store region info (we treat i/d side the same, so only store d) */
242 mpu_rgn_info.rgns[number].dracr = properties;
243 mpu_rgn_info.rgns[number].drbar = start;
244 mpu_rgn_info.rgns[number].drsr = size_data;
245 return 0;
249 * Set up default MPU regions, doing nothing if there is no MPU
251 void __init mpu_setup(void)
253 int region_err;
254 if (!mpu_present())
255 return;
257 region_err = mpu_setup_region(MPU_RAM_REGION, PHYS_OFFSET,
258 ilog2(meminfo.bank[0].size),
259 MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL);
260 if (region_err) {
261 panic("MPU region initialization failure! %d", region_err);
262 } else {
263 pr_info("Using ARMv7 PMSA Compliant MPU. "
264 "Region independence: %s, Max regions: %d\n",
265 mpu_iside_independent() ? "Yes" : "No",
266 mpu_max_regions());
269 #else
270 static void sanity_check_meminfo_mpu(void) {}
271 static void __init mpu_setup(void) {}
272 #endif /* CONFIG_ARM_MPU */
274 void __init arm_mm_memblock_reserve(void)
276 #ifndef CONFIG_CPU_V7M
278 * Register the exception vector page.
279 * some architectures which the DRAM is the exception vector to trap,
280 * alloc_page breaks with error, although it is not NULL, but "0."
282 memblock_reserve(CONFIG_VECTORS_BASE, PAGE_SIZE);
283 #else /* ifndef CONFIG_CPU_V7M */
285 * There is no dedicated vector page on V7-M. So nothing needs to be
286 * reserved here.
288 #endif
291 void __init sanity_check_meminfo(void)
293 phys_addr_t end;
294 sanity_check_meminfo_mpu();
295 end = bank_phys_end(&meminfo.bank[meminfo.nr_banks - 1]);
296 high_memory = __va(end - 1) + 1;
300 * early_paging_init() recreates boot time page table setup, allowing machines
301 * to switch over to a high (>4G) address space on LPAE systems
303 void __init early_paging_init(const struct machine_desc *mdesc,
304 struct proc_info_list *procinfo)
309 * paging_init() sets up the page tables, initialises the zone memory
310 * maps, and sets up the zero page, bad page and bad page tables.
312 void __init paging_init(const struct machine_desc *mdesc)
314 early_trap_init((void *)CONFIG_VECTORS_BASE);
315 mpu_setup();
316 bootmem_init();
320 * We don't need to do anything here for nommu machines.
322 void setup_mm_for_reboot(void)
326 void flush_dcache_page(struct page *page)
328 __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
330 EXPORT_SYMBOL(flush_dcache_page);
332 void flush_kernel_dcache_page(struct page *page)
334 __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
336 EXPORT_SYMBOL(flush_kernel_dcache_page);
338 void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
339 unsigned long uaddr, void *dst, const void *src,
340 unsigned long len)
342 memcpy(dst, src, len);
343 if (vma->vm_flags & VM_EXEC)
344 __cpuc_coherent_user_range(uaddr, uaddr + len);
347 void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset,
348 size_t size, unsigned int mtype)
350 if (pfn >= (0x100000000ULL >> PAGE_SHIFT))
351 return NULL;
352 return (void __iomem *) (offset + (pfn << PAGE_SHIFT));
354 EXPORT_SYMBOL(__arm_ioremap_pfn);
356 void __iomem *__arm_ioremap_pfn_caller(unsigned long pfn, unsigned long offset,
357 size_t size, unsigned int mtype, void *caller)
359 return __arm_ioremap_pfn(pfn, offset, size, mtype);
362 void __iomem *__arm_ioremap(phys_addr_t phys_addr, size_t size,
363 unsigned int mtype)
365 return (void __iomem *)phys_addr;
367 EXPORT_SYMBOL(__arm_ioremap);
369 void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *);
371 void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
372 unsigned int mtype, void *caller)
374 return __arm_ioremap(phys_addr, size, mtype);
377 void (*arch_iounmap)(volatile void __iomem *);
379 void __arm_iounmap(volatile void __iomem *addr)
382 EXPORT_SYMBOL(__arm_iounmap);