fix a kmap leak in virtio_console
[linux/fpc-iii.git] / arch / arm64 / kernel / smp.c
blob7cfb92a4ab66523212ec91392b6ee269fa0d97a9
1 /*
2 * SMP initialisation and IPI support
3 * Based on arch/arm/kernel/smp.c
5 * Copyright (C) 2012 ARM Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/spinlock.h>
23 #include <linux/sched.h>
24 #include <linux/interrupt.h>
25 #include <linux/cache.h>
26 #include <linux/profile.h>
27 #include <linux/errno.h>
28 #include <linux/mm.h>
29 #include <linux/err.h>
30 #include <linux/cpu.h>
31 #include <linux/smp.h>
32 #include <linux/seq_file.h>
33 #include <linux/irq.h>
34 #include <linux/percpu.h>
35 #include <linux/clockchips.h>
36 #include <linux/completion.h>
37 #include <linux/of.h>
39 #include <asm/atomic.h>
40 #include <asm/cacheflush.h>
41 #include <asm/cputype.h>
42 #include <asm/cpu_ops.h>
43 #include <asm/mmu_context.h>
44 #include <asm/pgtable.h>
45 #include <asm/pgalloc.h>
46 #include <asm/processor.h>
47 #include <asm/smp_plat.h>
48 #include <asm/sections.h>
49 #include <asm/tlbflush.h>
50 #include <asm/ptrace.h>
53 * as from 2.5, kernels no longer have an init_tasks structure
54 * so we need some other way of telling a new secondary core
55 * where to place its SVC stack
57 struct secondary_data secondary_data;
59 enum ipi_msg_type {
60 IPI_RESCHEDULE,
61 IPI_CALL_FUNC,
62 IPI_CALL_FUNC_SINGLE,
63 IPI_CPU_STOP,
64 IPI_TIMER,
68 * Boot a secondary CPU, and assign it the specified idle task.
69 * This also gives us the initial stack to use for this CPU.
71 static int boot_secondary(unsigned int cpu, struct task_struct *idle)
73 if (cpu_ops[cpu]->cpu_boot)
74 return cpu_ops[cpu]->cpu_boot(cpu);
76 return -EOPNOTSUPP;
79 static DECLARE_COMPLETION(cpu_running);
81 int __cpu_up(unsigned int cpu, struct task_struct *idle)
83 int ret;
86 * We need to tell the secondary core where to find its stack and the
87 * page tables.
89 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
90 __flush_dcache_area(&secondary_data, sizeof(secondary_data));
93 * Now bring the CPU into our world.
95 ret = boot_secondary(cpu, idle);
96 if (ret == 0) {
98 * CPU was successfully started, wait for it to come online or
99 * time out.
101 wait_for_completion_timeout(&cpu_running,
102 msecs_to_jiffies(1000));
104 if (!cpu_online(cpu)) {
105 pr_crit("CPU%u: failed to come online\n", cpu);
106 ret = -EIO;
108 } else {
109 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
112 secondary_data.stack = NULL;
114 return ret;
118 * This is the secondary CPU boot entry. We're using this CPUs
119 * idle thread stack, but a set of temporary page tables.
121 asmlinkage void secondary_start_kernel(void)
123 struct mm_struct *mm = &init_mm;
124 unsigned int cpu = smp_processor_id();
127 * All kernel threads share the same mm context; grab a
128 * reference and switch to it.
130 atomic_inc(&mm->mm_count);
131 current->active_mm = mm;
132 cpumask_set_cpu(cpu, mm_cpumask(mm));
134 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
135 printk("CPU%u: Booted secondary processor\n", cpu);
138 * TTBR0 is only used for the identity mapping at this stage. Make it
139 * point to zero page to avoid speculatively fetching new entries.
141 cpu_set_reserved_ttbr0();
142 flush_tlb_all();
144 preempt_disable();
145 trace_hardirqs_off();
147 if (cpu_ops[cpu]->cpu_postboot)
148 cpu_ops[cpu]->cpu_postboot();
151 * Enable GIC and timers.
153 notify_cpu_starting(cpu);
156 * OK, now it's safe to let the boot CPU continue. Wait for
157 * the CPU migration code to notice that the CPU is online
158 * before we continue.
160 set_cpu_online(cpu, true);
161 complete(&cpu_running);
163 local_irq_enable();
164 local_async_enable();
167 * OK, it's off to the idle thread for us
169 cpu_startup_entry(CPUHP_ONLINE);
172 #ifdef CONFIG_HOTPLUG_CPU
173 static int op_cpu_disable(unsigned int cpu)
176 * If we don't have a cpu_die method, abort before we reach the point
177 * of no return. CPU0 may not have an cpu_ops, so test for it.
179 if (!cpu_ops[cpu] || !cpu_ops[cpu]->cpu_die)
180 return -EOPNOTSUPP;
183 * We may need to abort a hot unplug for some other mechanism-specific
184 * reason.
186 if (cpu_ops[cpu]->cpu_disable)
187 return cpu_ops[cpu]->cpu_disable(cpu);
189 return 0;
193 * __cpu_disable runs on the processor to be shutdown.
195 int __cpu_disable(void)
197 unsigned int cpu = smp_processor_id();
198 int ret;
200 ret = op_cpu_disable(cpu);
201 if (ret)
202 return ret;
205 * Take this CPU offline. Once we clear this, we can't return,
206 * and we must not schedule until we're ready to give up the cpu.
208 set_cpu_online(cpu, false);
211 * OK - migrate IRQs away from this CPU
213 migrate_irqs();
216 * Remove this CPU from the vm mask set of all processes.
218 clear_tasks_mm_cpumask(cpu);
220 return 0;
223 static DECLARE_COMPLETION(cpu_died);
226 * called on the thread which is asking for a CPU to be shutdown -
227 * waits until shutdown has completed, or it is timed out.
229 void __cpu_die(unsigned int cpu)
231 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
232 pr_crit("CPU%u: cpu didn't die\n", cpu);
233 return;
235 pr_notice("CPU%u: shutdown\n", cpu);
239 * Called from the idle thread for the CPU which has been shutdown.
241 * Note that we disable IRQs here, but do not re-enable them
242 * before returning to the caller. This is also the behaviour
243 * of the other hotplug-cpu capable cores, so presumably coming
244 * out of idle fixes this.
246 void cpu_die(void)
248 unsigned int cpu = smp_processor_id();
250 idle_task_exit();
252 local_irq_disable();
254 /* Tell __cpu_die() that this CPU is now safe to dispose of */
255 complete(&cpu_died);
258 * Actually shutdown the CPU. This must never fail. The specific hotplug
259 * mechanism must perform all required cache maintenance to ensure that
260 * no dirty lines are lost in the process of shutting down the CPU.
262 cpu_ops[cpu]->cpu_die(cpu);
264 BUG();
266 #endif
268 void __init smp_cpus_done(unsigned int max_cpus)
270 pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
273 void __init smp_prepare_boot_cpu(void)
275 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
278 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
281 * Enumerate the possible CPU set from the device tree and build the
282 * cpu logical map array containing MPIDR values related to logical
283 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
285 void __init smp_init_cpus(void)
287 struct device_node *dn = NULL;
288 unsigned int i, cpu = 1;
289 bool bootcpu_valid = false;
291 while ((dn = of_find_node_by_type(dn, "cpu"))) {
292 const u32 *cell;
293 u64 hwid;
296 * A cpu node with missing "reg" property is
297 * considered invalid to build a cpu_logical_map
298 * entry.
300 cell = of_get_property(dn, "reg", NULL);
301 if (!cell) {
302 pr_err("%s: missing reg property\n", dn->full_name);
303 goto next;
305 hwid = of_read_number(cell, of_n_addr_cells(dn));
308 * Non affinity bits must be set to 0 in the DT
310 if (hwid & ~MPIDR_HWID_BITMASK) {
311 pr_err("%s: invalid reg property\n", dn->full_name);
312 goto next;
316 * Duplicate MPIDRs are a recipe for disaster. Scan
317 * all initialized entries and check for
318 * duplicates. If any is found just ignore the cpu.
319 * cpu_logical_map was initialized to INVALID_HWID to
320 * avoid matching valid MPIDR values.
322 for (i = 1; (i < cpu) && (i < NR_CPUS); i++) {
323 if (cpu_logical_map(i) == hwid) {
324 pr_err("%s: duplicate cpu reg properties in the DT\n",
325 dn->full_name);
326 goto next;
331 * The numbering scheme requires that the boot CPU
332 * must be assigned logical id 0. Record it so that
333 * the logical map built from DT is validated and can
334 * be used.
336 if (hwid == cpu_logical_map(0)) {
337 if (bootcpu_valid) {
338 pr_err("%s: duplicate boot cpu reg property in DT\n",
339 dn->full_name);
340 goto next;
343 bootcpu_valid = true;
346 * cpu_logical_map has already been
347 * initialized and the boot cpu doesn't need
348 * the enable-method so continue without
349 * incrementing cpu.
351 continue;
354 if (cpu >= NR_CPUS)
355 goto next;
357 if (cpu_read_ops(dn, cpu) != 0)
358 goto next;
360 if (cpu_ops[cpu]->cpu_init(dn, cpu))
361 goto next;
363 pr_debug("cpu logical map 0x%llx\n", hwid);
364 cpu_logical_map(cpu) = hwid;
365 next:
366 cpu++;
369 /* sanity check */
370 if (cpu > NR_CPUS)
371 pr_warning("no. of cores (%d) greater than configured maximum of %d - clipping\n",
372 cpu, NR_CPUS);
374 if (!bootcpu_valid) {
375 pr_err("DT missing boot CPU MPIDR, not enabling secondaries\n");
376 return;
380 * All the cpus that made it to the cpu_logical_map have been
381 * validated so set them as possible cpus.
383 for (i = 0; i < NR_CPUS; i++)
384 if (cpu_logical_map(i) != INVALID_HWID)
385 set_cpu_possible(i, true);
388 void __init smp_prepare_cpus(unsigned int max_cpus)
390 int err;
391 unsigned int cpu, ncores = num_possible_cpus();
394 * are we trying to boot more cores than exist?
396 if (max_cpus > ncores)
397 max_cpus = ncores;
399 /* Don't bother if we're effectively UP */
400 if (max_cpus <= 1)
401 return;
404 * Initialise the present map (which describes the set of CPUs
405 * actually populated at the present time) and release the
406 * secondaries from the bootloader.
408 * Make sure we online at most (max_cpus - 1) additional CPUs.
410 max_cpus--;
411 for_each_possible_cpu(cpu) {
412 if (max_cpus == 0)
413 break;
415 if (cpu == smp_processor_id())
416 continue;
418 if (!cpu_ops[cpu])
419 continue;
421 err = cpu_ops[cpu]->cpu_prepare(cpu);
422 if (err)
423 continue;
425 set_cpu_present(cpu, true);
426 max_cpus--;
431 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
433 smp_cross_call = fn;
436 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
438 smp_cross_call(mask, IPI_CALL_FUNC);
441 void arch_send_call_function_single_ipi(int cpu)
443 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
446 static const char *ipi_types[NR_IPI] = {
447 #define S(x,s) [x - IPI_RESCHEDULE] = s
448 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
449 S(IPI_CALL_FUNC, "Function call interrupts"),
450 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
451 S(IPI_CPU_STOP, "CPU stop interrupts"),
452 S(IPI_TIMER, "Timer broadcast interrupts"),
455 void show_ipi_list(struct seq_file *p, int prec)
457 unsigned int cpu, i;
459 for (i = 0; i < NR_IPI; i++) {
460 seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i + IPI_RESCHEDULE,
461 prec >= 4 ? " " : "");
462 for_each_online_cpu(cpu)
463 seq_printf(p, "%10u ",
464 __get_irq_stat(cpu, ipi_irqs[i]));
465 seq_printf(p, " %s\n", ipi_types[i]);
469 u64 smp_irq_stat_cpu(unsigned int cpu)
471 u64 sum = 0;
472 int i;
474 for (i = 0; i < NR_IPI; i++)
475 sum += __get_irq_stat(cpu, ipi_irqs[i]);
477 return sum;
480 static DEFINE_RAW_SPINLOCK(stop_lock);
483 * ipi_cpu_stop - handle IPI from smp_send_stop()
485 static void ipi_cpu_stop(unsigned int cpu)
487 if (system_state == SYSTEM_BOOTING ||
488 system_state == SYSTEM_RUNNING) {
489 raw_spin_lock(&stop_lock);
490 pr_crit("CPU%u: stopping\n", cpu);
491 dump_stack();
492 raw_spin_unlock(&stop_lock);
495 set_cpu_online(cpu, false);
497 local_irq_disable();
499 while (1)
500 cpu_relax();
504 * Main handler for inter-processor interrupts
506 void handle_IPI(int ipinr, struct pt_regs *regs)
508 unsigned int cpu = smp_processor_id();
509 struct pt_regs *old_regs = set_irq_regs(regs);
511 if (ipinr >= IPI_RESCHEDULE && ipinr < IPI_RESCHEDULE + NR_IPI)
512 __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_RESCHEDULE]);
514 switch (ipinr) {
515 case IPI_RESCHEDULE:
516 scheduler_ipi();
517 break;
519 case IPI_CALL_FUNC:
520 irq_enter();
521 generic_smp_call_function_interrupt();
522 irq_exit();
523 break;
525 case IPI_CALL_FUNC_SINGLE:
526 irq_enter();
527 generic_smp_call_function_single_interrupt();
528 irq_exit();
529 break;
531 case IPI_CPU_STOP:
532 irq_enter();
533 ipi_cpu_stop(cpu);
534 irq_exit();
535 break;
537 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
538 case IPI_TIMER:
539 irq_enter();
540 tick_receive_broadcast();
541 irq_exit();
542 break;
543 #endif
545 default:
546 pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
547 break;
549 set_irq_regs(old_regs);
552 void smp_send_reschedule(int cpu)
554 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
557 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
558 void tick_broadcast(const struct cpumask *mask)
560 smp_cross_call(mask, IPI_TIMER);
562 #endif
564 void smp_send_stop(void)
566 unsigned long timeout;
568 if (num_online_cpus() > 1) {
569 cpumask_t mask;
571 cpumask_copy(&mask, cpu_online_mask);
572 cpu_clear(smp_processor_id(), mask);
574 smp_cross_call(&mask, IPI_CPU_STOP);
577 /* Wait up to one second for other CPUs to stop */
578 timeout = USEC_PER_SEC;
579 while (num_online_cpus() > 1 && timeout--)
580 udelay(1);
582 if (num_online_cpus() > 1)
583 pr_warning("SMP: failed to stop secondary CPUs\n");
587 * not supported here
589 int setup_profiling_timer(unsigned int multiplier)
591 return -EINVAL;