2 * Copyright (C) 2003, Axis Communications AB.
7 #include <linux/interrupt.h>
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/init.h>
12 #include <linux/profile.h>
13 #include <linux/proc_fs.h>
14 #include <linux/seq_file.h>
15 #include <linux/threads.h>
16 #include <linux/spinlock.h>
17 #include <linux/kernel_stat.h>
18 #include <hwregs/reg_map.h>
19 #include <hwregs/reg_rdwr.h>
20 #include <hwregs/intr_vect.h>
21 #include <hwregs/intr_vect_defs.h>
25 /* IRQ masks (refer to comment for crisv32_do_multiple) */
26 #if TIMER0_INTR_VECT - FIRST_IRQ < 32
27 #define TIMER_MASK (1 << (TIMER0_INTR_VECT - FIRST_IRQ))
30 #define TIMER_MASK (1 << (TIMER0_INTR_VECT - FIRST_IRQ - 32))
33 #ifdef CONFIG_ETRAX_KGDB
34 #if defined(CONFIG_ETRAX_KGDB_PORT0)
35 #define IGNOREMASK (1 << (SER0_INTR_VECT - FIRST_IRQ))
36 #elif defined(CONFIG_ETRAX_KGDB_PORT1)
37 #define IGNOREMASK (1 << (SER1_INTR_VECT - FIRST_IRQ))
38 #elif defined(CONFIG_ETRAX_KGB_PORT2)
39 #define IGNOREMASK (1 << (SER2_INTR_VECT - FIRST_IRQ))
40 #elif defined(CONFIG_ETRAX_KGDB_PORT3)
41 #define IGNOREMASK (1 << (SER3_INTR_VECT - FIRST_IRQ))
45 DEFINE_SPINLOCK(irq_lock
);
47 struct cris_irq_allocation
49 int cpu
; /* The CPU to which the IRQ is currently allocated. */
50 cpumask_t mask
; /* The CPUs to which the IRQ may be allocated. */
53 struct cris_irq_allocation irq_allocations
[NR_REAL_IRQS
] =
54 { [0 ... NR_REAL_IRQS
- 1] = {0, CPU_MASK_ALL
} };
56 static unsigned long irq_regs
[NR_CPUS
] =
70 unsigned long cpu_irq_counters
[NR_CPUS
];
71 unsigned long irq_counters
[NR_REAL_IRQS
];
74 extern void weird_irq(void);
77 extern void system_call(void);
78 extern void nmi_interrupt(void);
79 extern void multiple_interrupt(void);
80 extern void gdb_handle_exception(void);
81 extern void i_mmu_refill(void);
82 extern void i_mmu_invalid(void);
83 extern void i_mmu_access(void);
84 extern void i_mmu_execute(void);
85 extern void d_mmu_refill(void);
86 extern void d_mmu_invalid(void);
87 extern void d_mmu_access(void);
88 extern void d_mmu_write(void);
91 extern void kgdb_init(void);
92 extern void breakpoint(void);
95 extern void breakh_BUG(void);
98 * Build the IRQ handler stubs using macros from irq.h.
100 #ifdef CONFIG_CRIS_MACH_ARTPEC3
101 BUILD_TIMER_IRQ(0x31, 0)
130 #ifdef CONFIG_ETRAXFS
131 BUILD_TIMER_IRQ(0x4b, 0)
175 /* Pointers to the low-level handlers. */
176 static void (*interrupt
[MACH_IRQS
])(void) = {
177 IRQ0x31_interrupt
, IRQ0x32_interrupt
, IRQ0x33_interrupt
,
178 IRQ0x34_interrupt
, IRQ0x35_interrupt
, IRQ0x36_interrupt
,
179 IRQ0x37_interrupt
, IRQ0x38_interrupt
, IRQ0x39_interrupt
,
180 IRQ0x3a_interrupt
, IRQ0x3b_interrupt
, IRQ0x3c_interrupt
,
181 IRQ0x3d_interrupt
, IRQ0x3e_interrupt
, IRQ0x3f_interrupt
,
182 IRQ0x40_interrupt
, IRQ0x41_interrupt
, IRQ0x42_interrupt
,
183 IRQ0x43_interrupt
, IRQ0x44_interrupt
, IRQ0x45_interrupt
,
184 IRQ0x46_interrupt
, IRQ0x47_interrupt
, IRQ0x48_interrupt
,
185 IRQ0x49_interrupt
, IRQ0x4a_interrupt
, IRQ0x4b_interrupt
,
186 IRQ0x4c_interrupt
, IRQ0x4d_interrupt
, IRQ0x4e_interrupt
,
187 IRQ0x4f_interrupt
, IRQ0x50_interrupt
,
189 IRQ0x51_interrupt
, IRQ0x52_interrupt
, IRQ0x53_interrupt
,
190 IRQ0x54_interrupt
, IRQ0x55_interrupt
, IRQ0x56_interrupt
,
191 IRQ0x57_interrupt
, IRQ0x58_interrupt
, IRQ0x59_interrupt
,
192 IRQ0x5a_interrupt
, IRQ0x5b_interrupt
, IRQ0x5c_interrupt
,
193 IRQ0x5d_interrupt
, IRQ0x5e_interrupt
, IRQ0x5f_interrupt
,
194 IRQ0x60_interrupt
, IRQ0x61_interrupt
, IRQ0x62_interrupt
,
195 IRQ0x63_interrupt
, IRQ0x64_interrupt
, IRQ0x65_interrupt
,
196 IRQ0x66_interrupt
, IRQ0x67_interrupt
, IRQ0x68_interrupt
,
197 IRQ0x69_interrupt
, IRQ0x6a_interrupt
, IRQ0x6b_interrupt
,
198 IRQ0x6c_interrupt
, IRQ0x6d_interrupt
, IRQ0x6e_interrupt
,
199 IRQ0x6f_interrupt
, IRQ0x70_interrupt
,
204 block_irq(int irq
, int cpu
)
209 spin_lock_irqsave(&irq_lock
, flags
);
210 /* Remember, 1 let thru, 0 block. */
211 if (irq
- FIRST_IRQ
< 32) {
212 intr_mask
= REG_RD_INT_VECT(intr_vect
, irq_regs
[cpu
],
214 intr_mask
&= ~(1 << (irq
- FIRST_IRQ
));
215 REG_WR_INT_VECT(intr_vect
, irq_regs
[cpu
], rw_mask
,
218 intr_mask
= REG_RD_INT_VECT(intr_vect
, irq_regs
[cpu
],
220 intr_mask
&= ~(1 << (irq
- FIRST_IRQ
- 32));
221 REG_WR_INT_VECT(intr_vect
, irq_regs
[cpu
], rw_mask
,
224 spin_unlock_irqrestore(&irq_lock
, flags
);
228 unblock_irq(int irq
, int cpu
)
233 spin_lock_irqsave(&irq_lock
, flags
);
234 /* Remember, 1 let thru, 0 block. */
235 if (irq
- FIRST_IRQ
< 32) {
236 intr_mask
= REG_RD_INT_VECT(intr_vect
, irq_regs
[cpu
],
238 intr_mask
|= (1 << (irq
- FIRST_IRQ
));
239 REG_WR_INT_VECT(intr_vect
, irq_regs
[cpu
], rw_mask
,
242 intr_mask
= REG_RD_INT_VECT(intr_vect
, irq_regs
[cpu
],
244 intr_mask
|= (1 << (irq
- FIRST_IRQ
- 32));
245 REG_WR_INT_VECT(intr_vect
, irq_regs
[cpu
], rw_mask
,
248 spin_unlock_irqrestore(&irq_lock
, flags
);
251 /* Find out which CPU the irq should be allocated to. */
252 static int irq_cpu(int irq
)
257 spin_lock_irqsave(&irq_lock
, flags
);
258 cpu
= irq_allocations
[irq
- FIRST_IRQ
].cpu
;
260 /* Fixed interrupts stay on the local CPU. */
261 if (cpu
== CPU_FIXED
)
263 spin_unlock_irqrestore(&irq_lock
, flags
);
264 return smp_processor_id();
268 /* Let the interrupt stay if possible */
269 if (cpumask_test_cpu(cpu
, &irq_allocations
[irq
- FIRST_IRQ
].mask
))
272 /* IRQ must be moved to another CPU. */
273 cpu
= cpumask_first(&irq_allocations
[irq
- FIRST_IRQ
].mask
);
274 irq_allocations
[irq
- FIRST_IRQ
].cpu
= cpu
;
276 spin_unlock_irqrestore(&irq_lock
, flags
);
280 void crisv32_mask_irq(int irq
)
284 for (cpu
= 0; cpu
< NR_CPUS
; cpu
++)
288 void crisv32_unmask_irq(int irq
)
290 unblock_irq(irq
, irq_cpu(irq
));
294 static void enable_crisv32_irq(struct irq_data
*data
)
296 crisv32_unmask_irq(data
->irq
);
299 static void disable_crisv32_irq(struct irq_data
*data
)
301 crisv32_mask_irq(data
->irq
);
304 static int set_affinity_crisv32_irq(struct irq_data
*data
,
305 const struct cpumask
*dest
, bool force
)
309 spin_lock_irqsave(&irq_lock
, flags
);
310 irq_allocations
[data
->irq
- FIRST_IRQ
].mask
= *dest
;
311 spin_unlock_irqrestore(&irq_lock
, flags
);
315 static struct irq_chip crisv32_irq_type
= {
317 .irq_shutdown
= disable_crisv32_irq
,
318 .irq_enable
= enable_crisv32_irq
,
319 .irq_disable
= disable_crisv32_irq
,
320 .irq_set_affinity
= set_affinity_crisv32_irq
,
324 set_exception_vector(int n
, irqvectptr addr
)
326 etrax_irv
->v
[n
] = (irqvectptr
) addr
;
329 extern void do_IRQ(int irq
, struct pt_regs
* regs
);
332 crisv32_do_IRQ(int irq
, int block
, struct pt_regs
* regs
)
334 /* Interrupts that may not be moved to another CPU may
335 * skip blocking. This is currently only valid for the
336 * timer IRQ and the IPI and is used for the timer
337 * interrupt to avoid watchdog starvation.
344 block_irq(irq
, smp_processor_id());
347 unblock_irq(irq
, irq_cpu(irq
));
350 /* If multiple interrupts occur simultaneously we get a multiple
351 * interrupt from the CPU and software has to sort out which
352 * interrupts that happened. There are two special cases here:
354 * 1. Timer interrupts may never be blocked because of the
355 * watchdog (refer to comment in include/asr/arch/irq.h)
356 * 2. GDB serial port IRQs are unhandled here and will be handled
357 * as a single IRQ when it strikes again because the GDB
358 * stubb wants to save the registers in its own fashion.
361 crisv32_do_multiple(struct pt_regs
* regs
)
365 int masked
[NBR_REGS
];
369 cpu
= smp_processor_id();
371 /* An extra irq_enter here to prevent softIRQs to run after
372 * each do_IRQ. This will decrease the interrupt latency.
376 for (i
= 0; i
< NBR_REGS
; i
++) {
377 /* Get which IRQs that happened. */
378 masked
[i
] = REG_RD_INT_VECT(intr_vect
, irq_regs
[cpu
],
381 /* Calculate new IRQ mask with these IRQs disabled. */
382 mask
= REG_RD_INT_VECT(intr_vect
, irq_regs
[cpu
], rw_mask
, i
);
385 /* Timer IRQ is never masked */
387 if ((i
== 1) && (masked
[0] & TIMER_MASK
))
390 if ((i
== 0) && (masked
[0] & TIMER_MASK
))
393 /* Block all the IRQs */
394 REG_WR_INT_VECT(intr_vect
, irq_regs
[cpu
], rw_mask
, i
, mask
);
396 /* Check for timer IRQ and handle it special. */
398 if ((i
== 1) && (masked
[i
] & TIMER_MASK
)) {
399 masked
[i
] &= ~TIMER_MASK
;
400 do_IRQ(TIMER0_INTR_VECT
, regs
);
403 if ((i
== 0) && (masked
[i
] & TIMER_MASK
)) {
404 masked
[i
] &= ~TIMER_MASK
;
405 do_IRQ(TIMER0_INTR_VECT
, regs
);
411 /* Remove IRQs that can't be handled as multiple. */
412 masked
[0] &= ~IGNORE_MASK
;
415 /* Handle the rest of the IRQs. */
416 for (i
= 0; i
< NBR_REGS
; i
++) {
417 for (bit
= 0; bit
< 32; bit
++) {
418 if (masked
[i
] & (1 << bit
))
419 do_IRQ(bit
+ FIRST_IRQ
+ i
*32, regs
);
423 /* Unblock all the IRQs. */
424 for (i
= 0; i
< NBR_REGS
; i
++) {
425 mask
= REG_RD_INT_VECT(intr_vect
, irq_regs
[cpu
], rw_mask
, i
);
427 REG_WR_INT_VECT(intr_vect
, irq_regs
[cpu
], rw_mask
, i
, mask
);
430 /* This irq_exit() will trigger the soft IRQs. */
435 * This is called by start_kernel. It fixes the IRQ masks and setup the
436 * interrupt vector table to point to bad_interrupt pointers.
443 reg_intr_vect_rw_mask vect_mask
= {0};
445 /* Clear all interrupts masks. */
446 for (i
= 0; i
< NBR_REGS
; i
++)
447 REG_WR_VECT(intr_vect
, regi_irq
, rw_mask
, i
, vect_mask
);
449 for (i
= 0; i
< 256; i
++)
450 etrax_irv
->v
[i
] = weird_irq
;
452 /* Point all IRQ's to bad handlers. */
453 for (i
= FIRST_IRQ
, j
= 0; j
< NR_IRQS
; i
++, j
++) {
454 irq_set_chip_and_handler(j
, &crisv32_irq_type
,
456 set_exception_vector(i
, interrupt
[j
]);
459 /* Mark Timer and IPI IRQs as CPU local */
460 irq_allocations
[TIMER0_INTR_VECT
- FIRST_IRQ
].cpu
= CPU_FIXED
;
461 irq_set_status_flags(TIMER0_INTR_VECT
, IRQ_PER_CPU
);
462 irq_allocations
[IPI_INTR_VECT
- FIRST_IRQ
].cpu
= CPU_FIXED
;
463 irq_set_status_flags(IPI_INTR_VECT
, IRQ_PER_CPU
);
465 set_exception_vector(0x00, nmi_interrupt
);
466 set_exception_vector(0x30, multiple_interrupt
);
468 /* Set up handler for various MMU bus faults. */
469 set_exception_vector(0x04, i_mmu_refill
);
470 set_exception_vector(0x05, i_mmu_invalid
);
471 set_exception_vector(0x06, i_mmu_access
);
472 set_exception_vector(0x07, i_mmu_execute
);
473 set_exception_vector(0x08, d_mmu_refill
);
474 set_exception_vector(0x09, d_mmu_invalid
);
475 set_exception_vector(0x0a, d_mmu_access
);
476 set_exception_vector(0x0b, d_mmu_write
);
479 /* Break 14 handler, used to implement cheap BUG(). */
480 set_exception_vector(0x1e, breakh_BUG
);
483 /* The system-call trap is reached by "break 13". */
484 set_exception_vector(0x1d, system_call
);
486 /* Exception handlers for debugging, both user-mode and kernel-mode. */
489 set_exception_vector(0x18, gdb_handle_exception
);
490 /* Hardware single step. */
491 set_exception_vector(0x3, gdb_handle_exception
);
492 /* Hardware breakpoint. */
493 set_exception_vector(0xc, gdb_handle_exception
);
495 #ifdef CONFIG_ETRAX_KGDB
497 /* Everything is set up; now trap the kernel. */