2 * linux/arch/cris/arch-v32/kernel/time.c
4 * Copyright (C) 2003-2010 Axis Communications AB
8 #include <linux/timex.h>
9 #include <linux/time.h>
10 #include <linux/clocksource.h>
11 #include <linux/interrupt.h>
12 #include <linux/swap.h>
13 #include <linux/sched.h>
14 #include <linux/init.h>
15 #include <linux/threads.h>
16 #include <linux/cpufreq.h>
17 #include <asm/types.h>
18 #include <asm/signal.h>
20 #include <asm/delay.h>
22 #include <asm/irq_regs.h>
24 #include <hwregs/reg_map.h>
25 #include <hwregs/reg_rdwr.h>
26 #include <hwregs/timer_defs.h>
27 #include <hwregs/intr_vect_defs.h>
28 #ifdef CONFIG_CRIS_MACH_ARTPEC3
29 #include <hwregs/clkgen_defs.h>
32 /* Watchdog defines */
33 #define ETRAX_WD_KEY_MASK 0x7F /* key is 7 bit */
34 #define ETRAX_WD_HZ 763 /* watchdog counts at 763 Hz */
35 /* Number of 763 counts before watchdog bites */
36 #define ETRAX_WD_CNT ((2*ETRAX_WD_HZ)/HZ + 1)
38 /* Register the continuos readonly timer available in FS and ARTPEC-3. */
39 static cycle_t
read_cont_rotime(struct clocksource
*cs
)
41 return (u32
)REG_RD(timer
, regi_timer0
, r_time
);
44 static struct clocksource cont_rotime
= {
45 .name
= "crisv32_rotime",
47 .read
= read_cont_rotime
,
48 .mask
= CLOCKSOURCE_MASK(32),
49 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
52 static int __init
etrax_init_cont_rotime(void)
54 clocksource_register_khz(&cont_rotime
, 100000);
57 arch_initcall(etrax_init_cont_rotime
);
60 unsigned long timer_regs
[NR_CPUS
] =
68 extern int set_rtc_mmss(unsigned long nowtime
);
70 #ifdef CONFIG_CPU_FREQ
72 cris_time_freq_notifier(struct notifier_block
*nb
, unsigned long val
,
75 static struct notifier_block cris_time_freq_notifier_block
= {
76 .notifier_call
= cris_time_freq_notifier
,
80 unsigned long get_ns_in_jiffie(void)
82 reg_timer_r_tmr0_data data
;
85 data
= REG_RD(timer
, regi_timer0
, r_tmr0_data
);
86 ns
= (TIMER0_DIV
- data
) * 10;
91 /* From timer MDS describing the hardware watchdog:
92 * 4.3.1 Watchdog Operation
93 * The watchdog timer is an 8-bit timer with a configurable start value.
94 * Once started the watchdog counts downwards with a frequency of 763 Hz
95 * (100/131072 MHz). When the watchdog counts down to 1, it generates an
96 * NMI (Non Maskable Interrupt), and when it counts down to 0, it resets the
99 /* This gives us 1.3 ms to do something useful when the NMI comes */
101 /* Right now, starting the watchdog is the same as resetting it */
102 #define start_watchdog reset_watchdog
104 #if defined(CONFIG_ETRAX_WATCHDOG)
105 static short int watchdog_key
= 42; /* arbitrary 7 bit number */
108 /* Number of pages to consider "out of memory". It is normal that the memory
109 * is used though, so set this really low. */
110 #define WATCHDOG_MIN_FREE_PAGES 8
112 void reset_watchdog(void)
114 #if defined(CONFIG_ETRAX_WATCHDOG)
115 reg_timer_rw_wd_ctrl wd_ctrl
= { 0 };
117 /* Only keep watchdog happy as long as we have memory left! */
118 if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES
) {
119 /* Reset the watchdog with the inverse of the old key */
120 /* Invert key, which is 7 bits */
121 watchdog_key
^= ETRAX_WD_KEY_MASK
;
122 wd_ctrl
.cnt
= ETRAX_WD_CNT
;
123 wd_ctrl
.cmd
= regk_timer_start
;
124 wd_ctrl
.key
= watchdog_key
;
125 REG_WR(timer
, regi_timer0
, rw_wd_ctrl
, wd_ctrl
);
130 /* stop the watchdog - we still need the correct key */
132 void stop_watchdog(void)
134 #if defined(CONFIG_ETRAX_WATCHDOG)
135 reg_timer_rw_wd_ctrl wd_ctrl
= { 0 };
136 watchdog_key
^= ETRAX_WD_KEY_MASK
; /* invert key, which is 7 bits */
137 wd_ctrl
.cnt
= ETRAX_WD_CNT
;
138 wd_ctrl
.cmd
= regk_timer_stop
;
139 wd_ctrl
.key
= watchdog_key
;
140 REG_WR(timer
, regi_timer0
, rw_wd_ctrl
, wd_ctrl
);
144 extern void show_registers(struct pt_regs
*regs
);
146 void handle_watchdog_bite(struct pt_regs
*regs
)
148 #if defined(CONFIG_ETRAX_WATCHDOG)
149 extern int cause_of_death
;
151 oops_in_progress
= 1;
152 printk(KERN_WARNING
"Watchdog bite\n");
154 /* Check if forced restart or unexpected watchdog */
155 if (cause_of_death
== 0xbedead) {
156 #ifdef CONFIG_CRIS_MACH_ARTPEC3
157 /* There is a bug in Artpec-3 (voodoo TR 78) that requires
158 * us to go to lower frequency for the reset to be reliable
160 reg_clkgen_rw_clk_ctrl ctrl
=
161 REG_RD(clkgen
, regi_clkgen
, rw_clk_ctrl
);
163 REG_WR(clkgen
, regi_clkgen
, rw_clk_ctrl
, ctrl
);
168 /* Unexpected watchdog, stop the watchdog and dump registers. */
170 printk(KERN_WARNING
"Oops: bitten by watchdog\n");
171 show_registers(regs
);
172 oops_in_progress
= 0;
173 #ifndef CONFIG_ETRAX_WATCHDOG_NICE_DOGGY
176 while(1) /* nothing */;
181 * timer_interrupt() needs to keep up the real-time clock,
182 * as well as call the "xtime_update()" routine every clocktick.
184 extern void cris_do_profile(struct pt_regs
*regs
);
186 static inline irqreturn_t
timer_interrupt(int irq
, void *dev_id
)
188 struct pt_regs
*regs
= get_irq_regs();
189 int cpu
= smp_processor_id();
190 reg_timer_r_masked_intr masked_intr
;
191 reg_timer_rw_ack_intr ack_intr
= { 0 };
193 /* Check if the timer interrupt is for us (a tmr0 int) */
194 masked_intr
= REG_RD(timer
, timer_regs
[cpu
], r_masked_intr
);
195 if (!masked_intr
.tmr0
)
198 /* Acknowledge the timer irq. */
200 REG_WR(timer
, timer_regs
[cpu
], rw_ack_intr
, ack_intr
);
202 /* Reset watchdog otherwise it resets us! */
205 /* Update statistics. */
206 update_process_times(user_mode(regs
));
208 cris_do_profile(regs
); /* Save profiling information */
210 /* The master CPU is responsible for the time keeping. */
214 /* Call the real timer interrupt handler */
219 /* Timer is IRQF_SHARED so drivers can add stuff to the timer irq chain. */
220 static struct irqaction irq_timer
= {
221 .handler
= timer_interrupt
,
222 .flags
= IRQF_SHARED
,
226 void __init
cris_timer_init(void)
228 int cpu
= smp_processor_id();
229 reg_timer_rw_tmr0_ctrl tmr0_ctrl
= { 0 };
230 reg_timer_rw_tmr0_div tmr0_div
= TIMER0_DIV
;
231 reg_timer_rw_intr_mask timer_intr_mask
;
233 /* Setup the etrax timers.
234 * Base frequency is 100MHz, divider 1000000 -> 100 HZ
235 * We use timer0, so timer1 is free.
236 * The trig timer is used by the fasttimer API if enabled.
239 tmr0_ctrl
.op
= regk_timer_ld
;
240 tmr0_ctrl
.freq
= regk_timer_f100
;
241 REG_WR(timer
, timer_regs
[cpu
], rw_tmr0_div
, tmr0_div
);
242 REG_WR(timer
, timer_regs
[cpu
], rw_tmr0_ctrl
, tmr0_ctrl
); /* Load */
243 tmr0_ctrl
.op
= regk_timer_run
;
244 REG_WR(timer
, timer_regs
[cpu
], rw_tmr0_ctrl
, tmr0_ctrl
); /* Start */
246 /* Enable the timer irq. */
247 timer_intr_mask
= REG_RD(timer
, timer_regs
[cpu
], rw_intr_mask
);
248 timer_intr_mask
.tmr0
= 1;
249 REG_WR(timer
, timer_regs
[cpu
], rw_intr_mask
, timer_intr_mask
);
252 void __init
time_init(void)
254 reg_intr_vect_rw_mask intr_mask
;
256 /* Probe for the RTC and read it if it exists.
257 * Before the RTC can be probed the loops_per_usec variable needs
258 * to be initialized to make usleep work. A better value for
259 * loops_per_usec is calculated by the kernel later once the
264 /* Start CPU local timer. */
267 /* Enable the timer irq in global config. */
268 intr_mask
= REG_RD_VECT(intr_vect
, regi_irq
, rw_mask
, 1);
269 intr_mask
.timer0
= 1;
270 REG_WR_VECT(intr_vect
, regi_irq
, rw_mask
, 1, intr_mask
);
272 /* Now actually register the timer irq handler that calls
273 * timer_interrupt(). */
274 setup_irq(TIMER0_INTR_VECT
, &irq_timer
);
276 /* Enable watchdog if we should use one. */
278 #if defined(CONFIG_ETRAX_WATCHDOG)
279 printk(KERN_INFO
"Enabling watchdog...\n");
282 /* If we use the hardware watchdog, we want to trap it as an NMI
283 * and dump registers before it resets us. For this to happen, we
284 * must set the "m" NMI enable flag (which once set, is unset only
285 * when an NMI is taken). */
288 local_save_flags(flags
);
289 flags
|= (1<<30); /* NMI M flag is at bit 30 */
290 local_irq_restore(flags
);
294 #ifdef CONFIG_CPU_FREQ
295 cpufreq_register_notifier(&cris_time_freq_notifier_block
,
296 CPUFREQ_TRANSITION_NOTIFIER
);
300 #ifdef CONFIG_CPU_FREQ
302 cris_time_freq_notifier(struct notifier_block
*nb
, unsigned long val
,
305 struct cpufreq_freqs
*freqs
= data
;
306 if (val
== CPUFREQ_POSTCHANGE
) {
307 reg_timer_r_tmr0_data data
;
308 reg_timer_rw_tmr0_div div
= (freqs
->new * 500) / HZ
;
310 data
= REG_RD(timer
, timer_regs
[freqs
->cpu
],
313 REG_WR(timer
, timer_regs
[freqs
->cpu
], rw_tmr0_div
, div
);