fix a kmap leak in virtio_console
[linux/fpc-iii.git] / drivers / crypto / ux500 / cryp / cryp_core.c
bloba999f537228f44e4106db659f6068fb27de10627
1 /**
2 * Copyright (C) ST-Ericsson SA 2010
3 * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson.
4 * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson.
5 * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
6 * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
7 * Author: Jonas Linde <jonas.linde@stericsson.com> for ST-Ericsson.
8 * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
9 * License terms: GNU General Public License (GPL) version 2
12 #include <linux/clk.h>
13 #include <linux/completion.h>
14 #include <linux/crypto.h>
15 #include <linux/dmaengine.h>
16 #include <linux/err.h>
17 #include <linux/errno.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/irqreturn.h>
21 #include <linux/klist.h>
22 #include <linux/module.h>
23 #include <linux/platform_device.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/semaphore.h>
26 #include <linux/platform_data/dma-ste-dma40.h>
28 #include <crypto/aes.h>
29 #include <crypto/algapi.h>
30 #include <crypto/ctr.h>
31 #include <crypto/des.h>
32 #include <crypto/scatterwalk.h>
34 #include <linux/platform_data/crypto-ux500.h>
36 #include "cryp_p.h"
37 #include "cryp.h"
39 #define CRYP_MAX_KEY_SIZE 32
40 #define BYTES_PER_WORD 4
42 static int cryp_mode;
43 static atomic_t session_id;
45 static struct stedma40_chan_cfg *mem_to_engine;
46 static struct stedma40_chan_cfg *engine_to_mem;
48 /**
49 * struct cryp_driver_data - data specific to the driver.
51 * @device_list: A list of registered devices to choose from.
52 * @device_allocation: A semaphore initialized with number of devices.
54 struct cryp_driver_data {
55 struct klist device_list;
56 struct semaphore device_allocation;
59 /**
60 * struct cryp_ctx - Crypto context
61 * @config: Crypto mode.
62 * @key[CRYP_MAX_KEY_SIZE]: Key.
63 * @keylen: Length of key.
64 * @iv: Pointer to initialization vector.
65 * @indata: Pointer to indata.
66 * @outdata: Pointer to outdata.
67 * @datalen: Length of indata.
68 * @outlen: Length of outdata.
69 * @blocksize: Size of blocks.
70 * @updated: Updated flag.
71 * @dev_ctx: Device dependent context.
72 * @device: Pointer to the device.
74 struct cryp_ctx {
75 struct cryp_config config;
76 u8 key[CRYP_MAX_KEY_SIZE];
77 u32 keylen;
78 u8 *iv;
79 const u8 *indata;
80 u8 *outdata;
81 u32 datalen;
82 u32 outlen;
83 u32 blocksize;
84 u8 updated;
85 struct cryp_device_context dev_ctx;
86 struct cryp_device_data *device;
87 u32 session_id;
90 static struct cryp_driver_data driver_data;
92 /**
93 * uint8p_to_uint32_be - 4*uint8 to uint32 big endian
94 * @in: Data to convert.
96 static inline u32 uint8p_to_uint32_be(u8 *in)
98 u32 *data = (u32 *)in;
100 return cpu_to_be32p(data);
104 * swap_bits_in_byte - mirror the bits in a byte
105 * @b: the byte to be mirrored
107 * The bits are swapped the following way:
108 * Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
109 * nibble 2 (n2) bits 4-7.
111 * Nibble 1 (n1):
112 * (The "old" (moved) bit is replaced with a zero)
113 * 1. Move bit 6 and 7, 4 positions to the left.
114 * 2. Move bit 3 and 5, 2 positions to the left.
115 * 3. Move bit 1-4, 1 position to the left.
117 * Nibble 2 (n2):
118 * 1. Move bit 0 and 1, 4 positions to the right.
119 * 2. Move bit 2 and 4, 2 positions to the right.
120 * 3. Move bit 3-6, 1 position to the right.
122 * Combine the two nibbles to a complete and swapped byte.
125 static inline u8 swap_bits_in_byte(u8 b)
127 #define R_SHIFT_4_MASK 0xc0 /* Bits 6 and 7, right shift 4 */
128 #define R_SHIFT_2_MASK 0x28 /* (After right shift 4) Bits 3 and 5,
129 right shift 2 */
130 #define R_SHIFT_1_MASK 0x1e /* (After right shift 2) Bits 1-4,
131 right shift 1 */
132 #define L_SHIFT_4_MASK 0x03 /* Bits 0 and 1, left shift 4 */
133 #define L_SHIFT_2_MASK 0x14 /* (After left shift 4) Bits 2 and 4,
134 left shift 2 */
135 #define L_SHIFT_1_MASK 0x78 /* (After left shift 1) Bits 3-6,
136 left shift 1 */
138 u8 n1;
139 u8 n2;
141 /* Swap most significant nibble */
142 /* Right shift 4, bits 6 and 7 */
143 n1 = ((b & R_SHIFT_4_MASK) >> 4) | (b & ~(R_SHIFT_4_MASK >> 4));
144 /* Right shift 2, bits 3 and 5 */
145 n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
146 /* Right shift 1, bits 1-4 */
147 n1 = (n1 & R_SHIFT_1_MASK) >> 1;
149 /* Swap least significant nibble */
150 /* Left shift 4, bits 0 and 1 */
151 n2 = ((b & L_SHIFT_4_MASK) << 4) | (b & ~(L_SHIFT_4_MASK << 4));
152 /* Left shift 2, bits 2 and 4 */
153 n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
154 /* Left shift 1, bits 3-6 */
155 n2 = (n2 & L_SHIFT_1_MASK) << 1;
157 return n1 | n2;
160 static inline void swap_words_in_key_and_bits_in_byte(const u8 *in,
161 u8 *out, u32 len)
163 unsigned int i = 0;
164 int j;
165 int index = 0;
167 j = len - BYTES_PER_WORD;
168 while (j >= 0) {
169 for (i = 0; i < BYTES_PER_WORD; i++) {
170 index = len - j - BYTES_PER_WORD + i;
171 out[j + i] =
172 swap_bits_in_byte(in[index]);
174 j -= BYTES_PER_WORD;
178 static void add_session_id(struct cryp_ctx *ctx)
181 * We never want 0 to be a valid value, since this is the default value
182 * for the software context.
184 if (unlikely(atomic_inc_and_test(&session_id)))
185 atomic_inc(&session_id);
187 ctx->session_id = atomic_read(&session_id);
190 static irqreturn_t cryp_interrupt_handler(int irq, void *param)
192 struct cryp_ctx *ctx;
193 int i;
194 struct cryp_device_data *device_data;
196 if (param == NULL) {
197 BUG_ON(!param);
198 return IRQ_HANDLED;
201 /* The device is coming from the one found in hw_crypt_noxts. */
202 device_data = (struct cryp_device_data *)param;
204 ctx = device_data->current_ctx;
206 if (ctx == NULL) {
207 BUG_ON(!ctx);
208 return IRQ_HANDLED;
211 dev_dbg(ctx->device->dev, "[%s] (len: %d) %s, ", __func__, ctx->outlen,
212 cryp_pending_irq_src(device_data, CRYP_IRQ_SRC_OUTPUT_FIFO) ?
213 "out" : "in");
215 if (cryp_pending_irq_src(device_data,
216 CRYP_IRQ_SRC_OUTPUT_FIFO)) {
217 if (ctx->outlen / ctx->blocksize > 0) {
218 for (i = 0; i < ctx->blocksize / 4; i++) {
219 *(ctx->outdata) = readl_relaxed(
220 &device_data->base->dout);
221 ctx->outdata += 4;
222 ctx->outlen -= 4;
225 if (ctx->outlen == 0) {
226 cryp_disable_irq_src(device_data,
227 CRYP_IRQ_SRC_OUTPUT_FIFO);
230 } else if (cryp_pending_irq_src(device_data,
231 CRYP_IRQ_SRC_INPUT_FIFO)) {
232 if (ctx->datalen / ctx->blocksize > 0) {
233 for (i = 0 ; i < ctx->blocksize / 4; i++) {
234 writel_relaxed(ctx->indata,
235 &device_data->base->din);
236 ctx->indata += 4;
237 ctx->datalen -= 4;
240 if (ctx->datalen == 0)
241 cryp_disable_irq_src(device_data,
242 CRYP_IRQ_SRC_INPUT_FIFO);
244 if (ctx->config.algomode == CRYP_ALGO_AES_XTS) {
245 CRYP_PUT_BITS(&device_data->base->cr,
246 CRYP_START_ENABLE,
247 CRYP_CR_START_POS,
248 CRYP_CR_START_MASK);
250 cryp_wait_until_done(device_data);
255 return IRQ_HANDLED;
258 static int mode_is_aes(enum cryp_algo_mode mode)
260 return CRYP_ALGO_AES_ECB == mode ||
261 CRYP_ALGO_AES_CBC == mode ||
262 CRYP_ALGO_AES_CTR == mode ||
263 CRYP_ALGO_AES_XTS == mode;
266 static int cfg_iv(struct cryp_device_data *device_data, u32 left, u32 right,
267 enum cryp_init_vector_index index)
269 struct cryp_init_vector_value vector_value;
271 dev_dbg(device_data->dev, "[%s]", __func__);
273 vector_value.init_value_left = left;
274 vector_value.init_value_right = right;
276 return cryp_configure_init_vector(device_data,
277 index,
278 vector_value);
281 static int cfg_ivs(struct cryp_device_data *device_data, struct cryp_ctx *ctx)
283 int i;
284 int status = 0;
285 int num_of_regs = ctx->blocksize / 8;
286 u32 iv[AES_BLOCK_SIZE / 4];
288 dev_dbg(device_data->dev, "[%s]", __func__);
291 * Since we loop on num_of_regs we need to have a check in case
292 * someone provides an incorrect blocksize which would force calling
293 * cfg_iv with i greater than 2 which is an error.
295 if (num_of_regs > 2) {
296 dev_err(device_data->dev, "[%s] Incorrect blocksize %d",
297 __func__, ctx->blocksize);
298 return -EINVAL;
301 for (i = 0; i < ctx->blocksize / 4; i++)
302 iv[i] = uint8p_to_uint32_be(ctx->iv + i*4);
304 for (i = 0; i < num_of_regs; i++) {
305 status = cfg_iv(device_data, iv[i*2], iv[i*2+1],
306 (enum cryp_init_vector_index) i);
307 if (status != 0)
308 return status;
310 return status;
313 static int set_key(struct cryp_device_data *device_data,
314 u32 left_key,
315 u32 right_key,
316 enum cryp_key_reg_index index)
318 struct cryp_key_value key_value;
319 int cryp_error;
321 dev_dbg(device_data->dev, "[%s]", __func__);
323 key_value.key_value_left = left_key;
324 key_value.key_value_right = right_key;
326 cryp_error = cryp_configure_key_values(device_data,
327 index,
328 key_value);
329 if (cryp_error != 0)
330 dev_err(device_data->dev, "[%s]: "
331 "cryp_configure_key_values() failed!", __func__);
333 return cryp_error;
336 static int cfg_keys(struct cryp_ctx *ctx)
338 int i;
339 int num_of_regs = ctx->keylen / 8;
340 u32 swapped_key[CRYP_MAX_KEY_SIZE / 4];
341 int cryp_error = 0;
343 dev_dbg(ctx->device->dev, "[%s]", __func__);
345 if (mode_is_aes(ctx->config.algomode)) {
346 swap_words_in_key_and_bits_in_byte((u8 *)ctx->key,
347 (u8 *)swapped_key,
348 ctx->keylen);
349 } else {
350 for (i = 0; i < ctx->keylen / 4; i++)
351 swapped_key[i] = uint8p_to_uint32_be(ctx->key + i*4);
354 for (i = 0; i < num_of_regs; i++) {
355 cryp_error = set_key(ctx->device,
356 *(((u32 *)swapped_key)+i*2),
357 *(((u32 *)swapped_key)+i*2+1),
358 (enum cryp_key_reg_index) i);
360 if (cryp_error != 0) {
361 dev_err(ctx->device->dev, "[%s]: set_key() failed!",
362 __func__);
363 return cryp_error;
366 return cryp_error;
369 static int cryp_setup_context(struct cryp_ctx *ctx,
370 struct cryp_device_data *device_data)
372 u32 control_register = CRYP_CR_DEFAULT;
374 switch (cryp_mode) {
375 case CRYP_MODE_INTERRUPT:
376 writel_relaxed(CRYP_IMSC_DEFAULT, &device_data->base->imsc);
377 break;
379 case CRYP_MODE_DMA:
380 writel_relaxed(CRYP_DMACR_DEFAULT, &device_data->base->dmacr);
381 break;
383 default:
384 break;
387 if (ctx->updated == 0) {
388 cryp_flush_inoutfifo(device_data);
389 if (cfg_keys(ctx) != 0) {
390 dev_err(ctx->device->dev, "[%s]: cfg_keys failed!",
391 __func__);
392 return -EINVAL;
395 if (ctx->iv &&
396 CRYP_ALGO_AES_ECB != ctx->config.algomode &&
397 CRYP_ALGO_DES_ECB != ctx->config.algomode &&
398 CRYP_ALGO_TDES_ECB != ctx->config.algomode) {
399 if (cfg_ivs(device_data, ctx) != 0)
400 return -EPERM;
403 cryp_set_configuration(device_data, &ctx->config,
404 &control_register);
405 add_session_id(ctx);
406 } else if (ctx->updated == 1 &&
407 ctx->session_id != atomic_read(&session_id)) {
408 cryp_flush_inoutfifo(device_data);
409 cryp_restore_device_context(device_data, &ctx->dev_ctx);
411 add_session_id(ctx);
412 control_register = ctx->dev_ctx.cr;
413 } else
414 control_register = ctx->dev_ctx.cr;
416 writel(control_register |
417 (CRYP_CRYPEN_ENABLE << CRYP_CR_CRYPEN_POS),
418 &device_data->base->cr);
420 return 0;
423 static int cryp_get_device_data(struct cryp_ctx *ctx,
424 struct cryp_device_data **device_data)
426 int ret;
427 struct klist_iter device_iterator;
428 struct klist_node *device_node;
429 struct cryp_device_data *local_device_data = NULL;
430 pr_debug(DEV_DBG_NAME " [%s]", __func__);
432 /* Wait until a device is available */
433 ret = down_interruptible(&driver_data.device_allocation);
434 if (ret)
435 return ret; /* Interrupted */
437 /* Select a device */
438 klist_iter_init(&driver_data.device_list, &device_iterator);
440 device_node = klist_next(&device_iterator);
441 while (device_node) {
442 local_device_data = container_of(device_node,
443 struct cryp_device_data, list_node);
444 spin_lock(&local_device_data->ctx_lock);
445 /* current_ctx allocates a device, NULL = unallocated */
446 if (local_device_data->current_ctx) {
447 device_node = klist_next(&device_iterator);
448 } else {
449 local_device_data->current_ctx = ctx;
450 ctx->device = local_device_data;
451 spin_unlock(&local_device_data->ctx_lock);
452 break;
454 spin_unlock(&local_device_data->ctx_lock);
456 klist_iter_exit(&device_iterator);
458 if (!device_node) {
460 * No free device found.
461 * Since we allocated a device with down_interruptible, this
462 * should not be able to happen.
463 * Number of available devices, which are contained in
464 * device_allocation, is therefore decremented by not doing
465 * an up(device_allocation).
467 return -EBUSY;
470 *device_data = local_device_data;
472 return 0;
475 static void cryp_dma_setup_channel(struct cryp_device_data *device_data,
476 struct device *dev)
478 struct dma_slave_config mem2cryp = {
479 .direction = DMA_MEM_TO_DEV,
480 .dst_addr = device_data->phybase + CRYP_DMA_TX_FIFO,
481 .dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
482 .dst_maxburst = 4,
484 struct dma_slave_config cryp2mem = {
485 .direction = DMA_DEV_TO_MEM,
486 .src_addr = device_data->phybase + CRYP_DMA_RX_FIFO,
487 .src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
488 .src_maxburst = 4,
491 dma_cap_zero(device_data->dma.mask);
492 dma_cap_set(DMA_SLAVE, device_data->dma.mask);
494 device_data->dma.cfg_mem2cryp = mem_to_engine;
495 device_data->dma.chan_mem2cryp =
496 dma_request_channel(device_data->dma.mask,
497 stedma40_filter,
498 device_data->dma.cfg_mem2cryp);
500 device_data->dma.cfg_cryp2mem = engine_to_mem;
501 device_data->dma.chan_cryp2mem =
502 dma_request_channel(device_data->dma.mask,
503 stedma40_filter,
504 device_data->dma.cfg_cryp2mem);
506 dmaengine_slave_config(device_data->dma.chan_mem2cryp, &mem2cryp);
507 dmaengine_slave_config(device_data->dma.chan_cryp2mem, &cryp2mem);
509 init_completion(&device_data->dma.cryp_dma_complete);
512 static void cryp_dma_out_callback(void *data)
514 struct cryp_ctx *ctx = (struct cryp_ctx *) data;
515 dev_dbg(ctx->device->dev, "[%s]: ", __func__);
517 complete(&ctx->device->dma.cryp_dma_complete);
520 static int cryp_set_dma_transfer(struct cryp_ctx *ctx,
521 struct scatterlist *sg,
522 int len,
523 enum dma_data_direction direction)
525 struct dma_async_tx_descriptor *desc;
526 struct dma_chan *channel = NULL;
527 dma_cookie_t cookie;
529 dev_dbg(ctx->device->dev, "[%s]: ", __func__);
531 if (unlikely(!IS_ALIGNED((u32)sg, 4))) {
532 dev_err(ctx->device->dev, "[%s]: Data in sg list isn't "
533 "aligned! Addr: 0x%08x", __func__, (u32)sg);
534 return -EFAULT;
537 switch (direction) {
538 case DMA_TO_DEVICE:
539 channel = ctx->device->dma.chan_mem2cryp;
540 ctx->device->dma.sg_src = sg;
541 ctx->device->dma.sg_src_len = dma_map_sg(channel->device->dev,
542 ctx->device->dma.sg_src,
543 ctx->device->dma.nents_src,
544 direction);
546 if (!ctx->device->dma.sg_src_len) {
547 dev_dbg(ctx->device->dev,
548 "[%s]: Could not map the sg list (TO_DEVICE)",
549 __func__);
550 return -EFAULT;
553 dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
554 "(TO_DEVICE)", __func__);
556 desc = dmaengine_prep_slave_sg(channel,
557 ctx->device->dma.sg_src,
558 ctx->device->dma.sg_src_len,
559 direction, DMA_CTRL_ACK);
560 break;
562 case DMA_FROM_DEVICE:
563 channel = ctx->device->dma.chan_cryp2mem;
564 ctx->device->dma.sg_dst = sg;
565 ctx->device->dma.sg_dst_len = dma_map_sg(channel->device->dev,
566 ctx->device->dma.sg_dst,
567 ctx->device->dma.nents_dst,
568 direction);
570 if (!ctx->device->dma.sg_dst_len) {
571 dev_dbg(ctx->device->dev,
572 "[%s]: Could not map the sg list (FROM_DEVICE)",
573 __func__);
574 return -EFAULT;
577 dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
578 "(FROM_DEVICE)", __func__);
580 desc = dmaengine_prep_slave_sg(channel,
581 ctx->device->dma.sg_dst,
582 ctx->device->dma.sg_dst_len,
583 direction,
584 DMA_CTRL_ACK |
585 DMA_PREP_INTERRUPT);
587 desc->callback = cryp_dma_out_callback;
588 desc->callback_param = ctx;
589 break;
591 default:
592 dev_dbg(ctx->device->dev, "[%s]: Invalid DMA direction",
593 __func__);
594 return -EFAULT;
597 cookie = dmaengine_submit(desc);
598 dma_async_issue_pending(channel);
600 return 0;
603 static void cryp_dma_done(struct cryp_ctx *ctx)
605 struct dma_chan *chan;
607 dev_dbg(ctx->device->dev, "[%s]: ", __func__);
609 chan = ctx->device->dma.chan_mem2cryp;
610 dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
611 dma_unmap_sg(chan->device->dev, ctx->device->dma.sg_src,
612 ctx->device->dma.sg_src_len, DMA_TO_DEVICE);
614 chan = ctx->device->dma.chan_cryp2mem;
615 dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
616 dma_unmap_sg(chan->device->dev, ctx->device->dma.sg_dst,
617 ctx->device->dma.sg_dst_len, DMA_FROM_DEVICE);
620 static int cryp_dma_write(struct cryp_ctx *ctx, struct scatterlist *sg,
621 int len)
623 int error = cryp_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
624 dev_dbg(ctx->device->dev, "[%s]: ", __func__);
626 if (error) {
627 dev_dbg(ctx->device->dev, "[%s]: cryp_set_dma_transfer() "
628 "failed", __func__);
629 return error;
632 return len;
635 static int cryp_dma_read(struct cryp_ctx *ctx, struct scatterlist *sg, int len)
637 int error = cryp_set_dma_transfer(ctx, sg, len, DMA_FROM_DEVICE);
638 if (error) {
639 dev_dbg(ctx->device->dev, "[%s]: cryp_set_dma_transfer() "
640 "failed", __func__);
641 return error;
644 return len;
647 static void cryp_polling_mode(struct cryp_ctx *ctx,
648 struct cryp_device_data *device_data)
650 int len = ctx->blocksize / BYTES_PER_WORD;
651 int remaining_length = ctx->datalen;
652 u32 *indata = (u32 *)ctx->indata;
653 u32 *outdata = (u32 *)ctx->outdata;
655 while (remaining_length > 0) {
656 writesl(&device_data->base->din, indata, len);
657 indata += len;
658 remaining_length -= (len * BYTES_PER_WORD);
659 cryp_wait_until_done(device_data);
661 readsl(&device_data->base->dout, outdata, len);
662 outdata += len;
663 cryp_wait_until_done(device_data);
667 static int cryp_disable_power(struct device *dev,
668 struct cryp_device_data *device_data,
669 bool save_device_context)
671 int ret = 0;
673 dev_dbg(dev, "[%s]", __func__);
675 spin_lock(&device_data->power_state_spinlock);
676 if (!device_data->power_state)
677 goto out;
679 spin_lock(&device_data->ctx_lock);
680 if (save_device_context && device_data->current_ctx) {
681 cryp_save_device_context(device_data,
682 &device_data->current_ctx->dev_ctx,
683 cryp_mode);
684 device_data->restore_dev_ctx = true;
686 spin_unlock(&device_data->ctx_lock);
688 clk_disable(device_data->clk);
689 ret = regulator_disable(device_data->pwr_regulator);
690 if (ret)
691 dev_err(dev, "[%s]: "
692 "regulator_disable() failed!",
693 __func__);
695 device_data->power_state = false;
697 out:
698 spin_unlock(&device_data->power_state_spinlock);
700 return ret;
703 static int cryp_enable_power(
704 struct device *dev,
705 struct cryp_device_data *device_data,
706 bool restore_device_context)
708 int ret = 0;
710 dev_dbg(dev, "[%s]", __func__);
712 spin_lock(&device_data->power_state_spinlock);
713 if (!device_data->power_state) {
714 ret = regulator_enable(device_data->pwr_regulator);
715 if (ret) {
716 dev_err(dev, "[%s]: regulator_enable() failed!",
717 __func__);
718 goto out;
721 ret = clk_enable(device_data->clk);
722 if (ret) {
723 dev_err(dev, "[%s]: clk_enable() failed!",
724 __func__);
725 regulator_disable(device_data->pwr_regulator);
726 goto out;
728 device_data->power_state = true;
731 if (device_data->restore_dev_ctx) {
732 spin_lock(&device_data->ctx_lock);
733 if (restore_device_context && device_data->current_ctx) {
734 device_data->restore_dev_ctx = false;
735 cryp_restore_device_context(device_data,
736 &device_data->current_ctx->dev_ctx);
738 spin_unlock(&device_data->ctx_lock);
740 out:
741 spin_unlock(&device_data->power_state_spinlock);
743 return ret;
746 static int hw_crypt_noxts(struct cryp_ctx *ctx,
747 struct cryp_device_data *device_data)
749 int ret = 0;
751 const u8 *indata = ctx->indata;
752 u8 *outdata = ctx->outdata;
753 u32 datalen = ctx->datalen;
754 u32 outlen = datalen;
756 pr_debug(DEV_DBG_NAME " [%s]", __func__);
758 ctx->outlen = ctx->datalen;
760 if (unlikely(!IS_ALIGNED((u32)indata, 4))) {
761 pr_debug(DEV_DBG_NAME " [%s]: Data isn't aligned! Addr: "
762 "0x%08x", __func__, (u32)indata);
763 return -EINVAL;
766 ret = cryp_setup_context(ctx, device_data);
768 if (ret)
769 goto out;
771 if (cryp_mode == CRYP_MODE_INTERRUPT) {
772 cryp_enable_irq_src(device_data, CRYP_IRQ_SRC_INPUT_FIFO |
773 CRYP_IRQ_SRC_OUTPUT_FIFO);
776 * ctx->outlen is decremented in the cryp_interrupt_handler
777 * function. We had to add cpu_relax() (barrier) to make sure
778 * that gcc didn't optimze away this variable.
780 while (ctx->outlen > 0)
781 cpu_relax();
782 } else if (cryp_mode == CRYP_MODE_POLLING ||
783 cryp_mode == CRYP_MODE_DMA) {
785 * The reason for having DMA in this if case is that if we are
786 * running cryp_mode = 2, then we separate DMA routines for
787 * handling cipher/plaintext > blocksize, except when
788 * running the normal CRYPTO_ALG_TYPE_CIPHER, then we still use
789 * the polling mode. Overhead of doing DMA setup eats up the
790 * benefits using it.
792 cryp_polling_mode(ctx, device_data);
793 } else {
794 dev_err(ctx->device->dev, "[%s]: Invalid operation mode!",
795 __func__);
796 ret = -EPERM;
797 goto out;
800 cryp_save_device_context(device_data, &ctx->dev_ctx, cryp_mode);
801 ctx->updated = 1;
803 out:
804 ctx->indata = indata;
805 ctx->outdata = outdata;
806 ctx->datalen = datalen;
807 ctx->outlen = outlen;
809 return ret;
812 static int get_nents(struct scatterlist *sg, int nbytes)
814 int nents = 0;
816 while (nbytes > 0) {
817 nbytes -= sg->length;
818 sg = scatterwalk_sg_next(sg);
819 nents++;
822 return nents;
825 static int ablk_dma_crypt(struct ablkcipher_request *areq)
827 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
828 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
829 struct cryp_device_data *device_data;
831 int bytes_written = 0;
832 int bytes_read = 0;
833 int ret;
835 pr_debug(DEV_DBG_NAME " [%s]", __func__);
837 ctx->datalen = areq->nbytes;
838 ctx->outlen = areq->nbytes;
840 ret = cryp_get_device_data(ctx, &device_data);
841 if (ret)
842 return ret;
844 ret = cryp_setup_context(ctx, device_data);
845 if (ret)
846 goto out;
848 /* We have the device now, so store the nents in the dma struct. */
849 ctx->device->dma.nents_src = get_nents(areq->src, ctx->datalen);
850 ctx->device->dma.nents_dst = get_nents(areq->dst, ctx->outlen);
852 /* Enable DMA in- and output. */
853 cryp_configure_for_dma(device_data, CRYP_DMA_ENABLE_BOTH_DIRECTIONS);
855 bytes_written = cryp_dma_write(ctx, areq->src, ctx->datalen);
856 bytes_read = cryp_dma_read(ctx, areq->dst, bytes_written);
858 wait_for_completion(&ctx->device->dma.cryp_dma_complete);
859 cryp_dma_done(ctx);
861 cryp_save_device_context(device_data, &ctx->dev_ctx, cryp_mode);
862 ctx->updated = 1;
864 out:
865 spin_lock(&device_data->ctx_lock);
866 device_data->current_ctx = NULL;
867 ctx->device = NULL;
868 spin_unlock(&device_data->ctx_lock);
871 * The down_interruptible part for this semaphore is called in
872 * cryp_get_device_data.
874 up(&driver_data.device_allocation);
876 if (unlikely(bytes_written != bytes_read))
877 return -EPERM;
879 return 0;
882 static int ablk_crypt(struct ablkcipher_request *areq)
884 struct ablkcipher_walk walk;
885 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
886 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
887 struct cryp_device_data *device_data;
888 unsigned long src_paddr;
889 unsigned long dst_paddr;
890 int ret;
891 int nbytes;
893 pr_debug(DEV_DBG_NAME " [%s]", __func__);
895 ret = cryp_get_device_data(ctx, &device_data);
896 if (ret)
897 goto out;
899 ablkcipher_walk_init(&walk, areq->dst, areq->src, areq->nbytes);
900 ret = ablkcipher_walk_phys(areq, &walk);
902 if (ret) {
903 pr_err(DEV_DBG_NAME "[%s]: ablkcipher_walk_phys() failed!",
904 __func__);
905 goto out;
908 while ((nbytes = walk.nbytes) > 0) {
909 ctx->iv = walk.iv;
910 src_paddr = (page_to_phys(walk.src.page) + walk.src.offset);
911 ctx->indata = phys_to_virt(src_paddr);
913 dst_paddr = (page_to_phys(walk.dst.page) + walk.dst.offset);
914 ctx->outdata = phys_to_virt(dst_paddr);
916 ctx->datalen = nbytes - (nbytes % ctx->blocksize);
918 ret = hw_crypt_noxts(ctx, device_data);
919 if (ret)
920 goto out;
922 nbytes -= ctx->datalen;
923 ret = ablkcipher_walk_done(areq, &walk, nbytes);
924 if (ret)
925 goto out;
927 ablkcipher_walk_complete(&walk);
929 out:
930 /* Release the device */
931 spin_lock(&device_data->ctx_lock);
932 device_data->current_ctx = NULL;
933 ctx->device = NULL;
934 spin_unlock(&device_data->ctx_lock);
937 * The down_interruptible part for this semaphore is called in
938 * cryp_get_device_data.
940 up(&driver_data.device_allocation);
942 return ret;
945 static int aes_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
946 const u8 *key, unsigned int keylen)
948 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
949 u32 *flags = &cipher->base.crt_flags;
951 pr_debug(DEV_DBG_NAME " [%s]", __func__);
953 switch (keylen) {
954 case AES_KEYSIZE_128:
955 ctx->config.keysize = CRYP_KEY_SIZE_128;
956 break;
958 case AES_KEYSIZE_192:
959 ctx->config.keysize = CRYP_KEY_SIZE_192;
960 break;
962 case AES_KEYSIZE_256:
963 ctx->config.keysize = CRYP_KEY_SIZE_256;
964 break;
966 default:
967 pr_err(DEV_DBG_NAME "[%s]: Unknown keylen!", __func__);
968 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
969 return -EINVAL;
972 memcpy(ctx->key, key, keylen);
973 ctx->keylen = keylen;
975 ctx->updated = 0;
977 return 0;
980 static int des_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
981 const u8 *key, unsigned int keylen)
983 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
984 u32 *flags = &cipher->base.crt_flags;
985 u32 tmp[DES_EXPKEY_WORDS];
986 int ret;
988 pr_debug(DEV_DBG_NAME " [%s]", __func__);
989 if (keylen != DES_KEY_SIZE) {
990 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
991 pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_RES_BAD_KEY_LEN",
992 __func__);
993 return -EINVAL;
996 ret = des_ekey(tmp, key);
997 if (unlikely(ret == 0) && (*flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
998 *flags |= CRYPTO_TFM_RES_WEAK_KEY;
999 pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_REQ_WEAK_KEY",
1000 __func__);
1001 return -EINVAL;
1004 memcpy(ctx->key, key, keylen);
1005 ctx->keylen = keylen;
1007 ctx->updated = 0;
1008 return 0;
1011 static int des3_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
1012 const u8 *key, unsigned int keylen)
1014 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1015 u32 *flags = &cipher->base.crt_flags;
1016 const u32 *K = (const u32 *)key;
1017 u32 tmp[DES3_EDE_EXPKEY_WORDS];
1018 int i, ret;
1020 pr_debug(DEV_DBG_NAME " [%s]", __func__);
1021 if (keylen != DES3_EDE_KEY_SIZE) {
1022 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
1023 pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_RES_BAD_KEY_LEN",
1024 __func__);
1025 return -EINVAL;
1028 /* Checking key interdependency for weak key detection. */
1029 if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
1030 !((K[2] ^ K[4]) | (K[3] ^ K[5]))) &&
1031 (*flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
1032 *flags |= CRYPTO_TFM_RES_WEAK_KEY;
1033 pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_REQ_WEAK_KEY",
1034 __func__);
1035 return -EINVAL;
1037 for (i = 0; i < 3; i++) {
1038 ret = des_ekey(tmp, key + i*DES_KEY_SIZE);
1039 if (unlikely(ret == 0) && (*flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
1040 *flags |= CRYPTO_TFM_RES_WEAK_KEY;
1041 pr_debug(DEV_DBG_NAME " [%s]: "
1042 "CRYPTO_TFM_REQ_WEAK_KEY", __func__);
1043 return -EINVAL;
1047 memcpy(ctx->key, key, keylen);
1048 ctx->keylen = keylen;
1050 ctx->updated = 0;
1051 return 0;
1054 static int cryp_blk_encrypt(struct ablkcipher_request *areq)
1056 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
1057 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1059 pr_debug(DEV_DBG_NAME " [%s]", __func__);
1061 ctx->config.algodir = CRYP_ALGORITHM_ENCRYPT;
1064 * DMA does not work for DES due to a hw bug */
1065 if (cryp_mode == CRYP_MODE_DMA && mode_is_aes(ctx->config.algomode))
1066 return ablk_dma_crypt(areq);
1068 /* For everything except DMA, we run the non DMA version. */
1069 return ablk_crypt(areq);
1072 static int cryp_blk_decrypt(struct ablkcipher_request *areq)
1074 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
1075 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1077 pr_debug(DEV_DBG_NAME " [%s]", __func__);
1079 ctx->config.algodir = CRYP_ALGORITHM_DECRYPT;
1081 /* DMA does not work for DES due to a hw bug */
1082 if (cryp_mode == CRYP_MODE_DMA && mode_is_aes(ctx->config.algomode))
1083 return ablk_dma_crypt(areq);
1085 /* For everything except DMA, we run the non DMA version. */
1086 return ablk_crypt(areq);
1089 struct cryp_algo_template {
1090 enum cryp_algo_mode algomode;
1091 struct crypto_alg crypto;
1094 static int cryp_cra_init(struct crypto_tfm *tfm)
1096 struct cryp_ctx *ctx = crypto_tfm_ctx(tfm);
1097 struct crypto_alg *alg = tfm->__crt_alg;
1098 struct cryp_algo_template *cryp_alg = container_of(alg,
1099 struct cryp_algo_template,
1100 crypto);
1102 ctx->config.algomode = cryp_alg->algomode;
1103 ctx->blocksize = crypto_tfm_alg_blocksize(tfm);
1105 return 0;
1108 static struct cryp_algo_template cryp_algs[] = {
1110 .algomode = CRYP_ALGO_AES_ECB,
1111 .crypto = {
1112 .cra_name = "aes",
1113 .cra_driver_name = "aes-ux500",
1114 .cra_priority = 300,
1115 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1116 CRYPTO_ALG_ASYNC,
1117 .cra_blocksize = AES_BLOCK_SIZE,
1118 .cra_ctxsize = sizeof(struct cryp_ctx),
1119 .cra_alignmask = 3,
1120 .cra_type = &crypto_ablkcipher_type,
1121 .cra_init = cryp_cra_init,
1122 .cra_module = THIS_MODULE,
1123 .cra_u = {
1124 .ablkcipher = {
1125 .min_keysize = AES_MIN_KEY_SIZE,
1126 .max_keysize = AES_MAX_KEY_SIZE,
1127 .setkey = aes_ablkcipher_setkey,
1128 .encrypt = cryp_blk_encrypt,
1129 .decrypt = cryp_blk_decrypt
1135 .algomode = CRYP_ALGO_AES_ECB,
1136 .crypto = {
1137 .cra_name = "ecb(aes)",
1138 .cra_driver_name = "ecb-aes-ux500",
1139 .cra_priority = 300,
1140 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1141 CRYPTO_ALG_ASYNC,
1142 .cra_blocksize = AES_BLOCK_SIZE,
1143 .cra_ctxsize = sizeof(struct cryp_ctx),
1144 .cra_alignmask = 3,
1145 .cra_type = &crypto_ablkcipher_type,
1146 .cra_init = cryp_cra_init,
1147 .cra_module = THIS_MODULE,
1148 .cra_u = {
1149 .ablkcipher = {
1150 .min_keysize = AES_MIN_KEY_SIZE,
1151 .max_keysize = AES_MAX_KEY_SIZE,
1152 .setkey = aes_ablkcipher_setkey,
1153 .encrypt = cryp_blk_encrypt,
1154 .decrypt = cryp_blk_decrypt,
1160 .algomode = CRYP_ALGO_AES_CBC,
1161 .crypto = {
1162 .cra_name = "cbc(aes)",
1163 .cra_driver_name = "cbc-aes-ux500",
1164 .cra_priority = 300,
1165 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1166 CRYPTO_ALG_ASYNC,
1167 .cra_blocksize = AES_BLOCK_SIZE,
1168 .cra_ctxsize = sizeof(struct cryp_ctx),
1169 .cra_alignmask = 3,
1170 .cra_type = &crypto_ablkcipher_type,
1171 .cra_init = cryp_cra_init,
1172 .cra_module = THIS_MODULE,
1173 .cra_u = {
1174 .ablkcipher = {
1175 .min_keysize = AES_MIN_KEY_SIZE,
1176 .max_keysize = AES_MAX_KEY_SIZE,
1177 .setkey = aes_ablkcipher_setkey,
1178 .encrypt = cryp_blk_encrypt,
1179 .decrypt = cryp_blk_decrypt,
1180 .ivsize = AES_BLOCK_SIZE,
1186 .algomode = CRYP_ALGO_AES_CTR,
1187 .crypto = {
1188 .cra_name = "ctr(aes)",
1189 .cra_driver_name = "ctr-aes-ux500",
1190 .cra_priority = 300,
1191 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1192 CRYPTO_ALG_ASYNC,
1193 .cra_blocksize = AES_BLOCK_SIZE,
1194 .cra_ctxsize = sizeof(struct cryp_ctx),
1195 .cra_alignmask = 3,
1196 .cra_type = &crypto_ablkcipher_type,
1197 .cra_init = cryp_cra_init,
1198 .cra_module = THIS_MODULE,
1199 .cra_u = {
1200 .ablkcipher = {
1201 .min_keysize = AES_MIN_KEY_SIZE,
1202 .max_keysize = AES_MAX_KEY_SIZE,
1203 .setkey = aes_ablkcipher_setkey,
1204 .encrypt = cryp_blk_encrypt,
1205 .decrypt = cryp_blk_decrypt,
1206 .ivsize = AES_BLOCK_SIZE,
1212 .algomode = CRYP_ALGO_DES_ECB,
1213 .crypto = {
1214 .cra_name = "des",
1215 .cra_driver_name = "des-ux500",
1216 .cra_priority = 300,
1217 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1218 CRYPTO_ALG_ASYNC,
1219 .cra_blocksize = DES_BLOCK_SIZE,
1220 .cra_ctxsize = sizeof(struct cryp_ctx),
1221 .cra_alignmask = 3,
1222 .cra_type = &crypto_ablkcipher_type,
1223 .cra_init = cryp_cra_init,
1224 .cra_module = THIS_MODULE,
1225 .cra_u = {
1226 .ablkcipher = {
1227 .min_keysize = DES_KEY_SIZE,
1228 .max_keysize = DES_KEY_SIZE,
1229 .setkey = des_ablkcipher_setkey,
1230 .encrypt = cryp_blk_encrypt,
1231 .decrypt = cryp_blk_decrypt
1238 .algomode = CRYP_ALGO_TDES_ECB,
1239 .crypto = {
1240 .cra_name = "des3_ede",
1241 .cra_driver_name = "des3_ede-ux500",
1242 .cra_priority = 300,
1243 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1244 CRYPTO_ALG_ASYNC,
1245 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1246 .cra_ctxsize = sizeof(struct cryp_ctx),
1247 .cra_alignmask = 3,
1248 .cra_type = &crypto_ablkcipher_type,
1249 .cra_init = cryp_cra_init,
1250 .cra_module = THIS_MODULE,
1251 .cra_u = {
1252 .ablkcipher = {
1253 .min_keysize = DES3_EDE_KEY_SIZE,
1254 .max_keysize = DES3_EDE_KEY_SIZE,
1255 .setkey = des_ablkcipher_setkey,
1256 .encrypt = cryp_blk_encrypt,
1257 .decrypt = cryp_blk_decrypt
1263 .algomode = CRYP_ALGO_DES_ECB,
1264 .crypto = {
1265 .cra_name = "ecb(des)",
1266 .cra_driver_name = "ecb-des-ux500",
1267 .cra_priority = 300,
1268 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1269 CRYPTO_ALG_ASYNC,
1270 .cra_blocksize = DES_BLOCK_SIZE,
1271 .cra_ctxsize = sizeof(struct cryp_ctx),
1272 .cra_alignmask = 3,
1273 .cra_type = &crypto_ablkcipher_type,
1274 .cra_init = cryp_cra_init,
1275 .cra_module = THIS_MODULE,
1276 .cra_u = {
1277 .ablkcipher = {
1278 .min_keysize = DES_KEY_SIZE,
1279 .max_keysize = DES_KEY_SIZE,
1280 .setkey = des_ablkcipher_setkey,
1281 .encrypt = cryp_blk_encrypt,
1282 .decrypt = cryp_blk_decrypt,
1288 .algomode = CRYP_ALGO_TDES_ECB,
1289 .crypto = {
1290 .cra_name = "ecb(des3_ede)",
1291 .cra_driver_name = "ecb-des3_ede-ux500",
1292 .cra_priority = 300,
1293 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1294 CRYPTO_ALG_ASYNC,
1295 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1296 .cra_ctxsize = sizeof(struct cryp_ctx),
1297 .cra_alignmask = 3,
1298 .cra_type = &crypto_ablkcipher_type,
1299 .cra_init = cryp_cra_init,
1300 .cra_module = THIS_MODULE,
1301 .cra_u = {
1302 .ablkcipher = {
1303 .min_keysize = DES3_EDE_KEY_SIZE,
1304 .max_keysize = DES3_EDE_KEY_SIZE,
1305 .setkey = des3_ablkcipher_setkey,
1306 .encrypt = cryp_blk_encrypt,
1307 .decrypt = cryp_blk_decrypt,
1313 .algomode = CRYP_ALGO_DES_CBC,
1314 .crypto = {
1315 .cra_name = "cbc(des)",
1316 .cra_driver_name = "cbc-des-ux500",
1317 .cra_priority = 300,
1318 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1319 CRYPTO_ALG_ASYNC,
1320 .cra_blocksize = DES_BLOCK_SIZE,
1321 .cra_ctxsize = sizeof(struct cryp_ctx),
1322 .cra_alignmask = 3,
1323 .cra_type = &crypto_ablkcipher_type,
1324 .cra_init = cryp_cra_init,
1325 .cra_module = THIS_MODULE,
1326 .cra_u = {
1327 .ablkcipher = {
1328 .min_keysize = DES_KEY_SIZE,
1329 .max_keysize = DES_KEY_SIZE,
1330 .setkey = des_ablkcipher_setkey,
1331 .encrypt = cryp_blk_encrypt,
1332 .decrypt = cryp_blk_decrypt,
1338 .algomode = CRYP_ALGO_TDES_CBC,
1339 .crypto = {
1340 .cra_name = "cbc(des3_ede)",
1341 .cra_driver_name = "cbc-des3_ede-ux500",
1342 .cra_priority = 300,
1343 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1344 CRYPTO_ALG_ASYNC,
1345 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1346 .cra_ctxsize = sizeof(struct cryp_ctx),
1347 .cra_alignmask = 3,
1348 .cra_type = &crypto_ablkcipher_type,
1349 .cra_init = cryp_cra_init,
1350 .cra_module = THIS_MODULE,
1351 .cra_u = {
1352 .ablkcipher = {
1353 .min_keysize = DES3_EDE_KEY_SIZE,
1354 .max_keysize = DES3_EDE_KEY_SIZE,
1355 .setkey = des3_ablkcipher_setkey,
1356 .encrypt = cryp_blk_encrypt,
1357 .decrypt = cryp_blk_decrypt,
1358 .ivsize = DES3_EDE_BLOCK_SIZE,
1366 * cryp_algs_register_all -
1368 static int cryp_algs_register_all(void)
1370 int ret;
1371 int i;
1372 int count;
1374 pr_debug("[%s]", __func__);
1376 for (i = 0; i < ARRAY_SIZE(cryp_algs); i++) {
1377 ret = crypto_register_alg(&cryp_algs[i].crypto);
1378 if (ret) {
1379 count = i;
1380 pr_err("[%s] alg registration failed",
1381 cryp_algs[i].crypto.cra_driver_name);
1382 goto unreg;
1385 return 0;
1386 unreg:
1387 for (i = 0; i < count; i++)
1388 crypto_unregister_alg(&cryp_algs[i].crypto);
1389 return ret;
1393 * cryp_algs_unregister_all -
1395 static void cryp_algs_unregister_all(void)
1397 int i;
1399 pr_debug(DEV_DBG_NAME " [%s]", __func__);
1401 for (i = 0; i < ARRAY_SIZE(cryp_algs); i++)
1402 crypto_unregister_alg(&cryp_algs[i].crypto);
1405 static int ux500_cryp_probe(struct platform_device *pdev)
1407 int ret;
1408 int cryp_error = 0;
1409 struct resource *res = NULL;
1410 struct resource *res_irq = NULL;
1411 struct cryp_device_data *device_data;
1412 struct cryp_protection_config prot = {
1413 .privilege_access = CRYP_STATE_ENABLE
1415 struct device *dev = &pdev->dev;
1417 dev_dbg(dev, "[%s]", __func__);
1418 device_data = kzalloc(sizeof(struct cryp_device_data), GFP_ATOMIC);
1419 if (!device_data) {
1420 dev_err(dev, "[%s]: kzalloc() failed!", __func__);
1421 ret = -ENOMEM;
1422 goto out;
1425 device_data->dev = dev;
1426 device_data->current_ctx = NULL;
1428 /* Grab the DMA configuration from platform data. */
1429 mem_to_engine = &((struct cryp_platform_data *)
1430 dev->platform_data)->mem_to_engine;
1431 engine_to_mem = &((struct cryp_platform_data *)
1432 dev->platform_data)->engine_to_mem;
1434 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1435 if (!res) {
1436 dev_err(dev, "[%s]: platform_get_resource() failed",
1437 __func__);
1438 ret = -ENODEV;
1439 goto out_kfree;
1442 res = request_mem_region(res->start, resource_size(res), pdev->name);
1443 if (res == NULL) {
1444 dev_err(dev, "[%s]: request_mem_region() failed",
1445 __func__);
1446 ret = -EBUSY;
1447 goto out_kfree;
1450 device_data->phybase = res->start;
1451 device_data->base = ioremap(res->start, resource_size(res));
1452 if (!device_data->base) {
1453 dev_err(dev, "[%s]: ioremap failed!", __func__);
1454 ret = -ENOMEM;
1455 goto out_free_mem;
1458 spin_lock_init(&device_data->ctx_lock);
1459 spin_lock_init(&device_data->power_state_spinlock);
1461 /* Enable power for CRYP hardware block */
1462 device_data->pwr_regulator = regulator_get(&pdev->dev, "v-ape");
1463 if (IS_ERR(device_data->pwr_regulator)) {
1464 dev_err(dev, "[%s]: could not get cryp regulator", __func__);
1465 ret = PTR_ERR(device_data->pwr_regulator);
1466 device_data->pwr_regulator = NULL;
1467 goto out_unmap;
1470 /* Enable the clk for CRYP hardware block */
1471 device_data->clk = clk_get(&pdev->dev, NULL);
1472 if (IS_ERR(device_data->clk)) {
1473 dev_err(dev, "[%s]: clk_get() failed!", __func__);
1474 ret = PTR_ERR(device_data->clk);
1475 goto out_regulator;
1478 ret = clk_prepare(device_data->clk);
1479 if (ret) {
1480 dev_err(dev, "[%s]: clk_prepare() failed!", __func__);
1481 goto out_clk;
1484 /* Enable device power (and clock) */
1485 ret = cryp_enable_power(device_data->dev, device_data, false);
1486 if (ret) {
1487 dev_err(dev, "[%s]: cryp_enable_power() failed!", __func__);
1488 goto out_clk_unprepare;
1491 cryp_error = cryp_check(device_data);
1492 if (cryp_error != 0) {
1493 dev_err(dev, "[%s]: cryp_init() failed!", __func__);
1494 ret = -EINVAL;
1495 goto out_power;
1498 cryp_error = cryp_configure_protection(device_data, &prot);
1499 if (cryp_error != 0) {
1500 dev_err(dev, "[%s]: cryp_configure_protection() failed!",
1501 __func__);
1502 ret = -EINVAL;
1503 goto out_power;
1506 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1507 if (!res_irq) {
1508 dev_err(dev, "[%s]: IORESOURCE_IRQ unavailable",
1509 __func__);
1510 ret = -ENODEV;
1511 goto out_power;
1514 ret = request_irq(res_irq->start,
1515 cryp_interrupt_handler,
1517 "cryp1",
1518 device_data);
1519 if (ret) {
1520 dev_err(dev, "[%s]: Unable to request IRQ", __func__);
1521 goto out_power;
1524 if (cryp_mode == CRYP_MODE_DMA)
1525 cryp_dma_setup_channel(device_data, dev);
1527 platform_set_drvdata(pdev, device_data);
1529 /* Put the new device into the device list... */
1530 klist_add_tail(&device_data->list_node, &driver_data.device_list);
1532 /* ... and signal that a new device is available. */
1533 up(&driver_data.device_allocation);
1535 atomic_set(&session_id, 1);
1537 ret = cryp_algs_register_all();
1538 if (ret) {
1539 dev_err(dev, "[%s]: cryp_algs_register_all() failed!",
1540 __func__);
1541 goto out_power;
1544 dev_info(dev, "successfully registered\n");
1546 return 0;
1548 out_power:
1549 cryp_disable_power(device_data->dev, device_data, false);
1551 out_clk_unprepare:
1552 clk_unprepare(device_data->clk);
1554 out_clk:
1555 clk_put(device_data->clk);
1557 out_regulator:
1558 regulator_put(device_data->pwr_regulator);
1560 out_unmap:
1561 iounmap(device_data->base);
1563 out_free_mem:
1564 release_mem_region(res->start, resource_size(res));
1566 out_kfree:
1567 kfree(device_data);
1568 out:
1569 return ret;
1572 static int ux500_cryp_remove(struct platform_device *pdev)
1574 struct resource *res = NULL;
1575 struct resource *res_irq = NULL;
1576 struct cryp_device_data *device_data;
1578 dev_dbg(&pdev->dev, "[%s]", __func__);
1579 device_data = platform_get_drvdata(pdev);
1580 if (!device_data) {
1581 dev_err(&pdev->dev, "[%s]: platform_get_drvdata() failed!",
1582 __func__);
1583 return -ENOMEM;
1586 /* Try to decrease the number of available devices. */
1587 if (down_trylock(&driver_data.device_allocation))
1588 return -EBUSY;
1590 /* Check that the device is free */
1591 spin_lock(&device_data->ctx_lock);
1592 /* current_ctx allocates a device, NULL = unallocated */
1593 if (device_data->current_ctx) {
1594 /* The device is busy */
1595 spin_unlock(&device_data->ctx_lock);
1596 /* Return the device to the pool. */
1597 up(&driver_data.device_allocation);
1598 return -EBUSY;
1601 spin_unlock(&device_data->ctx_lock);
1603 /* Remove the device from the list */
1604 if (klist_node_attached(&device_data->list_node))
1605 klist_remove(&device_data->list_node);
1607 /* If this was the last device, remove the services */
1608 if (list_empty(&driver_data.device_list.k_list))
1609 cryp_algs_unregister_all();
1611 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1612 if (!res_irq)
1613 dev_err(&pdev->dev, "[%s]: IORESOURCE_IRQ, unavailable",
1614 __func__);
1615 else {
1616 disable_irq(res_irq->start);
1617 free_irq(res_irq->start, device_data);
1620 if (cryp_disable_power(&pdev->dev, device_data, false))
1621 dev_err(&pdev->dev, "[%s]: cryp_disable_power() failed",
1622 __func__);
1624 clk_unprepare(device_data->clk);
1625 clk_put(device_data->clk);
1626 regulator_put(device_data->pwr_regulator);
1628 iounmap(device_data->base);
1630 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1631 if (res)
1632 release_mem_region(res->start, resource_size(res));
1634 kfree(device_data);
1636 return 0;
1639 static void ux500_cryp_shutdown(struct platform_device *pdev)
1641 struct resource *res_irq = NULL;
1642 struct cryp_device_data *device_data;
1644 dev_dbg(&pdev->dev, "[%s]", __func__);
1646 device_data = platform_get_drvdata(pdev);
1647 if (!device_data) {
1648 dev_err(&pdev->dev, "[%s]: platform_get_drvdata() failed!",
1649 __func__);
1650 return;
1653 /* Check that the device is free */
1654 spin_lock(&device_data->ctx_lock);
1655 /* current_ctx allocates a device, NULL = unallocated */
1656 if (!device_data->current_ctx) {
1657 if (down_trylock(&driver_data.device_allocation))
1658 dev_dbg(&pdev->dev, "[%s]: Cryp still in use!"
1659 "Shutting down anyway...", __func__);
1661 * (Allocate the device)
1662 * Need to set this to non-null (dummy) value,
1663 * to avoid usage if context switching.
1665 device_data->current_ctx++;
1667 spin_unlock(&device_data->ctx_lock);
1669 /* Remove the device from the list */
1670 if (klist_node_attached(&device_data->list_node))
1671 klist_remove(&device_data->list_node);
1673 /* If this was the last device, remove the services */
1674 if (list_empty(&driver_data.device_list.k_list))
1675 cryp_algs_unregister_all();
1677 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1678 if (!res_irq)
1679 dev_err(&pdev->dev, "[%s]: IORESOURCE_IRQ, unavailable",
1680 __func__);
1681 else {
1682 disable_irq(res_irq->start);
1683 free_irq(res_irq->start, device_data);
1686 if (cryp_disable_power(&pdev->dev, device_data, false))
1687 dev_err(&pdev->dev, "[%s]: cryp_disable_power() failed",
1688 __func__);
1692 static int ux500_cryp_suspend(struct device *dev)
1694 int ret;
1695 struct platform_device *pdev = to_platform_device(dev);
1696 struct cryp_device_data *device_data;
1697 struct resource *res_irq;
1698 struct cryp_ctx *temp_ctx = NULL;
1700 dev_dbg(dev, "[%s]", __func__);
1702 /* Handle state? */
1703 device_data = platform_get_drvdata(pdev);
1704 if (!device_data) {
1705 dev_err(dev, "[%s]: platform_get_drvdata() failed!", __func__);
1706 return -ENOMEM;
1709 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1710 if (!res_irq)
1711 dev_err(dev, "[%s]: IORESOURCE_IRQ, unavailable", __func__);
1712 else
1713 disable_irq(res_irq->start);
1715 spin_lock(&device_data->ctx_lock);
1716 if (!device_data->current_ctx)
1717 device_data->current_ctx++;
1718 spin_unlock(&device_data->ctx_lock);
1720 if (device_data->current_ctx == ++temp_ctx) {
1721 if (down_interruptible(&driver_data.device_allocation))
1722 dev_dbg(dev, "[%s]: down_interruptible() failed",
1723 __func__);
1724 ret = cryp_disable_power(dev, device_data, false);
1726 } else
1727 ret = cryp_disable_power(dev, device_data, true);
1729 if (ret)
1730 dev_err(dev, "[%s]: cryp_disable_power()", __func__);
1732 return ret;
1735 static int ux500_cryp_resume(struct device *dev)
1737 int ret = 0;
1738 struct platform_device *pdev = to_platform_device(dev);
1739 struct cryp_device_data *device_data;
1740 struct resource *res_irq;
1741 struct cryp_ctx *temp_ctx = NULL;
1743 dev_dbg(dev, "[%s]", __func__);
1745 device_data = platform_get_drvdata(pdev);
1746 if (!device_data) {
1747 dev_err(dev, "[%s]: platform_get_drvdata() failed!", __func__);
1748 return -ENOMEM;
1751 spin_lock(&device_data->ctx_lock);
1752 if (device_data->current_ctx == ++temp_ctx)
1753 device_data->current_ctx = NULL;
1754 spin_unlock(&device_data->ctx_lock);
1757 if (!device_data->current_ctx)
1758 up(&driver_data.device_allocation);
1759 else
1760 ret = cryp_enable_power(dev, device_data, true);
1762 if (ret)
1763 dev_err(dev, "[%s]: cryp_enable_power() failed!", __func__);
1764 else {
1765 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1766 if (res_irq)
1767 enable_irq(res_irq->start);
1770 return ret;
1773 static SIMPLE_DEV_PM_OPS(ux500_cryp_pm, ux500_cryp_suspend, ux500_cryp_resume);
1775 static const struct of_device_id ux500_cryp_match[] = {
1776 { .compatible = "stericsson,ux500-cryp" },
1777 { },
1780 static struct platform_driver cryp_driver = {
1781 .probe = ux500_cryp_probe,
1782 .remove = ux500_cryp_remove,
1783 .shutdown = ux500_cryp_shutdown,
1784 .driver = {
1785 .owner = THIS_MODULE,
1786 .name = "cryp1",
1787 .of_match_table = ux500_cryp_match,
1788 .pm = &ux500_cryp_pm,
1792 static int __init ux500_cryp_mod_init(void)
1794 pr_debug("[%s] is called!", __func__);
1795 klist_init(&driver_data.device_list, NULL, NULL);
1796 /* Initialize the semaphore to 0 devices (locked state) */
1797 sema_init(&driver_data.device_allocation, 0);
1798 return platform_driver_register(&cryp_driver);
1801 static void __exit ux500_cryp_mod_fini(void)
1803 pr_debug("[%s] is called!", __func__);
1804 platform_driver_unregister(&cryp_driver);
1805 return;
1808 module_init(ux500_cryp_mod_init);
1809 module_exit(ux500_cryp_mod_fini);
1811 module_param(cryp_mode, int, 0);
1813 MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 CRYP crypto engine.");
1814 MODULE_ALIAS("aes-all");
1815 MODULE_ALIAS("des-all");
1817 MODULE_LICENSE("GPL");