2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 static int destroy_cq(struct c4iw_rdev
*rdev
, struct t4_cq
*cq
,
36 struct c4iw_dev_ucontext
*uctx
)
38 struct fw_ri_res_wr
*res_wr
;
39 struct fw_ri_res
*res
;
41 struct c4iw_wr_wait wr_wait
;
45 wr_len
= sizeof *res_wr
+ sizeof *res
;
46 skb
= alloc_skb(wr_len
, GFP_KERNEL
);
49 set_wr_txq(skb
, CPL_PRIORITY_CONTROL
, 0);
51 res_wr
= (struct fw_ri_res_wr
*)__skb_put(skb
, wr_len
);
52 memset(res_wr
, 0, wr_len
);
53 res_wr
->op_nres
= cpu_to_be32(
54 FW_WR_OP(FW_RI_RES_WR
) |
55 V_FW_RI_RES_WR_NRES(1) |
57 res_wr
->len16_pkd
= cpu_to_be32(DIV_ROUND_UP(wr_len
, 16));
58 res_wr
->cookie
= (unsigned long) &wr_wait
;
60 res
->u
.cq
.restype
= FW_RI_RES_TYPE_CQ
;
61 res
->u
.cq
.op
= FW_RI_RES_OP_RESET
;
62 res
->u
.cq
.iqid
= cpu_to_be32(cq
->cqid
);
64 c4iw_init_wr_wait(&wr_wait
);
65 ret
= c4iw_ofld_send(rdev
, skb
);
67 ret
= c4iw_wait_for_reply(rdev
, &wr_wait
, 0, 0, __func__
);
71 dma_free_coherent(&(rdev
->lldi
.pdev
->dev
),
72 cq
->memsize
, cq
->queue
,
73 dma_unmap_addr(cq
, mapping
));
74 c4iw_put_cqid(rdev
, cq
->cqid
, uctx
);
78 static int create_cq(struct c4iw_rdev
*rdev
, struct t4_cq
*cq
,
79 struct c4iw_dev_ucontext
*uctx
)
81 struct fw_ri_res_wr
*res_wr
;
82 struct fw_ri_res
*res
;
84 int user
= (uctx
!= &rdev
->uctx
);
85 struct c4iw_wr_wait wr_wait
;
89 cq
->cqid
= c4iw_get_cqid(rdev
, uctx
);
96 cq
->sw_queue
= kzalloc(cq
->memsize
, GFP_KERNEL
);
102 cq
->queue
= dma_alloc_coherent(&rdev
->lldi
.pdev
->dev
, cq
->memsize
,
103 &cq
->dma_addr
, GFP_KERNEL
);
108 dma_unmap_addr_set(cq
, mapping
, cq
->dma_addr
);
109 memset(cq
->queue
, 0, cq
->memsize
);
111 /* build fw_ri_res_wr */
112 wr_len
= sizeof *res_wr
+ sizeof *res
;
114 skb
= alloc_skb(wr_len
, GFP_KERNEL
);
119 set_wr_txq(skb
, CPL_PRIORITY_CONTROL
, 0);
121 res_wr
= (struct fw_ri_res_wr
*)__skb_put(skb
, wr_len
);
122 memset(res_wr
, 0, wr_len
);
123 res_wr
->op_nres
= cpu_to_be32(
124 FW_WR_OP(FW_RI_RES_WR
) |
125 V_FW_RI_RES_WR_NRES(1) |
127 res_wr
->len16_pkd
= cpu_to_be32(DIV_ROUND_UP(wr_len
, 16));
128 res_wr
->cookie
= (unsigned long) &wr_wait
;
130 res
->u
.cq
.restype
= FW_RI_RES_TYPE_CQ
;
131 res
->u
.cq
.op
= FW_RI_RES_OP_WRITE
;
132 res
->u
.cq
.iqid
= cpu_to_be32(cq
->cqid
);
133 res
->u
.cq
.iqandst_to_iqandstindex
= cpu_to_be32(
134 V_FW_RI_RES_WR_IQANUS(0) |
135 V_FW_RI_RES_WR_IQANUD(1) |
136 F_FW_RI_RES_WR_IQANDST
|
137 V_FW_RI_RES_WR_IQANDSTINDEX(*rdev
->lldi
.rxq_ids
));
138 res
->u
.cq
.iqdroprss_to_iqesize
= cpu_to_be16(
139 F_FW_RI_RES_WR_IQDROPRSS
|
140 V_FW_RI_RES_WR_IQPCIECH(2) |
141 V_FW_RI_RES_WR_IQINTCNTTHRESH(0) |
143 V_FW_RI_RES_WR_IQESIZE(1));
144 res
->u
.cq
.iqsize
= cpu_to_be16(cq
->size
);
145 res
->u
.cq
.iqaddr
= cpu_to_be64(cq
->dma_addr
);
147 c4iw_init_wr_wait(&wr_wait
);
149 ret
= c4iw_ofld_send(rdev
, skb
);
152 PDBG("%s wait_event wr_wait %p\n", __func__
, &wr_wait
);
153 ret
= c4iw_wait_for_reply(rdev
, &wr_wait
, 0, 0, __func__
);
158 cq
->gts
= rdev
->lldi
.gts_reg
;
161 cq
->ugts
= (u64
)pci_resource_start(rdev
->lldi
.pdev
, 2) +
162 (cq
->cqid
<< rdev
->cqshift
);
163 cq
->ugts
&= PAGE_MASK
;
167 dma_free_coherent(&rdev
->lldi
.pdev
->dev
, cq
->memsize
, cq
->queue
,
168 dma_unmap_addr(cq
, mapping
));
172 c4iw_put_cqid(rdev
, cq
->cqid
, uctx
);
177 static void insert_recv_cqe(struct t4_wq
*wq
, struct t4_cq
*cq
)
181 PDBG("%s wq %p cq %p sw_cidx %u sw_pidx %u\n", __func__
,
182 wq
, cq
, cq
->sw_cidx
, cq
->sw_pidx
);
183 memset(&cqe
, 0, sizeof(cqe
));
184 cqe
.header
= cpu_to_be32(V_CQE_STATUS(T4_ERR_SWFLUSH
) |
185 V_CQE_OPCODE(FW_RI_SEND
) |
188 V_CQE_QPID(wq
->sq
.qid
));
189 cqe
.bits_type_ts
= cpu_to_be64(V_CQE_GENBIT((u64
)cq
->gen
));
190 cq
->sw_queue
[cq
->sw_pidx
] = cqe
;
194 int c4iw_flush_rq(struct t4_wq
*wq
, struct t4_cq
*cq
, int count
)
197 int in_use
= wq
->rq
.in_use
- count
;
200 PDBG("%s wq %p cq %p rq.in_use %u skip count %u\n", __func__
,
201 wq
, cq
, wq
->rq
.in_use
, count
);
203 insert_recv_cqe(wq
, cq
);
209 static void insert_sq_cqe(struct t4_wq
*wq
, struct t4_cq
*cq
,
210 struct t4_swsqe
*swcqe
)
214 PDBG("%s wq %p cq %p sw_cidx %u sw_pidx %u\n", __func__
,
215 wq
, cq
, cq
->sw_cidx
, cq
->sw_pidx
);
216 memset(&cqe
, 0, sizeof(cqe
));
217 cqe
.header
= cpu_to_be32(V_CQE_STATUS(T4_ERR_SWFLUSH
) |
218 V_CQE_OPCODE(swcqe
->opcode
) |
221 V_CQE_QPID(wq
->sq
.qid
));
222 CQE_WRID_SQ_IDX(&cqe
) = swcqe
->idx
;
223 cqe
.bits_type_ts
= cpu_to_be64(V_CQE_GENBIT((u64
)cq
->gen
));
224 cq
->sw_queue
[cq
->sw_pidx
] = cqe
;
228 static void advance_oldest_read(struct t4_wq
*wq
);
230 int c4iw_flush_sq(struct c4iw_qp
*qhp
)
233 struct t4_wq
*wq
= &qhp
->wq
;
234 struct c4iw_cq
*chp
= to_c4iw_cq(qhp
->ibqp
.send_cq
);
235 struct t4_cq
*cq
= &chp
->cq
;
237 struct t4_swsqe
*swsqe
;
238 int error
= (qhp
->attr
.state
!= C4IW_QP_STATE_CLOSING
&&
239 qhp
->attr
.state
!= C4IW_QP_STATE_IDLE
);
241 if (wq
->sq
.flush_cidx
== -1)
242 wq
->sq
.flush_cidx
= wq
->sq
.cidx
;
243 idx
= wq
->sq
.flush_cidx
;
244 BUG_ON(idx
>= wq
->sq
.size
);
245 while (idx
!= wq
->sq
.pidx
) {
247 swsqe
= &wq
->sq
.sw_sq
[idx
];
248 BUG_ON(swsqe
->flushed
);
250 insert_sq_cqe(wq
, cq
, swsqe
);
251 if (wq
->sq
.oldest_read
== swsqe
) {
252 BUG_ON(swsqe
->opcode
!= FW_RI_READ_REQ
);
253 advance_oldest_read(wq
);
259 if (++idx
== wq
->sq
.size
)
262 wq
->sq
.flush_cidx
+= flushed
;
263 if (wq
->sq
.flush_cidx
>= wq
->sq
.size
)
264 wq
->sq
.flush_cidx
-= wq
->sq
.size
;
268 static void flush_completed_wrs(struct t4_wq
*wq
, struct t4_cq
*cq
)
270 struct t4_swsqe
*swsqe
;
273 if (wq
->sq
.flush_cidx
== -1)
274 wq
->sq
.flush_cidx
= wq
->sq
.cidx
;
275 cidx
= wq
->sq
.flush_cidx
;
276 BUG_ON(cidx
> wq
->sq
.size
);
278 while (cidx
!= wq
->sq
.pidx
) {
279 swsqe
= &wq
->sq
.sw_sq
[cidx
];
280 if (!swsqe
->signaled
) {
281 if (++cidx
== wq
->sq
.size
)
283 } else if (swsqe
->complete
) {
285 BUG_ON(swsqe
->flushed
);
288 * Insert this completed cqe into the swcq.
290 PDBG("%s moving cqe into swcq sq idx %u cq idx %u\n",
291 __func__
, cidx
, cq
->sw_pidx
);
292 swsqe
->cqe
.header
|= htonl(V_CQE_SWCQE(1));
293 cq
->sw_queue
[cq
->sw_pidx
] = swsqe
->cqe
;
296 if (++cidx
== wq
->sq
.size
)
298 wq
->sq
.flush_cidx
= cidx
;
304 static void create_read_req_cqe(struct t4_wq
*wq
, struct t4_cqe
*hw_cqe
,
305 struct t4_cqe
*read_cqe
)
307 read_cqe
->u
.scqe
.cidx
= wq
->sq
.oldest_read
->idx
;
308 read_cqe
->len
= htonl(wq
->sq
.oldest_read
->read_len
);
309 read_cqe
->header
= htonl(V_CQE_QPID(CQE_QPID(hw_cqe
)) |
310 V_CQE_SWCQE(SW_CQE(hw_cqe
)) |
311 V_CQE_OPCODE(FW_RI_READ_REQ
) |
313 read_cqe
->bits_type_ts
= hw_cqe
->bits_type_ts
;
316 static void advance_oldest_read(struct t4_wq
*wq
)
319 u32 rptr
= wq
->sq
.oldest_read
- wq
->sq
.sw_sq
+ 1;
321 if (rptr
== wq
->sq
.size
)
323 while (rptr
!= wq
->sq
.pidx
) {
324 wq
->sq
.oldest_read
= &wq
->sq
.sw_sq
[rptr
];
326 if (wq
->sq
.oldest_read
->opcode
== FW_RI_READ_REQ
)
328 if (++rptr
== wq
->sq
.size
)
331 wq
->sq
.oldest_read
= NULL
;
335 * Move all CQEs from the HWCQ into the SWCQ.
336 * Deal with out-of-order and/or completions that complete
337 * prior unsignalled WRs.
339 void c4iw_flush_hw_cq(struct c4iw_cq
*chp
)
341 struct t4_cqe
*hw_cqe
, *swcqe
, read_cqe
;
343 struct t4_swsqe
*swsqe
;
346 PDBG("%s cqid 0x%x\n", __func__
, chp
->cq
.cqid
);
347 ret
= t4_next_hw_cqe(&chp
->cq
, &hw_cqe
);
350 * This logic is similar to poll_cq(), but not quite the same
351 * unfortunately. Need to move pertinent HW CQEs to the SW CQ but
352 * also do any translation magic that poll_cq() normally does.
355 qhp
= get_qhp(chp
->rhp
, CQE_QPID(hw_cqe
));
358 * drop CQEs with no associated QP
363 if (CQE_OPCODE(hw_cqe
) == FW_RI_TERMINATE
)
366 if (CQE_OPCODE(hw_cqe
) == FW_RI_READ_RESP
) {
369 * drop peer2peer RTR reads.
371 if (CQE_WRID_STAG(hw_cqe
) == 1)
375 * Eat completions for unsignaled read WRs.
377 if (!qhp
->wq
.sq
.oldest_read
->signaled
) {
378 advance_oldest_read(&qhp
->wq
);
383 * Don't write to the HWCQ, create a new read req CQE
384 * in local memory and move it into the swcq.
386 create_read_req_cqe(&qhp
->wq
, hw_cqe
, &read_cqe
);
388 advance_oldest_read(&qhp
->wq
);
391 /* if its a SQ completion, then do the magic to move all the
392 * unsignaled and now in-order completions into the swcq.
394 if (SQ_TYPE(hw_cqe
)) {
395 swsqe
= &qhp
->wq
.sq
.sw_sq
[CQE_WRID_SQ_IDX(hw_cqe
)];
396 swsqe
->cqe
= *hw_cqe
;
398 flush_completed_wrs(&qhp
->wq
, &chp
->cq
);
400 swcqe
= &chp
->cq
.sw_queue
[chp
->cq
.sw_pidx
];
402 swcqe
->header
|= cpu_to_be32(V_CQE_SWCQE(1));
403 t4_swcq_produce(&chp
->cq
);
406 t4_hwcq_consume(&chp
->cq
);
407 ret
= t4_next_hw_cqe(&chp
->cq
, &hw_cqe
);
411 static int cqe_completes_wr(struct t4_cqe
*cqe
, struct t4_wq
*wq
)
413 if (CQE_OPCODE(cqe
) == FW_RI_TERMINATE
)
416 if ((CQE_OPCODE(cqe
) == FW_RI_RDMA_WRITE
) && RQ_TYPE(cqe
))
419 if ((CQE_OPCODE(cqe
) == FW_RI_READ_RESP
) && SQ_TYPE(cqe
))
422 if (CQE_SEND_OPCODE(cqe
) && RQ_TYPE(cqe
) && t4_rq_empty(wq
))
427 void c4iw_count_rcqes(struct t4_cq
*cq
, struct t4_wq
*wq
, int *count
)
433 PDBG("%s count zero %d\n", __func__
, *count
);
435 while (ptr
!= cq
->sw_pidx
) {
436 cqe
= &cq
->sw_queue
[ptr
];
437 if (RQ_TYPE(cqe
) && (CQE_OPCODE(cqe
) != FW_RI_READ_RESP
) &&
438 (CQE_QPID(cqe
) == wq
->sq
.qid
) && cqe_completes_wr(cqe
, wq
))
440 if (++ptr
== cq
->size
)
443 PDBG("%s cq %p count %d\n", __func__
, cq
, *count
);
450 * check the validity of the first CQE,
451 * supply the wq assicated with the qpid.
453 * credit: cq credit to return to sge.
454 * cqe_flushed: 1 iff the CQE is flushed.
455 * cqe: copy of the polled CQE.
459 * -EAGAIN CQE skipped, try again.
460 * -EOVERFLOW CQ overflow detected.
462 static int poll_cq(struct t4_wq
*wq
, struct t4_cq
*cq
, struct t4_cqe
*cqe
,
463 u8
*cqe_flushed
, u64
*cookie
, u32
*credit
)
466 struct t4_cqe
*hw_cqe
, read_cqe
;
470 ret
= t4_next_cqe(cq
, &hw_cqe
);
474 PDBG("%s CQE OVF %u qpid 0x%0x genbit %u type %u status 0x%0x"
475 " opcode 0x%0x len 0x%0x wrid_hi_stag 0x%x wrid_low_msn 0x%x\n",
476 __func__
, CQE_OVFBIT(hw_cqe
), CQE_QPID(hw_cqe
),
477 CQE_GENBIT(hw_cqe
), CQE_TYPE(hw_cqe
), CQE_STATUS(hw_cqe
),
478 CQE_OPCODE(hw_cqe
), CQE_LEN(hw_cqe
), CQE_WRID_HI(hw_cqe
),
479 CQE_WRID_LOW(hw_cqe
));
482 * skip cqe's not affiliated with a QP.
490 * skip hw cqe's if the wq is flushed.
492 if (wq
->flushed
&& !SW_CQE(hw_cqe
)) {
498 * skip TERMINATE cqes...
500 if (CQE_OPCODE(hw_cqe
) == FW_RI_TERMINATE
) {
506 * Gotta tweak READ completions:
507 * 1) the cqe doesn't contain the sq_wptr from the wr.
508 * 2) opcode not reflected from the wr.
509 * 3) read_len not reflected from the wr.
510 * 4) cq_type is RQ_TYPE not SQ_TYPE.
512 if (RQ_TYPE(hw_cqe
) && (CQE_OPCODE(hw_cqe
) == FW_RI_READ_RESP
)) {
515 * If this is an unsolicited read response, then the read
516 * was generated by the kernel driver as part of peer-2-peer
517 * connection setup. So ignore the completion.
519 if (CQE_WRID_STAG(hw_cqe
) == 1) {
520 if (CQE_STATUS(hw_cqe
))
521 t4_set_wq_in_error(wq
);
527 * Eat completions for unsignaled read WRs.
529 if (!wq
->sq
.oldest_read
->signaled
) {
530 advance_oldest_read(wq
);
536 * Don't write to the HWCQ, so create a new read req CQE
539 create_read_req_cqe(wq
, hw_cqe
, &read_cqe
);
541 advance_oldest_read(wq
);
544 if (CQE_STATUS(hw_cqe
) || t4_wq_in_error(wq
)) {
545 *cqe_flushed
= (CQE_STATUS(hw_cqe
) == T4_ERR_SWFLUSH
);
546 t4_set_wq_in_error(wq
);
552 if (RQ_TYPE(hw_cqe
)) {
555 * HW only validates 4 bits of MSN. So we must validate that
556 * the MSN in the SEND is the next expected MSN. If its not,
557 * then we complete this with T4_ERR_MSN and mark the wq in
561 if (t4_rq_empty(wq
)) {
562 t4_set_wq_in_error(wq
);
566 if (unlikely((CQE_WRID_MSN(hw_cqe
) != (wq
->rq
.msn
)))) {
567 t4_set_wq_in_error(wq
);
568 hw_cqe
->header
|= htonl(V_CQE_STATUS(T4_ERR_MSN
));
575 * If we get here its a send completion.
577 * Handle out of order completion. These get stuffed
578 * in the SW SQ. Then the SW SQ is walked to move any
579 * now in-order completions into the SW CQ. This handles
581 * 1) reaping unsignaled WRs when the first subsequent
582 * signaled WR is completed.
583 * 2) out of order read completions.
585 if (!SW_CQE(hw_cqe
) && (CQE_WRID_SQ_IDX(hw_cqe
) != wq
->sq
.cidx
)) {
586 struct t4_swsqe
*swsqe
;
588 PDBG("%s out of order completion going in sw_sq at idx %u\n",
589 __func__
, CQE_WRID_SQ_IDX(hw_cqe
));
590 swsqe
= &wq
->sq
.sw_sq
[CQE_WRID_SQ_IDX(hw_cqe
)];
591 swsqe
->cqe
= *hw_cqe
;
601 * Reap the associated WR(s) that are freed up with this
604 if (SQ_TYPE(hw_cqe
)) {
605 int idx
= CQE_WRID_SQ_IDX(hw_cqe
);
606 BUG_ON(idx
> wq
->sq
.size
);
609 * Account for any unsignaled completions completed by
610 * this signaled completion. In this case, cidx points
611 * to the first unsignaled one, and idx points to the
612 * signaled one. So adjust in_use based on this delta.
613 * if this is not completing any unsigned wrs, then the
614 * delta will be 0. Handle wrapping also!
616 if (idx
< wq
->sq
.cidx
)
617 wq
->sq
.in_use
-= wq
->sq
.size
+ idx
- wq
->sq
.cidx
;
619 wq
->sq
.in_use
-= idx
- wq
->sq
.cidx
;
620 BUG_ON(wq
->sq
.in_use
< 0 && wq
->sq
.in_use
< wq
->sq
.size
);
622 wq
->sq
.cidx
= (uint16_t)idx
;
623 PDBG("%s completing sq idx %u\n", __func__
, wq
->sq
.cidx
);
624 *cookie
= wq
->sq
.sw_sq
[wq
->sq
.cidx
].wr_id
;
627 PDBG("%s completing rq idx %u\n", __func__
, wq
->rq
.cidx
);
628 *cookie
= wq
->rq
.sw_rq
[wq
->rq
.cidx
].wr_id
;
629 BUG_ON(t4_rq_empty(wq
));
636 * Flush any completed cqes that are now in-order.
638 flush_completed_wrs(wq
, cq
);
641 if (SW_CQE(hw_cqe
)) {
642 PDBG("%s cq %p cqid 0x%x skip sw cqe cidx %u\n",
643 __func__
, cq
, cq
->cqid
, cq
->sw_cidx
);
646 PDBG("%s cq %p cqid 0x%x skip hw cqe cidx %u\n",
647 __func__
, cq
, cq
->cqid
, cq
->cidx
);
654 * Get one cq entry from c4iw and map it to openib.
659 * -EAGAIN caller must try again
660 * any other -errno fatal error
662 static int c4iw_poll_cq_one(struct c4iw_cq
*chp
, struct ib_wc
*wc
)
664 struct c4iw_qp
*qhp
= NULL
;
665 struct t4_cqe cqe
= {0, 0}, *rd_cqe
;
672 ret
= t4_next_cqe(&chp
->cq
, &rd_cqe
);
677 qhp
= get_qhp(chp
->rhp
, CQE_QPID(rd_cqe
));
681 spin_lock(&qhp
->lock
);
684 ret
= poll_cq(wq
, &(chp
->cq
), &cqe
, &cqe_flushed
, &cookie
, &credit
);
690 wc
->vendor_err
= CQE_STATUS(&cqe
);
693 PDBG("%s qpid 0x%x type %d opcode %d status 0x%x len %u wrid hi 0x%x "
694 "lo 0x%x cookie 0x%llx\n", __func__
, CQE_QPID(&cqe
),
695 CQE_TYPE(&cqe
), CQE_OPCODE(&cqe
), CQE_STATUS(&cqe
), CQE_LEN(&cqe
),
696 CQE_WRID_HI(&cqe
), CQE_WRID_LOW(&cqe
), (unsigned long long)cookie
);
698 if (CQE_TYPE(&cqe
) == 0) {
699 if (!CQE_STATUS(&cqe
))
700 wc
->byte_len
= CQE_LEN(&cqe
);
703 wc
->opcode
= IB_WC_RECV
;
704 if (CQE_OPCODE(&cqe
) == FW_RI_SEND_WITH_INV
||
705 CQE_OPCODE(&cqe
) == FW_RI_SEND_WITH_SE_INV
) {
706 wc
->ex
.invalidate_rkey
= CQE_WRID_STAG(&cqe
);
707 wc
->wc_flags
|= IB_WC_WITH_INVALIDATE
;
710 switch (CQE_OPCODE(&cqe
)) {
711 case FW_RI_RDMA_WRITE
:
712 wc
->opcode
= IB_WC_RDMA_WRITE
;
715 wc
->opcode
= IB_WC_RDMA_READ
;
716 wc
->byte_len
= CQE_LEN(&cqe
);
718 case FW_RI_SEND_WITH_INV
:
719 case FW_RI_SEND_WITH_SE_INV
:
720 wc
->opcode
= IB_WC_SEND
;
721 wc
->wc_flags
|= IB_WC_WITH_INVALIDATE
;
724 case FW_RI_SEND_WITH_SE
:
725 wc
->opcode
= IB_WC_SEND
;
728 wc
->opcode
= IB_WC_BIND_MW
;
731 case FW_RI_LOCAL_INV
:
732 wc
->opcode
= IB_WC_LOCAL_INV
;
734 case FW_RI_FAST_REGISTER
:
735 wc
->opcode
= IB_WC_FAST_REG_MR
;
738 printk(KERN_ERR MOD
"Unexpected opcode %d "
739 "in the CQE received for QPID=0x%0x\n",
740 CQE_OPCODE(&cqe
), CQE_QPID(&cqe
));
747 wc
->status
= IB_WC_WR_FLUSH_ERR
;
750 switch (CQE_STATUS(&cqe
)) {
752 wc
->status
= IB_WC_SUCCESS
;
755 wc
->status
= IB_WC_LOC_ACCESS_ERR
;
758 wc
->status
= IB_WC_LOC_PROT_ERR
;
762 wc
->status
= IB_WC_LOC_ACCESS_ERR
;
765 wc
->status
= IB_WC_GENERAL_ERR
;
768 wc
->status
= IB_WC_LOC_LEN_ERR
;
770 case T4_ERR_INVALIDATE_SHARED_MR
:
771 case T4_ERR_INVALIDATE_MR_WITH_MW_BOUND
:
772 wc
->status
= IB_WC_MW_BIND_ERR
;
776 case T4_ERR_PDU_LEN_ERR
:
777 case T4_ERR_OUT_OF_RQE
:
778 case T4_ERR_DDP_VERSION
:
779 case T4_ERR_RDMA_VERSION
:
780 case T4_ERR_DDP_QUEUE_NUM
:
784 case T4_ERR_MSN_RANGE
:
785 case T4_ERR_IRD_OVERFLOW
:
787 case T4_ERR_INTERNAL_ERR
:
788 wc
->status
= IB_WC_FATAL_ERR
;
791 wc
->status
= IB_WC_WR_FLUSH_ERR
;
795 "Unexpected cqe_status 0x%x for QPID=0x%0x\n",
796 CQE_STATUS(&cqe
), CQE_QPID(&cqe
));
802 spin_unlock(&qhp
->lock
);
806 int c4iw_poll_cq(struct ib_cq
*ibcq
, int num_entries
, struct ib_wc
*wc
)
813 chp
= to_c4iw_cq(ibcq
);
815 spin_lock_irqsave(&chp
->lock
, flags
);
816 for (npolled
= 0; npolled
< num_entries
; ++npolled
) {
818 err
= c4iw_poll_cq_one(chp
, wc
+ npolled
);
819 } while (err
== -EAGAIN
);
823 spin_unlock_irqrestore(&chp
->lock
, flags
);
824 return !err
|| err
== -ENODATA
? npolled
: err
;
827 int c4iw_destroy_cq(struct ib_cq
*ib_cq
)
830 struct c4iw_ucontext
*ucontext
;
832 PDBG("%s ib_cq %p\n", __func__
, ib_cq
);
833 chp
= to_c4iw_cq(ib_cq
);
835 remove_handle(chp
->rhp
, &chp
->rhp
->cqidr
, chp
->cq
.cqid
);
836 atomic_dec(&chp
->refcnt
);
837 wait_event(chp
->wait
, !atomic_read(&chp
->refcnt
));
839 ucontext
= ib_cq
->uobject
? to_c4iw_ucontext(ib_cq
->uobject
->context
)
841 destroy_cq(&chp
->rhp
->rdev
, &chp
->cq
,
842 ucontext
? &ucontext
->uctx
: &chp
->cq
.rdev
->uctx
);
847 struct ib_cq
*c4iw_create_cq(struct ib_device
*ibdev
, int entries
,
848 int vector
, struct ib_ucontext
*ib_context
,
849 struct ib_udata
*udata
)
851 struct c4iw_dev
*rhp
;
853 struct c4iw_create_cq_resp uresp
;
854 struct c4iw_ucontext
*ucontext
= NULL
;
856 size_t memsize
, hwentries
;
857 struct c4iw_mm_entry
*mm
, *mm2
;
859 PDBG("%s ib_dev %p entries %d\n", __func__
, ibdev
, entries
);
861 rhp
= to_c4iw_dev(ibdev
);
863 chp
= kzalloc(sizeof(*chp
), GFP_KERNEL
);
865 return ERR_PTR(-ENOMEM
);
868 ucontext
= to_c4iw_ucontext(ib_context
);
870 /* account for the status page. */
873 /* IQ needs one extra entry to differentiate full vs empty. */
877 * entries must be multiple of 16 for HW.
879 entries
= roundup(entries
, 16);
882 * Make actual HW queue 2x to avoid cdix_inc overflows.
884 hwentries
= entries
* 2;
887 * Make HW queue at least 64 entries so GTS updates aren't too
893 memsize
= hwentries
* sizeof *chp
->cq
.queue
;
896 * memsize must be a multiple of the page size if its a user cq.
899 memsize
= roundup(memsize
, PAGE_SIZE
);
900 hwentries
= memsize
/ sizeof *chp
->cq
.queue
;
901 while (hwentries
> T4_MAX_IQ_SIZE
) {
902 memsize
-= PAGE_SIZE
;
903 hwentries
= memsize
/ sizeof *chp
->cq
.queue
;
906 chp
->cq
.size
= hwentries
;
907 chp
->cq
.memsize
= memsize
;
909 ret
= create_cq(&rhp
->rdev
, &chp
->cq
,
910 ucontext
? &ucontext
->uctx
: &rhp
->rdev
.uctx
);
915 chp
->cq
.size
--; /* status page */
916 chp
->ibcq
.cqe
= entries
- 2;
917 spin_lock_init(&chp
->lock
);
918 spin_lock_init(&chp
->comp_handler_lock
);
919 atomic_set(&chp
->refcnt
, 1);
920 init_waitqueue_head(&chp
->wait
);
921 ret
= insert_handle(rhp
, &rhp
->cqidr
, chp
, chp
->cq
.cqid
);
926 mm
= kmalloc(sizeof *mm
, GFP_KERNEL
);
929 mm2
= kmalloc(sizeof *mm2
, GFP_KERNEL
);
933 uresp
.qid_mask
= rhp
->rdev
.cqmask
;
934 uresp
.cqid
= chp
->cq
.cqid
;
935 uresp
.size
= chp
->cq
.size
;
936 uresp
.memsize
= chp
->cq
.memsize
;
937 spin_lock(&ucontext
->mmap_lock
);
938 uresp
.key
= ucontext
->key
;
939 ucontext
->key
+= PAGE_SIZE
;
940 uresp
.gts_key
= ucontext
->key
;
941 ucontext
->key
+= PAGE_SIZE
;
942 spin_unlock(&ucontext
->mmap_lock
);
943 ret
= ib_copy_to_udata(udata
, &uresp
, sizeof uresp
);
948 mm
->addr
= virt_to_phys(chp
->cq
.queue
);
949 mm
->len
= chp
->cq
.memsize
;
950 insert_mmap(ucontext
, mm
);
952 mm2
->key
= uresp
.gts_key
;
953 mm2
->addr
= chp
->cq
.ugts
;
954 mm2
->len
= PAGE_SIZE
;
955 insert_mmap(ucontext
, mm2
);
957 PDBG("%s cqid 0x%0x chp %p size %u memsize %zu, dma_addr 0x%0llx\n",
958 __func__
, chp
->cq
.cqid
, chp
, chp
->cq
.size
,
960 (unsigned long long) chp
->cq
.dma_addr
);
967 remove_handle(rhp
, &rhp
->cqidr
, chp
->cq
.cqid
);
969 destroy_cq(&chp
->rhp
->rdev
, &chp
->cq
,
970 ucontext
? &ucontext
->uctx
: &rhp
->rdev
.uctx
);
976 int c4iw_resize_cq(struct ib_cq
*cq
, int cqe
, struct ib_udata
*udata
)
981 int c4iw_arm_cq(struct ib_cq
*ibcq
, enum ib_cq_notify_flags flags
)
987 chp
= to_c4iw_cq(ibcq
);
988 spin_lock_irqsave(&chp
->lock
, flag
);
989 ret
= t4_arm_cq(&chp
->cq
,
990 (flags
& IB_CQ_SOLICITED_MASK
) == IB_CQ_SOLICITED
);
991 spin_unlock_irqrestore(&chp
->lock
, flag
);
992 if (ret
&& !(flags
& IB_CQ_REPORT_MISSED_EVENTS
))