fix a kmap leak in virtio_console
[linux/fpc-iii.git] / drivers / infiniband / hw / qib / qib_sd7220.c
blob911205d3d5a0bf255fae65126740ab47eaa4a8ef
1 /*
2 * Copyright (c) 2013 Intel Corporation. All rights reserved.
3 * Copyright (c) 2006 - 2012 QLogic Corporation. All rights reserved.
4 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
35 * This file contains all of the code that is specific to the SerDes
36 * on the QLogic_IB 7220 chip.
39 #include <linux/pci.h>
40 #include <linux/delay.h>
41 #include <linux/module.h>
42 #include <linux/firmware.h>
44 #include "qib.h"
45 #include "qib_7220.h"
47 #define SD7220_FW_NAME "qlogic/sd7220.fw"
48 MODULE_FIRMWARE(SD7220_FW_NAME);
51 * Same as in qib_iba7220.c, but just the registers needed here.
52 * Could move whole set to qib_7220.h, but decided better to keep
53 * local.
55 #define KREG_IDX(regname) (QIB_7220_##regname##_OFFS / sizeof(u64))
56 #define kr_hwerrclear KREG_IDX(HwErrClear)
57 #define kr_hwerrmask KREG_IDX(HwErrMask)
58 #define kr_hwerrstatus KREG_IDX(HwErrStatus)
59 #define kr_ibcstatus KREG_IDX(IBCStatus)
60 #define kr_ibserdesctrl KREG_IDX(IBSerDesCtrl)
61 #define kr_scratch KREG_IDX(Scratch)
62 #define kr_xgxs_cfg KREG_IDX(XGXSCfg)
63 /* these are used only here, not in qib_iba7220.c */
64 #define kr_ibsd_epb_access_ctrl KREG_IDX(ibsd_epb_access_ctrl)
65 #define kr_ibsd_epb_transaction_reg KREG_IDX(ibsd_epb_transaction_reg)
66 #define kr_pciesd_epb_transaction_reg KREG_IDX(pciesd_epb_transaction_reg)
67 #define kr_pciesd_epb_access_ctrl KREG_IDX(pciesd_epb_access_ctrl)
68 #define kr_serdes_ddsrxeq0 KREG_IDX(SerDes_DDSRXEQ0)
71 * The IBSerDesMappTable is a memory that holds values to be stored in
72 * various SerDes registers by IBC.
74 #define kr_serdes_maptable KREG_IDX(IBSerDesMappTable)
77 * Below used for sdnum parameter, selecting one of the two sections
78 * used for PCIe, or the single SerDes used for IB.
80 #define PCIE_SERDES0 0
81 #define PCIE_SERDES1 1
84 * The EPB requires addressing in a particular form. EPB_LOC() is intended
85 * to make #definitions a little more readable.
87 #define EPB_ADDR_SHF 8
88 #define EPB_LOC(chn, elt, reg) \
89 (((elt & 0xf) | ((chn & 7) << 4) | ((reg & 0x3f) << 9)) << \
90 EPB_ADDR_SHF)
91 #define EPB_IB_QUAD0_CS_SHF (25)
92 #define EPB_IB_QUAD0_CS (1U << EPB_IB_QUAD0_CS_SHF)
93 #define EPB_IB_UC_CS_SHF (26)
94 #define EPB_PCIE_UC_CS_SHF (27)
95 #define EPB_GLOBAL_WR (1U << (EPB_ADDR_SHF + 8))
97 /* Forward declarations. */
98 static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc,
99 u32 data, u32 mask);
100 static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val,
101 int mask);
102 static int qib_sd_trimdone_poll(struct qib_devdata *dd);
103 static void qib_sd_trimdone_monitor(struct qib_devdata *dd, const char *where);
104 static int qib_sd_setvals(struct qib_devdata *dd);
105 static int qib_sd_early(struct qib_devdata *dd);
106 static int qib_sd_dactrim(struct qib_devdata *dd);
107 static int qib_internal_presets(struct qib_devdata *dd);
108 /* Tweak the register (CMUCTRL5) that contains the TRIMSELF controls */
109 static int qib_sd_trimself(struct qib_devdata *dd, int val);
110 static int epb_access(struct qib_devdata *dd, int sdnum, int claim);
111 static int qib_sd7220_ib_load(struct qib_devdata *dd,
112 const struct firmware *fw);
113 static int qib_sd7220_ib_vfy(struct qib_devdata *dd,
114 const struct firmware *fw);
117 * Below keeps track of whether the "once per power-on" initialization has
118 * been done, because uC code Version 1.32.17 or higher allows the uC to
119 * be reset at will, and Automatic Equalization may require it. So the
120 * state of the reset "pin", is no longer valid. Instead, we check for the
121 * actual uC code having been loaded.
123 static int qib_ibsd_ucode_loaded(struct qib_pportdata *ppd,
124 const struct firmware *fw)
126 struct qib_devdata *dd = ppd->dd;
128 if (!dd->cspec->serdes_first_init_done &&
129 qib_sd7220_ib_vfy(dd, fw) > 0)
130 dd->cspec->serdes_first_init_done = 1;
131 return dd->cspec->serdes_first_init_done;
134 /* repeat #define for local use. "Real" #define is in qib_iba7220.c */
135 #define QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR 0x0000004000000000ULL
136 #define IB_MPREG5 (EPB_LOC(6, 0, 0xE) | (1L << EPB_IB_UC_CS_SHF))
137 #define IB_MPREG6 (EPB_LOC(6, 0, 0xF) | (1U << EPB_IB_UC_CS_SHF))
138 #define UC_PAR_CLR_D 8
139 #define UC_PAR_CLR_M 0xC
140 #define IB_CTRL2(chn) (EPB_LOC(chn, 7, 3) | EPB_IB_QUAD0_CS)
141 #define START_EQ1(chan) EPB_LOC(chan, 7, 0x27)
143 void qib_sd7220_clr_ibpar(struct qib_devdata *dd)
145 int ret;
147 /* clear, then re-enable parity errs */
148 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6,
149 UC_PAR_CLR_D, UC_PAR_CLR_M);
150 if (ret < 0) {
151 qib_dev_err(dd, "Failed clearing IBSerDes Parity err\n");
152 goto bail;
154 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0,
155 UC_PAR_CLR_M);
157 qib_read_kreg32(dd, kr_scratch);
158 udelay(4);
159 qib_write_kreg(dd, kr_hwerrclear,
160 QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
161 qib_read_kreg32(dd, kr_scratch);
162 bail:
163 return;
167 * After a reset or other unusual event, the epb interface may need
168 * to be re-synchronized, between the host and the uC.
169 * returns <0 for failure to resync within IBSD_RESYNC_TRIES (not expected)
171 #define IBSD_RESYNC_TRIES 3
172 #define IB_PGUDP(chn) (EPB_LOC((chn), 2, 1) | EPB_IB_QUAD0_CS)
173 #define IB_CMUDONE(chn) (EPB_LOC((chn), 7, 0xF) | EPB_IB_QUAD0_CS)
175 static int qib_resync_ibepb(struct qib_devdata *dd)
177 int ret, pat, tries, chn;
178 u32 loc;
180 ret = -1;
181 chn = 0;
182 for (tries = 0; tries < (4 * IBSD_RESYNC_TRIES); ++tries) {
183 loc = IB_PGUDP(chn);
184 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
185 if (ret < 0) {
186 qib_dev_err(dd, "Failed read in resync\n");
187 continue;
189 if (ret != 0xF0 && ret != 0x55 && tries == 0)
190 qib_dev_err(dd, "unexpected pattern in resync\n");
191 pat = ret ^ 0xA5; /* alternate F0 and 55 */
192 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, pat, 0xFF);
193 if (ret < 0) {
194 qib_dev_err(dd, "Failed write in resync\n");
195 continue;
197 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
198 if (ret < 0) {
199 qib_dev_err(dd, "Failed re-read in resync\n");
200 continue;
202 if (ret != pat) {
203 qib_dev_err(dd, "Failed compare1 in resync\n");
204 continue;
206 loc = IB_CMUDONE(chn);
207 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
208 if (ret < 0) {
209 qib_dev_err(dd, "Failed CMUDONE rd in resync\n");
210 continue;
212 if ((ret & 0x70) != ((chn << 4) | 0x40)) {
213 qib_dev_err(dd, "Bad CMUDONE value %02X, chn %d\n",
214 ret, chn);
215 continue;
217 if (++chn == 4)
218 break; /* Success */
220 return (ret > 0) ? 0 : ret;
224 * Localize the stuff that should be done to change IB uC reset
225 * returns <0 for errors.
227 static int qib_ibsd_reset(struct qib_devdata *dd, int assert_rst)
229 u64 rst_val;
230 int ret = 0;
231 unsigned long flags;
233 rst_val = qib_read_kreg64(dd, kr_ibserdesctrl);
234 if (assert_rst) {
236 * Vendor recommends "interrupting" uC before reset, to
237 * minimize possible glitches.
239 spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
240 epb_access(dd, IB_7220_SERDES, 1);
241 rst_val |= 1ULL;
242 /* Squelch possible parity error from _asserting_ reset */
243 qib_write_kreg(dd, kr_hwerrmask,
244 dd->cspec->hwerrmask &
245 ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
246 qib_write_kreg(dd, kr_ibserdesctrl, rst_val);
247 /* flush write, delay to ensure it took effect */
248 qib_read_kreg32(dd, kr_scratch);
249 udelay(2);
250 /* once it's reset, can remove interrupt */
251 epb_access(dd, IB_7220_SERDES, -1);
252 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
253 } else {
255 * Before we de-assert reset, we need to deal with
256 * possible glitch on the Parity-error line.
257 * Suppress it around the reset, both in chip-level
258 * hwerrmask and in IB uC control reg. uC will allow
259 * it again during startup.
261 u64 val;
262 rst_val &= ~(1ULL);
263 qib_write_kreg(dd, kr_hwerrmask,
264 dd->cspec->hwerrmask &
265 ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
267 ret = qib_resync_ibepb(dd);
268 if (ret < 0)
269 qib_dev_err(dd, "unable to re-sync IB EPB\n");
271 /* set uC control regs to suppress parity errs */
272 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG5, 1, 1);
273 if (ret < 0)
274 goto bail;
275 /* IB uC code past Version 1.32.17 allow suppression of wdog */
276 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80,
277 0x80);
278 if (ret < 0) {
279 qib_dev_err(dd, "Failed to set WDOG disable\n");
280 goto bail;
282 qib_write_kreg(dd, kr_ibserdesctrl, rst_val);
283 /* flush write, delay for startup */
284 qib_read_kreg32(dd, kr_scratch);
285 udelay(1);
286 /* clear, then re-enable parity errs */
287 qib_sd7220_clr_ibpar(dd);
288 val = qib_read_kreg64(dd, kr_hwerrstatus);
289 if (val & QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR) {
290 qib_dev_err(dd, "IBUC Parity still set after RST\n");
291 dd->cspec->hwerrmask &=
292 ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR;
294 qib_write_kreg(dd, kr_hwerrmask,
295 dd->cspec->hwerrmask);
298 bail:
299 return ret;
302 static void qib_sd_trimdone_monitor(struct qib_devdata *dd,
303 const char *where)
305 int ret, chn, baduns;
306 u64 val;
308 if (!where)
309 where = "?";
311 /* give time for reset to settle out in EPB */
312 udelay(2);
314 ret = qib_resync_ibepb(dd);
315 if (ret < 0)
316 qib_dev_err(dd, "not able to re-sync IB EPB (%s)\n", where);
318 /* Do "sacrificial read" to get EPB in sane state after reset */
319 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_CTRL2(0), 0, 0);
320 if (ret < 0)
321 qib_dev_err(dd, "Failed TRIMDONE 1st read, (%s)\n", where);
323 /* Check/show "summary" Trim-done bit in IBCStatus */
324 val = qib_read_kreg64(dd, kr_ibcstatus);
325 if (!(val & (1ULL << 11)))
326 qib_dev_err(dd, "IBCS TRIMDONE clear (%s)\n", where);
328 * Do "dummy read/mod/wr" to get EPB in sane state after reset
329 * The default value for MPREG6 is 0.
331 udelay(2);
333 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80, 0x80);
334 if (ret < 0)
335 qib_dev_err(dd, "Failed Dummy RMW, (%s)\n", where);
336 udelay(10);
338 baduns = 0;
340 for (chn = 3; chn >= 0; --chn) {
341 /* Read CTRL reg for each channel to check TRIMDONE */
342 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
343 IB_CTRL2(chn), 0, 0);
344 if (ret < 0)
345 qib_dev_err(dd,
346 "Failed checking TRIMDONE, chn %d (%s)\n",
347 chn, where);
349 if (!(ret & 0x10)) {
350 int probe;
352 baduns |= (1 << chn);
353 qib_dev_err(dd,
354 "TRIMDONE cleared on chn %d (%02X). (%s)\n",
355 chn, ret, where);
356 probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
357 IB_PGUDP(0), 0, 0);
358 qib_dev_err(dd, "probe is %d (%02X)\n",
359 probe, probe);
360 probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
361 IB_CTRL2(chn), 0, 0);
362 qib_dev_err(dd, "re-read: %d (%02X)\n",
363 probe, probe);
364 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
365 IB_CTRL2(chn), 0x10, 0x10);
366 if (ret < 0)
367 qib_dev_err(dd,
368 "Err on TRIMDONE rewrite1\n");
371 for (chn = 3; chn >= 0; --chn) {
372 /* Read CTRL reg for each channel to check TRIMDONE */
373 if (baduns & (1 << chn)) {
374 qib_dev_err(dd,
375 "Resetting TRIMDONE on chn %d (%s)\n",
376 chn, where);
377 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
378 IB_CTRL2(chn), 0x10, 0x10);
379 if (ret < 0)
380 qib_dev_err(dd,
381 "Failed re-setting TRIMDONE, chn %d (%s)\n",
382 chn, where);
388 * Below is portion of IBA7220-specific bringup_serdes() that actually
389 * deals with registers and memory within the SerDes itself.
390 * Post IB uC code version 1.32.17, was_reset being 1 is not really
391 * informative, so we double-check.
393 int qib_sd7220_init(struct qib_devdata *dd)
395 const struct firmware *fw;
396 int ret = 1; /* default to failure */
397 int first_reset, was_reset;
399 /* SERDES MPU reset recorded in D0 */
400 was_reset = (qib_read_kreg64(dd, kr_ibserdesctrl) & 1);
401 if (!was_reset) {
402 /* entered with reset not asserted, we need to do it */
403 qib_ibsd_reset(dd, 1);
404 qib_sd_trimdone_monitor(dd, "Driver-reload");
407 ret = request_firmware(&fw, SD7220_FW_NAME, &dd->pcidev->dev);
408 if (ret) {
409 qib_dev_err(dd, "Failed to load IB SERDES image\n");
410 goto done;
413 /* Substitute our deduced value for was_reset */
414 ret = qib_ibsd_ucode_loaded(dd->pport, fw);
415 if (ret < 0)
416 goto bail;
418 first_reset = !ret; /* First reset if IBSD uCode not yet loaded */
420 * Alter some regs per vendor latest doc, reset-defaults
421 * are not right for IB.
423 ret = qib_sd_early(dd);
424 if (ret < 0) {
425 qib_dev_err(dd, "Failed to set IB SERDES early defaults\n");
426 goto bail;
429 * Set DAC manual trim IB.
430 * We only do this once after chip has been reset (usually
431 * same as once per system boot).
433 if (first_reset) {
434 ret = qib_sd_dactrim(dd);
435 if (ret < 0) {
436 qib_dev_err(dd, "Failed IB SERDES DAC trim\n");
437 goto bail;
441 * Set various registers (DDS and RXEQ) that will be
442 * controlled by IBC (in 1.2 mode) to reasonable preset values
443 * Calling the "internal" version avoids the "check for needed"
444 * and "trimdone monitor" that might be counter-productive.
446 ret = qib_internal_presets(dd);
447 if (ret < 0) {
448 qib_dev_err(dd, "Failed to set IB SERDES presets\n");
449 goto bail;
451 ret = qib_sd_trimself(dd, 0x80);
452 if (ret < 0) {
453 qib_dev_err(dd, "Failed to set IB SERDES TRIMSELF\n");
454 goto bail;
457 /* Load image, then try to verify */
458 ret = 0; /* Assume success */
459 if (first_reset) {
460 int vfy;
461 int trim_done;
463 ret = qib_sd7220_ib_load(dd, fw);
464 if (ret < 0) {
465 qib_dev_err(dd, "Failed to load IB SERDES image\n");
466 goto bail;
467 } else {
468 /* Loaded image, try to verify */
469 vfy = qib_sd7220_ib_vfy(dd, fw);
470 if (vfy != ret) {
471 qib_dev_err(dd, "SERDES PRAM VFY failed\n");
472 goto bail;
473 } /* end if verified */
474 } /* end if loaded */
477 * Loaded and verified. Almost good...
478 * hold "success" in ret
480 ret = 0;
482 * Prev steps all worked, continue bringup
483 * De-assert RESET to uC, only in first reset, to allow
484 * trimming.
486 * Since our default setup sets START_EQ1 to
487 * PRESET, we need to clear that for this very first run.
489 ret = ibsd_mod_allchnls(dd, START_EQ1(0), 0, 0x38);
490 if (ret < 0) {
491 qib_dev_err(dd, "Failed clearing START_EQ1\n");
492 goto bail;
495 qib_ibsd_reset(dd, 0);
497 * If this is not the first reset, trimdone should be set
498 * already. We may need to check about this.
500 trim_done = qib_sd_trimdone_poll(dd);
502 * Whether or not trimdone succeeded, we need to put the
503 * uC back into reset to avoid a possible fight with the
504 * IBC state-machine.
506 qib_ibsd_reset(dd, 1);
508 if (!trim_done) {
509 qib_dev_err(dd, "No TRIMDONE seen\n");
510 goto bail;
513 * DEBUG: check each time we reset if trimdone bits have
514 * gotten cleared, and re-set them.
516 qib_sd_trimdone_monitor(dd, "First-reset");
517 /* Remember so we do not re-do the load, dactrim, etc. */
518 dd->cspec->serdes_first_init_done = 1;
521 * setup for channel training and load values for
522 * RxEq and DDS in tables used by IBC in IB1.2 mode
524 ret = 0;
525 if (qib_sd_setvals(dd) >= 0)
526 goto done;
527 bail:
528 ret = 1;
529 done:
530 /* start relock timer regardless, but start at 1 second */
531 set_7220_relock_poll(dd, -1);
533 release_firmware(fw);
534 return ret;
537 #define EPB_ACC_REQ 1
538 #define EPB_ACC_GNT 0x100
539 #define EPB_DATA_MASK 0xFF
540 #define EPB_RD (1ULL << 24)
541 #define EPB_TRANS_RDY (1ULL << 31)
542 #define EPB_TRANS_ERR (1ULL << 30)
543 #define EPB_TRANS_TRIES 5
546 * query, claim, release ownership of the EPB (External Parallel Bus)
547 * for a specified SERDES.
548 * the "claim" parameter is >0 to claim, <0 to release, 0 to query.
549 * Returns <0 for errors, >0 if we had ownership, else 0.
551 static int epb_access(struct qib_devdata *dd, int sdnum, int claim)
553 u16 acc;
554 u64 accval;
555 int owned = 0;
556 u64 oct_sel = 0;
558 switch (sdnum) {
559 case IB_7220_SERDES:
561 * The IB SERDES "ownership" is fairly simple. A single each
562 * request/grant.
564 acc = kr_ibsd_epb_access_ctrl;
565 break;
567 case PCIE_SERDES0:
568 case PCIE_SERDES1:
569 /* PCIe SERDES has two "octants", need to select which */
570 acc = kr_pciesd_epb_access_ctrl;
571 oct_sel = (2 << (sdnum - PCIE_SERDES0));
572 break;
574 default:
575 return 0;
578 /* Make sure any outstanding transaction was seen */
579 qib_read_kreg32(dd, kr_scratch);
580 udelay(15);
582 accval = qib_read_kreg32(dd, acc);
584 owned = !!(accval & EPB_ACC_GNT);
585 if (claim < 0) {
586 /* Need to release */
587 u64 pollval;
589 * The only writeable bits are the request and CS.
590 * Both should be clear
592 u64 newval = 0;
593 qib_write_kreg(dd, acc, newval);
594 /* First read after write is not trustworthy */
595 pollval = qib_read_kreg32(dd, acc);
596 udelay(5);
597 pollval = qib_read_kreg32(dd, acc);
598 if (pollval & EPB_ACC_GNT)
599 owned = -1;
600 } else if (claim > 0) {
601 /* Need to claim */
602 u64 pollval;
603 u64 newval = EPB_ACC_REQ | oct_sel;
604 qib_write_kreg(dd, acc, newval);
605 /* First read after write is not trustworthy */
606 pollval = qib_read_kreg32(dd, acc);
607 udelay(5);
608 pollval = qib_read_kreg32(dd, acc);
609 if (!(pollval & EPB_ACC_GNT))
610 owned = -1;
612 return owned;
616 * Lemma to deal with race condition of write..read to epb regs
618 static int epb_trans(struct qib_devdata *dd, u16 reg, u64 i_val, u64 *o_vp)
620 int tries;
621 u64 transval;
623 qib_write_kreg(dd, reg, i_val);
624 /* Throw away first read, as RDY bit may be stale */
625 transval = qib_read_kreg64(dd, reg);
627 for (tries = EPB_TRANS_TRIES; tries; --tries) {
628 transval = qib_read_kreg32(dd, reg);
629 if (transval & EPB_TRANS_RDY)
630 break;
631 udelay(5);
633 if (transval & EPB_TRANS_ERR)
634 return -1;
635 if (tries > 0 && o_vp)
636 *o_vp = transval;
637 return tries;
641 * qib_sd7220_reg_mod - modify SERDES register
642 * @dd: the qlogic_ib device
643 * @sdnum: which SERDES to access
644 * @loc: location - channel, element, register, as packed by EPB_LOC() macro.
645 * @wd: Write Data - value to set in register
646 * @mask: ones where data should be spliced into reg.
648 * Basic register read/modify/write, with un-needed acesses elided. That is,
649 * a mask of zero will prevent write, while a mask of 0xFF will prevent read.
650 * returns current (presumed, if a write was done) contents of selected
651 * register, or <0 if errors.
653 static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc,
654 u32 wd, u32 mask)
656 u16 trans;
657 u64 transval;
658 int owned;
659 int tries, ret;
660 unsigned long flags;
662 switch (sdnum) {
663 case IB_7220_SERDES:
664 trans = kr_ibsd_epb_transaction_reg;
665 break;
667 case PCIE_SERDES0:
668 case PCIE_SERDES1:
669 trans = kr_pciesd_epb_transaction_reg;
670 break;
672 default:
673 return -1;
677 * All access is locked in software (vs other host threads) and
678 * hardware (vs uC access).
680 spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
682 owned = epb_access(dd, sdnum, 1);
683 if (owned < 0) {
684 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
685 return -1;
687 ret = 0;
688 for (tries = EPB_TRANS_TRIES; tries; --tries) {
689 transval = qib_read_kreg32(dd, trans);
690 if (transval & EPB_TRANS_RDY)
691 break;
692 udelay(5);
695 if (tries > 0) {
696 tries = 1; /* to make read-skip work */
697 if (mask != 0xFF) {
699 * Not a pure write, so need to read.
700 * loc encodes chip-select as well as address
702 transval = loc | EPB_RD;
703 tries = epb_trans(dd, trans, transval, &transval);
705 if (tries > 0 && mask != 0) {
707 * Not a pure read, so need to write.
709 wd = (wd & mask) | (transval & ~mask);
710 transval = loc | (wd & EPB_DATA_MASK);
711 tries = epb_trans(dd, trans, transval, &transval);
714 /* else, failed to see ready, what error-handling? */
717 * Release bus. Failure is an error.
719 if (epb_access(dd, sdnum, -1) < 0)
720 ret = -1;
721 else
722 ret = transval & EPB_DATA_MASK;
724 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
725 if (tries <= 0)
726 ret = -1;
727 return ret;
730 #define EPB_ROM_R (2)
731 #define EPB_ROM_W (1)
733 * Below, all uC-related, use appropriate UC_CS, depending
734 * on which SerDes is used.
736 #define EPB_UC_CTL EPB_LOC(6, 0, 0)
737 #define EPB_MADDRL EPB_LOC(6, 0, 2)
738 #define EPB_MADDRH EPB_LOC(6, 0, 3)
739 #define EPB_ROMDATA EPB_LOC(6, 0, 4)
740 #define EPB_RAMDATA EPB_LOC(6, 0, 5)
742 /* Transfer date to/from uC Program RAM of IB or PCIe SerDes */
743 static int qib_sd7220_ram_xfer(struct qib_devdata *dd, int sdnum, u32 loc,
744 u8 *buf, int cnt, int rd_notwr)
746 u16 trans;
747 u64 transval;
748 u64 csbit;
749 int owned;
750 int tries;
751 int sofar;
752 int addr;
753 int ret;
754 unsigned long flags;
755 const char *op;
757 /* Pick appropriate transaction reg and "Chip select" for this serdes */
758 switch (sdnum) {
759 case IB_7220_SERDES:
760 csbit = 1ULL << EPB_IB_UC_CS_SHF;
761 trans = kr_ibsd_epb_transaction_reg;
762 break;
764 case PCIE_SERDES0:
765 case PCIE_SERDES1:
766 /* PCIe SERDES has uC "chip select" in different bit, too */
767 csbit = 1ULL << EPB_PCIE_UC_CS_SHF;
768 trans = kr_pciesd_epb_transaction_reg;
769 break;
771 default:
772 return -1;
775 op = rd_notwr ? "Rd" : "Wr";
776 spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
778 owned = epb_access(dd, sdnum, 1);
779 if (owned < 0) {
780 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
781 return -1;
785 * In future code, we may need to distinguish several address ranges,
786 * and select various memories based on this. For now, just trim
787 * "loc" (location including address and memory select) to
788 * "addr" (address within memory). we will only support PRAM
789 * The memory is 8KB.
791 addr = loc & 0x1FFF;
792 for (tries = EPB_TRANS_TRIES; tries; --tries) {
793 transval = qib_read_kreg32(dd, trans);
794 if (transval & EPB_TRANS_RDY)
795 break;
796 udelay(5);
799 sofar = 0;
800 if (tries > 0) {
802 * Every "memory" access is doubly-indirect.
803 * We set two bytes of address, then read/write
804 * one or mores bytes of data.
807 /* First, we set control to "Read" or "Write" */
808 transval = csbit | EPB_UC_CTL |
809 (rd_notwr ? EPB_ROM_R : EPB_ROM_W);
810 tries = epb_trans(dd, trans, transval, &transval);
811 while (tries > 0 && sofar < cnt) {
812 if (!sofar) {
813 /* Only set address at start of chunk */
814 int addrbyte = (addr + sofar) >> 8;
815 transval = csbit | EPB_MADDRH | addrbyte;
816 tries = epb_trans(dd, trans, transval,
817 &transval);
818 if (tries <= 0)
819 break;
820 addrbyte = (addr + sofar) & 0xFF;
821 transval = csbit | EPB_MADDRL | addrbyte;
822 tries = epb_trans(dd, trans, transval,
823 &transval);
824 if (tries <= 0)
825 break;
828 if (rd_notwr)
829 transval = csbit | EPB_ROMDATA | EPB_RD;
830 else
831 transval = csbit | EPB_ROMDATA | buf[sofar];
832 tries = epb_trans(dd, trans, transval, &transval);
833 if (tries <= 0)
834 break;
835 if (rd_notwr)
836 buf[sofar] = transval & EPB_DATA_MASK;
837 ++sofar;
839 /* Finally, clear control-bit for Read or Write */
840 transval = csbit | EPB_UC_CTL;
841 tries = epb_trans(dd, trans, transval, &transval);
844 ret = sofar;
845 /* Release bus. Failure is an error */
846 if (epb_access(dd, sdnum, -1) < 0)
847 ret = -1;
849 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
850 if (tries <= 0)
851 ret = -1;
852 return ret;
855 #define PROG_CHUNK 64
857 static int qib_sd7220_prog_ld(struct qib_devdata *dd, int sdnum,
858 const u8 *img, int len, int offset)
860 int cnt, sofar, req;
862 sofar = 0;
863 while (sofar < len) {
864 req = len - sofar;
865 if (req > PROG_CHUNK)
866 req = PROG_CHUNK;
867 cnt = qib_sd7220_ram_xfer(dd, sdnum, offset + sofar,
868 (u8 *)img + sofar, req, 0);
869 if (cnt < req) {
870 sofar = -1;
871 break;
873 sofar += req;
875 return sofar;
878 #define VFY_CHUNK 64
879 #define SD_PRAM_ERROR_LIMIT 42
881 static int qib_sd7220_prog_vfy(struct qib_devdata *dd, int sdnum,
882 const u8 *img, int len, int offset)
884 int cnt, sofar, req, idx, errors;
885 unsigned char readback[VFY_CHUNK];
887 errors = 0;
888 sofar = 0;
889 while (sofar < len) {
890 req = len - sofar;
891 if (req > VFY_CHUNK)
892 req = VFY_CHUNK;
893 cnt = qib_sd7220_ram_xfer(dd, sdnum, sofar + offset,
894 readback, req, 1);
895 if (cnt < req) {
896 /* failed in read itself */
897 sofar = -1;
898 break;
900 for (idx = 0; idx < cnt; ++idx) {
901 if (readback[idx] != img[idx+sofar])
902 ++errors;
904 sofar += cnt;
906 return errors ? -errors : sofar;
909 static int
910 qib_sd7220_ib_load(struct qib_devdata *dd, const struct firmware *fw)
912 return qib_sd7220_prog_ld(dd, IB_7220_SERDES, fw->data, fw->size, 0);
915 static int
916 qib_sd7220_ib_vfy(struct qib_devdata *dd, const struct firmware *fw)
918 return qib_sd7220_prog_vfy(dd, IB_7220_SERDES, fw->data, fw->size, 0);
922 * IRQ not set up at this point in init, so we poll.
924 #define IB_SERDES_TRIM_DONE (1ULL << 11)
925 #define TRIM_TMO (30)
927 static int qib_sd_trimdone_poll(struct qib_devdata *dd)
929 int trim_tmo, ret;
930 uint64_t val;
933 * Default to failure, so IBC will not start
934 * without IB_SERDES_TRIM_DONE.
936 ret = 0;
937 for (trim_tmo = 0; trim_tmo < TRIM_TMO; ++trim_tmo) {
938 val = qib_read_kreg64(dd, kr_ibcstatus);
939 if (val & IB_SERDES_TRIM_DONE) {
940 ret = 1;
941 break;
943 msleep(10);
945 if (trim_tmo >= TRIM_TMO) {
946 qib_dev_err(dd, "No TRIMDONE in %d tries\n", trim_tmo);
947 ret = 0;
949 return ret;
952 #define TX_FAST_ELT (9)
955 * Set the "negotiation" values for SERDES. These are used by the IB1.2
956 * link negotiation. Macros below are attempt to keep the values a
957 * little more human-editable.
958 * First, values related to Drive De-emphasis Settings.
961 #define NUM_DDS_REGS 6
962 #define DDS_REG_MAP 0x76A910 /* LSB-first list of regs (in elt 9) to mod */
964 #define DDS_VAL(amp_d, main_d, ipst_d, ipre_d, amp_s, main_s, ipst_s, ipre_s) \
965 { { ((amp_d & 0x1F) << 1) | 1, ((amp_s & 0x1F) << 1) | 1, \
966 (main_d << 3) | 4 | (ipre_d >> 2), \
967 (main_s << 3) | 4 | (ipre_s >> 2), \
968 ((ipst_d & 0xF) << 1) | ((ipre_d & 3) << 6) | 0x21, \
969 ((ipst_s & 0xF) << 1) | ((ipre_s & 3) << 6) | 0x21 } }
971 static struct dds_init {
972 uint8_t reg_vals[NUM_DDS_REGS];
973 } dds_init_vals[] = {
974 /* DDR(FDR) SDR(HDR) */
975 /* Vendor recommends below for 3m cable */
976 #define DDS_3M 0
977 DDS_VAL(31, 19, 12, 0, 29, 22, 9, 0),
978 DDS_VAL(31, 12, 15, 4, 31, 15, 15, 1),
979 DDS_VAL(31, 13, 15, 3, 31, 16, 15, 0),
980 DDS_VAL(31, 14, 15, 2, 31, 17, 14, 0),
981 DDS_VAL(31, 15, 15, 1, 31, 18, 13, 0),
982 DDS_VAL(31, 16, 15, 0, 31, 19, 12, 0),
983 DDS_VAL(31, 17, 14, 0, 31, 20, 11, 0),
984 DDS_VAL(31, 18, 13, 0, 30, 21, 10, 0),
985 DDS_VAL(31, 20, 11, 0, 28, 23, 8, 0),
986 DDS_VAL(31, 21, 10, 0, 27, 24, 7, 0),
987 DDS_VAL(31, 22, 9, 0, 26, 25, 6, 0),
988 DDS_VAL(30, 23, 8, 0, 25, 26, 5, 0),
989 DDS_VAL(29, 24, 7, 0, 23, 27, 4, 0),
990 /* Vendor recommends below for 1m cable */
991 #define DDS_1M 13
992 DDS_VAL(28, 25, 6, 0, 21, 28, 3, 0),
993 DDS_VAL(27, 26, 5, 0, 19, 29, 2, 0),
994 DDS_VAL(25, 27, 4, 0, 17, 30, 1, 0)
998 * Now the RXEQ section of the table.
1000 /* Hardware packs an element number and register address thus: */
1001 #define RXEQ_INIT_RDESC(elt, addr) (((elt) & 0xF) | ((addr) << 4))
1002 #define RXEQ_VAL(elt, adr, val0, val1, val2, val3) \
1003 {RXEQ_INIT_RDESC((elt), (adr)), {(val0), (val1), (val2), (val3)} }
1005 #define RXEQ_VAL_ALL(elt, adr, val) \
1006 {RXEQ_INIT_RDESC((elt), (adr)), {(val), (val), (val), (val)} }
1008 #define RXEQ_SDR_DFELTH 0
1009 #define RXEQ_SDR_TLTH 0
1010 #define RXEQ_SDR_G1CNT_Z1CNT 0x11
1011 #define RXEQ_SDR_ZCNT 23
1013 static struct rxeq_init {
1014 u16 rdesc; /* in form used in SerDesDDSRXEQ */
1015 u8 rdata[4];
1016 } rxeq_init_vals[] = {
1017 /* Set Rcv Eq. to Preset node */
1018 RXEQ_VAL_ALL(7, 0x27, 0x10),
1019 /* Set DFELTHFDR/HDR thresholds */
1020 RXEQ_VAL(7, 8, 0, 0, 0, 0), /* FDR, was 0, 1, 2, 3 */
1021 RXEQ_VAL(7, 0x21, 0, 0, 0, 0), /* HDR */
1022 /* Set TLTHFDR/HDR theshold */
1023 RXEQ_VAL(7, 9, 2, 2, 2, 2), /* FDR, was 0, 2, 4, 6 */
1024 RXEQ_VAL(7, 0x23, 2, 2, 2, 2), /* HDR, was 0, 1, 2, 3 */
1025 /* Set Preamp setting 2 (ZFR/ZCNT) */
1026 RXEQ_VAL(7, 0x1B, 12, 12, 12, 12), /* FDR, was 12, 16, 20, 24 */
1027 RXEQ_VAL(7, 0x1C, 12, 12, 12, 12), /* HDR, was 12, 16, 20, 24 */
1028 /* Set Preamp DC gain and Setting 1 (GFR/GHR) */
1029 RXEQ_VAL(7, 0x1E, 16, 16, 16, 16), /* FDR, was 16, 17, 18, 20 */
1030 RXEQ_VAL(7, 0x1F, 16, 16, 16, 16), /* HDR, was 16, 17, 18, 20 */
1031 /* Toggle RELOCK (in VCDL_CTRL0) to lock to data */
1032 RXEQ_VAL_ALL(6, 6, 0x20), /* Set D5 High */
1033 RXEQ_VAL_ALL(6, 6, 0), /* Set D5 Low */
1036 /* There are 17 values from vendor, but IBC only accesses the first 16 */
1037 #define DDS_ROWS (16)
1038 #define RXEQ_ROWS ARRAY_SIZE(rxeq_init_vals)
1040 static int qib_sd_setvals(struct qib_devdata *dd)
1042 int idx, midx;
1043 int min_idx; /* Minimum index for this portion of table */
1044 uint32_t dds_reg_map;
1045 u64 __iomem *taddr, *iaddr;
1046 uint64_t data;
1047 uint64_t sdctl;
1049 taddr = dd->kregbase + kr_serdes_maptable;
1050 iaddr = dd->kregbase + kr_serdes_ddsrxeq0;
1053 * Init the DDS section of the table.
1054 * Each "row" of the table provokes NUM_DDS_REG writes, to the
1055 * registers indicated in DDS_REG_MAP.
1057 sdctl = qib_read_kreg64(dd, kr_ibserdesctrl);
1058 sdctl = (sdctl & ~(0x1f << 8)) | (NUM_DDS_REGS << 8);
1059 sdctl = (sdctl & ~(0x1f << 13)) | (RXEQ_ROWS << 13);
1060 qib_write_kreg(dd, kr_ibserdesctrl, sdctl);
1063 * Iterate down table within loop for each register to store.
1065 dds_reg_map = DDS_REG_MAP;
1066 for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1067 data = ((dds_reg_map & 0xF) << 4) | TX_FAST_ELT;
1068 writeq(data, iaddr + idx);
1069 mmiowb();
1070 qib_read_kreg32(dd, kr_scratch);
1071 dds_reg_map >>= 4;
1072 for (midx = 0; midx < DDS_ROWS; ++midx) {
1073 u64 __iomem *daddr = taddr + ((midx << 4) + idx);
1074 data = dds_init_vals[midx].reg_vals[idx];
1075 writeq(data, daddr);
1076 mmiowb();
1077 qib_read_kreg32(dd, kr_scratch);
1078 } /* End inner for (vals for this reg, each row) */
1079 } /* end outer for (regs to be stored) */
1082 * Init the RXEQ section of the table.
1083 * This runs in a different order, as the pattern of
1084 * register references is more complex, but there are only
1085 * four "data" values per register.
1087 min_idx = idx; /* RXEQ indices pick up where DDS left off */
1088 taddr += 0x100; /* RXEQ data is in second half of table */
1089 /* Iterate through RXEQ register addresses */
1090 for (idx = 0; idx < RXEQ_ROWS; ++idx) {
1091 int didx; /* "destination" */
1092 int vidx;
1094 /* didx is offset by min_idx to address RXEQ range of regs */
1095 didx = idx + min_idx;
1096 /* Store the next RXEQ register address */
1097 writeq(rxeq_init_vals[idx].rdesc, iaddr + didx);
1098 mmiowb();
1099 qib_read_kreg32(dd, kr_scratch);
1100 /* Iterate through RXEQ values */
1101 for (vidx = 0; vidx < 4; vidx++) {
1102 data = rxeq_init_vals[idx].rdata[vidx];
1103 writeq(data, taddr + (vidx << 6) + idx);
1104 mmiowb();
1105 qib_read_kreg32(dd, kr_scratch);
1107 } /* end outer for (Reg-writes for RXEQ) */
1108 return 0;
1111 #define CMUCTRL5 EPB_LOC(7, 0, 0x15)
1112 #define RXHSCTRL0(chan) EPB_LOC(chan, 6, 0)
1113 #define VCDL_DAC2(chan) EPB_LOC(chan, 6, 5)
1114 #define VCDL_CTRL0(chan) EPB_LOC(chan, 6, 6)
1115 #define VCDL_CTRL2(chan) EPB_LOC(chan, 6, 8)
1116 #define START_EQ2(chan) EPB_LOC(chan, 7, 0x28)
1119 * Repeat a "store" across all channels of the IB SerDes.
1120 * Although nominally it inherits the "read value" of the last
1121 * channel it modified, the only really useful return is <0 for
1122 * failure, >= 0 for success. The parameter 'loc' is assumed to
1123 * be the location in some channel of the register to be modified
1124 * The caller can specify use of the "gang write" option of EPB,
1125 * in which case we use the specified channel data for any fields
1126 * not explicitely written.
1128 static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val,
1129 int mask)
1131 int ret = -1;
1132 int chnl;
1134 if (loc & EPB_GLOBAL_WR) {
1136 * Our caller has assured us that we can set all four
1137 * channels at once. Trust that. If mask is not 0xFF,
1138 * we will read the _specified_ channel for our starting
1139 * value.
1141 loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1142 chnl = (loc >> (4 + EPB_ADDR_SHF)) & 7;
1143 if (mask != 0xFF) {
1144 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
1145 loc & ~EPB_GLOBAL_WR, 0, 0);
1146 if (ret < 0) {
1147 int sloc = loc >> EPB_ADDR_SHF;
1149 qib_dev_err(dd,
1150 "pre-read failed: elt %d, addr 0x%X, chnl %d\n",
1151 (sloc & 0xF),
1152 (sloc >> 9) & 0x3f, chnl);
1153 return ret;
1155 val = (ret & ~mask) | (val & mask);
1157 loc &= ~(7 << (4+EPB_ADDR_SHF));
1158 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
1159 if (ret < 0) {
1160 int sloc = loc >> EPB_ADDR_SHF;
1162 qib_dev_err(dd,
1163 "Global WR failed: elt %d, addr 0x%X, val %02X\n",
1164 (sloc & 0xF), (sloc >> 9) & 0x3f, val);
1166 return ret;
1168 /* Clear "channel" and set CS so we can simply iterate */
1169 loc &= ~(7 << (4+EPB_ADDR_SHF));
1170 loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1171 for (chnl = 0; chnl < 4; ++chnl) {
1172 int cloc = loc | (chnl << (4+EPB_ADDR_SHF));
1174 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, cloc, val, mask);
1175 if (ret < 0) {
1176 int sloc = loc >> EPB_ADDR_SHF;
1178 qib_dev_err(dd,
1179 "Write failed: elt %d, addr 0x%X, chnl %d, val 0x%02X, mask 0x%02X\n",
1180 (sloc & 0xF), (sloc >> 9) & 0x3f, chnl,
1181 val & 0xFF, mask & 0xFF);
1182 break;
1185 return ret;
1189 * Set the Tx values normally modified by IBC in IB1.2 mode to default
1190 * values, as gotten from first row of init table.
1192 static int set_dds_vals(struct qib_devdata *dd, struct dds_init *ddi)
1194 int ret;
1195 int idx, reg, data;
1196 uint32_t regmap;
1198 regmap = DDS_REG_MAP;
1199 for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1200 reg = (regmap & 0xF);
1201 regmap >>= 4;
1202 data = ddi->reg_vals[idx];
1203 /* Vendor says RMW not needed for these regs, use 0xFF mask */
1204 ret = ibsd_mod_allchnls(dd, EPB_LOC(0, 9, reg), data, 0xFF);
1205 if (ret < 0)
1206 break;
1208 return ret;
1212 * Set the Rx values normally modified by IBC in IB1.2 mode to default
1213 * values, as gotten from selected column of init table.
1215 static int set_rxeq_vals(struct qib_devdata *dd, int vsel)
1217 int ret;
1218 int ridx;
1219 int cnt = ARRAY_SIZE(rxeq_init_vals);
1221 for (ridx = 0; ridx < cnt; ++ridx) {
1222 int elt, reg, val, loc;
1224 elt = rxeq_init_vals[ridx].rdesc & 0xF;
1225 reg = rxeq_init_vals[ridx].rdesc >> 4;
1226 loc = EPB_LOC(0, elt, reg);
1227 val = rxeq_init_vals[ridx].rdata[vsel];
1228 /* mask of 0xFF, because hardware does full-byte store. */
1229 ret = ibsd_mod_allchnls(dd, loc, val, 0xFF);
1230 if (ret < 0)
1231 break;
1233 return ret;
1237 * Set the default values (row 0) for DDR Driver Demphasis.
1238 * we do this initially and whenever we turn off IB-1.2
1240 * The "default" values for Rx equalization are also stored to
1241 * SerDes registers. Formerly (and still default), we used set 2.
1242 * For experimenting with cables and link-partners, we allow changing
1243 * that via a module parameter.
1245 static unsigned qib_rxeq_set = 2;
1246 module_param_named(rxeq_default_set, qib_rxeq_set, uint,
1247 S_IWUSR | S_IRUGO);
1248 MODULE_PARM_DESC(rxeq_default_set,
1249 "Which set [0..3] of Rx Equalization values is default");
1251 static int qib_internal_presets(struct qib_devdata *dd)
1253 int ret = 0;
1255 ret = set_dds_vals(dd, dds_init_vals + DDS_3M);
1257 if (ret < 0)
1258 qib_dev_err(dd, "Failed to set default DDS values\n");
1259 ret = set_rxeq_vals(dd, qib_rxeq_set & 3);
1260 if (ret < 0)
1261 qib_dev_err(dd, "Failed to set default RXEQ values\n");
1262 return ret;
1265 int qib_sd7220_presets(struct qib_devdata *dd)
1267 int ret = 0;
1269 if (!dd->cspec->presets_needed)
1270 return ret;
1271 dd->cspec->presets_needed = 0;
1272 /* Assert uC reset, so we don't clash with it. */
1273 qib_ibsd_reset(dd, 1);
1274 udelay(2);
1275 qib_sd_trimdone_monitor(dd, "link-down");
1277 ret = qib_internal_presets(dd);
1278 return ret;
1281 static int qib_sd_trimself(struct qib_devdata *dd, int val)
1283 int loc = CMUCTRL5 | (1U << EPB_IB_QUAD0_CS_SHF);
1285 return qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
1288 static int qib_sd_early(struct qib_devdata *dd)
1290 int ret;
1292 ret = ibsd_mod_allchnls(dd, RXHSCTRL0(0) | EPB_GLOBAL_WR, 0xD4, 0xFF);
1293 if (ret < 0)
1294 goto bail;
1295 ret = ibsd_mod_allchnls(dd, START_EQ1(0) | EPB_GLOBAL_WR, 0x10, 0xFF);
1296 if (ret < 0)
1297 goto bail;
1298 ret = ibsd_mod_allchnls(dd, START_EQ2(0) | EPB_GLOBAL_WR, 0x30, 0xFF);
1299 bail:
1300 return ret;
1303 #define BACTRL(chnl) EPB_LOC(chnl, 6, 0x0E)
1304 #define LDOUTCTRL1(chnl) EPB_LOC(chnl, 7, 6)
1305 #define RXHSSTATUS(chnl) EPB_LOC(chnl, 6, 0xF)
1307 static int qib_sd_dactrim(struct qib_devdata *dd)
1309 int ret;
1311 ret = ibsd_mod_allchnls(dd, VCDL_DAC2(0) | EPB_GLOBAL_WR, 0x2D, 0xFF);
1312 if (ret < 0)
1313 goto bail;
1315 /* more fine-tuning of what will be default */
1316 ret = ibsd_mod_allchnls(dd, VCDL_CTRL2(0), 3, 0xF);
1317 if (ret < 0)
1318 goto bail;
1320 ret = ibsd_mod_allchnls(dd, BACTRL(0) | EPB_GLOBAL_WR, 0x40, 0xFF);
1321 if (ret < 0)
1322 goto bail;
1324 ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x04, 0xFF);
1325 if (ret < 0)
1326 goto bail;
1328 ret = ibsd_mod_allchnls(dd, RXHSSTATUS(0) | EPB_GLOBAL_WR, 0x04, 0xFF);
1329 if (ret < 0)
1330 goto bail;
1333 * Delay for max possible number of steps, with slop.
1334 * Each step is about 4usec.
1336 udelay(415);
1338 ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x00, 0xFF);
1340 bail:
1341 return ret;
1344 #define RELOCK_FIRST_MS 3
1345 #define RXLSPPM(chan) EPB_LOC(chan, 0, 2)
1346 void toggle_7220_rclkrls(struct qib_devdata *dd)
1348 int loc = RXLSPPM(0) | EPB_GLOBAL_WR;
1349 int ret;
1351 ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1352 if (ret < 0)
1353 qib_dev_err(dd, "RCLKRLS failed to clear D7\n");
1354 else {
1355 udelay(1);
1356 ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1358 /* And again for good measure */
1359 udelay(1);
1360 ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1361 if (ret < 0)
1362 qib_dev_err(dd, "RCLKRLS failed to clear D7\n");
1363 else {
1364 udelay(1);
1365 ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1367 /* Now reset xgxs and IBC to complete the recovery */
1368 dd->f_xgxs_reset(dd->pport);
1372 * Shut down the timer that polls for relock occasions, if needed
1373 * this is "hooked" from qib_7220_quiet_serdes(), which is called
1374 * just before qib_shutdown_device() in qib_driver.c shuts down all
1375 * the other timers
1377 void shutdown_7220_relock_poll(struct qib_devdata *dd)
1379 if (dd->cspec->relock_timer_active)
1380 del_timer_sync(&dd->cspec->relock_timer);
1383 static unsigned qib_relock_by_timer = 1;
1384 module_param_named(relock_by_timer, qib_relock_by_timer, uint,
1385 S_IWUSR | S_IRUGO);
1386 MODULE_PARM_DESC(relock_by_timer, "Allow relock attempt if link not up");
1388 static void qib_run_relock(unsigned long opaque)
1390 struct qib_devdata *dd = (struct qib_devdata *)opaque;
1391 struct qib_pportdata *ppd = dd->pport;
1392 struct qib_chip_specific *cs = dd->cspec;
1393 int timeoff;
1396 * Check link-training state for "stuck" state, when down.
1397 * if found, try relock and schedule another try at
1398 * exponentially growing delay, maxed at one second.
1399 * if not stuck, our work is done.
1401 if ((dd->flags & QIB_INITTED) && !(ppd->lflags &
1402 (QIBL_IB_AUTONEG_INPROG | QIBL_LINKINIT | QIBL_LINKARMED |
1403 QIBL_LINKACTIVE))) {
1404 if (qib_relock_by_timer) {
1405 if (!(ppd->lflags & QIBL_IB_LINK_DISABLED))
1406 toggle_7220_rclkrls(dd);
1408 /* re-set timer for next check */
1409 timeoff = cs->relock_interval << 1;
1410 if (timeoff > HZ)
1411 timeoff = HZ;
1412 cs->relock_interval = timeoff;
1413 } else
1414 timeoff = HZ;
1415 mod_timer(&cs->relock_timer, jiffies + timeoff);
1418 void set_7220_relock_poll(struct qib_devdata *dd, int ibup)
1420 struct qib_chip_specific *cs = dd->cspec;
1422 if (ibup) {
1423 /* We are now up, relax timer to 1 second interval */
1424 if (cs->relock_timer_active) {
1425 cs->relock_interval = HZ;
1426 mod_timer(&cs->relock_timer, jiffies + HZ);
1428 } else {
1429 /* Transition to down, (re-)set timer to short interval. */
1430 unsigned int timeout;
1432 timeout = msecs_to_jiffies(RELOCK_FIRST_MS);
1433 if (timeout == 0)
1434 timeout = 1;
1435 /* If timer has not yet been started, do so. */
1436 if (!cs->relock_timer_active) {
1437 cs->relock_timer_active = 1;
1438 init_timer(&cs->relock_timer);
1439 cs->relock_timer.function = qib_run_relock;
1440 cs->relock_timer.data = (unsigned long) dd;
1441 cs->relock_interval = timeout;
1442 cs->relock_timer.expires = jiffies + timeout;
1443 add_timer(&cs->relock_timer);
1444 } else {
1445 cs->relock_interval = timeout;
1446 mod_timer(&cs->relock_timer, jiffies + timeout);