2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
22 #define DM_MSG_PREFIX "table"
25 #define NODE_SIZE L1_CACHE_BYTES
26 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
27 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30 struct mapped_device
*md
;
35 unsigned int counts
[MAX_DEPTH
]; /* in nodes */
36 sector_t
*index
[MAX_DEPTH
];
38 unsigned int num_targets
;
39 unsigned int num_allocated
;
41 struct dm_target
*targets
;
43 struct target_type
*immutable_target_type
;
44 unsigned integrity_supported
:1;
48 * Indicates the rw permissions for the new logical
49 * device. This should be a combination of FMODE_READ
54 /* a list of devices used by this table */
55 struct list_head devices
;
57 /* events get handed up using this callback */
58 void (*event_fn
)(void *);
61 struct dm_md_mempools
*mempools
;
63 struct list_head target_callbacks
;
67 * Similar to ceiling(log_size(n))
69 static unsigned int int_log(unsigned int n
, unsigned int base
)
74 n
= dm_div_up(n
, base
);
82 * Calculate the index of the child node of the n'th node k'th key.
84 static inline unsigned int get_child(unsigned int n
, unsigned int k
)
86 return (n
* CHILDREN_PER_NODE
) + k
;
90 * Return the n'th node of level l from table t.
92 static inline sector_t
*get_node(struct dm_table
*t
,
93 unsigned int l
, unsigned int n
)
95 return t
->index
[l
] + (n
* KEYS_PER_NODE
);
99 * Return the highest key that you could lookup from the n'th
100 * node on level l of the btree.
102 static sector_t
high(struct dm_table
*t
, unsigned int l
, unsigned int n
)
104 for (; l
< t
->depth
- 1; l
++)
105 n
= get_child(n
, CHILDREN_PER_NODE
- 1);
107 if (n
>= t
->counts
[l
])
108 return (sector_t
) - 1;
110 return get_node(t
, l
, n
)[KEYS_PER_NODE
- 1];
114 * Fills in a level of the btree based on the highs of the level
117 static int setup_btree_index(unsigned int l
, struct dm_table
*t
)
122 for (n
= 0U; n
< t
->counts
[l
]; n
++) {
123 node
= get_node(t
, l
, n
);
125 for (k
= 0U; k
< KEYS_PER_NODE
; k
++)
126 node
[k
] = high(t
, l
+ 1, get_child(n
, k
));
132 void *dm_vcalloc(unsigned long nmemb
, unsigned long elem_size
)
138 * Check that we're not going to overflow.
140 if (nmemb
> (ULONG_MAX
/ elem_size
))
143 size
= nmemb
* elem_size
;
144 addr
= vzalloc(size
);
148 EXPORT_SYMBOL(dm_vcalloc
);
151 * highs, and targets are managed as dynamic arrays during a
154 static int alloc_targets(struct dm_table
*t
, unsigned int num
)
157 struct dm_target
*n_targets
;
160 * Allocate both the target array and offset array at once.
161 * Append an empty entry to catch sectors beyond the end of
164 n_highs
= (sector_t
*) dm_vcalloc(num
+ 1, sizeof(struct dm_target
) +
169 n_targets
= (struct dm_target
*) (n_highs
+ num
);
171 memset(n_highs
, -1, sizeof(*n_highs
) * num
);
174 t
->num_allocated
= num
;
176 t
->targets
= n_targets
;
181 int dm_table_create(struct dm_table
**result
, fmode_t mode
,
182 unsigned num_targets
, struct mapped_device
*md
)
184 struct dm_table
*t
= kzalloc(sizeof(*t
), GFP_KERNEL
);
189 INIT_LIST_HEAD(&t
->devices
);
190 INIT_LIST_HEAD(&t
->target_callbacks
);
193 num_targets
= KEYS_PER_NODE
;
195 num_targets
= dm_round_up(num_targets
, KEYS_PER_NODE
);
202 if (alloc_targets(t
, num_targets
)) {
213 static void free_devices(struct list_head
*devices
)
215 struct list_head
*tmp
, *next
;
217 list_for_each_safe(tmp
, next
, devices
) {
218 struct dm_dev_internal
*dd
=
219 list_entry(tmp
, struct dm_dev_internal
, list
);
220 DMWARN("dm_table_destroy: dm_put_device call missing for %s",
226 void dm_table_destroy(struct dm_table
*t
)
233 /* free the indexes */
235 vfree(t
->index
[t
->depth
- 2]);
237 /* free the targets */
238 for (i
= 0; i
< t
->num_targets
; i
++) {
239 struct dm_target
*tgt
= t
->targets
+ i
;
244 dm_put_target_type(tgt
->type
);
249 /* free the device list */
250 free_devices(&t
->devices
);
252 dm_free_md_mempools(t
->mempools
);
258 * See if we've already got a device in the list.
260 static struct dm_dev_internal
*find_device(struct list_head
*l
, dev_t dev
)
262 struct dm_dev_internal
*dd
;
264 list_for_each_entry (dd
, l
, list
)
265 if (dd
->dm_dev
.bdev
->bd_dev
== dev
)
272 * Open a device so we can use it as a map destination.
274 static int open_dev(struct dm_dev_internal
*d
, dev_t dev
,
275 struct mapped_device
*md
)
277 static char *_claim_ptr
= "I belong to device-mapper";
278 struct block_device
*bdev
;
282 BUG_ON(d
->dm_dev
.bdev
);
284 bdev
= blkdev_get_by_dev(dev
, d
->dm_dev
.mode
| FMODE_EXCL
, _claim_ptr
);
286 return PTR_ERR(bdev
);
288 r
= bd_link_disk_holder(bdev
, dm_disk(md
));
290 blkdev_put(bdev
, d
->dm_dev
.mode
| FMODE_EXCL
);
294 d
->dm_dev
.bdev
= bdev
;
299 * Close a device that we've been using.
301 static void close_dev(struct dm_dev_internal
*d
, struct mapped_device
*md
)
306 bd_unlink_disk_holder(d
->dm_dev
.bdev
, dm_disk(md
));
307 blkdev_put(d
->dm_dev
.bdev
, d
->dm_dev
.mode
| FMODE_EXCL
);
308 d
->dm_dev
.bdev
= NULL
;
312 * If possible, this checks an area of a destination device is invalid.
314 static int device_area_is_invalid(struct dm_target
*ti
, struct dm_dev
*dev
,
315 sector_t start
, sector_t len
, void *data
)
317 struct request_queue
*q
;
318 struct queue_limits
*limits
= data
;
319 struct block_device
*bdev
= dev
->bdev
;
321 i_size_read(bdev
->bd_inode
) >> SECTOR_SHIFT
;
322 unsigned short logical_block_size_sectors
=
323 limits
->logical_block_size
>> SECTOR_SHIFT
;
324 char b
[BDEVNAME_SIZE
];
327 * Some devices exist without request functions,
328 * such as loop devices not yet bound to backing files.
329 * Forbid the use of such devices.
331 q
= bdev_get_queue(bdev
);
332 if (!q
|| !q
->make_request_fn
) {
333 DMWARN("%s: %s is not yet initialised: "
334 "start=%llu, len=%llu, dev_size=%llu",
335 dm_device_name(ti
->table
->md
), bdevname(bdev
, b
),
336 (unsigned long long)start
,
337 (unsigned long long)len
,
338 (unsigned long long)dev_size
);
345 if ((start
>= dev_size
) || (start
+ len
> dev_size
)) {
346 DMWARN("%s: %s too small for target: "
347 "start=%llu, len=%llu, dev_size=%llu",
348 dm_device_name(ti
->table
->md
), bdevname(bdev
, b
),
349 (unsigned long long)start
,
350 (unsigned long long)len
,
351 (unsigned long long)dev_size
);
355 if (logical_block_size_sectors
<= 1)
358 if (start
& (logical_block_size_sectors
- 1)) {
359 DMWARN("%s: start=%llu not aligned to h/w "
360 "logical block size %u of %s",
361 dm_device_name(ti
->table
->md
),
362 (unsigned long long)start
,
363 limits
->logical_block_size
, bdevname(bdev
, b
));
367 if (len
& (logical_block_size_sectors
- 1)) {
368 DMWARN("%s: len=%llu not aligned to h/w "
369 "logical block size %u of %s",
370 dm_device_name(ti
->table
->md
),
371 (unsigned long long)len
,
372 limits
->logical_block_size
, bdevname(bdev
, b
));
380 * This upgrades the mode on an already open dm_dev, being
381 * careful to leave things as they were if we fail to reopen the
382 * device and not to touch the existing bdev field in case
383 * it is accessed concurrently inside dm_table_any_congested().
385 static int upgrade_mode(struct dm_dev_internal
*dd
, fmode_t new_mode
,
386 struct mapped_device
*md
)
389 struct dm_dev_internal dd_new
, dd_old
;
391 dd_new
= dd_old
= *dd
;
393 dd_new
.dm_dev
.mode
|= new_mode
;
394 dd_new
.dm_dev
.bdev
= NULL
;
396 r
= open_dev(&dd_new
, dd
->dm_dev
.bdev
->bd_dev
, md
);
400 dd
->dm_dev
.mode
|= new_mode
;
401 close_dev(&dd_old
, md
);
407 * Add a device to the list, or just increment the usage count if
408 * it's already present.
410 int dm_get_device(struct dm_target
*ti
, const char *path
, fmode_t mode
,
411 struct dm_dev
**result
)
414 dev_t
uninitialized_var(dev
);
415 struct dm_dev_internal
*dd
;
416 unsigned int major
, minor
;
417 struct dm_table
*t
= ti
->table
;
422 if (sscanf(path
, "%u:%u%c", &major
, &minor
, &dummy
) == 2) {
423 /* Extract the major/minor numbers */
424 dev
= MKDEV(major
, minor
);
425 if (MAJOR(dev
) != major
|| MINOR(dev
) != minor
)
428 /* convert the path to a device */
429 struct block_device
*bdev
= lookup_bdev(path
);
432 return PTR_ERR(bdev
);
437 dd
= find_device(&t
->devices
, dev
);
439 dd
= kmalloc(sizeof(*dd
), GFP_KERNEL
);
443 dd
->dm_dev
.mode
= mode
;
444 dd
->dm_dev
.bdev
= NULL
;
446 if ((r
= open_dev(dd
, dev
, t
->md
))) {
451 format_dev_t(dd
->dm_dev
.name
, dev
);
453 atomic_set(&dd
->count
, 0);
454 list_add(&dd
->list
, &t
->devices
);
456 } else if (dd
->dm_dev
.mode
!= (mode
| dd
->dm_dev
.mode
)) {
457 r
= upgrade_mode(dd
, mode
, t
->md
);
461 atomic_inc(&dd
->count
);
463 *result
= &dd
->dm_dev
;
466 EXPORT_SYMBOL(dm_get_device
);
468 int dm_set_device_limits(struct dm_target
*ti
, struct dm_dev
*dev
,
469 sector_t start
, sector_t len
, void *data
)
471 struct queue_limits
*limits
= data
;
472 struct block_device
*bdev
= dev
->bdev
;
473 struct request_queue
*q
= bdev_get_queue(bdev
);
474 char b
[BDEVNAME_SIZE
];
477 DMWARN("%s: Cannot set limits for nonexistent device %s",
478 dm_device_name(ti
->table
->md
), bdevname(bdev
, b
));
482 if (bdev_stack_limits(limits
, bdev
, start
) < 0)
483 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
484 "physical_block_size=%u, logical_block_size=%u, "
485 "alignment_offset=%u, start=%llu",
486 dm_device_name(ti
->table
->md
), bdevname(bdev
, b
),
487 q
->limits
.physical_block_size
,
488 q
->limits
.logical_block_size
,
489 q
->limits
.alignment_offset
,
490 (unsigned long long) start
<< SECTOR_SHIFT
);
493 * Check if merge fn is supported.
494 * If not we'll force DM to use PAGE_SIZE or
495 * smaller I/O, just to be safe.
497 if (dm_queue_merge_is_compulsory(q
) && !ti
->type
->merge
)
498 blk_limits_max_hw_sectors(limits
,
499 (unsigned int) (PAGE_SIZE
>> 9));
502 EXPORT_SYMBOL_GPL(dm_set_device_limits
);
505 * Decrement a device's use count and remove it if necessary.
507 void dm_put_device(struct dm_target
*ti
, struct dm_dev
*d
)
509 struct dm_dev_internal
*dd
= container_of(d
, struct dm_dev_internal
,
512 if (atomic_dec_and_test(&dd
->count
)) {
513 close_dev(dd
, ti
->table
->md
);
518 EXPORT_SYMBOL(dm_put_device
);
521 * Checks to see if the target joins onto the end of the table.
523 static int adjoin(struct dm_table
*table
, struct dm_target
*ti
)
525 struct dm_target
*prev
;
527 if (!table
->num_targets
)
530 prev
= &table
->targets
[table
->num_targets
- 1];
531 return (ti
->begin
== (prev
->begin
+ prev
->len
));
535 * Used to dynamically allocate the arg array.
537 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
538 * process messages even if some device is suspended. These messages have a
539 * small fixed number of arguments.
541 * On the other hand, dm-switch needs to process bulk data using messages and
542 * excessive use of GFP_NOIO could cause trouble.
544 static char **realloc_argv(unsigned *array_size
, char **old_argv
)
551 new_size
= *array_size
* 2;
557 argv
= kmalloc(new_size
* sizeof(*argv
), gfp
);
559 memcpy(argv
, old_argv
, *array_size
* sizeof(*argv
));
560 *array_size
= new_size
;
568 * Destructively splits up the argument list to pass to ctr.
570 int dm_split_args(int *argc
, char ***argvp
, char *input
)
572 char *start
, *end
= input
, *out
, **argv
= NULL
;
573 unsigned array_size
= 0;
582 argv
= realloc_argv(&array_size
, argv
);
587 /* Skip whitespace */
588 start
= skip_spaces(end
);
591 break; /* success, we hit the end */
593 /* 'out' is used to remove any back-quotes */
596 /* Everything apart from '\0' can be quoted */
597 if (*end
== '\\' && *(end
+ 1)) {
604 break; /* end of token */
609 /* have we already filled the array ? */
610 if ((*argc
+ 1) > array_size
) {
611 argv
= realloc_argv(&array_size
, argv
);
616 /* we know this is whitespace */
620 /* terminate the string and put it in the array */
631 * Impose necessary and sufficient conditions on a devices's table such
632 * that any incoming bio which respects its logical_block_size can be
633 * processed successfully. If it falls across the boundary between
634 * two or more targets, the size of each piece it gets split into must
635 * be compatible with the logical_block_size of the target processing it.
637 static int validate_hardware_logical_block_alignment(struct dm_table
*table
,
638 struct queue_limits
*limits
)
641 * This function uses arithmetic modulo the logical_block_size
642 * (in units of 512-byte sectors).
644 unsigned short device_logical_block_size_sects
=
645 limits
->logical_block_size
>> SECTOR_SHIFT
;
648 * Offset of the start of the next table entry, mod logical_block_size.
650 unsigned short next_target_start
= 0;
653 * Given an aligned bio that extends beyond the end of a
654 * target, how many sectors must the next target handle?
656 unsigned short remaining
= 0;
658 struct dm_target
*uninitialized_var(ti
);
659 struct queue_limits ti_limits
;
663 * Check each entry in the table in turn.
665 while (i
< dm_table_get_num_targets(table
)) {
666 ti
= dm_table_get_target(table
, i
++);
668 blk_set_stacking_limits(&ti_limits
);
670 /* combine all target devices' limits */
671 if (ti
->type
->iterate_devices
)
672 ti
->type
->iterate_devices(ti
, dm_set_device_limits
,
676 * If the remaining sectors fall entirely within this
677 * table entry are they compatible with its logical_block_size?
679 if (remaining
< ti
->len
&&
680 remaining
& ((ti_limits
.logical_block_size
>>
685 (unsigned short) ((next_target_start
+ ti
->len
) &
686 (device_logical_block_size_sects
- 1));
687 remaining
= next_target_start
?
688 device_logical_block_size_sects
- next_target_start
: 0;
692 DMWARN("%s: table line %u (start sect %llu len %llu) "
693 "not aligned to h/w logical block size %u",
694 dm_device_name(table
->md
), i
,
695 (unsigned long long) ti
->begin
,
696 (unsigned long long) ti
->len
,
697 limits
->logical_block_size
);
704 int dm_table_add_target(struct dm_table
*t
, const char *type
,
705 sector_t start
, sector_t len
, char *params
)
707 int r
= -EINVAL
, argc
;
709 struct dm_target
*tgt
;
712 DMERR("%s: target type %s must appear alone in table",
713 dm_device_name(t
->md
), t
->targets
->type
->name
);
717 BUG_ON(t
->num_targets
>= t
->num_allocated
);
719 tgt
= t
->targets
+ t
->num_targets
;
720 memset(tgt
, 0, sizeof(*tgt
));
723 DMERR("%s: zero-length target", dm_device_name(t
->md
));
727 tgt
->type
= dm_get_target_type(type
);
729 DMERR("%s: %s: unknown target type", dm_device_name(t
->md
),
734 if (dm_target_needs_singleton(tgt
->type
)) {
735 if (t
->num_targets
) {
736 DMERR("%s: target type %s must appear alone in table",
737 dm_device_name(t
->md
), type
);
743 if (dm_target_always_writeable(tgt
->type
) && !(t
->mode
& FMODE_WRITE
)) {
744 DMERR("%s: target type %s may not be included in read-only tables",
745 dm_device_name(t
->md
), type
);
749 if (t
->immutable_target_type
) {
750 if (t
->immutable_target_type
!= tgt
->type
) {
751 DMERR("%s: immutable target type %s cannot be mixed with other target types",
752 dm_device_name(t
->md
), t
->immutable_target_type
->name
);
755 } else if (dm_target_is_immutable(tgt
->type
)) {
756 if (t
->num_targets
) {
757 DMERR("%s: immutable target type %s cannot be mixed with other target types",
758 dm_device_name(t
->md
), tgt
->type
->name
);
761 t
->immutable_target_type
= tgt
->type
;
767 tgt
->error
= "Unknown error";
770 * Does this target adjoin the previous one ?
772 if (!adjoin(t
, tgt
)) {
773 tgt
->error
= "Gap in table";
778 r
= dm_split_args(&argc
, &argv
, params
);
780 tgt
->error
= "couldn't split parameters (insufficient memory)";
784 r
= tgt
->type
->ctr(tgt
, argc
, argv
);
789 t
->highs
[t
->num_targets
++] = tgt
->begin
+ tgt
->len
- 1;
791 if (!tgt
->num_discard_bios
&& tgt
->discards_supported
)
792 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
793 dm_device_name(t
->md
), type
);
798 DMERR("%s: %s: %s", dm_device_name(t
->md
), type
, tgt
->error
);
799 dm_put_target_type(tgt
->type
);
804 * Target argument parsing helpers.
806 static int validate_next_arg(struct dm_arg
*arg
, struct dm_arg_set
*arg_set
,
807 unsigned *value
, char **error
, unsigned grouped
)
809 const char *arg_str
= dm_shift_arg(arg_set
);
813 (sscanf(arg_str
, "%u%c", value
, &dummy
) != 1) ||
814 (*value
< arg
->min
) ||
815 (*value
> arg
->max
) ||
816 (grouped
&& arg_set
->argc
< *value
)) {
824 int dm_read_arg(struct dm_arg
*arg
, struct dm_arg_set
*arg_set
,
825 unsigned *value
, char **error
)
827 return validate_next_arg(arg
, arg_set
, value
, error
, 0);
829 EXPORT_SYMBOL(dm_read_arg
);
831 int dm_read_arg_group(struct dm_arg
*arg
, struct dm_arg_set
*arg_set
,
832 unsigned *value
, char **error
)
834 return validate_next_arg(arg
, arg_set
, value
, error
, 1);
836 EXPORT_SYMBOL(dm_read_arg_group
);
838 const char *dm_shift_arg(struct dm_arg_set
*as
)
851 EXPORT_SYMBOL(dm_shift_arg
);
853 void dm_consume_args(struct dm_arg_set
*as
, unsigned num_args
)
855 BUG_ON(as
->argc
< num_args
);
856 as
->argc
-= num_args
;
857 as
->argv
+= num_args
;
859 EXPORT_SYMBOL(dm_consume_args
);
861 static int dm_table_set_type(struct dm_table
*t
)
864 unsigned bio_based
= 0, request_based
= 0, hybrid
= 0;
865 struct dm_target
*tgt
;
866 struct dm_dev_internal
*dd
;
867 struct list_head
*devices
;
868 unsigned live_md_type
;
870 for (i
= 0; i
< t
->num_targets
; i
++) {
871 tgt
= t
->targets
+ i
;
872 if (dm_target_hybrid(tgt
))
874 else if (dm_target_request_based(tgt
))
879 if (bio_based
&& request_based
) {
880 DMWARN("Inconsistent table: different target types"
881 " can't be mixed up");
886 if (hybrid
&& !bio_based
&& !request_based
) {
888 * The targets can work either way.
889 * Determine the type from the live device.
890 * Default to bio-based if device is new.
892 live_md_type
= dm_get_md_type(t
->md
);
893 if (live_md_type
== DM_TYPE_REQUEST_BASED
)
900 /* We must use this table as bio-based */
901 t
->type
= DM_TYPE_BIO_BASED
;
905 BUG_ON(!request_based
); /* No targets in this table */
907 /* Non-request-stackable devices can't be used for request-based dm */
908 devices
= dm_table_get_devices(t
);
909 list_for_each_entry(dd
, devices
, list
) {
910 if (!blk_queue_stackable(bdev_get_queue(dd
->dm_dev
.bdev
))) {
911 DMWARN("table load rejected: including"
912 " non-request-stackable devices");
918 * Request-based dm supports only tables that have a single target now.
919 * To support multiple targets, request splitting support is needed,
920 * and that needs lots of changes in the block-layer.
921 * (e.g. request completion process for partial completion.)
923 if (t
->num_targets
> 1) {
924 DMWARN("Request-based dm doesn't support multiple targets yet");
928 t
->type
= DM_TYPE_REQUEST_BASED
;
933 unsigned dm_table_get_type(struct dm_table
*t
)
938 struct target_type
*dm_table_get_immutable_target_type(struct dm_table
*t
)
940 return t
->immutable_target_type
;
943 bool dm_table_request_based(struct dm_table
*t
)
945 return dm_table_get_type(t
) == DM_TYPE_REQUEST_BASED
;
948 int dm_table_alloc_md_mempools(struct dm_table
*t
)
950 unsigned type
= dm_table_get_type(t
);
951 unsigned per_bio_data_size
= 0;
952 struct dm_target
*tgt
;
955 if (unlikely(type
== DM_TYPE_NONE
)) {
956 DMWARN("no table type is set, can't allocate mempools");
960 if (type
== DM_TYPE_BIO_BASED
)
961 for (i
= 0; i
< t
->num_targets
; i
++) {
962 tgt
= t
->targets
+ i
;
963 per_bio_data_size
= max(per_bio_data_size
, tgt
->per_bio_data_size
);
966 t
->mempools
= dm_alloc_md_mempools(type
, t
->integrity_supported
, per_bio_data_size
);
973 void dm_table_free_md_mempools(struct dm_table
*t
)
975 dm_free_md_mempools(t
->mempools
);
979 struct dm_md_mempools
*dm_table_get_md_mempools(struct dm_table
*t
)
984 static int setup_indexes(struct dm_table
*t
)
987 unsigned int total
= 0;
990 /* allocate the space for *all* the indexes */
991 for (i
= t
->depth
- 2; i
>= 0; i
--) {
992 t
->counts
[i
] = dm_div_up(t
->counts
[i
+ 1], CHILDREN_PER_NODE
);
993 total
+= t
->counts
[i
];
996 indexes
= (sector_t
*) dm_vcalloc(total
, (unsigned long) NODE_SIZE
);
1000 /* set up internal nodes, bottom-up */
1001 for (i
= t
->depth
- 2; i
>= 0; i
--) {
1002 t
->index
[i
] = indexes
;
1003 indexes
+= (KEYS_PER_NODE
* t
->counts
[i
]);
1004 setup_btree_index(i
, t
);
1011 * Builds the btree to index the map.
1013 static int dm_table_build_index(struct dm_table
*t
)
1016 unsigned int leaf_nodes
;
1018 /* how many indexes will the btree have ? */
1019 leaf_nodes
= dm_div_up(t
->num_targets
, KEYS_PER_NODE
);
1020 t
->depth
= 1 + int_log(leaf_nodes
, CHILDREN_PER_NODE
);
1022 /* leaf layer has already been set up */
1023 t
->counts
[t
->depth
- 1] = leaf_nodes
;
1024 t
->index
[t
->depth
- 1] = t
->highs
;
1027 r
= setup_indexes(t
);
1033 * Get a disk whose integrity profile reflects the table's profile.
1034 * If %match_all is true, all devices' profiles must match.
1035 * If %match_all is false, all devices must at least have an
1036 * allocated integrity profile; but uninitialized is ok.
1037 * Returns NULL if integrity support was inconsistent or unavailable.
1039 static struct gendisk
* dm_table_get_integrity_disk(struct dm_table
*t
,
1042 struct list_head
*devices
= dm_table_get_devices(t
);
1043 struct dm_dev_internal
*dd
= NULL
;
1044 struct gendisk
*prev_disk
= NULL
, *template_disk
= NULL
;
1046 list_for_each_entry(dd
, devices
, list
) {
1047 template_disk
= dd
->dm_dev
.bdev
->bd_disk
;
1048 if (!blk_get_integrity(template_disk
))
1050 if (!match_all
&& !blk_integrity_is_initialized(template_disk
))
1051 continue; /* skip uninitialized profiles */
1052 else if (prev_disk
&&
1053 blk_integrity_compare(prev_disk
, template_disk
) < 0)
1055 prev_disk
= template_disk
;
1058 return template_disk
;
1062 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1063 dm_device_name(t
->md
),
1064 prev_disk
->disk_name
,
1065 template_disk
->disk_name
);
1070 * Register the mapped device for blk_integrity support if
1071 * the underlying devices have an integrity profile. But all devices
1072 * may not have matching profiles (checking all devices isn't reliable
1073 * during table load because this table may use other DM device(s) which
1074 * must be resumed before they will have an initialized integity profile).
1075 * Stacked DM devices force a 2 stage integrity profile validation:
1076 * 1 - during load, validate all initialized integrity profiles match
1077 * 2 - during resume, validate all integrity profiles match
1079 static int dm_table_prealloc_integrity(struct dm_table
*t
, struct mapped_device
*md
)
1081 struct gendisk
*template_disk
= NULL
;
1083 template_disk
= dm_table_get_integrity_disk(t
, false);
1087 if (!blk_integrity_is_initialized(dm_disk(md
))) {
1088 t
->integrity_supported
= 1;
1089 return blk_integrity_register(dm_disk(md
), NULL
);
1093 * If DM device already has an initalized integrity
1094 * profile the new profile should not conflict.
1096 if (blk_integrity_is_initialized(template_disk
) &&
1097 blk_integrity_compare(dm_disk(md
), template_disk
) < 0) {
1098 DMWARN("%s: conflict with existing integrity profile: "
1099 "%s profile mismatch",
1100 dm_device_name(t
->md
),
1101 template_disk
->disk_name
);
1105 /* Preserve existing initialized integrity profile */
1106 t
->integrity_supported
= 1;
1111 * Prepares the table for use by building the indices,
1112 * setting the type, and allocating mempools.
1114 int dm_table_complete(struct dm_table
*t
)
1118 r
= dm_table_set_type(t
);
1120 DMERR("unable to set table type");
1124 r
= dm_table_build_index(t
);
1126 DMERR("unable to build btrees");
1130 r
= dm_table_prealloc_integrity(t
, t
->md
);
1132 DMERR("could not register integrity profile.");
1136 r
= dm_table_alloc_md_mempools(t
);
1138 DMERR("unable to allocate mempools");
1143 static DEFINE_MUTEX(_event_lock
);
1144 void dm_table_event_callback(struct dm_table
*t
,
1145 void (*fn
)(void *), void *context
)
1147 mutex_lock(&_event_lock
);
1149 t
->event_context
= context
;
1150 mutex_unlock(&_event_lock
);
1153 void dm_table_event(struct dm_table
*t
)
1156 * You can no longer call dm_table_event() from interrupt
1157 * context, use a bottom half instead.
1159 BUG_ON(in_interrupt());
1161 mutex_lock(&_event_lock
);
1163 t
->event_fn(t
->event_context
);
1164 mutex_unlock(&_event_lock
);
1166 EXPORT_SYMBOL(dm_table_event
);
1168 sector_t
dm_table_get_size(struct dm_table
*t
)
1170 return t
->num_targets
? (t
->highs
[t
->num_targets
- 1] + 1) : 0;
1172 EXPORT_SYMBOL(dm_table_get_size
);
1174 struct dm_target
*dm_table_get_target(struct dm_table
*t
, unsigned int index
)
1176 if (index
>= t
->num_targets
)
1179 return t
->targets
+ index
;
1183 * Search the btree for the correct target.
1185 * Caller should check returned pointer with dm_target_is_valid()
1186 * to trap I/O beyond end of device.
1188 struct dm_target
*dm_table_find_target(struct dm_table
*t
, sector_t sector
)
1190 unsigned int l
, n
= 0, k
= 0;
1193 for (l
= 0; l
< t
->depth
; l
++) {
1194 n
= get_child(n
, k
);
1195 node
= get_node(t
, l
, n
);
1197 for (k
= 0; k
< KEYS_PER_NODE
; k
++)
1198 if (node
[k
] >= sector
)
1202 return &t
->targets
[(KEYS_PER_NODE
* n
) + k
];
1205 static int count_device(struct dm_target
*ti
, struct dm_dev
*dev
,
1206 sector_t start
, sector_t len
, void *data
)
1208 unsigned *num_devices
= data
;
1216 * Check whether a table has no data devices attached using each
1217 * target's iterate_devices method.
1218 * Returns false if the result is unknown because a target doesn't
1219 * support iterate_devices.
1221 bool dm_table_has_no_data_devices(struct dm_table
*table
)
1223 struct dm_target
*uninitialized_var(ti
);
1224 unsigned i
= 0, num_devices
= 0;
1226 while (i
< dm_table_get_num_targets(table
)) {
1227 ti
= dm_table_get_target(table
, i
++);
1229 if (!ti
->type
->iterate_devices
)
1232 ti
->type
->iterate_devices(ti
, count_device
, &num_devices
);
1241 * Establish the new table's queue_limits and validate them.
1243 int dm_calculate_queue_limits(struct dm_table
*table
,
1244 struct queue_limits
*limits
)
1246 struct dm_target
*uninitialized_var(ti
);
1247 struct queue_limits ti_limits
;
1250 blk_set_stacking_limits(limits
);
1252 while (i
< dm_table_get_num_targets(table
)) {
1253 blk_set_stacking_limits(&ti_limits
);
1255 ti
= dm_table_get_target(table
, i
++);
1257 if (!ti
->type
->iterate_devices
)
1258 goto combine_limits
;
1261 * Combine queue limits of all the devices this target uses.
1263 ti
->type
->iterate_devices(ti
, dm_set_device_limits
,
1266 /* Set I/O hints portion of queue limits */
1267 if (ti
->type
->io_hints
)
1268 ti
->type
->io_hints(ti
, &ti_limits
);
1271 * Check each device area is consistent with the target's
1272 * overall queue limits.
1274 if (ti
->type
->iterate_devices(ti
, device_area_is_invalid
,
1280 * Merge this target's queue limits into the overall limits
1283 if (blk_stack_limits(limits
, &ti_limits
, 0) < 0)
1284 DMWARN("%s: adding target device "
1285 "(start sect %llu len %llu) "
1286 "caused an alignment inconsistency",
1287 dm_device_name(table
->md
),
1288 (unsigned long long) ti
->begin
,
1289 (unsigned long long) ti
->len
);
1292 return validate_hardware_logical_block_alignment(table
, limits
);
1296 * Set the integrity profile for this device if all devices used have
1297 * matching profiles. We're quite deep in the resume path but still
1298 * don't know if all devices (particularly DM devices this device
1299 * may be stacked on) have matching profiles. Even if the profiles
1300 * don't match we have no way to fail (to resume) at this point.
1302 static void dm_table_set_integrity(struct dm_table
*t
)
1304 struct gendisk
*template_disk
= NULL
;
1306 if (!blk_get_integrity(dm_disk(t
->md
)))
1309 template_disk
= dm_table_get_integrity_disk(t
, true);
1311 blk_integrity_register(dm_disk(t
->md
),
1312 blk_get_integrity(template_disk
));
1313 else if (blk_integrity_is_initialized(dm_disk(t
->md
)))
1314 DMWARN("%s: device no longer has a valid integrity profile",
1315 dm_device_name(t
->md
));
1317 DMWARN("%s: unable to establish an integrity profile",
1318 dm_device_name(t
->md
));
1321 static int device_flush_capable(struct dm_target
*ti
, struct dm_dev
*dev
,
1322 sector_t start
, sector_t len
, void *data
)
1324 unsigned flush
= (*(unsigned *)data
);
1325 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1327 return q
&& (q
->flush_flags
& flush
);
1330 static bool dm_table_supports_flush(struct dm_table
*t
, unsigned flush
)
1332 struct dm_target
*ti
;
1336 * Require at least one underlying device to support flushes.
1337 * t->devices includes internal dm devices such as mirror logs
1338 * so we need to use iterate_devices here, which targets
1339 * supporting flushes must provide.
1341 while (i
< dm_table_get_num_targets(t
)) {
1342 ti
= dm_table_get_target(t
, i
++);
1344 if (!ti
->num_flush_bios
)
1347 if (ti
->flush_supported
)
1350 if (ti
->type
->iterate_devices
&&
1351 ti
->type
->iterate_devices(ti
, device_flush_capable
, &flush
))
1358 static bool dm_table_discard_zeroes_data(struct dm_table
*t
)
1360 struct dm_target
*ti
;
1363 /* Ensure that all targets supports discard_zeroes_data. */
1364 while (i
< dm_table_get_num_targets(t
)) {
1365 ti
= dm_table_get_target(t
, i
++);
1367 if (ti
->discard_zeroes_data_unsupported
)
1374 static int device_is_nonrot(struct dm_target
*ti
, struct dm_dev
*dev
,
1375 sector_t start
, sector_t len
, void *data
)
1377 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1379 return q
&& blk_queue_nonrot(q
);
1382 static int device_is_not_random(struct dm_target
*ti
, struct dm_dev
*dev
,
1383 sector_t start
, sector_t len
, void *data
)
1385 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1387 return q
&& !blk_queue_add_random(q
);
1390 static bool dm_table_all_devices_attribute(struct dm_table
*t
,
1391 iterate_devices_callout_fn func
)
1393 struct dm_target
*ti
;
1396 while (i
< dm_table_get_num_targets(t
)) {
1397 ti
= dm_table_get_target(t
, i
++);
1399 if (!ti
->type
->iterate_devices
||
1400 !ti
->type
->iterate_devices(ti
, func
, NULL
))
1407 static int device_not_write_same_capable(struct dm_target
*ti
, struct dm_dev
*dev
,
1408 sector_t start
, sector_t len
, void *data
)
1410 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1412 return q
&& !q
->limits
.max_write_same_sectors
;
1415 static bool dm_table_supports_write_same(struct dm_table
*t
)
1417 struct dm_target
*ti
;
1420 while (i
< dm_table_get_num_targets(t
)) {
1421 ti
= dm_table_get_target(t
, i
++);
1423 if (!ti
->num_write_same_bios
)
1426 if (!ti
->type
->iterate_devices
||
1427 ti
->type
->iterate_devices(ti
, device_not_write_same_capable
, NULL
))
1434 void dm_table_set_restrictions(struct dm_table
*t
, struct request_queue
*q
,
1435 struct queue_limits
*limits
)
1440 * Copy table's limits to the DM device's request_queue
1442 q
->limits
= *limits
;
1444 if (!dm_table_supports_discards(t
))
1445 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
, q
);
1447 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, q
);
1449 if (dm_table_supports_flush(t
, REQ_FLUSH
)) {
1451 if (dm_table_supports_flush(t
, REQ_FUA
))
1454 blk_queue_flush(q
, flush
);
1456 if (!dm_table_discard_zeroes_data(t
))
1457 q
->limits
.discard_zeroes_data
= 0;
1459 /* Ensure that all underlying devices are non-rotational. */
1460 if (dm_table_all_devices_attribute(t
, device_is_nonrot
))
1461 queue_flag_set_unlocked(QUEUE_FLAG_NONROT
, q
);
1463 queue_flag_clear_unlocked(QUEUE_FLAG_NONROT
, q
);
1465 if (!dm_table_supports_write_same(t
))
1466 q
->limits
.max_write_same_sectors
= 0;
1468 dm_table_set_integrity(t
);
1471 * Determine whether or not this queue's I/O timings contribute
1472 * to the entropy pool, Only request-based targets use this.
1473 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
1476 if (blk_queue_add_random(q
) && dm_table_all_devices_attribute(t
, device_is_not_random
))
1477 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM
, q
);
1480 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
1481 * visible to other CPUs because, once the flag is set, incoming bios
1482 * are processed by request-based dm, which refers to the queue
1484 * Until the flag set, bios are passed to bio-based dm and queued to
1485 * md->deferred where queue settings are not needed yet.
1486 * Those bios are passed to request-based dm at the resume time.
1489 if (dm_table_request_based(t
))
1490 queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE
, q
);
1493 unsigned int dm_table_get_num_targets(struct dm_table
*t
)
1495 return t
->num_targets
;
1498 struct list_head
*dm_table_get_devices(struct dm_table
*t
)
1503 fmode_t
dm_table_get_mode(struct dm_table
*t
)
1507 EXPORT_SYMBOL(dm_table_get_mode
);
1509 static void suspend_targets(struct dm_table
*t
, unsigned postsuspend
)
1511 int i
= t
->num_targets
;
1512 struct dm_target
*ti
= t
->targets
;
1516 if (ti
->type
->postsuspend
)
1517 ti
->type
->postsuspend(ti
);
1518 } else if (ti
->type
->presuspend
)
1519 ti
->type
->presuspend(ti
);
1525 void dm_table_presuspend_targets(struct dm_table
*t
)
1530 suspend_targets(t
, 0);
1533 void dm_table_postsuspend_targets(struct dm_table
*t
)
1538 suspend_targets(t
, 1);
1541 int dm_table_resume_targets(struct dm_table
*t
)
1545 for (i
= 0; i
< t
->num_targets
; i
++) {
1546 struct dm_target
*ti
= t
->targets
+ i
;
1548 if (!ti
->type
->preresume
)
1551 r
= ti
->type
->preresume(ti
);
1553 DMERR("%s: %s: preresume failed, error = %d",
1554 dm_device_name(t
->md
), ti
->type
->name
, r
);
1559 for (i
= 0; i
< t
->num_targets
; i
++) {
1560 struct dm_target
*ti
= t
->targets
+ i
;
1562 if (ti
->type
->resume
)
1563 ti
->type
->resume(ti
);
1569 void dm_table_add_target_callbacks(struct dm_table
*t
, struct dm_target_callbacks
*cb
)
1571 list_add(&cb
->list
, &t
->target_callbacks
);
1573 EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks
);
1575 int dm_table_any_congested(struct dm_table
*t
, int bdi_bits
)
1577 struct dm_dev_internal
*dd
;
1578 struct list_head
*devices
= dm_table_get_devices(t
);
1579 struct dm_target_callbacks
*cb
;
1582 list_for_each_entry(dd
, devices
, list
) {
1583 struct request_queue
*q
= bdev_get_queue(dd
->dm_dev
.bdev
);
1584 char b
[BDEVNAME_SIZE
];
1587 r
|= bdi_congested(&q
->backing_dev_info
, bdi_bits
);
1589 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1590 dm_device_name(t
->md
),
1591 bdevname(dd
->dm_dev
.bdev
, b
));
1594 list_for_each_entry(cb
, &t
->target_callbacks
, list
)
1595 if (cb
->congested_fn
)
1596 r
|= cb
->congested_fn(cb
, bdi_bits
);
1601 int dm_table_any_busy_target(struct dm_table
*t
)
1604 struct dm_target
*ti
;
1606 for (i
= 0; i
< t
->num_targets
; i
++) {
1607 ti
= t
->targets
+ i
;
1608 if (ti
->type
->busy
&& ti
->type
->busy(ti
))
1615 struct mapped_device
*dm_table_get_md(struct dm_table
*t
)
1619 EXPORT_SYMBOL(dm_table_get_md
);
1621 static int device_discard_capable(struct dm_target
*ti
, struct dm_dev
*dev
,
1622 sector_t start
, sector_t len
, void *data
)
1624 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
1626 return q
&& blk_queue_discard(q
);
1629 bool dm_table_supports_discards(struct dm_table
*t
)
1631 struct dm_target
*ti
;
1635 * Unless any target used by the table set discards_supported,
1636 * require at least one underlying device to support discards.
1637 * t->devices includes internal dm devices such as mirror logs
1638 * so we need to use iterate_devices here, which targets
1639 * supporting discard selectively must provide.
1641 while (i
< dm_table_get_num_targets(t
)) {
1642 ti
= dm_table_get_target(t
, i
++);
1644 if (!ti
->num_discard_bios
)
1647 if (ti
->discards_supported
)
1650 if (ti
->type
->iterate_devices
&&
1651 ti
->type
->iterate_devices(ti
, device_discard_capable
, NULL
))