2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
19 #define DM_MSG_PREFIX "thin"
24 #define ENDIO_HOOK_POOL_SIZE 1024
25 #define MAPPING_POOL_SIZE 1024
26 #define PRISON_CELLS 1024
27 #define COMMIT_PERIOD HZ
29 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle
,
30 "A percentage of time allocated for copy on write");
33 * The block size of the device holding pool data must be
34 * between 64KB and 1GB.
36 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
37 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
40 * Device id is restricted to 24 bits.
42 #define MAX_DEV_ID ((1 << 24) - 1)
45 * How do we handle breaking sharing of data blocks?
46 * =================================================
48 * We use a standard copy-on-write btree to store the mappings for the
49 * devices (note I'm talking about copy-on-write of the metadata here, not
50 * the data). When you take an internal snapshot you clone the root node
51 * of the origin btree. After this there is no concept of an origin or a
52 * snapshot. They are just two device trees that happen to point to the
55 * When we get a write in we decide if it's to a shared data block using
56 * some timestamp magic. If it is, we have to break sharing.
58 * Let's say we write to a shared block in what was the origin. The
61 * i) plug io further to this physical block. (see bio_prison code).
63 * ii) quiesce any read io to that shared data block. Obviously
64 * including all devices that share this block. (see dm_deferred_set code)
66 * iii) copy the data block to a newly allocate block. This step can be
67 * missed out if the io covers the block. (schedule_copy).
69 * iv) insert the new mapping into the origin's btree
70 * (process_prepared_mapping). This act of inserting breaks some
71 * sharing of btree nodes between the two devices. Breaking sharing only
72 * effects the btree of that specific device. Btrees for the other
73 * devices that share the block never change. The btree for the origin
74 * device as it was after the last commit is untouched, ie. we're using
75 * persistent data structures in the functional programming sense.
77 * v) unplug io to this physical block, including the io that triggered
78 * the breaking of sharing.
80 * Steps (ii) and (iii) occur in parallel.
82 * The metadata _doesn't_ need to be committed before the io continues. We
83 * get away with this because the io is always written to a _new_ block.
84 * If there's a crash, then:
86 * - The origin mapping will point to the old origin block (the shared
87 * one). This will contain the data as it was before the io that triggered
88 * the breaking of sharing came in.
90 * - The snap mapping still points to the old block. As it would after
93 * The downside of this scheme is the timestamp magic isn't perfect, and
94 * will continue to think that data block in the snapshot device is shared
95 * even after the write to the origin has broken sharing. I suspect data
96 * blocks will typically be shared by many different devices, so we're
97 * breaking sharing n + 1 times, rather than n, where n is the number of
98 * devices that reference this data block. At the moment I think the
99 * benefits far, far outweigh the disadvantages.
102 /*----------------------------------------------------------------*/
107 static void build_data_key(struct dm_thin_device
*td
,
108 dm_block_t b
, struct dm_cell_key
*key
)
111 key
->dev
= dm_thin_dev_id(td
);
115 static void build_virtual_key(struct dm_thin_device
*td
, dm_block_t b
,
116 struct dm_cell_key
*key
)
119 key
->dev
= dm_thin_dev_id(td
);
123 /*----------------------------------------------------------------*/
126 * A pool device ties together a metadata device and a data device. It
127 * also provides the interface for creating and destroying internal
130 struct dm_thin_new_mapping
;
133 * The pool runs in 3 modes. Ordered in degraded order for comparisons.
136 PM_WRITE
, /* metadata may be changed */
137 PM_READ_ONLY
, /* metadata may not be changed */
138 PM_FAIL
, /* all I/O fails */
141 struct pool_features
{
144 bool zero_new_blocks
:1;
145 bool discard_enabled
:1;
146 bool discard_passdown
:1;
147 bool error_if_no_space
:1;
151 typedef void (*process_bio_fn
)(struct thin_c
*tc
, struct bio
*bio
);
152 typedef void (*process_mapping_fn
)(struct dm_thin_new_mapping
*m
);
155 struct list_head list
;
156 struct dm_target
*ti
; /* Only set if a pool target is bound */
158 struct mapped_device
*pool_md
;
159 struct block_device
*md_dev
;
160 struct dm_pool_metadata
*pmd
;
162 dm_block_t low_water_blocks
;
163 uint32_t sectors_per_block
;
164 int sectors_per_block_shift
;
166 struct pool_features pf
;
167 bool low_water_triggered
:1; /* A dm event has been sent */
169 struct dm_bio_prison
*prison
;
170 struct dm_kcopyd_client
*copier
;
172 struct workqueue_struct
*wq
;
173 struct work_struct worker
;
174 struct delayed_work waker
;
176 unsigned long last_commit_jiffies
;
180 struct bio_list deferred_bios
;
181 struct bio_list deferred_flush_bios
;
182 struct list_head prepared_mappings
;
183 struct list_head prepared_discards
;
185 struct bio_list retry_on_resume_list
;
187 struct dm_deferred_set
*shared_read_ds
;
188 struct dm_deferred_set
*all_io_ds
;
190 struct dm_thin_new_mapping
*next_mapping
;
191 mempool_t
*mapping_pool
;
193 process_bio_fn process_bio
;
194 process_bio_fn process_discard
;
196 process_mapping_fn process_prepared_mapping
;
197 process_mapping_fn process_prepared_discard
;
200 static enum pool_mode
get_pool_mode(struct pool
*pool
);
201 static void out_of_data_space(struct pool
*pool
);
202 static void metadata_operation_failed(struct pool
*pool
, const char *op
, int r
);
205 * Target context for a pool.
208 struct dm_target
*ti
;
210 struct dm_dev
*data_dev
;
211 struct dm_dev
*metadata_dev
;
212 struct dm_target_callbacks callbacks
;
214 dm_block_t low_water_blocks
;
215 struct pool_features requested_pf
; /* Features requested during table load */
216 struct pool_features adjusted_pf
; /* Features used after adjusting for constituent devices */
220 * Target context for a thin.
223 struct dm_dev
*pool_dev
;
224 struct dm_dev
*origin_dev
;
228 struct dm_thin_device
*td
;
231 /*----------------------------------------------------------------*/
234 * wake_worker() is used when new work is queued and when pool_resume is
235 * ready to continue deferred IO processing.
237 static void wake_worker(struct pool
*pool
)
239 queue_work(pool
->wq
, &pool
->worker
);
242 /*----------------------------------------------------------------*/
244 static int bio_detain(struct pool
*pool
, struct dm_cell_key
*key
, struct bio
*bio
,
245 struct dm_bio_prison_cell
**cell_result
)
248 struct dm_bio_prison_cell
*cell_prealloc
;
251 * Allocate a cell from the prison's mempool.
252 * This might block but it can't fail.
254 cell_prealloc
= dm_bio_prison_alloc_cell(pool
->prison
, GFP_NOIO
);
256 r
= dm_bio_detain(pool
->prison
, key
, bio
, cell_prealloc
, cell_result
);
259 * We reused an old cell; we can get rid of
262 dm_bio_prison_free_cell(pool
->prison
, cell_prealloc
);
267 static void cell_release(struct pool
*pool
,
268 struct dm_bio_prison_cell
*cell
,
269 struct bio_list
*bios
)
271 dm_cell_release(pool
->prison
, cell
, bios
);
272 dm_bio_prison_free_cell(pool
->prison
, cell
);
275 static void cell_release_no_holder(struct pool
*pool
,
276 struct dm_bio_prison_cell
*cell
,
277 struct bio_list
*bios
)
279 dm_cell_release_no_holder(pool
->prison
, cell
, bios
);
280 dm_bio_prison_free_cell(pool
->prison
, cell
);
283 static void cell_defer_no_holder_no_free(struct thin_c
*tc
,
284 struct dm_bio_prison_cell
*cell
)
286 struct pool
*pool
= tc
->pool
;
289 spin_lock_irqsave(&pool
->lock
, flags
);
290 dm_cell_release_no_holder(pool
->prison
, cell
, &pool
->deferred_bios
);
291 spin_unlock_irqrestore(&pool
->lock
, flags
);
296 static void cell_error(struct pool
*pool
,
297 struct dm_bio_prison_cell
*cell
)
299 dm_cell_error(pool
->prison
, cell
);
300 dm_bio_prison_free_cell(pool
->prison
, cell
);
303 /*----------------------------------------------------------------*/
306 * A global list of pools that uses a struct mapped_device as a key.
308 static struct dm_thin_pool_table
{
310 struct list_head pools
;
311 } dm_thin_pool_table
;
313 static void pool_table_init(void)
315 mutex_init(&dm_thin_pool_table
.mutex
);
316 INIT_LIST_HEAD(&dm_thin_pool_table
.pools
);
319 static void __pool_table_insert(struct pool
*pool
)
321 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
322 list_add(&pool
->list
, &dm_thin_pool_table
.pools
);
325 static void __pool_table_remove(struct pool
*pool
)
327 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
328 list_del(&pool
->list
);
331 static struct pool
*__pool_table_lookup(struct mapped_device
*md
)
333 struct pool
*pool
= NULL
, *tmp
;
335 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
337 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
338 if (tmp
->pool_md
== md
) {
347 static struct pool
*__pool_table_lookup_metadata_dev(struct block_device
*md_dev
)
349 struct pool
*pool
= NULL
, *tmp
;
351 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
353 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
354 if (tmp
->md_dev
== md_dev
) {
363 /*----------------------------------------------------------------*/
365 struct dm_thin_endio_hook
{
367 struct dm_deferred_entry
*shared_read_entry
;
368 struct dm_deferred_entry
*all_io_entry
;
369 struct dm_thin_new_mapping
*overwrite_mapping
;
372 static void __requeue_bio_list(struct thin_c
*tc
, struct bio_list
*master
)
375 struct bio_list bios
;
377 bio_list_init(&bios
);
378 bio_list_merge(&bios
, master
);
379 bio_list_init(master
);
381 while ((bio
= bio_list_pop(&bios
))) {
382 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
385 bio_endio(bio
, DM_ENDIO_REQUEUE
);
387 bio_list_add(master
, bio
);
391 static void requeue_io(struct thin_c
*tc
)
393 struct pool
*pool
= tc
->pool
;
396 spin_lock_irqsave(&pool
->lock
, flags
);
397 __requeue_bio_list(tc
, &pool
->deferred_bios
);
398 __requeue_bio_list(tc
, &pool
->retry_on_resume_list
);
399 spin_unlock_irqrestore(&pool
->lock
, flags
);
403 * This section of code contains the logic for processing a thin device's IO.
404 * Much of the code depends on pool object resources (lists, workqueues, etc)
405 * but most is exclusively called from the thin target rather than the thin-pool
409 static bool block_size_is_power_of_two(struct pool
*pool
)
411 return pool
->sectors_per_block_shift
>= 0;
414 static dm_block_t
get_bio_block(struct thin_c
*tc
, struct bio
*bio
)
416 struct pool
*pool
= tc
->pool
;
417 sector_t block_nr
= bio
->bi_iter
.bi_sector
;
419 if (block_size_is_power_of_two(pool
))
420 block_nr
>>= pool
->sectors_per_block_shift
;
422 (void) sector_div(block_nr
, pool
->sectors_per_block
);
427 static void remap(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
)
429 struct pool
*pool
= tc
->pool
;
430 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
432 bio
->bi_bdev
= tc
->pool_dev
->bdev
;
433 if (block_size_is_power_of_two(pool
))
434 bio
->bi_iter
.bi_sector
=
435 (block
<< pool
->sectors_per_block_shift
) |
436 (bi_sector
& (pool
->sectors_per_block
- 1));
438 bio
->bi_iter
.bi_sector
= (block
* pool
->sectors_per_block
) +
439 sector_div(bi_sector
, pool
->sectors_per_block
);
442 static void remap_to_origin(struct thin_c
*tc
, struct bio
*bio
)
444 bio
->bi_bdev
= tc
->origin_dev
->bdev
;
447 static int bio_triggers_commit(struct thin_c
*tc
, struct bio
*bio
)
449 return (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) &&
450 dm_thin_changed_this_transaction(tc
->td
);
453 static void inc_all_io_entry(struct pool
*pool
, struct bio
*bio
)
455 struct dm_thin_endio_hook
*h
;
457 if (bio
->bi_rw
& REQ_DISCARD
)
460 h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
461 h
->all_io_entry
= dm_deferred_entry_inc(pool
->all_io_ds
);
464 static void issue(struct thin_c
*tc
, struct bio
*bio
)
466 struct pool
*pool
= tc
->pool
;
469 if (!bio_triggers_commit(tc
, bio
)) {
470 generic_make_request(bio
);
475 * Complete bio with an error if earlier I/O caused changes to
476 * the metadata that can't be committed e.g, due to I/O errors
477 * on the metadata device.
479 if (dm_thin_aborted_changes(tc
->td
)) {
485 * Batch together any bios that trigger commits and then issue a
486 * single commit for them in process_deferred_bios().
488 spin_lock_irqsave(&pool
->lock
, flags
);
489 bio_list_add(&pool
->deferred_flush_bios
, bio
);
490 spin_unlock_irqrestore(&pool
->lock
, flags
);
493 static void remap_to_origin_and_issue(struct thin_c
*tc
, struct bio
*bio
)
495 remap_to_origin(tc
, bio
);
499 static void remap_and_issue(struct thin_c
*tc
, struct bio
*bio
,
502 remap(tc
, bio
, block
);
506 /*----------------------------------------------------------------*/
509 * Bio endio functions.
511 struct dm_thin_new_mapping
{
512 struct list_head list
;
517 bool definitely_not_shared
:1;
521 dm_block_t virt_block
;
522 dm_block_t data_block
;
523 struct dm_bio_prison_cell
*cell
, *cell2
;
526 * If the bio covers the whole area of a block then we can avoid
527 * zeroing or copying. Instead this bio is hooked. The bio will
528 * still be in the cell, so care has to be taken to avoid issuing
532 bio_end_io_t
*saved_bi_end_io
;
535 static void __maybe_add_mapping(struct dm_thin_new_mapping
*m
)
537 struct pool
*pool
= m
->tc
->pool
;
539 if (m
->quiesced
&& m
->prepared
) {
540 list_add_tail(&m
->list
, &pool
->prepared_mappings
);
545 static void copy_complete(int read_err
, unsigned long write_err
, void *context
)
548 struct dm_thin_new_mapping
*m
= context
;
549 struct pool
*pool
= m
->tc
->pool
;
551 m
->err
= read_err
|| write_err
? -EIO
: 0;
553 spin_lock_irqsave(&pool
->lock
, flags
);
555 __maybe_add_mapping(m
);
556 spin_unlock_irqrestore(&pool
->lock
, flags
);
559 static void overwrite_endio(struct bio
*bio
, int err
)
562 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
563 struct dm_thin_new_mapping
*m
= h
->overwrite_mapping
;
564 struct pool
*pool
= m
->tc
->pool
;
568 spin_lock_irqsave(&pool
->lock
, flags
);
570 __maybe_add_mapping(m
);
571 spin_unlock_irqrestore(&pool
->lock
, flags
);
574 /*----------------------------------------------------------------*/
581 * Prepared mapping jobs.
585 * This sends the bios in the cell back to the deferred_bios list.
587 static void cell_defer(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
589 struct pool
*pool
= tc
->pool
;
592 spin_lock_irqsave(&pool
->lock
, flags
);
593 cell_release(pool
, cell
, &pool
->deferred_bios
);
594 spin_unlock_irqrestore(&tc
->pool
->lock
, flags
);
600 * Same as cell_defer above, except it omits the original holder of the cell.
602 static void cell_defer_no_holder(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
604 struct pool
*pool
= tc
->pool
;
607 spin_lock_irqsave(&pool
->lock
, flags
);
608 cell_release_no_holder(pool
, cell
, &pool
->deferred_bios
);
609 spin_unlock_irqrestore(&pool
->lock
, flags
);
614 static void process_prepared_mapping_fail(struct dm_thin_new_mapping
*m
)
617 m
->bio
->bi_end_io
= m
->saved_bi_end_io
;
618 atomic_inc(&m
->bio
->bi_remaining
);
620 cell_error(m
->tc
->pool
, m
->cell
);
622 mempool_free(m
, m
->tc
->pool
->mapping_pool
);
625 static void process_prepared_mapping(struct dm_thin_new_mapping
*m
)
627 struct thin_c
*tc
= m
->tc
;
628 struct pool
*pool
= tc
->pool
;
634 bio
->bi_end_io
= m
->saved_bi_end_io
;
635 atomic_inc(&bio
->bi_remaining
);
639 cell_error(pool
, m
->cell
);
644 * Commit the prepared block into the mapping btree.
645 * Any I/O for this block arriving after this point will get
646 * remapped to it directly.
648 r
= dm_thin_insert_block(tc
->td
, m
->virt_block
, m
->data_block
);
650 metadata_operation_failed(pool
, "dm_thin_insert_block", r
);
651 cell_error(pool
, m
->cell
);
656 * Release any bios held while the block was being provisioned.
657 * If we are processing a write bio that completely covers the block,
658 * we already processed it so can ignore it now when processing
659 * the bios in the cell.
662 cell_defer_no_holder(tc
, m
->cell
);
665 cell_defer(tc
, m
->cell
);
669 mempool_free(m
, pool
->mapping_pool
);
672 static void process_prepared_discard_fail(struct dm_thin_new_mapping
*m
)
674 struct thin_c
*tc
= m
->tc
;
676 bio_io_error(m
->bio
);
677 cell_defer_no_holder(tc
, m
->cell
);
678 cell_defer_no_holder(tc
, m
->cell2
);
679 mempool_free(m
, tc
->pool
->mapping_pool
);
682 static void process_prepared_discard_passdown(struct dm_thin_new_mapping
*m
)
684 struct thin_c
*tc
= m
->tc
;
686 inc_all_io_entry(tc
->pool
, m
->bio
);
687 cell_defer_no_holder(tc
, m
->cell
);
688 cell_defer_no_holder(tc
, m
->cell2
);
691 if (m
->definitely_not_shared
)
692 remap_and_issue(tc
, m
->bio
, m
->data_block
);
695 if (dm_pool_block_is_used(tc
->pool
->pmd
, m
->data_block
, &used
) || used
)
696 bio_endio(m
->bio
, 0);
698 remap_and_issue(tc
, m
->bio
, m
->data_block
);
701 bio_endio(m
->bio
, 0);
703 mempool_free(m
, tc
->pool
->mapping_pool
);
706 static void process_prepared_discard(struct dm_thin_new_mapping
*m
)
709 struct thin_c
*tc
= m
->tc
;
711 r
= dm_thin_remove_block(tc
->td
, m
->virt_block
);
713 DMERR_LIMIT("dm_thin_remove_block() failed");
715 process_prepared_discard_passdown(m
);
718 static void process_prepared(struct pool
*pool
, struct list_head
*head
,
719 process_mapping_fn
*fn
)
722 struct list_head maps
;
723 struct dm_thin_new_mapping
*m
, *tmp
;
725 INIT_LIST_HEAD(&maps
);
726 spin_lock_irqsave(&pool
->lock
, flags
);
727 list_splice_init(head
, &maps
);
728 spin_unlock_irqrestore(&pool
->lock
, flags
);
730 list_for_each_entry_safe(m
, tmp
, &maps
, list
)
737 static int io_overlaps_block(struct pool
*pool
, struct bio
*bio
)
739 return bio
->bi_iter
.bi_size
==
740 (pool
->sectors_per_block
<< SECTOR_SHIFT
);
743 static int io_overwrites_block(struct pool
*pool
, struct bio
*bio
)
745 return (bio_data_dir(bio
) == WRITE
) &&
746 io_overlaps_block(pool
, bio
);
749 static void save_and_set_endio(struct bio
*bio
, bio_end_io_t
**save
,
752 *save
= bio
->bi_end_io
;
756 static int ensure_next_mapping(struct pool
*pool
)
758 if (pool
->next_mapping
)
761 pool
->next_mapping
= mempool_alloc(pool
->mapping_pool
, GFP_ATOMIC
);
763 return pool
->next_mapping
? 0 : -ENOMEM
;
766 static struct dm_thin_new_mapping
*get_next_mapping(struct pool
*pool
)
768 struct dm_thin_new_mapping
*m
= pool
->next_mapping
;
770 BUG_ON(!pool
->next_mapping
);
772 memset(m
, 0, sizeof(struct dm_thin_new_mapping
));
773 INIT_LIST_HEAD(&m
->list
);
776 pool
->next_mapping
= NULL
;
781 static void schedule_copy(struct thin_c
*tc
, dm_block_t virt_block
,
782 struct dm_dev
*origin
, dm_block_t data_origin
,
783 dm_block_t data_dest
,
784 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
787 struct pool
*pool
= tc
->pool
;
788 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
791 m
->virt_block
= virt_block
;
792 m
->data_block
= data_dest
;
795 if (!dm_deferred_set_add_work(pool
->shared_read_ds
, &m
->list
))
799 * IO to pool_dev remaps to the pool target's data_dev.
801 * If the whole block of data is being overwritten, we can issue the
802 * bio immediately. Otherwise we use kcopyd to clone the data first.
804 if (io_overwrites_block(pool
, bio
)) {
805 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
807 h
->overwrite_mapping
= m
;
809 save_and_set_endio(bio
, &m
->saved_bi_end_io
, overwrite_endio
);
810 inc_all_io_entry(pool
, bio
);
811 remap_and_issue(tc
, bio
, data_dest
);
813 struct dm_io_region from
, to
;
815 from
.bdev
= origin
->bdev
;
816 from
.sector
= data_origin
* pool
->sectors_per_block
;
817 from
.count
= pool
->sectors_per_block
;
819 to
.bdev
= tc
->pool_dev
->bdev
;
820 to
.sector
= data_dest
* pool
->sectors_per_block
;
821 to
.count
= pool
->sectors_per_block
;
823 r
= dm_kcopyd_copy(pool
->copier
, &from
, 1, &to
,
824 0, copy_complete
, m
);
826 mempool_free(m
, pool
->mapping_pool
);
827 DMERR_LIMIT("dm_kcopyd_copy() failed");
828 cell_error(pool
, cell
);
833 static void schedule_internal_copy(struct thin_c
*tc
, dm_block_t virt_block
,
834 dm_block_t data_origin
, dm_block_t data_dest
,
835 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
837 schedule_copy(tc
, virt_block
, tc
->pool_dev
,
838 data_origin
, data_dest
, cell
, bio
);
841 static void schedule_external_copy(struct thin_c
*tc
, dm_block_t virt_block
,
842 dm_block_t data_dest
,
843 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
845 schedule_copy(tc
, virt_block
, tc
->origin_dev
,
846 virt_block
, data_dest
, cell
, bio
);
849 static void schedule_zero(struct thin_c
*tc
, dm_block_t virt_block
,
850 dm_block_t data_block
, struct dm_bio_prison_cell
*cell
,
853 struct pool
*pool
= tc
->pool
;
854 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
859 m
->virt_block
= virt_block
;
860 m
->data_block
= data_block
;
864 * If the whole block of data is being overwritten or we are not
865 * zeroing pre-existing data, we can issue the bio immediately.
866 * Otherwise we use kcopyd to zero the data first.
868 if (!pool
->pf
.zero_new_blocks
)
869 process_prepared_mapping(m
);
871 else if (io_overwrites_block(pool
, bio
)) {
872 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
874 h
->overwrite_mapping
= m
;
876 save_and_set_endio(bio
, &m
->saved_bi_end_io
, overwrite_endio
);
877 inc_all_io_entry(pool
, bio
);
878 remap_and_issue(tc
, bio
, data_block
);
881 struct dm_io_region to
;
883 to
.bdev
= tc
->pool_dev
->bdev
;
884 to
.sector
= data_block
* pool
->sectors_per_block
;
885 to
.count
= pool
->sectors_per_block
;
887 r
= dm_kcopyd_zero(pool
->copier
, 1, &to
, 0, copy_complete
, m
);
889 mempool_free(m
, pool
->mapping_pool
);
890 DMERR_LIMIT("dm_kcopyd_zero() failed");
891 cell_error(pool
, cell
);
897 * A non-zero return indicates read_only or fail_io mode.
898 * Many callers don't care about the return value.
900 static int commit(struct pool
*pool
)
904 if (get_pool_mode(pool
) != PM_WRITE
)
907 r
= dm_pool_commit_metadata(pool
->pmd
);
909 metadata_operation_failed(pool
, "dm_pool_commit_metadata", r
);
914 static void check_low_water_mark(struct pool
*pool
, dm_block_t free_blocks
)
918 if (free_blocks
<= pool
->low_water_blocks
&& !pool
->low_water_triggered
) {
919 DMWARN("%s: reached low water mark for data device: sending event.",
920 dm_device_name(pool
->pool_md
));
921 spin_lock_irqsave(&pool
->lock
, flags
);
922 pool
->low_water_triggered
= true;
923 spin_unlock_irqrestore(&pool
->lock
, flags
);
924 dm_table_event(pool
->ti
->table
);
928 static int alloc_data_block(struct thin_c
*tc
, dm_block_t
*result
)
931 dm_block_t free_blocks
;
932 struct pool
*pool
= tc
->pool
;
934 if (get_pool_mode(pool
) != PM_WRITE
)
937 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
939 metadata_operation_failed(pool
, "dm_pool_get_free_block_count", r
);
943 check_low_water_mark(pool
, free_blocks
);
947 * Try to commit to see if that will free up some
954 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
956 metadata_operation_failed(pool
, "dm_pool_get_free_block_count", r
);
961 out_of_data_space(pool
);
966 r
= dm_pool_alloc_data_block(pool
->pmd
, result
);
968 metadata_operation_failed(pool
, "dm_pool_alloc_data_block", r
);
976 * If we have run out of space, queue bios until the device is
977 * resumed, presumably after having been reloaded with more space.
979 static void retry_on_resume(struct bio
*bio
)
981 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
982 struct thin_c
*tc
= h
->tc
;
983 struct pool
*pool
= tc
->pool
;
986 spin_lock_irqsave(&pool
->lock
, flags
);
987 bio_list_add(&pool
->retry_on_resume_list
, bio
);
988 spin_unlock_irqrestore(&pool
->lock
, flags
);
991 static void handle_unserviceable_bio(struct pool
*pool
, struct bio
*bio
)
994 * When pool is read-only, no cell locking is needed because
995 * nothing is changing.
997 WARN_ON_ONCE(get_pool_mode(pool
) != PM_READ_ONLY
);
999 if (pool
->pf
.error_if_no_space
)
1002 retry_on_resume(bio
);
1005 static void retry_bios_on_resume(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
1008 struct bio_list bios
;
1010 bio_list_init(&bios
);
1011 cell_release(pool
, cell
, &bios
);
1013 while ((bio
= bio_list_pop(&bios
)))
1014 handle_unserviceable_bio(pool
, bio
);
1017 static void process_discard(struct thin_c
*tc
, struct bio
*bio
)
1020 unsigned long flags
;
1021 struct pool
*pool
= tc
->pool
;
1022 struct dm_bio_prison_cell
*cell
, *cell2
;
1023 struct dm_cell_key key
, key2
;
1024 dm_block_t block
= get_bio_block(tc
, bio
);
1025 struct dm_thin_lookup_result lookup_result
;
1026 struct dm_thin_new_mapping
*m
;
1028 build_virtual_key(tc
->td
, block
, &key
);
1029 if (bio_detain(tc
->pool
, &key
, bio
, &cell
))
1032 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1036 * Check nobody is fiddling with this pool block. This can
1037 * happen if someone's in the process of breaking sharing
1040 build_data_key(tc
->td
, lookup_result
.block
, &key2
);
1041 if (bio_detain(tc
->pool
, &key2
, bio
, &cell2
)) {
1042 cell_defer_no_holder(tc
, cell
);
1046 if (io_overlaps_block(pool
, bio
)) {
1048 * IO may still be going to the destination block. We must
1049 * quiesce before we can do the removal.
1051 m
= get_next_mapping(pool
);
1053 m
->pass_discard
= pool
->pf
.discard_passdown
;
1054 m
->definitely_not_shared
= !lookup_result
.shared
;
1055 m
->virt_block
= block
;
1056 m
->data_block
= lookup_result
.block
;
1061 if (!dm_deferred_set_add_work(pool
->all_io_ds
, &m
->list
)) {
1062 spin_lock_irqsave(&pool
->lock
, flags
);
1063 list_add_tail(&m
->list
, &pool
->prepared_discards
);
1064 spin_unlock_irqrestore(&pool
->lock
, flags
);
1068 inc_all_io_entry(pool
, bio
);
1069 cell_defer_no_holder(tc
, cell
);
1070 cell_defer_no_holder(tc
, cell2
);
1073 * The DM core makes sure that the discard doesn't span
1074 * a block boundary. So we submit the discard of a
1075 * partial block appropriately.
1077 if ((!lookup_result
.shared
) && pool
->pf
.discard_passdown
)
1078 remap_and_issue(tc
, bio
, lookup_result
.block
);
1086 * It isn't provisioned, just forget it.
1088 cell_defer_no_holder(tc
, cell
);
1093 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1095 cell_defer_no_holder(tc
, cell
);
1101 static void break_sharing(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1102 struct dm_cell_key
*key
,
1103 struct dm_thin_lookup_result
*lookup_result
,
1104 struct dm_bio_prison_cell
*cell
)
1107 dm_block_t data_block
;
1108 struct pool
*pool
= tc
->pool
;
1110 r
= alloc_data_block(tc
, &data_block
);
1113 schedule_internal_copy(tc
, block
, lookup_result
->block
,
1114 data_block
, cell
, bio
);
1118 retry_bios_on_resume(pool
, cell
);
1122 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1124 cell_error(pool
, cell
);
1129 static void process_shared_bio(struct thin_c
*tc
, struct bio
*bio
,
1131 struct dm_thin_lookup_result
*lookup_result
)
1133 struct dm_bio_prison_cell
*cell
;
1134 struct pool
*pool
= tc
->pool
;
1135 struct dm_cell_key key
;
1138 * If cell is already occupied, then sharing is already in the process
1139 * of being broken so we have nothing further to do here.
1141 build_data_key(tc
->td
, lookup_result
->block
, &key
);
1142 if (bio_detain(pool
, &key
, bio
, &cell
))
1145 if (bio_data_dir(bio
) == WRITE
&& bio
->bi_iter
.bi_size
)
1146 break_sharing(tc
, bio
, block
, &key
, lookup_result
, cell
);
1148 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1150 h
->shared_read_entry
= dm_deferred_entry_inc(pool
->shared_read_ds
);
1151 inc_all_io_entry(pool
, bio
);
1152 cell_defer_no_holder(tc
, cell
);
1154 remap_and_issue(tc
, bio
, lookup_result
->block
);
1158 static void provision_block(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1159 struct dm_bio_prison_cell
*cell
)
1162 dm_block_t data_block
;
1163 struct pool
*pool
= tc
->pool
;
1166 * Remap empty bios (flushes) immediately, without provisioning.
1168 if (!bio
->bi_iter
.bi_size
) {
1169 inc_all_io_entry(pool
, bio
);
1170 cell_defer_no_holder(tc
, cell
);
1172 remap_and_issue(tc
, bio
, 0);
1177 * Fill read bios with zeroes and complete them immediately.
1179 if (bio_data_dir(bio
) == READ
) {
1181 cell_defer_no_holder(tc
, cell
);
1186 r
= alloc_data_block(tc
, &data_block
);
1190 schedule_external_copy(tc
, block
, data_block
, cell
, bio
);
1192 schedule_zero(tc
, block
, data_block
, cell
, bio
);
1196 retry_bios_on_resume(pool
, cell
);
1200 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1202 cell_error(pool
, cell
);
1207 static void process_bio(struct thin_c
*tc
, struct bio
*bio
)
1210 struct pool
*pool
= tc
->pool
;
1211 dm_block_t block
= get_bio_block(tc
, bio
);
1212 struct dm_bio_prison_cell
*cell
;
1213 struct dm_cell_key key
;
1214 struct dm_thin_lookup_result lookup_result
;
1217 * If cell is already occupied, then the block is already
1218 * being provisioned so we have nothing further to do here.
1220 build_virtual_key(tc
->td
, block
, &key
);
1221 if (bio_detain(pool
, &key
, bio
, &cell
))
1224 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1227 if (lookup_result
.shared
) {
1228 process_shared_bio(tc
, bio
, block
, &lookup_result
);
1229 cell_defer_no_holder(tc
, cell
); /* FIXME: pass this cell into process_shared? */
1231 inc_all_io_entry(pool
, bio
);
1232 cell_defer_no_holder(tc
, cell
);
1234 remap_and_issue(tc
, bio
, lookup_result
.block
);
1239 if (bio_data_dir(bio
) == READ
&& tc
->origin_dev
) {
1240 inc_all_io_entry(pool
, bio
);
1241 cell_defer_no_holder(tc
, cell
);
1243 remap_to_origin_and_issue(tc
, bio
);
1245 provision_block(tc
, bio
, block
, cell
);
1249 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1251 cell_defer_no_holder(tc
, cell
);
1257 static void process_bio_read_only(struct thin_c
*tc
, struct bio
*bio
)
1260 int rw
= bio_data_dir(bio
);
1261 dm_block_t block
= get_bio_block(tc
, bio
);
1262 struct dm_thin_lookup_result lookup_result
;
1264 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1267 if (lookup_result
.shared
&& (rw
== WRITE
) && bio
->bi_iter
.bi_size
)
1268 handle_unserviceable_bio(tc
->pool
, bio
);
1270 inc_all_io_entry(tc
->pool
, bio
);
1271 remap_and_issue(tc
, bio
, lookup_result
.block
);
1277 handle_unserviceable_bio(tc
->pool
, bio
);
1281 if (tc
->origin_dev
) {
1282 inc_all_io_entry(tc
->pool
, bio
);
1283 remap_to_origin_and_issue(tc
, bio
);
1292 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1299 static void process_bio_fail(struct thin_c
*tc
, struct bio
*bio
)
1305 * FIXME: should we also commit due to size of transaction, measured in
1308 static int need_commit_due_to_time(struct pool
*pool
)
1310 return jiffies
< pool
->last_commit_jiffies
||
1311 jiffies
> pool
->last_commit_jiffies
+ COMMIT_PERIOD
;
1314 static void process_deferred_bios(struct pool
*pool
)
1316 unsigned long flags
;
1318 struct bio_list bios
;
1320 bio_list_init(&bios
);
1322 spin_lock_irqsave(&pool
->lock
, flags
);
1323 bio_list_merge(&bios
, &pool
->deferred_bios
);
1324 bio_list_init(&pool
->deferred_bios
);
1325 spin_unlock_irqrestore(&pool
->lock
, flags
);
1327 while ((bio
= bio_list_pop(&bios
))) {
1328 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1329 struct thin_c
*tc
= h
->tc
;
1332 * If we've got no free new_mapping structs, and processing
1333 * this bio might require one, we pause until there are some
1334 * prepared mappings to process.
1336 if (ensure_next_mapping(pool
)) {
1337 spin_lock_irqsave(&pool
->lock
, flags
);
1338 bio_list_merge(&pool
->deferred_bios
, &bios
);
1339 spin_unlock_irqrestore(&pool
->lock
, flags
);
1344 if (bio
->bi_rw
& REQ_DISCARD
)
1345 pool
->process_discard(tc
, bio
);
1347 pool
->process_bio(tc
, bio
);
1351 * If there are any deferred flush bios, we must commit
1352 * the metadata before issuing them.
1354 bio_list_init(&bios
);
1355 spin_lock_irqsave(&pool
->lock
, flags
);
1356 bio_list_merge(&bios
, &pool
->deferred_flush_bios
);
1357 bio_list_init(&pool
->deferred_flush_bios
);
1358 spin_unlock_irqrestore(&pool
->lock
, flags
);
1360 if (bio_list_empty(&bios
) && !need_commit_due_to_time(pool
))
1364 while ((bio
= bio_list_pop(&bios
)))
1368 pool
->last_commit_jiffies
= jiffies
;
1370 while ((bio
= bio_list_pop(&bios
)))
1371 generic_make_request(bio
);
1374 static void do_worker(struct work_struct
*ws
)
1376 struct pool
*pool
= container_of(ws
, struct pool
, worker
);
1378 process_prepared(pool
, &pool
->prepared_mappings
, &pool
->process_prepared_mapping
);
1379 process_prepared(pool
, &pool
->prepared_discards
, &pool
->process_prepared_discard
);
1380 process_deferred_bios(pool
);
1384 * We want to commit periodically so that not too much
1385 * unwritten data builds up.
1387 static void do_waker(struct work_struct
*ws
)
1389 struct pool
*pool
= container_of(to_delayed_work(ws
), struct pool
, waker
);
1391 queue_delayed_work(pool
->wq
, &pool
->waker
, COMMIT_PERIOD
);
1394 /*----------------------------------------------------------------*/
1396 static enum pool_mode
get_pool_mode(struct pool
*pool
)
1398 return pool
->pf
.mode
;
1401 static void set_pool_mode(struct pool
*pool
, enum pool_mode new_mode
)
1404 enum pool_mode old_mode
= pool
->pf
.mode
;
1408 if (old_mode
!= new_mode
)
1409 DMERR("%s: switching pool to failure mode",
1410 dm_device_name(pool
->pool_md
));
1411 dm_pool_metadata_read_only(pool
->pmd
);
1412 pool
->process_bio
= process_bio_fail
;
1413 pool
->process_discard
= process_bio_fail
;
1414 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
1415 pool
->process_prepared_discard
= process_prepared_discard_fail
;
1419 if (old_mode
!= new_mode
)
1420 DMERR("%s: switching pool to read-only mode",
1421 dm_device_name(pool
->pool_md
));
1422 r
= dm_pool_abort_metadata(pool
->pmd
);
1424 DMERR("%s: aborting transaction failed",
1425 dm_device_name(pool
->pool_md
));
1427 set_pool_mode(pool
, new_mode
);
1429 dm_pool_metadata_read_only(pool
->pmd
);
1430 pool
->process_bio
= process_bio_read_only
;
1431 pool
->process_discard
= process_discard
;
1432 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
1433 pool
->process_prepared_discard
= process_prepared_discard_passdown
;
1438 if (old_mode
!= new_mode
)
1439 DMINFO("%s: switching pool to write mode",
1440 dm_device_name(pool
->pool_md
));
1441 dm_pool_metadata_read_write(pool
->pmd
);
1442 pool
->process_bio
= process_bio
;
1443 pool
->process_discard
= process_discard
;
1444 pool
->process_prepared_mapping
= process_prepared_mapping
;
1445 pool
->process_prepared_discard
= process_prepared_discard
;
1449 pool
->pf
.mode
= new_mode
;
1453 * Rather than calling set_pool_mode directly, use these which describe the
1454 * reason for mode degradation.
1456 static void out_of_data_space(struct pool
*pool
)
1458 DMERR_LIMIT("%s: no free data space available.",
1459 dm_device_name(pool
->pool_md
));
1460 set_pool_mode(pool
, PM_READ_ONLY
);
1463 static void metadata_operation_failed(struct pool
*pool
, const char *op
, int r
)
1465 dm_block_t free_blocks
;
1467 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1468 dm_device_name(pool
->pool_md
), op
, r
);
1471 !dm_pool_get_free_metadata_block_count(pool
->pmd
, &free_blocks
) &&
1473 DMERR_LIMIT("%s: no free metadata space available.",
1474 dm_device_name(pool
->pool_md
));
1476 set_pool_mode(pool
, PM_READ_ONLY
);
1479 /*----------------------------------------------------------------*/
1482 * Mapping functions.
1486 * Called only while mapping a thin bio to hand it over to the workqueue.
1488 static void thin_defer_bio(struct thin_c
*tc
, struct bio
*bio
)
1490 unsigned long flags
;
1491 struct pool
*pool
= tc
->pool
;
1493 spin_lock_irqsave(&pool
->lock
, flags
);
1494 bio_list_add(&pool
->deferred_bios
, bio
);
1495 spin_unlock_irqrestore(&pool
->lock
, flags
);
1500 static void thin_hook_bio(struct thin_c
*tc
, struct bio
*bio
)
1502 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1505 h
->shared_read_entry
= NULL
;
1506 h
->all_io_entry
= NULL
;
1507 h
->overwrite_mapping
= NULL
;
1511 * Non-blocking function called from the thin target's map function.
1513 static int thin_bio_map(struct dm_target
*ti
, struct bio
*bio
)
1516 struct thin_c
*tc
= ti
->private;
1517 dm_block_t block
= get_bio_block(tc
, bio
);
1518 struct dm_thin_device
*td
= tc
->td
;
1519 struct dm_thin_lookup_result result
;
1520 struct dm_bio_prison_cell cell1
, cell2
;
1521 struct dm_bio_prison_cell
*cell_result
;
1522 struct dm_cell_key key
;
1524 thin_hook_bio(tc
, bio
);
1526 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
1528 return DM_MAPIO_SUBMITTED
;
1531 if (bio
->bi_rw
& (REQ_DISCARD
| REQ_FLUSH
| REQ_FUA
)) {
1532 thin_defer_bio(tc
, bio
);
1533 return DM_MAPIO_SUBMITTED
;
1536 r
= dm_thin_find_block(td
, block
, 0, &result
);
1539 * Note that we defer readahead too.
1543 if (unlikely(result
.shared
)) {
1545 * We have a race condition here between the
1546 * result.shared value returned by the lookup and
1547 * snapshot creation, which may cause new
1550 * To avoid this always quiesce the origin before
1551 * taking the snap. You want to do this anyway to
1552 * ensure a consistent application view
1555 * More distant ancestors are irrelevant. The
1556 * shared flag will be set in their case.
1558 thin_defer_bio(tc
, bio
);
1559 return DM_MAPIO_SUBMITTED
;
1562 build_virtual_key(tc
->td
, block
, &key
);
1563 if (dm_bio_detain(tc
->pool
->prison
, &key
, bio
, &cell1
, &cell_result
))
1564 return DM_MAPIO_SUBMITTED
;
1566 build_data_key(tc
->td
, result
.block
, &key
);
1567 if (dm_bio_detain(tc
->pool
->prison
, &key
, bio
, &cell2
, &cell_result
)) {
1568 cell_defer_no_holder_no_free(tc
, &cell1
);
1569 return DM_MAPIO_SUBMITTED
;
1572 inc_all_io_entry(tc
->pool
, bio
);
1573 cell_defer_no_holder_no_free(tc
, &cell2
);
1574 cell_defer_no_holder_no_free(tc
, &cell1
);
1576 remap(tc
, bio
, result
.block
);
1577 return DM_MAPIO_REMAPPED
;
1580 if (get_pool_mode(tc
->pool
) == PM_READ_ONLY
) {
1582 * This block isn't provisioned, and we have no way
1585 handle_unserviceable_bio(tc
->pool
, bio
);
1586 return DM_MAPIO_SUBMITTED
;
1592 * In future, the failed dm_thin_find_block above could
1593 * provide the hint to load the metadata into cache.
1595 thin_defer_bio(tc
, bio
);
1596 return DM_MAPIO_SUBMITTED
;
1600 * Must always call bio_io_error on failure.
1601 * dm_thin_find_block can fail with -EINVAL if the
1602 * pool is switched to fail-io mode.
1605 return DM_MAPIO_SUBMITTED
;
1609 static int pool_is_congested(struct dm_target_callbacks
*cb
, int bdi_bits
)
1612 unsigned long flags
;
1613 struct pool_c
*pt
= container_of(cb
, struct pool_c
, callbacks
);
1615 spin_lock_irqsave(&pt
->pool
->lock
, flags
);
1616 r
= !bio_list_empty(&pt
->pool
->retry_on_resume_list
);
1617 spin_unlock_irqrestore(&pt
->pool
->lock
, flags
);
1620 struct request_queue
*q
= bdev_get_queue(pt
->data_dev
->bdev
);
1621 r
= bdi_congested(&q
->backing_dev_info
, bdi_bits
);
1627 static void __requeue_bios(struct pool
*pool
)
1629 bio_list_merge(&pool
->deferred_bios
, &pool
->retry_on_resume_list
);
1630 bio_list_init(&pool
->retry_on_resume_list
);
1633 /*----------------------------------------------------------------
1634 * Binding of control targets to a pool object
1635 *--------------------------------------------------------------*/
1636 static bool data_dev_supports_discard(struct pool_c
*pt
)
1638 struct request_queue
*q
= bdev_get_queue(pt
->data_dev
->bdev
);
1640 return q
&& blk_queue_discard(q
);
1643 static bool is_factor(sector_t block_size
, uint32_t n
)
1645 return !sector_div(block_size
, n
);
1649 * If discard_passdown was enabled verify that the data device
1650 * supports discards. Disable discard_passdown if not.
1652 static void disable_passdown_if_not_supported(struct pool_c
*pt
)
1654 struct pool
*pool
= pt
->pool
;
1655 struct block_device
*data_bdev
= pt
->data_dev
->bdev
;
1656 struct queue_limits
*data_limits
= &bdev_get_queue(data_bdev
)->limits
;
1657 sector_t block_size
= pool
->sectors_per_block
<< SECTOR_SHIFT
;
1658 const char *reason
= NULL
;
1659 char buf
[BDEVNAME_SIZE
];
1661 if (!pt
->adjusted_pf
.discard_passdown
)
1664 if (!data_dev_supports_discard(pt
))
1665 reason
= "discard unsupported";
1667 else if (data_limits
->max_discard_sectors
< pool
->sectors_per_block
)
1668 reason
= "max discard sectors smaller than a block";
1670 else if (data_limits
->discard_granularity
> block_size
)
1671 reason
= "discard granularity larger than a block";
1673 else if (!is_factor(block_size
, data_limits
->discard_granularity
))
1674 reason
= "discard granularity not a factor of block size";
1677 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev
, buf
), reason
);
1678 pt
->adjusted_pf
.discard_passdown
= false;
1682 static int bind_control_target(struct pool
*pool
, struct dm_target
*ti
)
1684 struct pool_c
*pt
= ti
->private;
1687 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
1689 enum pool_mode old_mode
= pool
->pf
.mode
;
1690 enum pool_mode new_mode
= pt
->adjusted_pf
.mode
;
1693 * Don't change the pool's mode until set_pool_mode() below.
1694 * Otherwise the pool's process_* function pointers may
1695 * not match the desired pool mode.
1697 pt
->adjusted_pf
.mode
= old_mode
;
1700 pool
->pf
= pt
->adjusted_pf
;
1701 pool
->low_water_blocks
= pt
->low_water_blocks
;
1704 * If we were in PM_FAIL mode, rollback of metadata failed. We're
1705 * not going to recover without a thin_repair. So we never let the
1706 * pool move out of the old mode. On the other hand a PM_READ_ONLY
1707 * may have been due to a lack of metadata or data space, and may
1708 * now work (ie. if the underlying devices have been resized).
1710 if (old_mode
== PM_FAIL
)
1711 new_mode
= old_mode
;
1713 set_pool_mode(pool
, new_mode
);
1718 static void unbind_control_target(struct pool
*pool
, struct dm_target
*ti
)
1724 /*----------------------------------------------------------------
1726 *--------------------------------------------------------------*/
1727 /* Initialize pool features. */
1728 static void pool_features_init(struct pool_features
*pf
)
1730 pf
->mode
= PM_WRITE
;
1731 pf
->zero_new_blocks
= true;
1732 pf
->discard_enabled
= true;
1733 pf
->discard_passdown
= true;
1734 pf
->error_if_no_space
= false;
1737 static void __pool_destroy(struct pool
*pool
)
1739 __pool_table_remove(pool
);
1741 if (dm_pool_metadata_close(pool
->pmd
) < 0)
1742 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
1744 dm_bio_prison_destroy(pool
->prison
);
1745 dm_kcopyd_client_destroy(pool
->copier
);
1748 destroy_workqueue(pool
->wq
);
1750 if (pool
->next_mapping
)
1751 mempool_free(pool
->next_mapping
, pool
->mapping_pool
);
1752 mempool_destroy(pool
->mapping_pool
);
1753 dm_deferred_set_destroy(pool
->shared_read_ds
);
1754 dm_deferred_set_destroy(pool
->all_io_ds
);
1758 static struct kmem_cache
*_new_mapping_cache
;
1760 static struct pool
*pool_create(struct mapped_device
*pool_md
,
1761 struct block_device
*metadata_dev
,
1762 unsigned long block_size
,
1763 int read_only
, char **error
)
1768 struct dm_pool_metadata
*pmd
;
1769 bool format_device
= read_only
? false : true;
1771 pmd
= dm_pool_metadata_open(metadata_dev
, block_size
, format_device
);
1773 *error
= "Error creating metadata object";
1774 return (struct pool
*)pmd
;
1777 pool
= kmalloc(sizeof(*pool
), GFP_KERNEL
);
1779 *error
= "Error allocating memory for pool";
1780 err_p
= ERR_PTR(-ENOMEM
);
1785 pool
->sectors_per_block
= block_size
;
1786 if (block_size
& (block_size
- 1))
1787 pool
->sectors_per_block_shift
= -1;
1789 pool
->sectors_per_block_shift
= __ffs(block_size
);
1790 pool
->low_water_blocks
= 0;
1791 pool_features_init(&pool
->pf
);
1792 pool
->prison
= dm_bio_prison_create(PRISON_CELLS
);
1793 if (!pool
->prison
) {
1794 *error
= "Error creating pool's bio prison";
1795 err_p
= ERR_PTR(-ENOMEM
);
1799 pool
->copier
= dm_kcopyd_client_create(&dm_kcopyd_throttle
);
1800 if (IS_ERR(pool
->copier
)) {
1801 r
= PTR_ERR(pool
->copier
);
1802 *error
= "Error creating pool's kcopyd client";
1804 goto bad_kcopyd_client
;
1808 * Create singlethreaded workqueue that will service all devices
1809 * that use this metadata.
1811 pool
->wq
= alloc_ordered_workqueue("dm-" DM_MSG_PREFIX
, WQ_MEM_RECLAIM
);
1813 *error
= "Error creating pool's workqueue";
1814 err_p
= ERR_PTR(-ENOMEM
);
1818 INIT_WORK(&pool
->worker
, do_worker
);
1819 INIT_DELAYED_WORK(&pool
->waker
, do_waker
);
1820 spin_lock_init(&pool
->lock
);
1821 bio_list_init(&pool
->deferred_bios
);
1822 bio_list_init(&pool
->deferred_flush_bios
);
1823 INIT_LIST_HEAD(&pool
->prepared_mappings
);
1824 INIT_LIST_HEAD(&pool
->prepared_discards
);
1825 pool
->low_water_triggered
= false;
1826 bio_list_init(&pool
->retry_on_resume_list
);
1828 pool
->shared_read_ds
= dm_deferred_set_create();
1829 if (!pool
->shared_read_ds
) {
1830 *error
= "Error creating pool's shared read deferred set";
1831 err_p
= ERR_PTR(-ENOMEM
);
1832 goto bad_shared_read_ds
;
1835 pool
->all_io_ds
= dm_deferred_set_create();
1836 if (!pool
->all_io_ds
) {
1837 *error
= "Error creating pool's all io deferred set";
1838 err_p
= ERR_PTR(-ENOMEM
);
1842 pool
->next_mapping
= NULL
;
1843 pool
->mapping_pool
= mempool_create_slab_pool(MAPPING_POOL_SIZE
,
1844 _new_mapping_cache
);
1845 if (!pool
->mapping_pool
) {
1846 *error
= "Error creating pool's mapping mempool";
1847 err_p
= ERR_PTR(-ENOMEM
);
1848 goto bad_mapping_pool
;
1851 pool
->ref_count
= 1;
1852 pool
->last_commit_jiffies
= jiffies
;
1853 pool
->pool_md
= pool_md
;
1854 pool
->md_dev
= metadata_dev
;
1855 __pool_table_insert(pool
);
1860 dm_deferred_set_destroy(pool
->all_io_ds
);
1862 dm_deferred_set_destroy(pool
->shared_read_ds
);
1864 destroy_workqueue(pool
->wq
);
1866 dm_kcopyd_client_destroy(pool
->copier
);
1868 dm_bio_prison_destroy(pool
->prison
);
1872 if (dm_pool_metadata_close(pmd
))
1873 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
1878 static void __pool_inc(struct pool
*pool
)
1880 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
1884 static void __pool_dec(struct pool
*pool
)
1886 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
1887 BUG_ON(!pool
->ref_count
);
1888 if (!--pool
->ref_count
)
1889 __pool_destroy(pool
);
1892 static struct pool
*__pool_find(struct mapped_device
*pool_md
,
1893 struct block_device
*metadata_dev
,
1894 unsigned long block_size
, int read_only
,
1895 char **error
, int *created
)
1897 struct pool
*pool
= __pool_table_lookup_metadata_dev(metadata_dev
);
1900 if (pool
->pool_md
!= pool_md
) {
1901 *error
= "metadata device already in use by a pool";
1902 return ERR_PTR(-EBUSY
);
1907 pool
= __pool_table_lookup(pool_md
);
1909 if (pool
->md_dev
!= metadata_dev
) {
1910 *error
= "different pool cannot replace a pool";
1911 return ERR_PTR(-EINVAL
);
1916 pool
= pool_create(pool_md
, metadata_dev
, block_size
, read_only
, error
);
1924 /*----------------------------------------------------------------
1925 * Pool target methods
1926 *--------------------------------------------------------------*/
1927 static void pool_dtr(struct dm_target
*ti
)
1929 struct pool_c
*pt
= ti
->private;
1931 mutex_lock(&dm_thin_pool_table
.mutex
);
1933 unbind_control_target(pt
->pool
, ti
);
1934 __pool_dec(pt
->pool
);
1935 dm_put_device(ti
, pt
->metadata_dev
);
1936 dm_put_device(ti
, pt
->data_dev
);
1939 mutex_unlock(&dm_thin_pool_table
.mutex
);
1942 static int parse_pool_features(struct dm_arg_set
*as
, struct pool_features
*pf
,
1943 struct dm_target
*ti
)
1947 const char *arg_name
;
1949 static struct dm_arg _args
[] = {
1950 {0, 4, "Invalid number of pool feature arguments"},
1954 * No feature arguments supplied.
1959 r
= dm_read_arg_group(_args
, as
, &argc
, &ti
->error
);
1963 while (argc
&& !r
) {
1964 arg_name
= dm_shift_arg(as
);
1967 if (!strcasecmp(arg_name
, "skip_block_zeroing"))
1968 pf
->zero_new_blocks
= false;
1970 else if (!strcasecmp(arg_name
, "ignore_discard"))
1971 pf
->discard_enabled
= false;
1973 else if (!strcasecmp(arg_name
, "no_discard_passdown"))
1974 pf
->discard_passdown
= false;
1976 else if (!strcasecmp(arg_name
, "read_only"))
1977 pf
->mode
= PM_READ_ONLY
;
1979 else if (!strcasecmp(arg_name
, "error_if_no_space"))
1980 pf
->error_if_no_space
= true;
1983 ti
->error
= "Unrecognised pool feature requested";
1992 static void metadata_low_callback(void *context
)
1994 struct pool
*pool
= context
;
1996 DMWARN("%s: reached low water mark for metadata device: sending event.",
1997 dm_device_name(pool
->pool_md
));
1999 dm_table_event(pool
->ti
->table
);
2002 static sector_t
get_metadata_dev_size(struct block_device
*bdev
)
2004 sector_t metadata_dev_size
= i_size_read(bdev
->bd_inode
) >> SECTOR_SHIFT
;
2005 char buffer
[BDEVNAME_SIZE
];
2007 if (metadata_dev_size
> THIN_METADATA_MAX_SECTORS_WARNING
) {
2008 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2009 bdevname(bdev
, buffer
), THIN_METADATA_MAX_SECTORS
);
2010 metadata_dev_size
= THIN_METADATA_MAX_SECTORS_WARNING
;
2013 return metadata_dev_size
;
2016 static dm_block_t
get_metadata_dev_size_in_blocks(struct block_device
*bdev
)
2018 sector_t metadata_dev_size
= get_metadata_dev_size(bdev
);
2020 sector_div(metadata_dev_size
, THIN_METADATA_BLOCK_SIZE
>> SECTOR_SHIFT
);
2022 return metadata_dev_size
;
2026 * When a metadata threshold is crossed a dm event is triggered, and
2027 * userland should respond by growing the metadata device. We could let
2028 * userland set the threshold, like we do with the data threshold, but I'm
2029 * not sure they know enough to do this well.
2031 static dm_block_t
calc_metadata_threshold(struct pool_c
*pt
)
2034 * 4M is ample for all ops with the possible exception of thin
2035 * device deletion which is harmless if it fails (just retry the
2036 * delete after you've grown the device).
2038 dm_block_t quarter
= get_metadata_dev_size_in_blocks(pt
->metadata_dev
->bdev
) / 4;
2039 return min((dm_block_t
)1024ULL /* 4M */, quarter
);
2043 * thin-pool <metadata dev> <data dev>
2044 * <data block size (sectors)>
2045 * <low water mark (blocks)>
2046 * [<#feature args> [<arg>]*]
2048 * Optional feature arguments are:
2049 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
2050 * ignore_discard: disable discard
2051 * no_discard_passdown: don't pass discards down to the data device
2052 * read_only: Don't allow any changes to be made to the pool metadata.
2053 * error_if_no_space: error IOs, instead of queueing, if no space.
2055 static int pool_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
2057 int r
, pool_created
= 0;
2060 struct pool_features pf
;
2061 struct dm_arg_set as
;
2062 struct dm_dev
*data_dev
;
2063 unsigned long block_size
;
2064 dm_block_t low_water_blocks
;
2065 struct dm_dev
*metadata_dev
;
2066 fmode_t metadata_mode
;
2069 * FIXME Remove validation from scope of lock.
2071 mutex_lock(&dm_thin_pool_table
.mutex
);
2074 ti
->error
= "Invalid argument count";
2083 * Set default pool features.
2085 pool_features_init(&pf
);
2087 dm_consume_args(&as
, 4);
2088 r
= parse_pool_features(&as
, &pf
, ti
);
2092 metadata_mode
= FMODE_READ
| ((pf
.mode
== PM_READ_ONLY
) ? 0 : FMODE_WRITE
);
2093 r
= dm_get_device(ti
, argv
[0], metadata_mode
, &metadata_dev
);
2095 ti
->error
= "Error opening metadata block device";
2100 * Run for the side-effect of possibly issuing a warning if the
2101 * device is too big.
2103 (void) get_metadata_dev_size(metadata_dev
->bdev
);
2105 r
= dm_get_device(ti
, argv
[1], FMODE_READ
| FMODE_WRITE
, &data_dev
);
2107 ti
->error
= "Error getting data device";
2111 if (kstrtoul(argv
[2], 10, &block_size
) || !block_size
||
2112 block_size
< DATA_DEV_BLOCK_SIZE_MIN_SECTORS
||
2113 block_size
> DATA_DEV_BLOCK_SIZE_MAX_SECTORS
||
2114 block_size
& (DATA_DEV_BLOCK_SIZE_MIN_SECTORS
- 1)) {
2115 ti
->error
= "Invalid block size";
2120 if (kstrtoull(argv
[3], 10, (unsigned long long *)&low_water_blocks
)) {
2121 ti
->error
= "Invalid low water mark";
2126 pt
= kzalloc(sizeof(*pt
), GFP_KERNEL
);
2132 pool
= __pool_find(dm_table_get_md(ti
->table
), metadata_dev
->bdev
,
2133 block_size
, pf
.mode
== PM_READ_ONLY
, &ti
->error
, &pool_created
);
2140 * 'pool_created' reflects whether this is the first table load.
2141 * Top level discard support is not allowed to be changed after
2142 * initial load. This would require a pool reload to trigger thin
2145 if (!pool_created
&& pf
.discard_enabled
!= pool
->pf
.discard_enabled
) {
2146 ti
->error
= "Discard support cannot be disabled once enabled";
2148 goto out_flags_changed
;
2153 pt
->metadata_dev
= metadata_dev
;
2154 pt
->data_dev
= data_dev
;
2155 pt
->low_water_blocks
= low_water_blocks
;
2156 pt
->adjusted_pf
= pt
->requested_pf
= pf
;
2157 ti
->num_flush_bios
= 1;
2160 * Only need to enable discards if the pool should pass
2161 * them down to the data device. The thin device's discard
2162 * processing will cause mappings to be removed from the btree.
2164 ti
->discard_zeroes_data_unsupported
= true;
2165 if (pf
.discard_enabled
&& pf
.discard_passdown
) {
2166 ti
->num_discard_bios
= 1;
2169 * Setting 'discards_supported' circumvents the normal
2170 * stacking of discard limits (this keeps the pool and
2171 * thin devices' discard limits consistent).
2173 ti
->discards_supported
= true;
2177 r
= dm_pool_register_metadata_threshold(pt
->pool
->pmd
,
2178 calc_metadata_threshold(pt
),
2179 metadata_low_callback
,
2184 pt
->callbacks
.congested_fn
= pool_is_congested
;
2185 dm_table_add_target_callbacks(ti
->table
, &pt
->callbacks
);
2187 mutex_unlock(&dm_thin_pool_table
.mutex
);
2196 dm_put_device(ti
, data_dev
);
2198 dm_put_device(ti
, metadata_dev
);
2200 mutex_unlock(&dm_thin_pool_table
.mutex
);
2205 static int pool_map(struct dm_target
*ti
, struct bio
*bio
)
2208 struct pool_c
*pt
= ti
->private;
2209 struct pool
*pool
= pt
->pool
;
2210 unsigned long flags
;
2213 * As this is a singleton target, ti->begin is always zero.
2215 spin_lock_irqsave(&pool
->lock
, flags
);
2216 bio
->bi_bdev
= pt
->data_dev
->bdev
;
2217 r
= DM_MAPIO_REMAPPED
;
2218 spin_unlock_irqrestore(&pool
->lock
, flags
);
2223 static int maybe_resize_data_dev(struct dm_target
*ti
, bool *need_commit
)
2226 struct pool_c
*pt
= ti
->private;
2227 struct pool
*pool
= pt
->pool
;
2228 sector_t data_size
= ti
->len
;
2229 dm_block_t sb_data_size
;
2231 *need_commit
= false;
2233 (void) sector_div(data_size
, pool
->sectors_per_block
);
2235 r
= dm_pool_get_data_dev_size(pool
->pmd
, &sb_data_size
);
2237 DMERR("%s: failed to retrieve data device size",
2238 dm_device_name(pool
->pool_md
));
2242 if (data_size
< sb_data_size
) {
2243 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
2244 dm_device_name(pool
->pool_md
),
2245 (unsigned long long)data_size
, sb_data_size
);
2248 } else if (data_size
> sb_data_size
) {
2250 DMINFO("%s: growing the data device from %llu to %llu blocks",
2251 dm_device_name(pool
->pool_md
),
2252 sb_data_size
, (unsigned long long)data_size
);
2253 r
= dm_pool_resize_data_dev(pool
->pmd
, data_size
);
2255 metadata_operation_failed(pool
, "dm_pool_resize_data_dev", r
);
2259 *need_commit
= true;
2265 static int maybe_resize_metadata_dev(struct dm_target
*ti
, bool *need_commit
)
2268 struct pool_c
*pt
= ti
->private;
2269 struct pool
*pool
= pt
->pool
;
2270 dm_block_t metadata_dev_size
, sb_metadata_dev_size
;
2272 *need_commit
= false;
2274 metadata_dev_size
= get_metadata_dev_size_in_blocks(pool
->md_dev
);
2276 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &sb_metadata_dev_size
);
2278 DMERR("%s: failed to retrieve metadata device size",
2279 dm_device_name(pool
->pool_md
));
2283 if (metadata_dev_size
< sb_metadata_dev_size
) {
2284 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
2285 dm_device_name(pool
->pool_md
),
2286 metadata_dev_size
, sb_metadata_dev_size
);
2289 } else if (metadata_dev_size
> sb_metadata_dev_size
) {
2290 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
2291 dm_device_name(pool
->pool_md
),
2292 sb_metadata_dev_size
, metadata_dev_size
);
2293 r
= dm_pool_resize_metadata_dev(pool
->pmd
, metadata_dev_size
);
2295 metadata_operation_failed(pool
, "dm_pool_resize_metadata_dev", r
);
2299 *need_commit
= true;
2306 * Retrieves the number of blocks of the data device from
2307 * the superblock and compares it to the actual device size,
2308 * thus resizing the data device in case it has grown.
2310 * This both copes with opening preallocated data devices in the ctr
2311 * being followed by a resume
2313 * calling the resume method individually after userspace has
2314 * grown the data device in reaction to a table event.
2316 static int pool_preresume(struct dm_target
*ti
)
2319 bool need_commit1
, need_commit2
;
2320 struct pool_c
*pt
= ti
->private;
2321 struct pool
*pool
= pt
->pool
;
2324 * Take control of the pool object.
2326 r
= bind_control_target(pool
, ti
);
2330 r
= maybe_resize_data_dev(ti
, &need_commit1
);
2334 r
= maybe_resize_metadata_dev(ti
, &need_commit2
);
2338 if (need_commit1
|| need_commit2
)
2339 (void) commit(pool
);
2344 static void pool_resume(struct dm_target
*ti
)
2346 struct pool_c
*pt
= ti
->private;
2347 struct pool
*pool
= pt
->pool
;
2348 unsigned long flags
;
2350 spin_lock_irqsave(&pool
->lock
, flags
);
2351 pool
->low_water_triggered
= false;
2352 __requeue_bios(pool
);
2353 spin_unlock_irqrestore(&pool
->lock
, flags
);
2355 do_waker(&pool
->waker
.work
);
2358 static void pool_postsuspend(struct dm_target
*ti
)
2360 struct pool_c
*pt
= ti
->private;
2361 struct pool
*pool
= pt
->pool
;
2363 cancel_delayed_work(&pool
->waker
);
2364 flush_workqueue(pool
->wq
);
2365 (void) commit(pool
);
2368 static int check_arg_count(unsigned argc
, unsigned args_required
)
2370 if (argc
!= args_required
) {
2371 DMWARN("Message received with %u arguments instead of %u.",
2372 argc
, args_required
);
2379 static int read_dev_id(char *arg
, dm_thin_id
*dev_id
, int warning
)
2381 if (!kstrtoull(arg
, 10, (unsigned long long *)dev_id
) &&
2382 *dev_id
<= MAX_DEV_ID
)
2386 DMWARN("Message received with invalid device id: %s", arg
);
2391 static int process_create_thin_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2396 r
= check_arg_count(argc
, 2);
2400 r
= read_dev_id(argv
[1], &dev_id
, 1);
2404 r
= dm_pool_create_thin(pool
->pmd
, dev_id
);
2406 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2414 static int process_create_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2417 dm_thin_id origin_dev_id
;
2420 r
= check_arg_count(argc
, 3);
2424 r
= read_dev_id(argv
[1], &dev_id
, 1);
2428 r
= read_dev_id(argv
[2], &origin_dev_id
, 1);
2432 r
= dm_pool_create_snap(pool
->pmd
, dev_id
, origin_dev_id
);
2434 DMWARN("Creation of new snapshot %s of device %s failed.",
2442 static int process_delete_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2447 r
= check_arg_count(argc
, 2);
2451 r
= read_dev_id(argv
[1], &dev_id
, 1);
2455 r
= dm_pool_delete_thin_device(pool
->pmd
, dev_id
);
2457 DMWARN("Deletion of thin device %s failed.", argv
[1]);
2462 static int process_set_transaction_id_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2464 dm_thin_id old_id
, new_id
;
2467 r
= check_arg_count(argc
, 3);
2471 if (kstrtoull(argv
[1], 10, (unsigned long long *)&old_id
)) {
2472 DMWARN("set_transaction_id message: Unrecognised id %s.", argv
[1]);
2476 if (kstrtoull(argv
[2], 10, (unsigned long long *)&new_id
)) {
2477 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv
[2]);
2481 r
= dm_pool_set_metadata_transaction_id(pool
->pmd
, old_id
, new_id
);
2483 DMWARN("Failed to change transaction id from %s to %s.",
2491 static int process_reserve_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2495 r
= check_arg_count(argc
, 1);
2499 (void) commit(pool
);
2501 r
= dm_pool_reserve_metadata_snap(pool
->pmd
);
2503 DMWARN("reserve_metadata_snap message failed.");
2508 static int process_release_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
2512 r
= check_arg_count(argc
, 1);
2516 r
= dm_pool_release_metadata_snap(pool
->pmd
);
2518 DMWARN("release_metadata_snap message failed.");
2524 * Messages supported:
2525 * create_thin <dev_id>
2526 * create_snap <dev_id> <origin_id>
2528 * trim <dev_id> <new_size_in_sectors>
2529 * set_transaction_id <current_trans_id> <new_trans_id>
2530 * reserve_metadata_snap
2531 * release_metadata_snap
2533 static int pool_message(struct dm_target
*ti
, unsigned argc
, char **argv
)
2536 struct pool_c
*pt
= ti
->private;
2537 struct pool
*pool
= pt
->pool
;
2539 if (!strcasecmp(argv
[0], "create_thin"))
2540 r
= process_create_thin_mesg(argc
, argv
, pool
);
2542 else if (!strcasecmp(argv
[0], "create_snap"))
2543 r
= process_create_snap_mesg(argc
, argv
, pool
);
2545 else if (!strcasecmp(argv
[0], "delete"))
2546 r
= process_delete_mesg(argc
, argv
, pool
);
2548 else if (!strcasecmp(argv
[0], "set_transaction_id"))
2549 r
= process_set_transaction_id_mesg(argc
, argv
, pool
);
2551 else if (!strcasecmp(argv
[0], "reserve_metadata_snap"))
2552 r
= process_reserve_metadata_snap_mesg(argc
, argv
, pool
);
2554 else if (!strcasecmp(argv
[0], "release_metadata_snap"))
2555 r
= process_release_metadata_snap_mesg(argc
, argv
, pool
);
2558 DMWARN("Unrecognised thin pool target message received: %s", argv
[0]);
2561 (void) commit(pool
);
2566 static void emit_flags(struct pool_features
*pf
, char *result
,
2567 unsigned sz
, unsigned maxlen
)
2569 unsigned count
= !pf
->zero_new_blocks
+ !pf
->discard_enabled
+
2570 !pf
->discard_passdown
+ (pf
->mode
== PM_READ_ONLY
) +
2571 pf
->error_if_no_space
;
2572 DMEMIT("%u ", count
);
2574 if (!pf
->zero_new_blocks
)
2575 DMEMIT("skip_block_zeroing ");
2577 if (!pf
->discard_enabled
)
2578 DMEMIT("ignore_discard ");
2580 if (!pf
->discard_passdown
)
2581 DMEMIT("no_discard_passdown ");
2583 if (pf
->mode
== PM_READ_ONLY
)
2584 DMEMIT("read_only ");
2586 if (pf
->error_if_no_space
)
2587 DMEMIT("error_if_no_space ");
2592 * <transaction id> <used metadata sectors>/<total metadata sectors>
2593 * <used data sectors>/<total data sectors> <held metadata root>
2595 static void pool_status(struct dm_target
*ti
, status_type_t type
,
2596 unsigned status_flags
, char *result
, unsigned maxlen
)
2600 uint64_t transaction_id
;
2601 dm_block_t nr_free_blocks_data
;
2602 dm_block_t nr_free_blocks_metadata
;
2603 dm_block_t nr_blocks_data
;
2604 dm_block_t nr_blocks_metadata
;
2605 dm_block_t held_root
;
2606 char buf
[BDEVNAME_SIZE
];
2607 char buf2
[BDEVNAME_SIZE
];
2608 struct pool_c
*pt
= ti
->private;
2609 struct pool
*pool
= pt
->pool
;
2612 case STATUSTYPE_INFO
:
2613 if (get_pool_mode(pool
) == PM_FAIL
) {
2618 /* Commit to ensure statistics aren't out-of-date */
2619 if (!(status_flags
& DM_STATUS_NOFLUSH_FLAG
) && !dm_suspended(ti
))
2620 (void) commit(pool
);
2622 r
= dm_pool_get_metadata_transaction_id(pool
->pmd
, &transaction_id
);
2624 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
2625 dm_device_name(pool
->pool_md
), r
);
2629 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
, &nr_free_blocks_metadata
);
2631 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
2632 dm_device_name(pool
->pool_md
), r
);
2636 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &nr_blocks_metadata
);
2638 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
2639 dm_device_name(pool
->pool_md
), r
);
2643 r
= dm_pool_get_free_block_count(pool
->pmd
, &nr_free_blocks_data
);
2645 DMERR("%s: dm_pool_get_free_block_count returned %d",
2646 dm_device_name(pool
->pool_md
), r
);
2650 r
= dm_pool_get_data_dev_size(pool
->pmd
, &nr_blocks_data
);
2652 DMERR("%s: dm_pool_get_data_dev_size returned %d",
2653 dm_device_name(pool
->pool_md
), r
);
2657 r
= dm_pool_get_metadata_snap(pool
->pmd
, &held_root
);
2659 DMERR("%s: dm_pool_get_metadata_snap returned %d",
2660 dm_device_name(pool
->pool_md
), r
);
2664 DMEMIT("%llu %llu/%llu %llu/%llu ",
2665 (unsigned long long)transaction_id
,
2666 (unsigned long long)(nr_blocks_metadata
- nr_free_blocks_metadata
),
2667 (unsigned long long)nr_blocks_metadata
,
2668 (unsigned long long)(nr_blocks_data
- nr_free_blocks_data
),
2669 (unsigned long long)nr_blocks_data
);
2672 DMEMIT("%llu ", held_root
);
2676 if (pool
->pf
.mode
== PM_READ_ONLY
)
2681 if (!pool
->pf
.discard_enabled
)
2682 DMEMIT("ignore_discard ");
2683 else if (pool
->pf
.discard_passdown
)
2684 DMEMIT("discard_passdown ");
2686 DMEMIT("no_discard_passdown ");
2688 if (pool
->pf
.error_if_no_space
)
2689 DMEMIT("error_if_no_space ");
2691 DMEMIT("queue_if_no_space ");
2695 case STATUSTYPE_TABLE
:
2696 DMEMIT("%s %s %lu %llu ",
2697 format_dev_t(buf
, pt
->metadata_dev
->bdev
->bd_dev
),
2698 format_dev_t(buf2
, pt
->data_dev
->bdev
->bd_dev
),
2699 (unsigned long)pool
->sectors_per_block
,
2700 (unsigned long long)pt
->low_water_blocks
);
2701 emit_flags(&pt
->requested_pf
, result
, sz
, maxlen
);
2710 static int pool_iterate_devices(struct dm_target
*ti
,
2711 iterate_devices_callout_fn fn
, void *data
)
2713 struct pool_c
*pt
= ti
->private;
2715 return fn(ti
, pt
->data_dev
, 0, ti
->len
, data
);
2718 static int pool_merge(struct dm_target
*ti
, struct bvec_merge_data
*bvm
,
2719 struct bio_vec
*biovec
, int max_size
)
2721 struct pool_c
*pt
= ti
->private;
2722 struct request_queue
*q
= bdev_get_queue(pt
->data_dev
->bdev
);
2724 if (!q
->merge_bvec_fn
)
2727 bvm
->bi_bdev
= pt
->data_dev
->bdev
;
2729 return min(max_size
, q
->merge_bvec_fn(q
, bvm
, biovec
));
2732 static void set_discard_limits(struct pool_c
*pt
, struct queue_limits
*limits
)
2734 struct pool
*pool
= pt
->pool
;
2735 struct queue_limits
*data_limits
;
2737 limits
->max_discard_sectors
= pool
->sectors_per_block
;
2740 * discard_granularity is just a hint, and not enforced.
2742 if (pt
->adjusted_pf
.discard_passdown
) {
2743 data_limits
= &bdev_get_queue(pt
->data_dev
->bdev
)->limits
;
2744 limits
->discard_granularity
= data_limits
->discard_granularity
;
2746 limits
->discard_granularity
= pool
->sectors_per_block
<< SECTOR_SHIFT
;
2749 static void pool_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
2751 struct pool_c
*pt
= ti
->private;
2752 struct pool
*pool
= pt
->pool
;
2753 uint64_t io_opt_sectors
= limits
->io_opt
>> SECTOR_SHIFT
;
2756 * If the system-determined stacked limits are compatible with the
2757 * pool's blocksize (io_opt is a factor) do not override them.
2759 if (io_opt_sectors
< pool
->sectors_per_block
||
2760 do_div(io_opt_sectors
, pool
->sectors_per_block
)) {
2761 blk_limits_io_min(limits
, 0);
2762 blk_limits_io_opt(limits
, pool
->sectors_per_block
<< SECTOR_SHIFT
);
2766 * pt->adjusted_pf is a staging area for the actual features to use.
2767 * They get transferred to the live pool in bind_control_target()
2768 * called from pool_preresume().
2770 if (!pt
->adjusted_pf
.discard_enabled
) {
2772 * Must explicitly disallow stacking discard limits otherwise the
2773 * block layer will stack them if pool's data device has support.
2774 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
2775 * user to see that, so make sure to set all discard limits to 0.
2777 limits
->discard_granularity
= 0;
2781 disable_passdown_if_not_supported(pt
);
2783 set_discard_limits(pt
, limits
);
2786 static struct target_type pool_target
= {
2787 .name
= "thin-pool",
2788 .features
= DM_TARGET_SINGLETON
| DM_TARGET_ALWAYS_WRITEABLE
|
2789 DM_TARGET_IMMUTABLE
,
2790 .version
= {1, 10, 0},
2791 .module
= THIS_MODULE
,
2795 .postsuspend
= pool_postsuspend
,
2796 .preresume
= pool_preresume
,
2797 .resume
= pool_resume
,
2798 .message
= pool_message
,
2799 .status
= pool_status
,
2800 .merge
= pool_merge
,
2801 .iterate_devices
= pool_iterate_devices
,
2802 .io_hints
= pool_io_hints
,
2805 /*----------------------------------------------------------------
2806 * Thin target methods
2807 *--------------------------------------------------------------*/
2808 static void thin_dtr(struct dm_target
*ti
)
2810 struct thin_c
*tc
= ti
->private;
2812 mutex_lock(&dm_thin_pool_table
.mutex
);
2814 __pool_dec(tc
->pool
);
2815 dm_pool_close_thin_device(tc
->td
);
2816 dm_put_device(ti
, tc
->pool_dev
);
2818 dm_put_device(ti
, tc
->origin_dev
);
2821 mutex_unlock(&dm_thin_pool_table
.mutex
);
2825 * Thin target parameters:
2827 * <pool_dev> <dev_id> [origin_dev]
2829 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2830 * dev_id: the internal device identifier
2831 * origin_dev: a device external to the pool that should act as the origin
2833 * If the pool device has discards disabled, they get disabled for the thin
2836 static int thin_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
2840 struct dm_dev
*pool_dev
, *origin_dev
;
2841 struct mapped_device
*pool_md
;
2843 mutex_lock(&dm_thin_pool_table
.mutex
);
2845 if (argc
!= 2 && argc
!= 3) {
2846 ti
->error
= "Invalid argument count";
2851 tc
= ti
->private = kzalloc(sizeof(*tc
), GFP_KERNEL
);
2853 ti
->error
= "Out of memory";
2859 r
= dm_get_device(ti
, argv
[2], FMODE_READ
, &origin_dev
);
2861 ti
->error
= "Error opening origin device";
2862 goto bad_origin_dev
;
2864 tc
->origin_dev
= origin_dev
;
2867 r
= dm_get_device(ti
, argv
[0], dm_table_get_mode(ti
->table
), &pool_dev
);
2869 ti
->error
= "Error opening pool device";
2872 tc
->pool_dev
= pool_dev
;
2874 if (read_dev_id(argv
[1], (unsigned long long *)&tc
->dev_id
, 0)) {
2875 ti
->error
= "Invalid device id";
2880 pool_md
= dm_get_md(tc
->pool_dev
->bdev
->bd_dev
);
2882 ti
->error
= "Couldn't get pool mapped device";
2887 tc
->pool
= __pool_table_lookup(pool_md
);
2889 ti
->error
= "Couldn't find pool object";
2891 goto bad_pool_lookup
;
2893 __pool_inc(tc
->pool
);
2895 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
2896 ti
->error
= "Couldn't open thin device, Pool is in fail mode";
2900 r
= dm_pool_open_thin_device(tc
->pool
->pmd
, tc
->dev_id
, &tc
->td
);
2902 ti
->error
= "Couldn't open thin internal device";
2906 r
= dm_set_target_max_io_len(ti
, tc
->pool
->sectors_per_block
);
2910 ti
->num_flush_bios
= 1;
2911 ti
->flush_supported
= true;
2912 ti
->per_bio_data_size
= sizeof(struct dm_thin_endio_hook
);
2914 /* In case the pool supports discards, pass them on. */
2915 ti
->discard_zeroes_data_unsupported
= true;
2916 if (tc
->pool
->pf
.discard_enabled
) {
2917 ti
->discards_supported
= true;
2918 ti
->num_discard_bios
= 1;
2919 /* Discard bios must be split on a block boundary */
2920 ti
->split_discard_bios
= true;
2925 mutex_unlock(&dm_thin_pool_table
.mutex
);
2930 __pool_dec(tc
->pool
);
2934 dm_put_device(ti
, tc
->pool_dev
);
2937 dm_put_device(ti
, tc
->origin_dev
);
2941 mutex_unlock(&dm_thin_pool_table
.mutex
);
2946 static int thin_map(struct dm_target
*ti
, struct bio
*bio
)
2948 bio
->bi_iter
.bi_sector
= dm_target_offset(ti
, bio
->bi_iter
.bi_sector
);
2950 return thin_bio_map(ti
, bio
);
2953 static int thin_endio(struct dm_target
*ti
, struct bio
*bio
, int err
)
2955 unsigned long flags
;
2956 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
2957 struct list_head work
;
2958 struct dm_thin_new_mapping
*m
, *tmp
;
2959 struct pool
*pool
= h
->tc
->pool
;
2961 if (h
->shared_read_entry
) {
2962 INIT_LIST_HEAD(&work
);
2963 dm_deferred_entry_dec(h
->shared_read_entry
, &work
);
2965 spin_lock_irqsave(&pool
->lock
, flags
);
2966 list_for_each_entry_safe(m
, tmp
, &work
, list
) {
2969 __maybe_add_mapping(m
);
2971 spin_unlock_irqrestore(&pool
->lock
, flags
);
2974 if (h
->all_io_entry
) {
2975 INIT_LIST_HEAD(&work
);
2976 dm_deferred_entry_dec(h
->all_io_entry
, &work
);
2977 if (!list_empty(&work
)) {
2978 spin_lock_irqsave(&pool
->lock
, flags
);
2979 list_for_each_entry_safe(m
, tmp
, &work
, list
)
2980 list_add_tail(&m
->list
, &pool
->prepared_discards
);
2981 spin_unlock_irqrestore(&pool
->lock
, flags
);
2989 static void thin_postsuspend(struct dm_target
*ti
)
2991 if (dm_noflush_suspending(ti
))
2992 requeue_io((struct thin_c
*)ti
->private);
2996 * <nr mapped sectors> <highest mapped sector>
2998 static void thin_status(struct dm_target
*ti
, status_type_t type
,
2999 unsigned status_flags
, char *result
, unsigned maxlen
)
3003 dm_block_t mapped
, highest
;
3004 char buf
[BDEVNAME_SIZE
];
3005 struct thin_c
*tc
= ti
->private;
3007 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
3016 case STATUSTYPE_INFO
:
3017 r
= dm_thin_get_mapped_count(tc
->td
, &mapped
);
3019 DMERR("dm_thin_get_mapped_count returned %d", r
);
3023 r
= dm_thin_get_highest_mapped_block(tc
->td
, &highest
);
3025 DMERR("dm_thin_get_highest_mapped_block returned %d", r
);
3029 DMEMIT("%llu ", mapped
* tc
->pool
->sectors_per_block
);
3031 DMEMIT("%llu", ((highest
+ 1) *
3032 tc
->pool
->sectors_per_block
) - 1);
3037 case STATUSTYPE_TABLE
:
3039 format_dev_t(buf
, tc
->pool_dev
->bdev
->bd_dev
),
3040 (unsigned long) tc
->dev_id
);
3042 DMEMIT(" %s", format_dev_t(buf
, tc
->origin_dev
->bdev
->bd_dev
));
3053 static int thin_iterate_devices(struct dm_target
*ti
,
3054 iterate_devices_callout_fn fn
, void *data
)
3057 struct thin_c
*tc
= ti
->private;
3058 struct pool
*pool
= tc
->pool
;
3061 * We can't call dm_pool_get_data_dev_size() since that blocks. So
3062 * we follow a more convoluted path through to the pool's target.
3065 return 0; /* nothing is bound */
3067 blocks
= pool
->ti
->len
;
3068 (void) sector_div(blocks
, pool
->sectors_per_block
);
3070 return fn(ti
, tc
->pool_dev
, 0, pool
->sectors_per_block
* blocks
, data
);
3075 static struct target_type thin_target
= {
3077 .version
= {1, 10, 0},
3078 .module
= THIS_MODULE
,
3082 .end_io
= thin_endio
,
3083 .postsuspend
= thin_postsuspend
,
3084 .status
= thin_status
,
3085 .iterate_devices
= thin_iterate_devices
,
3088 /*----------------------------------------------------------------*/
3090 static int __init
dm_thin_init(void)
3096 r
= dm_register_target(&thin_target
);
3100 r
= dm_register_target(&pool_target
);
3102 goto bad_pool_target
;
3106 _new_mapping_cache
= KMEM_CACHE(dm_thin_new_mapping
, 0);
3107 if (!_new_mapping_cache
)
3108 goto bad_new_mapping_cache
;
3112 bad_new_mapping_cache
:
3113 dm_unregister_target(&pool_target
);
3115 dm_unregister_target(&thin_target
);
3120 static void dm_thin_exit(void)
3122 dm_unregister_target(&thin_target
);
3123 dm_unregister_target(&pool_target
);
3125 kmem_cache_destroy(_new_mapping_cache
);
3128 module_init(dm_thin_init
);
3129 module_exit(dm_thin_exit
);
3131 MODULE_DESCRIPTION(DM_NAME
" thin provisioning target");
3132 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3133 MODULE_LICENSE("GPL");