fix a kmap leak in virtio_console
[linux/fpc-iii.git] / drivers / md / raid1.c
blobfd3a2a14b587da5e3bb5046b0017ed7bd46f67a1
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
45 * Number of guaranteed r1bios in case of extreme VM load:
47 #define NR_RAID1_BIOS 256
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
59 #define IO_MADE_GOOD ((struct bio *)2)
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
67 static int max_queued_requests = 1024;
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
75 struct pool_info *pi = data;
76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
79 return kzalloc(size, gfp_flags);
82 static void r1bio_pool_free(void *r1_bio, void *data)
84 kfree(r1_bio);
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
97 struct pool_info *pi = data;
98 struct r1bio *r1_bio;
99 struct bio *bio;
100 int i, j;
102 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
103 if (!r1_bio)
104 return NULL;
107 * Allocate bios : 1 for reading, n-1 for writing
109 for (j = pi->raid_disks ; j-- ; ) {
110 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
111 if (!bio)
112 goto out_free_bio;
113 r1_bio->bios[j] = bio;
116 * Allocate RESYNC_PAGES data pages and attach them to
117 * the first bio.
118 * If this is a user-requested check/repair, allocate
119 * RESYNC_PAGES for each bio.
121 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
122 j = pi->raid_disks;
123 else
124 j = 1;
125 while(j--) {
126 bio = r1_bio->bios[j];
127 bio->bi_vcnt = RESYNC_PAGES;
129 if (bio_alloc_pages(bio, gfp_flags))
130 goto out_free_bio;
132 /* If not user-requests, copy the page pointers to all bios */
133 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
134 for (i=0; i<RESYNC_PAGES ; i++)
135 for (j=1; j<pi->raid_disks; j++)
136 r1_bio->bios[j]->bi_io_vec[i].bv_page =
137 r1_bio->bios[0]->bi_io_vec[i].bv_page;
140 r1_bio->master_bio = NULL;
142 return r1_bio;
144 out_free_bio:
145 while (++j < pi->raid_disks)
146 bio_put(r1_bio->bios[j]);
147 r1bio_pool_free(r1_bio, data);
148 return NULL;
151 static void r1buf_pool_free(void *__r1_bio, void *data)
153 struct pool_info *pi = data;
154 int i,j;
155 struct r1bio *r1bio = __r1_bio;
157 for (i = 0; i < RESYNC_PAGES; i++)
158 for (j = pi->raid_disks; j-- ;) {
159 if (j == 0 ||
160 r1bio->bios[j]->bi_io_vec[i].bv_page !=
161 r1bio->bios[0]->bi_io_vec[i].bv_page)
162 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
164 for (i=0 ; i < pi->raid_disks; i++)
165 bio_put(r1bio->bios[i]);
167 r1bio_pool_free(r1bio, data);
170 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
172 int i;
174 for (i = 0; i < conf->raid_disks * 2; i++) {
175 struct bio **bio = r1_bio->bios + i;
176 if (!BIO_SPECIAL(*bio))
177 bio_put(*bio);
178 *bio = NULL;
182 static void free_r1bio(struct r1bio *r1_bio)
184 struct r1conf *conf = r1_bio->mddev->private;
186 put_all_bios(conf, r1_bio);
187 mempool_free(r1_bio, conf->r1bio_pool);
190 static void put_buf(struct r1bio *r1_bio)
192 struct r1conf *conf = r1_bio->mddev->private;
193 int i;
195 for (i = 0; i < conf->raid_disks * 2; i++) {
196 struct bio *bio = r1_bio->bios[i];
197 if (bio->bi_end_io)
198 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
201 mempool_free(r1_bio, conf->r1buf_pool);
203 lower_barrier(conf);
206 static void reschedule_retry(struct r1bio *r1_bio)
208 unsigned long flags;
209 struct mddev *mddev = r1_bio->mddev;
210 struct r1conf *conf = mddev->private;
212 spin_lock_irqsave(&conf->device_lock, flags);
213 list_add(&r1_bio->retry_list, &conf->retry_list);
214 conf->nr_queued ++;
215 spin_unlock_irqrestore(&conf->device_lock, flags);
217 wake_up(&conf->wait_barrier);
218 md_wakeup_thread(mddev->thread);
222 * raid_end_bio_io() is called when we have finished servicing a mirrored
223 * operation and are ready to return a success/failure code to the buffer
224 * cache layer.
226 static void call_bio_endio(struct r1bio *r1_bio)
228 struct bio *bio = r1_bio->master_bio;
229 int done;
230 struct r1conf *conf = r1_bio->mddev->private;
231 sector_t start_next_window = r1_bio->start_next_window;
232 sector_t bi_sector = bio->bi_iter.bi_sector;
234 if (bio->bi_phys_segments) {
235 unsigned long flags;
236 spin_lock_irqsave(&conf->device_lock, flags);
237 bio->bi_phys_segments--;
238 done = (bio->bi_phys_segments == 0);
239 spin_unlock_irqrestore(&conf->device_lock, flags);
241 * make_request() might be waiting for
242 * bi_phys_segments to decrease
244 wake_up(&conf->wait_barrier);
245 } else
246 done = 1;
248 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
249 clear_bit(BIO_UPTODATE, &bio->bi_flags);
250 if (done) {
251 bio_endio(bio, 0);
253 * Wake up any possible resync thread that waits for the device
254 * to go idle.
256 allow_barrier(conf, start_next_window, bi_sector);
260 static void raid_end_bio_io(struct r1bio *r1_bio)
262 struct bio *bio = r1_bio->master_bio;
264 /* if nobody has done the final endio yet, do it now */
265 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
266 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
267 (bio_data_dir(bio) == WRITE) ? "write" : "read",
268 (unsigned long long) bio->bi_iter.bi_sector,
269 (unsigned long long) bio_end_sector(bio) - 1);
271 call_bio_endio(r1_bio);
273 free_r1bio(r1_bio);
277 * Update disk head position estimator based on IRQ completion info.
279 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
281 struct r1conf *conf = r1_bio->mddev->private;
283 conf->mirrors[disk].head_position =
284 r1_bio->sector + (r1_bio->sectors);
288 * Find the disk number which triggered given bio
290 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
292 int mirror;
293 struct r1conf *conf = r1_bio->mddev->private;
294 int raid_disks = conf->raid_disks;
296 for (mirror = 0; mirror < raid_disks * 2; mirror++)
297 if (r1_bio->bios[mirror] == bio)
298 break;
300 BUG_ON(mirror == raid_disks * 2);
301 update_head_pos(mirror, r1_bio);
303 return mirror;
306 static void raid1_end_read_request(struct bio *bio, int error)
308 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
309 struct r1bio *r1_bio = bio->bi_private;
310 int mirror;
311 struct r1conf *conf = r1_bio->mddev->private;
313 mirror = r1_bio->read_disk;
315 * this branch is our 'one mirror IO has finished' event handler:
317 update_head_pos(mirror, r1_bio);
319 if (uptodate)
320 set_bit(R1BIO_Uptodate, &r1_bio->state);
321 else {
322 /* If all other devices have failed, we want to return
323 * the error upwards rather than fail the last device.
324 * Here we redefine "uptodate" to mean "Don't want to retry"
326 unsigned long flags;
327 spin_lock_irqsave(&conf->device_lock, flags);
328 if (r1_bio->mddev->degraded == conf->raid_disks ||
329 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
330 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
331 uptodate = 1;
332 spin_unlock_irqrestore(&conf->device_lock, flags);
335 if (uptodate) {
336 raid_end_bio_io(r1_bio);
337 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
338 } else {
340 * oops, read error:
342 char b[BDEVNAME_SIZE];
343 printk_ratelimited(
344 KERN_ERR "md/raid1:%s: %s: "
345 "rescheduling sector %llu\n",
346 mdname(conf->mddev),
347 bdevname(conf->mirrors[mirror].rdev->bdev,
349 (unsigned long long)r1_bio->sector);
350 set_bit(R1BIO_ReadError, &r1_bio->state);
351 reschedule_retry(r1_bio);
352 /* don't drop the reference on read_disk yet */
356 static void close_write(struct r1bio *r1_bio)
358 /* it really is the end of this request */
359 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
360 /* free extra copy of the data pages */
361 int i = r1_bio->behind_page_count;
362 while (i--)
363 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
364 kfree(r1_bio->behind_bvecs);
365 r1_bio->behind_bvecs = NULL;
367 /* clear the bitmap if all writes complete successfully */
368 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
369 r1_bio->sectors,
370 !test_bit(R1BIO_Degraded, &r1_bio->state),
371 test_bit(R1BIO_BehindIO, &r1_bio->state));
372 md_write_end(r1_bio->mddev);
375 static void r1_bio_write_done(struct r1bio *r1_bio)
377 if (!atomic_dec_and_test(&r1_bio->remaining))
378 return;
380 if (test_bit(R1BIO_WriteError, &r1_bio->state))
381 reschedule_retry(r1_bio);
382 else {
383 close_write(r1_bio);
384 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
385 reschedule_retry(r1_bio);
386 else
387 raid_end_bio_io(r1_bio);
391 static void raid1_end_write_request(struct bio *bio, int error)
393 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
394 struct r1bio *r1_bio = bio->bi_private;
395 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
396 struct r1conf *conf = r1_bio->mddev->private;
397 struct bio *to_put = NULL;
399 mirror = find_bio_disk(r1_bio, bio);
402 * 'one mirror IO has finished' event handler:
404 if (!uptodate) {
405 set_bit(WriteErrorSeen,
406 &conf->mirrors[mirror].rdev->flags);
407 if (!test_and_set_bit(WantReplacement,
408 &conf->mirrors[mirror].rdev->flags))
409 set_bit(MD_RECOVERY_NEEDED, &
410 conf->mddev->recovery);
412 set_bit(R1BIO_WriteError, &r1_bio->state);
413 } else {
415 * Set R1BIO_Uptodate in our master bio, so that we
416 * will return a good error code for to the higher
417 * levels even if IO on some other mirrored buffer
418 * fails.
420 * The 'master' represents the composite IO operation
421 * to user-side. So if something waits for IO, then it
422 * will wait for the 'master' bio.
424 sector_t first_bad;
425 int bad_sectors;
427 r1_bio->bios[mirror] = NULL;
428 to_put = bio;
430 * Do not set R1BIO_Uptodate if the current device is
431 * rebuilding or Faulty. This is because we cannot use
432 * such device for properly reading the data back (we could
433 * potentially use it, if the current write would have felt
434 * before rdev->recovery_offset, but for simplicity we don't
435 * check this here.
437 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
438 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
439 set_bit(R1BIO_Uptodate, &r1_bio->state);
441 /* Maybe we can clear some bad blocks. */
442 if (is_badblock(conf->mirrors[mirror].rdev,
443 r1_bio->sector, r1_bio->sectors,
444 &first_bad, &bad_sectors)) {
445 r1_bio->bios[mirror] = IO_MADE_GOOD;
446 set_bit(R1BIO_MadeGood, &r1_bio->state);
450 if (behind) {
451 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
452 atomic_dec(&r1_bio->behind_remaining);
455 * In behind mode, we ACK the master bio once the I/O
456 * has safely reached all non-writemostly
457 * disks. Setting the Returned bit ensures that this
458 * gets done only once -- we don't ever want to return
459 * -EIO here, instead we'll wait
461 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
462 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
463 /* Maybe we can return now */
464 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
465 struct bio *mbio = r1_bio->master_bio;
466 pr_debug("raid1: behind end write sectors"
467 " %llu-%llu\n",
468 (unsigned long long) mbio->bi_iter.bi_sector,
469 (unsigned long long) bio_end_sector(mbio) - 1);
470 call_bio_endio(r1_bio);
474 if (r1_bio->bios[mirror] == NULL)
475 rdev_dec_pending(conf->mirrors[mirror].rdev,
476 conf->mddev);
479 * Let's see if all mirrored write operations have finished
480 * already.
482 r1_bio_write_done(r1_bio);
484 if (to_put)
485 bio_put(to_put);
490 * This routine returns the disk from which the requested read should
491 * be done. There is a per-array 'next expected sequential IO' sector
492 * number - if this matches on the next IO then we use the last disk.
493 * There is also a per-disk 'last know head position' sector that is
494 * maintained from IRQ contexts, both the normal and the resync IO
495 * completion handlers update this position correctly. If there is no
496 * perfect sequential match then we pick the disk whose head is closest.
498 * If there are 2 mirrors in the same 2 devices, performance degrades
499 * because position is mirror, not device based.
501 * The rdev for the device selected will have nr_pending incremented.
503 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
505 const sector_t this_sector = r1_bio->sector;
506 int sectors;
507 int best_good_sectors;
508 int best_disk, best_dist_disk, best_pending_disk;
509 int has_nonrot_disk;
510 int disk;
511 sector_t best_dist;
512 unsigned int min_pending;
513 struct md_rdev *rdev;
514 int choose_first;
515 int choose_next_idle;
517 rcu_read_lock();
519 * Check if we can balance. We can balance on the whole
520 * device if no resync is going on, or below the resync window.
521 * We take the first readable disk when above the resync window.
523 retry:
524 sectors = r1_bio->sectors;
525 best_disk = -1;
526 best_dist_disk = -1;
527 best_dist = MaxSector;
528 best_pending_disk = -1;
529 min_pending = UINT_MAX;
530 best_good_sectors = 0;
531 has_nonrot_disk = 0;
532 choose_next_idle = 0;
534 if (conf->mddev->recovery_cp < MaxSector &&
535 (this_sector + sectors >= conf->next_resync))
536 choose_first = 1;
537 else
538 choose_first = 0;
540 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
541 sector_t dist;
542 sector_t first_bad;
543 int bad_sectors;
544 unsigned int pending;
545 bool nonrot;
547 rdev = rcu_dereference(conf->mirrors[disk].rdev);
548 if (r1_bio->bios[disk] == IO_BLOCKED
549 || rdev == NULL
550 || test_bit(Unmerged, &rdev->flags)
551 || test_bit(Faulty, &rdev->flags))
552 continue;
553 if (!test_bit(In_sync, &rdev->flags) &&
554 rdev->recovery_offset < this_sector + sectors)
555 continue;
556 if (test_bit(WriteMostly, &rdev->flags)) {
557 /* Don't balance among write-mostly, just
558 * use the first as a last resort */
559 if (best_disk < 0) {
560 if (is_badblock(rdev, this_sector, sectors,
561 &first_bad, &bad_sectors)) {
562 if (first_bad < this_sector)
563 /* Cannot use this */
564 continue;
565 best_good_sectors = first_bad - this_sector;
566 } else
567 best_good_sectors = sectors;
568 best_disk = disk;
570 continue;
572 /* This is a reasonable device to use. It might
573 * even be best.
575 if (is_badblock(rdev, this_sector, sectors,
576 &first_bad, &bad_sectors)) {
577 if (best_dist < MaxSector)
578 /* already have a better device */
579 continue;
580 if (first_bad <= this_sector) {
581 /* cannot read here. If this is the 'primary'
582 * device, then we must not read beyond
583 * bad_sectors from another device..
585 bad_sectors -= (this_sector - first_bad);
586 if (choose_first && sectors > bad_sectors)
587 sectors = bad_sectors;
588 if (best_good_sectors > sectors)
589 best_good_sectors = sectors;
591 } else {
592 sector_t good_sectors = first_bad - this_sector;
593 if (good_sectors > best_good_sectors) {
594 best_good_sectors = good_sectors;
595 best_disk = disk;
597 if (choose_first)
598 break;
600 continue;
601 } else
602 best_good_sectors = sectors;
604 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
605 has_nonrot_disk |= nonrot;
606 pending = atomic_read(&rdev->nr_pending);
607 dist = abs(this_sector - conf->mirrors[disk].head_position);
608 if (choose_first) {
609 best_disk = disk;
610 break;
612 /* Don't change to another disk for sequential reads */
613 if (conf->mirrors[disk].next_seq_sect == this_sector
614 || dist == 0) {
615 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
616 struct raid1_info *mirror = &conf->mirrors[disk];
618 best_disk = disk;
620 * If buffered sequential IO size exceeds optimal
621 * iosize, check if there is idle disk. If yes, choose
622 * the idle disk. read_balance could already choose an
623 * idle disk before noticing it's a sequential IO in
624 * this disk. This doesn't matter because this disk
625 * will idle, next time it will be utilized after the
626 * first disk has IO size exceeds optimal iosize. In
627 * this way, iosize of the first disk will be optimal
628 * iosize at least. iosize of the second disk might be
629 * small, but not a big deal since when the second disk
630 * starts IO, the first disk is likely still busy.
632 if (nonrot && opt_iosize > 0 &&
633 mirror->seq_start != MaxSector &&
634 mirror->next_seq_sect > opt_iosize &&
635 mirror->next_seq_sect - opt_iosize >=
636 mirror->seq_start) {
637 choose_next_idle = 1;
638 continue;
640 break;
642 /* If device is idle, use it */
643 if (pending == 0) {
644 best_disk = disk;
645 break;
648 if (choose_next_idle)
649 continue;
651 if (min_pending > pending) {
652 min_pending = pending;
653 best_pending_disk = disk;
656 if (dist < best_dist) {
657 best_dist = dist;
658 best_dist_disk = disk;
663 * If all disks are rotational, choose the closest disk. If any disk is
664 * non-rotational, choose the disk with less pending request even the
665 * disk is rotational, which might/might not be optimal for raids with
666 * mixed ratation/non-rotational disks depending on workload.
668 if (best_disk == -1) {
669 if (has_nonrot_disk)
670 best_disk = best_pending_disk;
671 else
672 best_disk = best_dist_disk;
675 if (best_disk >= 0) {
676 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
677 if (!rdev)
678 goto retry;
679 atomic_inc(&rdev->nr_pending);
680 if (test_bit(Faulty, &rdev->flags)) {
681 /* cannot risk returning a device that failed
682 * before we inc'ed nr_pending
684 rdev_dec_pending(rdev, conf->mddev);
685 goto retry;
687 sectors = best_good_sectors;
689 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
690 conf->mirrors[best_disk].seq_start = this_sector;
692 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
694 rcu_read_unlock();
695 *max_sectors = sectors;
697 return best_disk;
700 static int raid1_mergeable_bvec(struct request_queue *q,
701 struct bvec_merge_data *bvm,
702 struct bio_vec *biovec)
704 struct mddev *mddev = q->queuedata;
705 struct r1conf *conf = mddev->private;
706 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
707 int max = biovec->bv_len;
709 if (mddev->merge_check_needed) {
710 int disk;
711 rcu_read_lock();
712 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
713 struct md_rdev *rdev = rcu_dereference(
714 conf->mirrors[disk].rdev);
715 if (rdev && !test_bit(Faulty, &rdev->flags)) {
716 struct request_queue *q =
717 bdev_get_queue(rdev->bdev);
718 if (q->merge_bvec_fn) {
719 bvm->bi_sector = sector +
720 rdev->data_offset;
721 bvm->bi_bdev = rdev->bdev;
722 max = min(max, q->merge_bvec_fn(
723 q, bvm, biovec));
727 rcu_read_unlock();
729 return max;
733 int md_raid1_congested(struct mddev *mddev, int bits)
735 struct r1conf *conf = mddev->private;
736 int i, ret = 0;
738 if ((bits & (1 << BDI_async_congested)) &&
739 conf->pending_count >= max_queued_requests)
740 return 1;
742 rcu_read_lock();
743 for (i = 0; i < conf->raid_disks * 2; i++) {
744 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
745 if (rdev && !test_bit(Faulty, &rdev->flags)) {
746 struct request_queue *q = bdev_get_queue(rdev->bdev);
748 BUG_ON(!q);
750 /* Note the '|| 1' - when read_balance prefers
751 * non-congested targets, it can be removed
753 if ((bits & (1<<BDI_async_congested)) || 1)
754 ret |= bdi_congested(&q->backing_dev_info, bits);
755 else
756 ret &= bdi_congested(&q->backing_dev_info, bits);
759 rcu_read_unlock();
760 return ret;
762 EXPORT_SYMBOL_GPL(md_raid1_congested);
764 static int raid1_congested(void *data, int bits)
766 struct mddev *mddev = data;
768 return mddev_congested(mddev, bits) ||
769 md_raid1_congested(mddev, bits);
772 static void flush_pending_writes(struct r1conf *conf)
774 /* Any writes that have been queued but are awaiting
775 * bitmap updates get flushed here.
777 spin_lock_irq(&conf->device_lock);
779 if (conf->pending_bio_list.head) {
780 struct bio *bio;
781 bio = bio_list_get(&conf->pending_bio_list);
782 conf->pending_count = 0;
783 spin_unlock_irq(&conf->device_lock);
784 /* flush any pending bitmap writes to
785 * disk before proceeding w/ I/O */
786 bitmap_unplug(conf->mddev->bitmap);
787 wake_up(&conf->wait_barrier);
789 while (bio) { /* submit pending writes */
790 struct bio *next = bio->bi_next;
791 bio->bi_next = NULL;
792 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
793 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
794 /* Just ignore it */
795 bio_endio(bio, 0);
796 else
797 generic_make_request(bio);
798 bio = next;
800 } else
801 spin_unlock_irq(&conf->device_lock);
804 /* Barriers....
805 * Sometimes we need to suspend IO while we do something else,
806 * either some resync/recovery, or reconfigure the array.
807 * To do this we raise a 'barrier'.
808 * The 'barrier' is a counter that can be raised multiple times
809 * to count how many activities are happening which preclude
810 * normal IO.
811 * We can only raise the barrier if there is no pending IO.
812 * i.e. if nr_pending == 0.
813 * We choose only to raise the barrier if no-one is waiting for the
814 * barrier to go down. This means that as soon as an IO request
815 * is ready, no other operations which require a barrier will start
816 * until the IO request has had a chance.
818 * So: regular IO calls 'wait_barrier'. When that returns there
819 * is no backgroup IO happening, It must arrange to call
820 * allow_barrier when it has finished its IO.
821 * backgroup IO calls must call raise_barrier. Once that returns
822 * there is no normal IO happeing. It must arrange to call
823 * lower_barrier when the particular background IO completes.
825 static void raise_barrier(struct r1conf *conf)
827 spin_lock_irq(&conf->resync_lock);
829 /* Wait until no block IO is waiting */
830 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
831 conf->resync_lock);
833 /* block any new IO from starting */
834 conf->barrier++;
836 /* For these conditions we must wait:
837 * A: while the array is in frozen state
838 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
839 * the max count which allowed.
840 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
841 * next resync will reach to the window which normal bios are
842 * handling.
844 wait_event_lock_irq(conf->wait_barrier,
845 !conf->array_frozen &&
846 conf->barrier < RESYNC_DEPTH &&
847 (conf->start_next_window >=
848 conf->next_resync + RESYNC_SECTORS),
849 conf->resync_lock);
851 spin_unlock_irq(&conf->resync_lock);
854 static void lower_barrier(struct r1conf *conf)
856 unsigned long flags;
857 BUG_ON(conf->barrier <= 0);
858 spin_lock_irqsave(&conf->resync_lock, flags);
859 conf->barrier--;
860 spin_unlock_irqrestore(&conf->resync_lock, flags);
861 wake_up(&conf->wait_barrier);
864 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
866 bool wait = false;
868 if (conf->array_frozen || !bio)
869 wait = true;
870 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
871 if (conf->next_resync < RESYNC_WINDOW_SECTORS)
872 wait = true;
873 else if ((conf->next_resync - RESYNC_WINDOW_SECTORS
874 >= bio_end_sector(bio)) ||
875 (conf->next_resync + NEXT_NORMALIO_DISTANCE
876 <= bio->bi_iter.bi_sector))
877 wait = false;
878 else
879 wait = true;
882 return wait;
885 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
887 sector_t sector = 0;
889 spin_lock_irq(&conf->resync_lock);
890 if (need_to_wait_for_sync(conf, bio)) {
891 conf->nr_waiting++;
892 /* Wait for the barrier to drop.
893 * However if there are already pending
894 * requests (preventing the barrier from
895 * rising completely), and the
896 * pre-process bio queue isn't empty,
897 * then don't wait, as we need to empty
898 * that queue to get the nr_pending
899 * count down.
901 wait_event_lock_irq(conf->wait_barrier,
902 !conf->array_frozen &&
903 (!conf->barrier ||
904 ((conf->start_next_window <
905 conf->next_resync + RESYNC_SECTORS) &&
906 current->bio_list &&
907 !bio_list_empty(current->bio_list))),
908 conf->resync_lock);
909 conf->nr_waiting--;
912 if (bio && bio_data_dir(bio) == WRITE) {
913 if (conf->next_resync + NEXT_NORMALIO_DISTANCE
914 <= bio->bi_iter.bi_sector) {
915 if (conf->start_next_window == MaxSector)
916 conf->start_next_window =
917 conf->next_resync +
918 NEXT_NORMALIO_DISTANCE;
920 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
921 <= bio->bi_iter.bi_sector)
922 conf->next_window_requests++;
923 else
924 conf->current_window_requests++;
925 sector = conf->start_next_window;
929 conf->nr_pending++;
930 spin_unlock_irq(&conf->resync_lock);
931 return sector;
934 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
935 sector_t bi_sector)
937 unsigned long flags;
939 spin_lock_irqsave(&conf->resync_lock, flags);
940 conf->nr_pending--;
941 if (start_next_window) {
942 if (start_next_window == conf->start_next_window) {
943 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
944 <= bi_sector)
945 conf->next_window_requests--;
946 else
947 conf->current_window_requests--;
948 } else
949 conf->current_window_requests--;
951 if (!conf->current_window_requests) {
952 if (conf->next_window_requests) {
953 conf->current_window_requests =
954 conf->next_window_requests;
955 conf->next_window_requests = 0;
956 conf->start_next_window +=
957 NEXT_NORMALIO_DISTANCE;
958 } else
959 conf->start_next_window = MaxSector;
962 spin_unlock_irqrestore(&conf->resync_lock, flags);
963 wake_up(&conf->wait_barrier);
966 static void freeze_array(struct r1conf *conf, int extra)
968 /* stop syncio and normal IO and wait for everything to
969 * go quite.
970 * We wait until nr_pending match nr_queued+extra
971 * This is called in the context of one normal IO request
972 * that has failed. Thus any sync request that might be pending
973 * will be blocked by nr_pending, and we need to wait for
974 * pending IO requests to complete or be queued for re-try.
975 * Thus the number queued (nr_queued) plus this request (extra)
976 * must match the number of pending IOs (nr_pending) before
977 * we continue.
979 spin_lock_irq(&conf->resync_lock);
980 conf->array_frozen = 1;
981 wait_event_lock_irq_cmd(conf->wait_barrier,
982 conf->nr_pending == conf->nr_queued+extra,
983 conf->resync_lock,
984 flush_pending_writes(conf));
985 spin_unlock_irq(&conf->resync_lock);
987 static void unfreeze_array(struct r1conf *conf)
989 /* reverse the effect of the freeze */
990 spin_lock_irq(&conf->resync_lock);
991 conf->array_frozen = 0;
992 wake_up(&conf->wait_barrier);
993 spin_unlock_irq(&conf->resync_lock);
997 /* duplicate the data pages for behind I/O
999 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1001 int i;
1002 struct bio_vec *bvec;
1003 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1004 GFP_NOIO);
1005 if (unlikely(!bvecs))
1006 return;
1008 bio_for_each_segment_all(bvec, bio, i) {
1009 bvecs[i] = *bvec;
1010 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1011 if (unlikely(!bvecs[i].bv_page))
1012 goto do_sync_io;
1013 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1014 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1015 kunmap(bvecs[i].bv_page);
1016 kunmap(bvec->bv_page);
1018 r1_bio->behind_bvecs = bvecs;
1019 r1_bio->behind_page_count = bio->bi_vcnt;
1020 set_bit(R1BIO_BehindIO, &r1_bio->state);
1021 return;
1023 do_sync_io:
1024 for (i = 0; i < bio->bi_vcnt; i++)
1025 if (bvecs[i].bv_page)
1026 put_page(bvecs[i].bv_page);
1027 kfree(bvecs);
1028 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1029 bio->bi_iter.bi_size);
1032 struct raid1_plug_cb {
1033 struct blk_plug_cb cb;
1034 struct bio_list pending;
1035 int pending_cnt;
1038 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1040 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1041 cb);
1042 struct mddev *mddev = plug->cb.data;
1043 struct r1conf *conf = mddev->private;
1044 struct bio *bio;
1046 if (from_schedule || current->bio_list) {
1047 spin_lock_irq(&conf->device_lock);
1048 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1049 conf->pending_count += plug->pending_cnt;
1050 spin_unlock_irq(&conf->device_lock);
1051 wake_up(&conf->wait_barrier);
1052 md_wakeup_thread(mddev->thread);
1053 kfree(plug);
1054 return;
1057 /* we aren't scheduling, so we can do the write-out directly. */
1058 bio = bio_list_get(&plug->pending);
1059 bitmap_unplug(mddev->bitmap);
1060 wake_up(&conf->wait_barrier);
1062 while (bio) { /* submit pending writes */
1063 struct bio *next = bio->bi_next;
1064 bio->bi_next = NULL;
1065 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1066 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1067 /* Just ignore it */
1068 bio_endio(bio, 0);
1069 else
1070 generic_make_request(bio);
1071 bio = next;
1073 kfree(plug);
1076 static void make_request(struct mddev *mddev, struct bio * bio)
1078 struct r1conf *conf = mddev->private;
1079 struct raid1_info *mirror;
1080 struct r1bio *r1_bio;
1081 struct bio *read_bio;
1082 int i, disks;
1083 struct bitmap *bitmap;
1084 unsigned long flags;
1085 const int rw = bio_data_dir(bio);
1086 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1087 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1088 const unsigned long do_discard = (bio->bi_rw
1089 & (REQ_DISCARD | REQ_SECURE));
1090 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1091 struct md_rdev *blocked_rdev;
1092 struct blk_plug_cb *cb;
1093 struct raid1_plug_cb *plug = NULL;
1094 int first_clone;
1095 int sectors_handled;
1096 int max_sectors;
1097 sector_t start_next_window;
1100 * Register the new request and wait if the reconstruction
1101 * thread has put up a bar for new requests.
1102 * Continue immediately if no resync is active currently.
1105 md_write_start(mddev, bio); /* wait on superblock update early */
1107 if (bio_data_dir(bio) == WRITE &&
1108 bio_end_sector(bio) > mddev->suspend_lo &&
1109 bio->bi_iter.bi_sector < mddev->suspend_hi) {
1110 /* As the suspend_* range is controlled by
1111 * userspace, we want an interruptible
1112 * wait.
1114 DEFINE_WAIT(w);
1115 for (;;) {
1116 flush_signals(current);
1117 prepare_to_wait(&conf->wait_barrier,
1118 &w, TASK_INTERRUPTIBLE);
1119 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1120 bio->bi_iter.bi_sector >= mddev->suspend_hi)
1121 break;
1122 schedule();
1124 finish_wait(&conf->wait_barrier, &w);
1127 start_next_window = wait_barrier(conf, bio);
1129 bitmap = mddev->bitmap;
1132 * make_request() can abort the operation when READA is being
1133 * used and no empty request is available.
1136 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1138 r1_bio->master_bio = bio;
1139 r1_bio->sectors = bio_sectors(bio);
1140 r1_bio->state = 0;
1141 r1_bio->mddev = mddev;
1142 r1_bio->sector = bio->bi_iter.bi_sector;
1144 /* We might need to issue multiple reads to different
1145 * devices if there are bad blocks around, so we keep
1146 * track of the number of reads in bio->bi_phys_segments.
1147 * If this is 0, there is only one r1_bio and no locking
1148 * will be needed when requests complete. If it is
1149 * non-zero, then it is the number of not-completed requests.
1151 bio->bi_phys_segments = 0;
1152 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1154 if (rw == READ) {
1156 * read balancing logic:
1158 int rdisk;
1160 read_again:
1161 rdisk = read_balance(conf, r1_bio, &max_sectors);
1163 if (rdisk < 0) {
1164 /* couldn't find anywhere to read from */
1165 raid_end_bio_io(r1_bio);
1166 return;
1168 mirror = conf->mirrors + rdisk;
1170 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1171 bitmap) {
1172 /* Reading from a write-mostly device must
1173 * take care not to over-take any writes
1174 * that are 'behind'
1176 wait_event(bitmap->behind_wait,
1177 atomic_read(&bitmap->behind_writes) == 0);
1179 r1_bio->read_disk = rdisk;
1181 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1182 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1183 max_sectors);
1185 r1_bio->bios[rdisk] = read_bio;
1187 read_bio->bi_iter.bi_sector = r1_bio->sector +
1188 mirror->rdev->data_offset;
1189 read_bio->bi_bdev = mirror->rdev->bdev;
1190 read_bio->bi_end_io = raid1_end_read_request;
1191 read_bio->bi_rw = READ | do_sync;
1192 read_bio->bi_private = r1_bio;
1194 if (max_sectors < r1_bio->sectors) {
1195 /* could not read all from this device, so we will
1196 * need another r1_bio.
1199 sectors_handled = (r1_bio->sector + max_sectors
1200 - bio->bi_iter.bi_sector);
1201 r1_bio->sectors = max_sectors;
1202 spin_lock_irq(&conf->device_lock);
1203 if (bio->bi_phys_segments == 0)
1204 bio->bi_phys_segments = 2;
1205 else
1206 bio->bi_phys_segments++;
1207 spin_unlock_irq(&conf->device_lock);
1208 /* Cannot call generic_make_request directly
1209 * as that will be queued in __make_request
1210 * and subsequent mempool_alloc might block waiting
1211 * for it. So hand bio over to raid1d.
1213 reschedule_retry(r1_bio);
1215 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1217 r1_bio->master_bio = bio;
1218 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1219 r1_bio->state = 0;
1220 r1_bio->mddev = mddev;
1221 r1_bio->sector = bio->bi_iter.bi_sector +
1222 sectors_handled;
1223 goto read_again;
1224 } else
1225 generic_make_request(read_bio);
1226 return;
1230 * WRITE:
1232 if (conf->pending_count >= max_queued_requests) {
1233 md_wakeup_thread(mddev->thread);
1234 wait_event(conf->wait_barrier,
1235 conf->pending_count < max_queued_requests);
1237 /* first select target devices under rcu_lock and
1238 * inc refcount on their rdev. Record them by setting
1239 * bios[x] to bio
1240 * If there are known/acknowledged bad blocks on any device on
1241 * which we have seen a write error, we want to avoid writing those
1242 * blocks.
1243 * This potentially requires several writes to write around
1244 * the bad blocks. Each set of writes gets it's own r1bio
1245 * with a set of bios attached.
1248 disks = conf->raid_disks * 2;
1249 retry_write:
1250 r1_bio->start_next_window = start_next_window;
1251 blocked_rdev = NULL;
1252 rcu_read_lock();
1253 max_sectors = r1_bio->sectors;
1254 for (i = 0; i < disks; i++) {
1255 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1256 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1257 atomic_inc(&rdev->nr_pending);
1258 blocked_rdev = rdev;
1259 break;
1261 r1_bio->bios[i] = NULL;
1262 if (!rdev || test_bit(Faulty, &rdev->flags)
1263 || test_bit(Unmerged, &rdev->flags)) {
1264 if (i < conf->raid_disks)
1265 set_bit(R1BIO_Degraded, &r1_bio->state);
1266 continue;
1269 atomic_inc(&rdev->nr_pending);
1270 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1271 sector_t first_bad;
1272 int bad_sectors;
1273 int is_bad;
1275 is_bad = is_badblock(rdev, r1_bio->sector,
1276 max_sectors,
1277 &first_bad, &bad_sectors);
1278 if (is_bad < 0) {
1279 /* mustn't write here until the bad block is
1280 * acknowledged*/
1281 set_bit(BlockedBadBlocks, &rdev->flags);
1282 blocked_rdev = rdev;
1283 break;
1285 if (is_bad && first_bad <= r1_bio->sector) {
1286 /* Cannot write here at all */
1287 bad_sectors -= (r1_bio->sector - first_bad);
1288 if (bad_sectors < max_sectors)
1289 /* mustn't write more than bad_sectors
1290 * to other devices yet
1292 max_sectors = bad_sectors;
1293 rdev_dec_pending(rdev, mddev);
1294 /* We don't set R1BIO_Degraded as that
1295 * only applies if the disk is
1296 * missing, so it might be re-added,
1297 * and we want to know to recover this
1298 * chunk.
1299 * In this case the device is here,
1300 * and the fact that this chunk is not
1301 * in-sync is recorded in the bad
1302 * block log
1304 continue;
1306 if (is_bad) {
1307 int good_sectors = first_bad - r1_bio->sector;
1308 if (good_sectors < max_sectors)
1309 max_sectors = good_sectors;
1312 r1_bio->bios[i] = bio;
1314 rcu_read_unlock();
1316 if (unlikely(blocked_rdev)) {
1317 /* Wait for this device to become unblocked */
1318 int j;
1319 sector_t old = start_next_window;
1321 for (j = 0; j < i; j++)
1322 if (r1_bio->bios[j])
1323 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1324 r1_bio->state = 0;
1325 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1326 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1327 start_next_window = wait_barrier(conf, bio);
1329 * We must make sure the multi r1bios of bio have
1330 * the same value of bi_phys_segments
1332 if (bio->bi_phys_segments && old &&
1333 old != start_next_window)
1334 /* Wait for the former r1bio(s) to complete */
1335 wait_event(conf->wait_barrier,
1336 bio->bi_phys_segments == 1);
1337 goto retry_write;
1340 if (max_sectors < r1_bio->sectors) {
1341 /* We are splitting this write into multiple parts, so
1342 * we need to prepare for allocating another r1_bio.
1344 r1_bio->sectors = max_sectors;
1345 spin_lock_irq(&conf->device_lock);
1346 if (bio->bi_phys_segments == 0)
1347 bio->bi_phys_segments = 2;
1348 else
1349 bio->bi_phys_segments++;
1350 spin_unlock_irq(&conf->device_lock);
1352 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1354 atomic_set(&r1_bio->remaining, 1);
1355 atomic_set(&r1_bio->behind_remaining, 0);
1357 first_clone = 1;
1358 for (i = 0; i < disks; i++) {
1359 struct bio *mbio;
1360 if (!r1_bio->bios[i])
1361 continue;
1363 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1364 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1366 if (first_clone) {
1367 /* do behind I/O ?
1368 * Not if there are too many, or cannot
1369 * allocate memory, or a reader on WriteMostly
1370 * is waiting for behind writes to flush */
1371 if (bitmap &&
1372 (atomic_read(&bitmap->behind_writes)
1373 < mddev->bitmap_info.max_write_behind) &&
1374 !waitqueue_active(&bitmap->behind_wait))
1375 alloc_behind_pages(mbio, r1_bio);
1377 bitmap_startwrite(bitmap, r1_bio->sector,
1378 r1_bio->sectors,
1379 test_bit(R1BIO_BehindIO,
1380 &r1_bio->state));
1381 first_clone = 0;
1383 if (r1_bio->behind_bvecs) {
1384 struct bio_vec *bvec;
1385 int j;
1388 * We trimmed the bio, so _all is legit
1390 bio_for_each_segment_all(bvec, mbio, j)
1391 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1392 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1393 atomic_inc(&r1_bio->behind_remaining);
1396 r1_bio->bios[i] = mbio;
1398 mbio->bi_iter.bi_sector = (r1_bio->sector +
1399 conf->mirrors[i].rdev->data_offset);
1400 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1401 mbio->bi_end_io = raid1_end_write_request;
1402 mbio->bi_rw =
1403 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1404 mbio->bi_private = r1_bio;
1406 atomic_inc(&r1_bio->remaining);
1408 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1409 if (cb)
1410 plug = container_of(cb, struct raid1_plug_cb, cb);
1411 else
1412 plug = NULL;
1413 spin_lock_irqsave(&conf->device_lock, flags);
1414 if (plug) {
1415 bio_list_add(&plug->pending, mbio);
1416 plug->pending_cnt++;
1417 } else {
1418 bio_list_add(&conf->pending_bio_list, mbio);
1419 conf->pending_count++;
1421 spin_unlock_irqrestore(&conf->device_lock, flags);
1422 if (!plug)
1423 md_wakeup_thread(mddev->thread);
1425 /* Mustn't call r1_bio_write_done before this next test,
1426 * as it could result in the bio being freed.
1428 if (sectors_handled < bio_sectors(bio)) {
1429 r1_bio_write_done(r1_bio);
1430 /* We need another r1_bio. It has already been counted
1431 * in bio->bi_phys_segments
1433 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1434 r1_bio->master_bio = bio;
1435 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1436 r1_bio->state = 0;
1437 r1_bio->mddev = mddev;
1438 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1439 goto retry_write;
1442 r1_bio_write_done(r1_bio);
1444 /* In case raid1d snuck in to freeze_array */
1445 wake_up(&conf->wait_barrier);
1448 static void status(struct seq_file *seq, struct mddev *mddev)
1450 struct r1conf *conf = mddev->private;
1451 int i;
1453 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1454 conf->raid_disks - mddev->degraded);
1455 rcu_read_lock();
1456 for (i = 0; i < conf->raid_disks; i++) {
1457 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1458 seq_printf(seq, "%s",
1459 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1461 rcu_read_unlock();
1462 seq_printf(seq, "]");
1466 static void error(struct mddev *mddev, struct md_rdev *rdev)
1468 char b[BDEVNAME_SIZE];
1469 struct r1conf *conf = mddev->private;
1472 * If it is not operational, then we have already marked it as dead
1473 * else if it is the last working disks, ignore the error, let the
1474 * next level up know.
1475 * else mark the drive as failed
1477 if (test_bit(In_sync, &rdev->flags)
1478 && (conf->raid_disks - mddev->degraded) == 1) {
1480 * Don't fail the drive, act as though we were just a
1481 * normal single drive.
1482 * However don't try a recovery from this drive as
1483 * it is very likely to fail.
1485 conf->recovery_disabled = mddev->recovery_disabled;
1486 return;
1488 set_bit(Blocked, &rdev->flags);
1489 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1490 unsigned long flags;
1491 spin_lock_irqsave(&conf->device_lock, flags);
1492 mddev->degraded++;
1493 set_bit(Faulty, &rdev->flags);
1494 spin_unlock_irqrestore(&conf->device_lock, flags);
1496 * if recovery is running, make sure it aborts.
1498 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1499 } else
1500 set_bit(Faulty, &rdev->flags);
1501 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1502 printk(KERN_ALERT
1503 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1504 "md/raid1:%s: Operation continuing on %d devices.\n",
1505 mdname(mddev), bdevname(rdev->bdev, b),
1506 mdname(mddev), conf->raid_disks - mddev->degraded);
1509 static void print_conf(struct r1conf *conf)
1511 int i;
1513 printk(KERN_DEBUG "RAID1 conf printout:\n");
1514 if (!conf) {
1515 printk(KERN_DEBUG "(!conf)\n");
1516 return;
1518 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1519 conf->raid_disks);
1521 rcu_read_lock();
1522 for (i = 0; i < conf->raid_disks; i++) {
1523 char b[BDEVNAME_SIZE];
1524 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1525 if (rdev)
1526 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1527 i, !test_bit(In_sync, &rdev->flags),
1528 !test_bit(Faulty, &rdev->flags),
1529 bdevname(rdev->bdev,b));
1531 rcu_read_unlock();
1534 static void close_sync(struct r1conf *conf)
1536 wait_barrier(conf, NULL);
1537 allow_barrier(conf, 0, 0);
1539 mempool_destroy(conf->r1buf_pool);
1540 conf->r1buf_pool = NULL;
1542 conf->next_resync = 0;
1543 conf->start_next_window = MaxSector;
1546 static int raid1_spare_active(struct mddev *mddev)
1548 int i;
1549 struct r1conf *conf = mddev->private;
1550 int count = 0;
1551 unsigned long flags;
1554 * Find all failed disks within the RAID1 configuration
1555 * and mark them readable.
1556 * Called under mddev lock, so rcu protection not needed.
1558 for (i = 0; i < conf->raid_disks; i++) {
1559 struct md_rdev *rdev = conf->mirrors[i].rdev;
1560 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1561 if (repl
1562 && repl->recovery_offset == MaxSector
1563 && !test_bit(Faulty, &repl->flags)
1564 && !test_and_set_bit(In_sync, &repl->flags)) {
1565 /* replacement has just become active */
1566 if (!rdev ||
1567 !test_and_clear_bit(In_sync, &rdev->flags))
1568 count++;
1569 if (rdev) {
1570 /* Replaced device not technically
1571 * faulty, but we need to be sure
1572 * it gets removed and never re-added
1574 set_bit(Faulty, &rdev->flags);
1575 sysfs_notify_dirent_safe(
1576 rdev->sysfs_state);
1579 if (rdev
1580 && rdev->recovery_offset == MaxSector
1581 && !test_bit(Faulty, &rdev->flags)
1582 && !test_and_set_bit(In_sync, &rdev->flags)) {
1583 count++;
1584 sysfs_notify_dirent_safe(rdev->sysfs_state);
1587 spin_lock_irqsave(&conf->device_lock, flags);
1588 mddev->degraded -= count;
1589 spin_unlock_irqrestore(&conf->device_lock, flags);
1591 print_conf(conf);
1592 return count;
1596 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1598 struct r1conf *conf = mddev->private;
1599 int err = -EEXIST;
1600 int mirror = 0;
1601 struct raid1_info *p;
1602 int first = 0;
1603 int last = conf->raid_disks - 1;
1604 struct request_queue *q = bdev_get_queue(rdev->bdev);
1606 if (mddev->recovery_disabled == conf->recovery_disabled)
1607 return -EBUSY;
1609 if (rdev->raid_disk >= 0)
1610 first = last = rdev->raid_disk;
1612 if (q->merge_bvec_fn) {
1613 set_bit(Unmerged, &rdev->flags);
1614 mddev->merge_check_needed = 1;
1617 for (mirror = first; mirror <= last; mirror++) {
1618 p = conf->mirrors+mirror;
1619 if (!p->rdev) {
1621 if (mddev->gendisk)
1622 disk_stack_limits(mddev->gendisk, rdev->bdev,
1623 rdev->data_offset << 9);
1625 p->head_position = 0;
1626 rdev->raid_disk = mirror;
1627 err = 0;
1628 /* As all devices are equivalent, we don't need a full recovery
1629 * if this was recently any drive of the array
1631 if (rdev->saved_raid_disk < 0)
1632 conf->fullsync = 1;
1633 rcu_assign_pointer(p->rdev, rdev);
1634 break;
1636 if (test_bit(WantReplacement, &p->rdev->flags) &&
1637 p[conf->raid_disks].rdev == NULL) {
1638 /* Add this device as a replacement */
1639 clear_bit(In_sync, &rdev->flags);
1640 set_bit(Replacement, &rdev->flags);
1641 rdev->raid_disk = mirror;
1642 err = 0;
1643 conf->fullsync = 1;
1644 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1645 break;
1648 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1649 /* Some requests might not have seen this new
1650 * merge_bvec_fn. We must wait for them to complete
1651 * before merging the device fully.
1652 * First we make sure any code which has tested
1653 * our function has submitted the request, then
1654 * we wait for all outstanding requests to complete.
1656 synchronize_sched();
1657 freeze_array(conf, 0);
1658 unfreeze_array(conf);
1659 clear_bit(Unmerged, &rdev->flags);
1661 md_integrity_add_rdev(rdev, mddev);
1662 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1663 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1664 print_conf(conf);
1665 return err;
1668 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1670 struct r1conf *conf = mddev->private;
1671 int err = 0;
1672 int number = rdev->raid_disk;
1673 struct raid1_info *p = conf->mirrors + number;
1675 if (rdev != p->rdev)
1676 p = conf->mirrors + conf->raid_disks + number;
1678 print_conf(conf);
1679 if (rdev == p->rdev) {
1680 if (test_bit(In_sync, &rdev->flags) ||
1681 atomic_read(&rdev->nr_pending)) {
1682 err = -EBUSY;
1683 goto abort;
1685 /* Only remove non-faulty devices if recovery
1686 * is not possible.
1688 if (!test_bit(Faulty, &rdev->flags) &&
1689 mddev->recovery_disabled != conf->recovery_disabled &&
1690 mddev->degraded < conf->raid_disks) {
1691 err = -EBUSY;
1692 goto abort;
1694 p->rdev = NULL;
1695 synchronize_rcu();
1696 if (atomic_read(&rdev->nr_pending)) {
1697 /* lost the race, try later */
1698 err = -EBUSY;
1699 p->rdev = rdev;
1700 goto abort;
1701 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1702 /* We just removed a device that is being replaced.
1703 * Move down the replacement. We drain all IO before
1704 * doing this to avoid confusion.
1706 struct md_rdev *repl =
1707 conf->mirrors[conf->raid_disks + number].rdev;
1708 freeze_array(conf, 0);
1709 clear_bit(Replacement, &repl->flags);
1710 p->rdev = repl;
1711 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1712 unfreeze_array(conf);
1713 clear_bit(WantReplacement, &rdev->flags);
1714 } else
1715 clear_bit(WantReplacement, &rdev->flags);
1716 err = md_integrity_register(mddev);
1718 abort:
1720 print_conf(conf);
1721 return err;
1725 static void end_sync_read(struct bio *bio, int error)
1727 struct r1bio *r1_bio = bio->bi_private;
1729 update_head_pos(r1_bio->read_disk, r1_bio);
1732 * we have read a block, now it needs to be re-written,
1733 * or re-read if the read failed.
1734 * We don't do much here, just schedule handling by raid1d
1736 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1737 set_bit(R1BIO_Uptodate, &r1_bio->state);
1739 if (atomic_dec_and_test(&r1_bio->remaining))
1740 reschedule_retry(r1_bio);
1743 static void end_sync_write(struct bio *bio, int error)
1745 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1746 struct r1bio *r1_bio = bio->bi_private;
1747 struct mddev *mddev = r1_bio->mddev;
1748 struct r1conf *conf = mddev->private;
1749 int mirror=0;
1750 sector_t first_bad;
1751 int bad_sectors;
1753 mirror = find_bio_disk(r1_bio, bio);
1755 if (!uptodate) {
1756 sector_t sync_blocks = 0;
1757 sector_t s = r1_bio->sector;
1758 long sectors_to_go = r1_bio->sectors;
1759 /* make sure these bits doesn't get cleared. */
1760 do {
1761 bitmap_end_sync(mddev->bitmap, s,
1762 &sync_blocks, 1);
1763 s += sync_blocks;
1764 sectors_to_go -= sync_blocks;
1765 } while (sectors_to_go > 0);
1766 set_bit(WriteErrorSeen,
1767 &conf->mirrors[mirror].rdev->flags);
1768 if (!test_and_set_bit(WantReplacement,
1769 &conf->mirrors[mirror].rdev->flags))
1770 set_bit(MD_RECOVERY_NEEDED, &
1771 mddev->recovery);
1772 set_bit(R1BIO_WriteError, &r1_bio->state);
1773 } else if (is_badblock(conf->mirrors[mirror].rdev,
1774 r1_bio->sector,
1775 r1_bio->sectors,
1776 &first_bad, &bad_sectors) &&
1777 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1778 r1_bio->sector,
1779 r1_bio->sectors,
1780 &first_bad, &bad_sectors)
1782 set_bit(R1BIO_MadeGood, &r1_bio->state);
1784 if (atomic_dec_and_test(&r1_bio->remaining)) {
1785 int s = r1_bio->sectors;
1786 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1787 test_bit(R1BIO_WriteError, &r1_bio->state))
1788 reschedule_retry(r1_bio);
1789 else {
1790 put_buf(r1_bio);
1791 md_done_sync(mddev, s, uptodate);
1796 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1797 int sectors, struct page *page, int rw)
1799 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1800 /* success */
1801 return 1;
1802 if (rw == WRITE) {
1803 set_bit(WriteErrorSeen, &rdev->flags);
1804 if (!test_and_set_bit(WantReplacement,
1805 &rdev->flags))
1806 set_bit(MD_RECOVERY_NEEDED, &
1807 rdev->mddev->recovery);
1809 /* need to record an error - either for the block or the device */
1810 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1811 md_error(rdev->mddev, rdev);
1812 return 0;
1815 static int fix_sync_read_error(struct r1bio *r1_bio)
1817 /* Try some synchronous reads of other devices to get
1818 * good data, much like with normal read errors. Only
1819 * read into the pages we already have so we don't
1820 * need to re-issue the read request.
1821 * We don't need to freeze the array, because being in an
1822 * active sync request, there is no normal IO, and
1823 * no overlapping syncs.
1824 * We don't need to check is_badblock() again as we
1825 * made sure that anything with a bad block in range
1826 * will have bi_end_io clear.
1828 struct mddev *mddev = r1_bio->mddev;
1829 struct r1conf *conf = mddev->private;
1830 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1831 sector_t sect = r1_bio->sector;
1832 int sectors = r1_bio->sectors;
1833 int idx = 0;
1835 while(sectors) {
1836 int s = sectors;
1837 int d = r1_bio->read_disk;
1838 int success = 0;
1839 struct md_rdev *rdev;
1840 int start;
1842 if (s > (PAGE_SIZE>>9))
1843 s = PAGE_SIZE >> 9;
1844 do {
1845 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1846 /* No rcu protection needed here devices
1847 * can only be removed when no resync is
1848 * active, and resync is currently active
1850 rdev = conf->mirrors[d].rdev;
1851 if (sync_page_io(rdev, sect, s<<9,
1852 bio->bi_io_vec[idx].bv_page,
1853 READ, false)) {
1854 success = 1;
1855 break;
1858 d++;
1859 if (d == conf->raid_disks * 2)
1860 d = 0;
1861 } while (!success && d != r1_bio->read_disk);
1863 if (!success) {
1864 char b[BDEVNAME_SIZE];
1865 int abort = 0;
1866 /* Cannot read from anywhere, this block is lost.
1867 * Record a bad block on each device. If that doesn't
1868 * work just disable and interrupt the recovery.
1869 * Don't fail devices as that won't really help.
1871 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1872 " for block %llu\n",
1873 mdname(mddev),
1874 bdevname(bio->bi_bdev, b),
1875 (unsigned long long)r1_bio->sector);
1876 for (d = 0; d < conf->raid_disks * 2; d++) {
1877 rdev = conf->mirrors[d].rdev;
1878 if (!rdev || test_bit(Faulty, &rdev->flags))
1879 continue;
1880 if (!rdev_set_badblocks(rdev, sect, s, 0))
1881 abort = 1;
1883 if (abort) {
1884 conf->recovery_disabled =
1885 mddev->recovery_disabled;
1886 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1887 md_done_sync(mddev, r1_bio->sectors, 0);
1888 put_buf(r1_bio);
1889 return 0;
1891 /* Try next page */
1892 sectors -= s;
1893 sect += s;
1894 idx++;
1895 continue;
1898 start = d;
1899 /* write it back and re-read */
1900 while (d != r1_bio->read_disk) {
1901 if (d == 0)
1902 d = conf->raid_disks * 2;
1903 d--;
1904 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1905 continue;
1906 rdev = conf->mirrors[d].rdev;
1907 if (r1_sync_page_io(rdev, sect, s,
1908 bio->bi_io_vec[idx].bv_page,
1909 WRITE) == 0) {
1910 r1_bio->bios[d]->bi_end_io = NULL;
1911 rdev_dec_pending(rdev, mddev);
1914 d = start;
1915 while (d != r1_bio->read_disk) {
1916 if (d == 0)
1917 d = conf->raid_disks * 2;
1918 d--;
1919 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1920 continue;
1921 rdev = conf->mirrors[d].rdev;
1922 if (r1_sync_page_io(rdev, sect, s,
1923 bio->bi_io_vec[idx].bv_page,
1924 READ) != 0)
1925 atomic_add(s, &rdev->corrected_errors);
1927 sectors -= s;
1928 sect += s;
1929 idx ++;
1931 set_bit(R1BIO_Uptodate, &r1_bio->state);
1932 set_bit(BIO_UPTODATE, &bio->bi_flags);
1933 return 1;
1936 static int process_checks(struct r1bio *r1_bio)
1938 /* We have read all readable devices. If we haven't
1939 * got the block, then there is no hope left.
1940 * If we have, then we want to do a comparison
1941 * and skip the write if everything is the same.
1942 * If any blocks failed to read, then we need to
1943 * attempt an over-write
1945 struct mddev *mddev = r1_bio->mddev;
1946 struct r1conf *conf = mddev->private;
1947 int primary;
1948 int i;
1949 int vcnt;
1951 /* Fix variable parts of all bios */
1952 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1953 for (i = 0; i < conf->raid_disks * 2; i++) {
1954 int j;
1955 int size;
1956 struct bio *b = r1_bio->bios[i];
1957 if (b->bi_end_io != end_sync_read)
1958 continue;
1959 /* fixup the bio for reuse */
1960 bio_reset(b);
1961 b->bi_vcnt = vcnt;
1962 b->bi_iter.bi_size = r1_bio->sectors << 9;
1963 b->bi_iter.bi_sector = r1_bio->sector +
1964 conf->mirrors[i].rdev->data_offset;
1965 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1966 b->bi_end_io = end_sync_read;
1967 b->bi_private = r1_bio;
1969 size = b->bi_iter.bi_size;
1970 for (j = 0; j < vcnt ; j++) {
1971 struct bio_vec *bi;
1972 bi = &b->bi_io_vec[j];
1973 bi->bv_offset = 0;
1974 if (size > PAGE_SIZE)
1975 bi->bv_len = PAGE_SIZE;
1976 else
1977 bi->bv_len = size;
1978 size -= PAGE_SIZE;
1981 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1982 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1983 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1984 r1_bio->bios[primary]->bi_end_io = NULL;
1985 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1986 break;
1988 r1_bio->read_disk = primary;
1989 for (i = 0; i < conf->raid_disks * 2; i++) {
1990 int j;
1991 struct bio *pbio = r1_bio->bios[primary];
1992 struct bio *sbio = r1_bio->bios[i];
1994 if (sbio->bi_end_io != end_sync_read)
1995 continue;
1997 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1998 for (j = vcnt; j-- ; ) {
1999 struct page *p, *s;
2000 p = pbio->bi_io_vec[j].bv_page;
2001 s = sbio->bi_io_vec[j].bv_page;
2002 if (memcmp(page_address(p),
2003 page_address(s),
2004 sbio->bi_io_vec[j].bv_len))
2005 break;
2007 } else
2008 j = 0;
2009 if (j >= 0)
2010 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2011 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2012 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
2013 /* No need to write to this device. */
2014 sbio->bi_end_io = NULL;
2015 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2016 continue;
2019 bio_copy_data(sbio, pbio);
2021 return 0;
2024 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2026 struct r1conf *conf = mddev->private;
2027 int i;
2028 int disks = conf->raid_disks * 2;
2029 struct bio *bio, *wbio;
2031 bio = r1_bio->bios[r1_bio->read_disk];
2033 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2034 /* ouch - failed to read all of that. */
2035 if (!fix_sync_read_error(r1_bio))
2036 return;
2038 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2039 if (process_checks(r1_bio) < 0)
2040 return;
2042 * schedule writes
2044 atomic_set(&r1_bio->remaining, 1);
2045 for (i = 0; i < disks ; i++) {
2046 wbio = r1_bio->bios[i];
2047 if (wbio->bi_end_io == NULL ||
2048 (wbio->bi_end_io == end_sync_read &&
2049 (i == r1_bio->read_disk ||
2050 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2051 continue;
2053 wbio->bi_rw = WRITE;
2054 wbio->bi_end_io = end_sync_write;
2055 atomic_inc(&r1_bio->remaining);
2056 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2058 generic_make_request(wbio);
2061 if (atomic_dec_and_test(&r1_bio->remaining)) {
2062 /* if we're here, all write(s) have completed, so clean up */
2063 int s = r1_bio->sectors;
2064 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2065 test_bit(R1BIO_WriteError, &r1_bio->state))
2066 reschedule_retry(r1_bio);
2067 else {
2068 put_buf(r1_bio);
2069 md_done_sync(mddev, s, 1);
2075 * This is a kernel thread which:
2077 * 1. Retries failed read operations on working mirrors.
2078 * 2. Updates the raid superblock when problems encounter.
2079 * 3. Performs writes following reads for array synchronising.
2082 static void fix_read_error(struct r1conf *conf, int read_disk,
2083 sector_t sect, int sectors)
2085 struct mddev *mddev = conf->mddev;
2086 while(sectors) {
2087 int s = sectors;
2088 int d = read_disk;
2089 int success = 0;
2090 int start;
2091 struct md_rdev *rdev;
2093 if (s > (PAGE_SIZE>>9))
2094 s = PAGE_SIZE >> 9;
2096 do {
2097 /* Note: no rcu protection needed here
2098 * as this is synchronous in the raid1d thread
2099 * which is the thread that might remove
2100 * a device. If raid1d ever becomes multi-threaded....
2102 sector_t first_bad;
2103 int bad_sectors;
2105 rdev = conf->mirrors[d].rdev;
2106 if (rdev &&
2107 (test_bit(In_sync, &rdev->flags) ||
2108 (!test_bit(Faulty, &rdev->flags) &&
2109 rdev->recovery_offset >= sect + s)) &&
2110 is_badblock(rdev, sect, s,
2111 &first_bad, &bad_sectors) == 0 &&
2112 sync_page_io(rdev, sect, s<<9,
2113 conf->tmppage, READ, false))
2114 success = 1;
2115 else {
2116 d++;
2117 if (d == conf->raid_disks * 2)
2118 d = 0;
2120 } while (!success && d != read_disk);
2122 if (!success) {
2123 /* Cannot read from anywhere - mark it bad */
2124 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2125 if (!rdev_set_badblocks(rdev, sect, s, 0))
2126 md_error(mddev, rdev);
2127 break;
2129 /* write it back and re-read */
2130 start = d;
2131 while (d != read_disk) {
2132 if (d==0)
2133 d = conf->raid_disks * 2;
2134 d--;
2135 rdev = conf->mirrors[d].rdev;
2136 if (rdev &&
2137 test_bit(In_sync, &rdev->flags))
2138 r1_sync_page_io(rdev, sect, s,
2139 conf->tmppage, WRITE);
2141 d = start;
2142 while (d != read_disk) {
2143 char b[BDEVNAME_SIZE];
2144 if (d==0)
2145 d = conf->raid_disks * 2;
2146 d--;
2147 rdev = conf->mirrors[d].rdev;
2148 if (rdev &&
2149 test_bit(In_sync, &rdev->flags)) {
2150 if (r1_sync_page_io(rdev, sect, s,
2151 conf->tmppage, READ)) {
2152 atomic_add(s, &rdev->corrected_errors);
2153 printk(KERN_INFO
2154 "md/raid1:%s: read error corrected "
2155 "(%d sectors at %llu on %s)\n",
2156 mdname(mddev), s,
2157 (unsigned long long)(sect +
2158 rdev->data_offset),
2159 bdevname(rdev->bdev, b));
2163 sectors -= s;
2164 sect += s;
2168 static int narrow_write_error(struct r1bio *r1_bio, int i)
2170 struct mddev *mddev = r1_bio->mddev;
2171 struct r1conf *conf = mddev->private;
2172 struct md_rdev *rdev = conf->mirrors[i].rdev;
2174 /* bio has the data to be written to device 'i' where
2175 * we just recently had a write error.
2176 * We repeatedly clone the bio and trim down to one block,
2177 * then try the write. Where the write fails we record
2178 * a bad block.
2179 * It is conceivable that the bio doesn't exactly align with
2180 * blocks. We must handle this somehow.
2182 * We currently own a reference on the rdev.
2185 int block_sectors;
2186 sector_t sector;
2187 int sectors;
2188 int sect_to_write = r1_bio->sectors;
2189 int ok = 1;
2191 if (rdev->badblocks.shift < 0)
2192 return 0;
2194 block_sectors = 1 << rdev->badblocks.shift;
2195 sector = r1_bio->sector;
2196 sectors = ((sector + block_sectors)
2197 & ~(sector_t)(block_sectors - 1))
2198 - sector;
2200 while (sect_to_write) {
2201 struct bio *wbio;
2202 if (sectors > sect_to_write)
2203 sectors = sect_to_write;
2204 /* Write at 'sector' for 'sectors'*/
2206 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2207 unsigned vcnt = r1_bio->behind_page_count;
2208 struct bio_vec *vec = r1_bio->behind_bvecs;
2210 while (!vec->bv_page) {
2211 vec++;
2212 vcnt--;
2215 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2216 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2218 wbio->bi_vcnt = vcnt;
2219 } else {
2220 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2223 wbio->bi_rw = WRITE;
2224 wbio->bi_iter.bi_sector = r1_bio->sector;
2225 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2227 bio_trim(wbio, sector - r1_bio->sector, sectors);
2228 wbio->bi_iter.bi_sector += rdev->data_offset;
2229 wbio->bi_bdev = rdev->bdev;
2230 if (submit_bio_wait(WRITE, wbio) == 0)
2231 /* failure! */
2232 ok = rdev_set_badblocks(rdev, sector,
2233 sectors, 0)
2234 && ok;
2236 bio_put(wbio);
2237 sect_to_write -= sectors;
2238 sector += sectors;
2239 sectors = block_sectors;
2241 return ok;
2244 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2246 int m;
2247 int s = r1_bio->sectors;
2248 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2249 struct md_rdev *rdev = conf->mirrors[m].rdev;
2250 struct bio *bio = r1_bio->bios[m];
2251 if (bio->bi_end_io == NULL)
2252 continue;
2253 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2254 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2255 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2257 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2258 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2259 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2260 md_error(conf->mddev, rdev);
2263 put_buf(r1_bio);
2264 md_done_sync(conf->mddev, s, 1);
2267 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2269 int m;
2270 for (m = 0; m < conf->raid_disks * 2 ; m++)
2271 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2272 struct md_rdev *rdev = conf->mirrors[m].rdev;
2273 rdev_clear_badblocks(rdev,
2274 r1_bio->sector,
2275 r1_bio->sectors, 0);
2276 rdev_dec_pending(rdev, conf->mddev);
2277 } else if (r1_bio->bios[m] != NULL) {
2278 /* This drive got a write error. We need to
2279 * narrow down and record precise write
2280 * errors.
2282 if (!narrow_write_error(r1_bio, m)) {
2283 md_error(conf->mddev,
2284 conf->mirrors[m].rdev);
2285 /* an I/O failed, we can't clear the bitmap */
2286 set_bit(R1BIO_Degraded, &r1_bio->state);
2288 rdev_dec_pending(conf->mirrors[m].rdev,
2289 conf->mddev);
2291 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2292 close_write(r1_bio);
2293 raid_end_bio_io(r1_bio);
2296 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2298 int disk;
2299 int max_sectors;
2300 struct mddev *mddev = conf->mddev;
2301 struct bio *bio;
2302 char b[BDEVNAME_SIZE];
2303 struct md_rdev *rdev;
2305 clear_bit(R1BIO_ReadError, &r1_bio->state);
2306 /* we got a read error. Maybe the drive is bad. Maybe just
2307 * the block and we can fix it.
2308 * We freeze all other IO, and try reading the block from
2309 * other devices. When we find one, we re-write
2310 * and check it that fixes the read error.
2311 * This is all done synchronously while the array is
2312 * frozen
2314 if (mddev->ro == 0) {
2315 freeze_array(conf, 1);
2316 fix_read_error(conf, r1_bio->read_disk,
2317 r1_bio->sector, r1_bio->sectors);
2318 unfreeze_array(conf);
2319 } else
2320 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2321 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2323 bio = r1_bio->bios[r1_bio->read_disk];
2324 bdevname(bio->bi_bdev, b);
2325 read_more:
2326 disk = read_balance(conf, r1_bio, &max_sectors);
2327 if (disk == -1) {
2328 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2329 " read error for block %llu\n",
2330 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2331 raid_end_bio_io(r1_bio);
2332 } else {
2333 const unsigned long do_sync
2334 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2335 if (bio) {
2336 r1_bio->bios[r1_bio->read_disk] =
2337 mddev->ro ? IO_BLOCKED : NULL;
2338 bio_put(bio);
2340 r1_bio->read_disk = disk;
2341 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2342 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2343 max_sectors);
2344 r1_bio->bios[r1_bio->read_disk] = bio;
2345 rdev = conf->mirrors[disk].rdev;
2346 printk_ratelimited(KERN_ERR
2347 "md/raid1:%s: redirecting sector %llu"
2348 " to other mirror: %s\n",
2349 mdname(mddev),
2350 (unsigned long long)r1_bio->sector,
2351 bdevname(rdev->bdev, b));
2352 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2353 bio->bi_bdev = rdev->bdev;
2354 bio->bi_end_io = raid1_end_read_request;
2355 bio->bi_rw = READ | do_sync;
2356 bio->bi_private = r1_bio;
2357 if (max_sectors < r1_bio->sectors) {
2358 /* Drat - have to split this up more */
2359 struct bio *mbio = r1_bio->master_bio;
2360 int sectors_handled = (r1_bio->sector + max_sectors
2361 - mbio->bi_iter.bi_sector);
2362 r1_bio->sectors = max_sectors;
2363 spin_lock_irq(&conf->device_lock);
2364 if (mbio->bi_phys_segments == 0)
2365 mbio->bi_phys_segments = 2;
2366 else
2367 mbio->bi_phys_segments++;
2368 spin_unlock_irq(&conf->device_lock);
2369 generic_make_request(bio);
2370 bio = NULL;
2372 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2374 r1_bio->master_bio = mbio;
2375 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2376 r1_bio->state = 0;
2377 set_bit(R1BIO_ReadError, &r1_bio->state);
2378 r1_bio->mddev = mddev;
2379 r1_bio->sector = mbio->bi_iter.bi_sector +
2380 sectors_handled;
2382 goto read_more;
2383 } else
2384 generic_make_request(bio);
2388 static void raid1d(struct md_thread *thread)
2390 struct mddev *mddev = thread->mddev;
2391 struct r1bio *r1_bio;
2392 unsigned long flags;
2393 struct r1conf *conf = mddev->private;
2394 struct list_head *head = &conf->retry_list;
2395 struct blk_plug plug;
2397 md_check_recovery(mddev);
2399 blk_start_plug(&plug);
2400 for (;;) {
2402 flush_pending_writes(conf);
2404 spin_lock_irqsave(&conf->device_lock, flags);
2405 if (list_empty(head)) {
2406 spin_unlock_irqrestore(&conf->device_lock, flags);
2407 break;
2409 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2410 list_del(head->prev);
2411 conf->nr_queued--;
2412 spin_unlock_irqrestore(&conf->device_lock, flags);
2414 mddev = r1_bio->mddev;
2415 conf = mddev->private;
2416 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2417 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2418 test_bit(R1BIO_WriteError, &r1_bio->state))
2419 handle_sync_write_finished(conf, r1_bio);
2420 else
2421 sync_request_write(mddev, r1_bio);
2422 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2423 test_bit(R1BIO_WriteError, &r1_bio->state))
2424 handle_write_finished(conf, r1_bio);
2425 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2426 handle_read_error(conf, r1_bio);
2427 else
2428 /* just a partial read to be scheduled from separate
2429 * context
2431 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2433 cond_resched();
2434 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2435 md_check_recovery(mddev);
2437 blk_finish_plug(&plug);
2441 static int init_resync(struct r1conf *conf)
2443 int buffs;
2445 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2446 BUG_ON(conf->r1buf_pool);
2447 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2448 conf->poolinfo);
2449 if (!conf->r1buf_pool)
2450 return -ENOMEM;
2451 conf->next_resync = 0;
2452 return 0;
2456 * perform a "sync" on one "block"
2458 * We need to make sure that no normal I/O request - particularly write
2459 * requests - conflict with active sync requests.
2461 * This is achieved by tracking pending requests and a 'barrier' concept
2462 * that can be installed to exclude normal IO requests.
2465 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2467 struct r1conf *conf = mddev->private;
2468 struct r1bio *r1_bio;
2469 struct bio *bio;
2470 sector_t max_sector, nr_sectors;
2471 int disk = -1;
2472 int i;
2473 int wonly = -1;
2474 int write_targets = 0, read_targets = 0;
2475 sector_t sync_blocks;
2476 int still_degraded = 0;
2477 int good_sectors = RESYNC_SECTORS;
2478 int min_bad = 0; /* number of sectors that are bad in all devices */
2480 if (!conf->r1buf_pool)
2481 if (init_resync(conf))
2482 return 0;
2484 max_sector = mddev->dev_sectors;
2485 if (sector_nr >= max_sector) {
2486 /* If we aborted, we need to abort the
2487 * sync on the 'current' bitmap chunk (there will
2488 * only be one in raid1 resync.
2489 * We can find the current addess in mddev->curr_resync
2491 if (mddev->curr_resync < max_sector) /* aborted */
2492 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2493 &sync_blocks, 1);
2494 else /* completed sync */
2495 conf->fullsync = 0;
2497 bitmap_close_sync(mddev->bitmap);
2498 close_sync(conf);
2499 return 0;
2502 if (mddev->bitmap == NULL &&
2503 mddev->recovery_cp == MaxSector &&
2504 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2505 conf->fullsync == 0) {
2506 *skipped = 1;
2507 return max_sector - sector_nr;
2509 /* before building a request, check if we can skip these blocks..
2510 * This call the bitmap_start_sync doesn't actually record anything
2512 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2513 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2514 /* We can skip this block, and probably several more */
2515 *skipped = 1;
2516 return sync_blocks;
2519 * If there is non-resync activity waiting for a turn,
2520 * and resync is going fast enough,
2521 * then let it though before starting on this new sync request.
2523 if (!go_faster && conf->nr_waiting)
2524 msleep_interruptible(1000);
2526 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2527 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2528 raise_barrier(conf);
2530 conf->next_resync = sector_nr;
2532 rcu_read_lock();
2534 * If we get a correctably read error during resync or recovery,
2535 * we might want to read from a different device. So we
2536 * flag all drives that could conceivably be read from for READ,
2537 * and any others (which will be non-In_sync devices) for WRITE.
2538 * If a read fails, we try reading from something else for which READ
2539 * is OK.
2542 r1_bio->mddev = mddev;
2543 r1_bio->sector = sector_nr;
2544 r1_bio->state = 0;
2545 set_bit(R1BIO_IsSync, &r1_bio->state);
2547 for (i = 0; i < conf->raid_disks * 2; i++) {
2548 struct md_rdev *rdev;
2549 bio = r1_bio->bios[i];
2550 bio_reset(bio);
2552 rdev = rcu_dereference(conf->mirrors[i].rdev);
2553 if (rdev == NULL ||
2554 test_bit(Faulty, &rdev->flags)) {
2555 if (i < conf->raid_disks)
2556 still_degraded = 1;
2557 } else if (!test_bit(In_sync, &rdev->flags)) {
2558 bio->bi_rw = WRITE;
2559 bio->bi_end_io = end_sync_write;
2560 write_targets ++;
2561 } else {
2562 /* may need to read from here */
2563 sector_t first_bad = MaxSector;
2564 int bad_sectors;
2566 if (is_badblock(rdev, sector_nr, good_sectors,
2567 &first_bad, &bad_sectors)) {
2568 if (first_bad > sector_nr)
2569 good_sectors = first_bad - sector_nr;
2570 else {
2571 bad_sectors -= (sector_nr - first_bad);
2572 if (min_bad == 0 ||
2573 min_bad > bad_sectors)
2574 min_bad = bad_sectors;
2577 if (sector_nr < first_bad) {
2578 if (test_bit(WriteMostly, &rdev->flags)) {
2579 if (wonly < 0)
2580 wonly = i;
2581 } else {
2582 if (disk < 0)
2583 disk = i;
2585 bio->bi_rw = READ;
2586 bio->bi_end_io = end_sync_read;
2587 read_targets++;
2588 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2589 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2590 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2592 * The device is suitable for reading (InSync),
2593 * but has bad block(s) here. Let's try to correct them,
2594 * if we are doing resync or repair. Otherwise, leave
2595 * this device alone for this sync request.
2597 bio->bi_rw = WRITE;
2598 bio->bi_end_io = end_sync_write;
2599 write_targets++;
2602 if (bio->bi_end_io) {
2603 atomic_inc(&rdev->nr_pending);
2604 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2605 bio->bi_bdev = rdev->bdev;
2606 bio->bi_private = r1_bio;
2609 rcu_read_unlock();
2610 if (disk < 0)
2611 disk = wonly;
2612 r1_bio->read_disk = disk;
2614 if (read_targets == 0 && min_bad > 0) {
2615 /* These sectors are bad on all InSync devices, so we
2616 * need to mark them bad on all write targets
2618 int ok = 1;
2619 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2620 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2621 struct md_rdev *rdev = conf->mirrors[i].rdev;
2622 ok = rdev_set_badblocks(rdev, sector_nr,
2623 min_bad, 0
2624 ) && ok;
2626 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2627 *skipped = 1;
2628 put_buf(r1_bio);
2630 if (!ok) {
2631 /* Cannot record the badblocks, so need to
2632 * abort the resync.
2633 * If there are multiple read targets, could just
2634 * fail the really bad ones ???
2636 conf->recovery_disabled = mddev->recovery_disabled;
2637 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2638 return 0;
2639 } else
2640 return min_bad;
2643 if (min_bad > 0 && min_bad < good_sectors) {
2644 /* only resync enough to reach the next bad->good
2645 * transition */
2646 good_sectors = min_bad;
2649 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2650 /* extra read targets are also write targets */
2651 write_targets += read_targets-1;
2653 if (write_targets == 0 || read_targets == 0) {
2654 /* There is nowhere to write, so all non-sync
2655 * drives must be failed - so we are finished
2657 sector_t rv;
2658 if (min_bad > 0)
2659 max_sector = sector_nr + min_bad;
2660 rv = max_sector - sector_nr;
2661 *skipped = 1;
2662 put_buf(r1_bio);
2663 return rv;
2666 if (max_sector > mddev->resync_max)
2667 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2668 if (max_sector > sector_nr + good_sectors)
2669 max_sector = sector_nr + good_sectors;
2670 nr_sectors = 0;
2671 sync_blocks = 0;
2672 do {
2673 struct page *page;
2674 int len = PAGE_SIZE;
2675 if (sector_nr + (len>>9) > max_sector)
2676 len = (max_sector - sector_nr) << 9;
2677 if (len == 0)
2678 break;
2679 if (sync_blocks == 0) {
2680 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2681 &sync_blocks, still_degraded) &&
2682 !conf->fullsync &&
2683 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2684 break;
2685 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2686 if ((len >> 9) > sync_blocks)
2687 len = sync_blocks<<9;
2690 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2691 bio = r1_bio->bios[i];
2692 if (bio->bi_end_io) {
2693 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2694 if (bio_add_page(bio, page, len, 0) == 0) {
2695 /* stop here */
2696 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2697 while (i > 0) {
2698 i--;
2699 bio = r1_bio->bios[i];
2700 if (bio->bi_end_io==NULL)
2701 continue;
2702 /* remove last page from this bio */
2703 bio->bi_vcnt--;
2704 bio->bi_iter.bi_size -= len;
2705 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2707 goto bio_full;
2711 nr_sectors += len>>9;
2712 sector_nr += len>>9;
2713 sync_blocks -= (len>>9);
2714 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2715 bio_full:
2716 r1_bio->sectors = nr_sectors;
2718 /* For a user-requested sync, we read all readable devices and do a
2719 * compare
2721 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2722 atomic_set(&r1_bio->remaining, read_targets);
2723 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2724 bio = r1_bio->bios[i];
2725 if (bio->bi_end_io == end_sync_read) {
2726 read_targets--;
2727 md_sync_acct(bio->bi_bdev, nr_sectors);
2728 generic_make_request(bio);
2731 } else {
2732 atomic_set(&r1_bio->remaining, 1);
2733 bio = r1_bio->bios[r1_bio->read_disk];
2734 md_sync_acct(bio->bi_bdev, nr_sectors);
2735 generic_make_request(bio);
2738 return nr_sectors;
2741 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2743 if (sectors)
2744 return sectors;
2746 return mddev->dev_sectors;
2749 static struct r1conf *setup_conf(struct mddev *mddev)
2751 struct r1conf *conf;
2752 int i;
2753 struct raid1_info *disk;
2754 struct md_rdev *rdev;
2755 int err = -ENOMEM;
2757 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2758 if (!conf)
2759 goto abort;
2761 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2762 * mddev->raid_disks * 2,
2763 GFP_KERNEL);
2764 if (!conf->mirrors)
2765 goto abort;
2767 conf->tmppage = alloc_page(GFP_KERNEL);
2768 if (!conf->tmppage)
2769 goto abort;
2771 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2772 if (!conf->poolinfo)
2773 goto abort;
2774 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2775 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2776 r1bio_pool_free,
2777 conf->poolinfo);
2778 if (!conf->r1bio_pool)
2779 goto abort;
2781 conf->poolinfo->mddev = mddev;
2783 err = -EINVAL;
2784 spin_lock_init(&conf->device_lock);
2785 rdev_for_each(rdev, mddev) {
2786 struct request_queue *q;
2787 int disk_idx = rdev->raid_disk;
2788 if (disk_idx >= mddev->raid_disks
2789 || disk_idx < 0)
2790 continue;
2791 if (test_bit(Replacement, &rdev->flags))
2792 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2793 else
2794 disk = conf->mirrors + disk_idx;
2796 if (disk->rdev)
2797 goto abort;
2798 disk->rdev = rdev;
2799 q = bdev_get_queue(rdev->bdev);
2800 if (q->merge_bvec_fn)
2801 mddev->merge_check_needed = 1;
2803 disk->head_position = 0;
2804 disk->seq_start = MaxSector;
2806 conf->raid_disks = mddev->raid_disks;
2807 conf->mddev = mddev;
2808 INIT_LIST_HEAD(&conf->retry_list);
2810 spin_lock_init(&conf->resync_lock);
2811 init_waitqueue_head(&conf->wait_barrier);
2813 bio_list_init(&conf->pending_bio_list);
2814 conf->pending_count = 0;
2815 conf->recovery_disabled = mddev->recovery_disabled - 1;
2817 conf->start_next_window = MaxSector;
2818 conf->current_window_requests = conf->next_window_requests = 0;
2820 err = -EIO;
2821 for (i = 0; i < conf->raid_disks * 2; i++) {
2823 disk = conf->mirrors + i;
2825 if (i < conf->raid_disks &&
2826 disk[conf->raid_disks].rdev) {
2827 /* This slot has a replacement. */
2828 if (!disk->rdev) {
2829 /* No original, just make the replacement
2830 * a recovering spare
2832 disk->rdev =
2833 disk[conf->raid_disks].rdev;
2834 disk[conf->raid_disks].rdev = NULL;
2835 } else if (!test_bit(In_sync, &disk->rdev->flags))
2836 /* Original is not in_sync - bad */
2837 goto abort;
2840 if (!disk->rdev ||
2841 !test_bit(In_sync, &disk->rdev->flags)) {
2842 disk->head_position = 0;
2843 if (disk->rdev &&
2844 (disk->rdev->saved_raid_disk < 0))
2845 conf->fullsync = 1;
2849 err = -ENOMEM;
2850 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2851 if (!conf->thread) {
2852 printk(KERN_ERR
2853 "md/raid1:%s: couldn't allocate thread\n",
2854 mdname(mddev));
2855 goto abort;
2858 return conf;
2860 abort:
2861 if (conf) {
2862 if (conf->r1bio_pool)
2863 mempool_destroy(conf->r1bio_pool);
2864 kfree(conf->mirrors);
2865 safe_put_page(conf->tmppage);
2866 kfree(conf->poolinfo);
2867 kfree(conf);
2869 return ERR_PTR(err);
2872 static int stop(struct mddev *mddev);
2873 static int run(struct mddev *mddev)
2875 struct r1conf *conf;
2876 int i;
2877 struct md_rdev *rdev;
2878 int ret;
2879 bool discard_supported = false;
2881 if (mddev->level != 1) {
2882 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2883 mdname(mddev), mddev->level);
2884 return -EIO;
2886 if (mddev->reshape_position != MaxSector) {
2887 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2888 mdname(mddev));
2889 return -EIO;
2892 * copy the already verified devices into our private RAID1
2893 * bookkeeping area. [whatever we allocate in run(),
2894 * should be freed in stop()]
2896 if (mddev->private == NULL)
2897 conf = setup_conf(mddev);
2898 else
2899 conf = mddev->private;
2901 if (IS_ERR(conf))
2902 return PTR_ERR(conf);
2904 if (mddev->queue)
2905 blk_queue_max_write_same_sectors(mddev->queue, 0);
2907 rdev_for_each(rdev, mddev) {
2908 if (!mddev->gendisk)
2909 continue;
2910 disk_stack_limits(mddev->gendisk, rdev->bdev,
2911 rdev->data_offset << 9);
2912 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2913 discard_supported = true;
2916 mddev->degraded = 0;
2917 for (i=0; i < conf->raid_disks; i++)
2918 if (conf->mirrors[i].rdev == NULL ||
2919 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2920 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2921 mddev->degraded++;
2923 if (conf->raid_disks - mddev->degraded == 1)
2924 mddev->recovery_cp = MaxSector;
2926 if (mddev->recovery_cp != MaxSector)
2927 printk(KERN_NOTICE "md/raid1:%s: not clean"
2928 " -- starting background reconstruction\n",
2929 mdname(mddev));
2930 printk(KERN_INFO
2931 "md/raid1:%s: active with %d out of %d mirrors\n",
2932 mdname(mddev), mddev->raid_disks - mddev->degraded,
2933 mddev->raid_disks);
2936 * Ok, everything is just fine now
2938 mddev->thread = conf->thread;
2939 conf->thread = NULL;
2940 mddev->private = conf;
2942 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2944 if (mddev->queue) {
2945 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2946 mddev->queue->backing_dev_info.congested_data = mddev;
2947 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2949 if (discard_supported)
2950 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2951 mddev->queue);
2952 else
2953 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2954 mddev->queue);
2957 ret = md_integrity_register(mddev);
2958 if (ret)
2959 stop(mddev);
2960 return ret;
2963 static int stop(struct mddev *mddev)
2965 struct r1conf *conf = mddev->private;
2966 struct bitmap *bitmap = mddev->bitmap;
2968 /* wait for behind writes to complete */
2969 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2970 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2971 mdname(mddev));
2972 /* need to kick something here to make sure I/O goes? */
2973 wait_event(bitmap->behind_wait,
2974 atomic_read(&bitmap->behind_writes) == 0);
2977 freeze_array(conf, 0);
2978 unfreeze_array(conf);
2980 md_unregister_thread(&mddev->thread);
2981 if (conf->r1bio_pool)
2982 mempool_destroy(conf->r1bio_pool);
2983 kfree(conf->mirrors);
2984 safe_put_page(conf->tmppage);
2985 kfree(conf->poolinfo);
2986 kfree(conf);
2987 mddev->private = NULL;
2988 return 0;
2991 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2993 /* no resync is happening, and there is enough space
2994 * on all devices, so we can resize.
2995 * We need to make sure resync covers any new space.
2996 * If the array is shrinking we should possibly wait until
2997 * any io in the removed space completes, but it hardly seems
2998 * worth it.
3000 sector_t newsize = raid1_size(mddev, sectors, 0);
3001 if (mddev->external_size &&
3002 mddev->array_sectors > newsize)
3003 return -EINVAL;
3004 if (mddev->bitmap) {
3005 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3006 if (ret)
3007 return ret;
3009 md_set_array_sectors(mddev, newsize);
3010 set_capacity(mddev->gendisk, mddev->array_sectors);
3011 revalidate_disk(mddev->gendisk);
3012 if (sectors > mddev->dev_sectors &&
3013 mddev->recovery_cp > mddev->dev_sectors) {
3014 mddev->recovery_cp = mddev->dev_sectors;
3015 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3017 mddev->dev_sectors = sectors;
3018 mddev->resync_max_sectors = sectors;
3019 return 0;
3022 static int raid1_reshape(struct mddev *mddev)
3024 /* We need to:
3025 * 1/ resize the r1bio_pool
3026 * 2/ resize conf->mirrors
3028 * We allocate a new r1bio_pool if we can.
3029 * Then raise a device barrier and wait until all IO stops.
3030 * Then resize conf->mirrors and swap in the new r1bio pool.
3032 * At the same time, we "pack" the devices so that all the missing
3033 * devices have the higher raid_disk numbers.
3035 mempool_t *newpool, *oldpool;
3036 struct pool_info *newpoolinfo;
3037 struct raid1_info *newmirrors;
3038 struct r1conf *conf = mddev->private;
3039 int cnt, raid_disks;
3040 unsigned long flags;
3041 int d, d2, err;
3043 /* Cannot change chunk_size, layout, or level */
3044 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3045 mddev->layout != mddev->new_layout ||
3046 mddev->level != mddev->new_level) {
3047 mddev->new_chunk_sectors = mddev->chunk_sectors;
3048 mddev->new_layout = mddev->layout;
3049 mddev->new_level = mddev->level;
3050 return -EINVAL;
3053 err = md_allow_write(mddev);
3054 if (err)
3055 return err;
3057 raid_disks = mddev->raid_disks + mddev->delta_disks;
3059 if (raid_disks < conf->raid_disks) {
3060 cnt=0;
3061 for (d= 0; d < conf->raid_disks; d++)
3062 if (conf->mirrors[d].rdev)
3063 cnt++;
3064 if (cnt > raid_disks)
3065 return -EBUSY;
3068 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3069 if (!newpoolinfo)
3070 return -ENOMEM;
3071 newpoolinfo->mddev = mddev;
3072 newpoolinfo->raid_disks = raid_disks * 2;
3074 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3075 r1bio_pool_free, newpoolinfo);
3076 if (!newpool) {
3077 kfree(newpoolinfo);
3078 return -ENOMEM;
3080 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3081 GFP_KERNEL);
3082 if (!newmirrors) {
3083 kfree(newpoolinfo);
3084 mempool_destroy(newpool);
3085 return -ENOMEM;
3088 freeze_array(conf, 0);
3090 /* ok, everything is stopped */
3091 oldpool = conf->r1bio_pool;
3092 conf->r1bio_pool = newpool;
3094 for (d = d2 = 0; d < conf->raid_disks; d++) {
3095 struct md_rdev *rdev = conf->mirrors[d].rdev;
3096 if (rdev && rdev->raid_disk != d2) {
3097 sysfs_unlink_rdev(mddev, rdev);
3098 rdev->raid_disk = d2;
3099 sysfs_unlink_rdev(mddev, rdev);
3100 if (sysfs_link_rdev(mddev, rdev))
3101 printk(KERN_WARNING
3102 "md/raid1:%s: cannot register rd%d\n",
3103 mdname(mddev), rdev->raid_disk);
3105 if (rdev)
3106 newmirrors[d2++].rdev = rdev;
3108 kfree(conf->mirrors);
3109 conf->mirrors = newmirrors;
3110 kfree(conf->poolinfo);
3111 conf->poolinfo = newpoolinfo;
3113 spin_lock_irqsave(&conf->device_lock, flags);
3114 mddev->degraded += (raid_disks - conf->raid_disks);
3115 spin_unlock_irqrestore(&conf->device_lock, flags);
3116 conf->raid_disks = mddev->raid_disks = raid_disks;
3117 mddev->delta_disks = 0;
3119 unfreeze_array(conf);
3121 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3122 md_wakeup_thread(mddev->thread);
3124 mempool_destroy(oldpool);
3125 return 0;
3128 static void raid1_quiesce(struct mddev *mddev, int state)
3130 struct r1conf *conf = mddev->private;
3132 switch(state) {
3133 case 2: /* wake for suspend */
3134 wake_up(&conf->wait_barrier);
3135 break;
3136 case 1:
3137 freeze_array(conf, 0);
3138 break;
3139 case 0:
3140 unfreeze_array(conf);
3141 break;
3145 static void *raid1_takeover(struct mddev *mddev)
3147 /* raid1 can take over:
3148 * raid5 with 2 devices, any layout or chunk size
3150 if (mddev->level == 5 && mddev->raid_disks == 2) {
3151 struct r1conf *conf;
3152 mddev->new_level = 1;
3153 mddev->new_layout = 0;
3154 mddev->new_chunk_sectors = 0;
3155 conf = setup_conf(mddev);
3156 if (!IS_ERR(conf))
3157 /* Array must appear to be quiesced */
3158 conf->array_frozen = 1;
3159 return conf;
3161 return ERR_PTR(-EINVAL);
3164 static struct md_personality raid1_personality =
3166 .name = "raid1",
3167 .level = 1,
3168 .owner = THIS_MODULE,
3169 .make_request = make_request,
3170 .run = run,
3171 .stop = stop,
3172 .status = status,
3173 .error_handler = error,
3174 .hot_add_disk = raid1_add_disk,
3175 .hot_remove_disk= raid1_remove_disk,
3176 .spare_active = raid1_spare_active,
3177 .sync_request = sync_request,
3178 .resize = raid1_resize,
3179 .size = raid1_size,
3180 .check_reshape = raid1_reshape,
3181 .quiesce = raid1_quiesce,
3182 .takeover = raid1_takeover,
3185 static int __init raid_init(void)
3187 return register_md_personality(&raid1_personality);
3190 static void raid_exit(void)
3192 unregister_md_personality(&raid1_personality);
3195 module_init(raid_init);
3196 module_exit(raid_exit);
3197 MODULE_LICENSE("GPL");
3198 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3199 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3200 MODULE_ALIAS("md-raid1");
3201 MODULE_ALIAS("md-level-1");
3203 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);