2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
67 static struct workqueue_struct
*raid5_wq
;
72 #define NR_STRIPES 256
73 #define STRIPE_SIZE PAGE_SIZE
74 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
75 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
76 #define IO_THRESHOLD 1
77 #define BYPASS_THRESHOLD 1
78 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
79 #define HASH_MASK (NR_HASH - 1)
80 #define MAX_STRIPE_BATCH 8
82 static inline struct hlist_head
*stripe_hash(struct r5conf
*conf
, sector_t sect
)
84 int hash
= (sect
>> STRIPE_SHIFT
) & HASH_MASK
;
85 return &conf
->stripe_hashtbl
[hash
];
88 static inline int stripe_hash_locks_hash(sector_t sect
)
90 return (sect
>> STRIPE_SHIFT
) & STRIPE_HASH_LOCKS_MASK
;
93 static inline void lock_device_hash_lock(struct r5conf
*conf
, int hash
)
95 spin_lock_irq(conf
->hash_locks
+ hash
);
96 spin_lock(&conf
->device_lock
);
99 static inline void unlock_device_hash_lock(struct r5conf
*conf
, int hash
)
101 spin_unlock(&conf
->device_lock
);
102 spin_unlock_irq(conf
->hash_locks
+ hash
);
105 static inline void lock_all_device_hash_locks_irq(struct r5conf
*conf
)
109 spin_lock(conf
->hash_locks
);
110 for (i
= 1; i
< NR_STRIPE_HASH_LOCKS
; i
++)
111 spin_lock_nest_lock(conf
->hash_locks
+ i
, conf
->hash_locks
);
112 spin_lock(&conf
->device_lock
);
115 static inline void unlock_all_device_hash_locks_irq(struct r5conf
*conf
)
118 spin_unlock(&conf
->device_lock
);
119 for (i
= NR_STRIPE_HASH_LOCKS
; i
; i
--)
120 spin_unlock(conf
->hash_locks
+ i
- 1);
124 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
125 * order without overlap. There may be several bio's per stripe+device, and
126 * a bio could span several devices.
127 * When walking this list for a particular stripe+device, we must never proceed
128 * beyond a bio that extends past this device, as the next bio might no longer
130 * This function is used to determine the 'next' bio in the list, given the sector
131 * of the current stripe+device
133 static inline struct bio
*r5_next_bio(struct bio
*bio
, sector_t sector
)
135 int sectors
= bio_sectors(bio
);
136 if (bio
->bi_iter
.bi_sector
+ sectors
< sector
+ STRIPE_SECTORS
)
143 * We maintain a biased count of active stripes in the bottom 16 bits of
144 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
146 static inline int raid5_bi_processed_stripes(struct bio
*bio
)
148 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
149 return (atomic_read(segments
) >> 16) & 0xffff;
152 static inline int raid5_dec_bi_active_stripes(struct bio
*bio
)
154 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
155 return atomic_sub_return(1, segments
) & 0xffff;
158 static inline void raid5_inc_bi_active_stripes(struct bio
*bio
)
160 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
161 atomic_inc(segments
);
164 static inline void raid5_set_bi_processed_stripes(struct bio
*bio
,
167 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
171 old
= atomic_read(segments
);
172 new = (old
& 0xffff) | (cnt
<< 16);
173 } while (atomic_cmpxchg(segments
, old
, new) != old
);
176 static inline void raid5_set_bi_stripes(struct bio
*bio
, unsigned int cnt
)
178 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
179 atomic_set(segments
, cnt
);
182 /* Find first data disk in a raid6 stripe */
183 static inline int raid6_d0(struct stripe_head
*sh
)
186 /* ddf always start from first device */
188 /* md starts just after Q block */
189 if (sh
->qd_idx
== sh
->disks
- 1)
192 return sh
->qd_idx
+ 1;
194 static inline int raid6_next_disk(int disk
, int raid_disks
)
197 return (disk
< raid_disks
) ? disk
: 0;
200 /* When walking through the disks in a raid5, starting at raid6_d0,
201 * We need to map each disk to a 'slot', where the data disks are slot
202 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
203 * is raid_disks-1. This help does that mapping.
205 static int raid6_idx_to_slot(int idx
, struct stripe_head
*sh
,
206 int *count
, int syndrome_disks
)
212 if (idx
== sh
->pd_idx
)
213 return syndrome_disks
;
214 if (idx
== sh
->qd_idx
)
215 return syndrome_disks
+ 1;
221 static void return_io(struct bio
*return_bi
)
223 struct bio
*bi
= return_bi
;
226 return_bi
= bi
->bi_next
;
228 bi
->bi_iter
.bi_size
= 0;
229 trace_block_bio_complete(bdev_get_queue(bi
->bi_bdev
),
236 static void print_raid5_conf (struct r5conf
*conf
);
238 static int stripe_operations_active(struct stripe_head
*sh
)
240 return sh
->check_state
|| sh
->reconstruct_state
||
241 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
242 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
245 static void raid5_wakeup_stripe_thread(struct stripe_head
*sh
)
247 struct r5conf
*conf
= sh
->raid_conf
;
248 struct r5worker_group
*group
;
250 int i
, cpu
= sh
->cpu
;
252 if (!cpu_online(cpu
)) {
253 cpu
= cpumask_any(cpu_online_mask
);
257 if (list_empty(&sh
->lru
)) {
258 struct r5worker_group
*group
;
259 group
= conf
->worker_groups
+ cpu_to_group(cpu
);
260 list_add_tail(&sh
->lru
, &group
->handle_list
);
261 group
->stripes_cnt
++;
265 if (conf
->worker_cnt_per_group
== 0) {
266 md_wakeup_thread(conf
->mddev
->thread
);
270 group
= conf
->worker_groups
+ cpu_to_group(sh
->cpu
);
272 group
->workers
[0].working
= true;
273 /* at least one worker should run to avoid race */
274 queue_work_on(sh
->cpu
, raid5_wq
, &group
->workers
[0].work
);
276 thread_cnt
= group
->stripes_cnt
/ MAX_STRIPE_BATCH
- 1;
277 /* wakeup more workers */
278 for (i
= 1; i
< conf
->worker_cnt_per_group
&& thread_cnt
> 0; i
++) {
279 if (group
->workers
[i
].working
== false) {
280 group
->workers
[i
].working
= true;
281 queue_work_on(sh
->cpu
, raid5_wq
,
282 &group
->workers
[i
].work
);
288 static void do_release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
289 struct list_head
*temp_inactive_list
)
291 BUG_ON(!list_empty(&sh
->lru
));
292 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
293 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
294 if (test_bit(STRIPE_DELAYED
, &sh
->state
) &&
295 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
296 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
297 else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
298 sh
->bm_seq
- conf
->seq_write
> 0)
299 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
301 clear_bit(STRIPE_DELAYED
, &sh
->state
);
302 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
303 if (conf
->worker_cnt_per_group
== 0) {
304 list_add_tail(&sh
->lru
, &conf
->handle_list
);
306 raid5_wakeup_stripe_thread(sh
);
310 md_wakeup_thread(conf
->mddev
->thread
);
312 BUG_ON(stripe_operations_active(sh
));
313 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
314 if (atomic_dec_return(&conf
->preread_active_stripes
)
316 md_wakeup_thread(conf
->mddev
->thread
);
317 atomic_dec(&conf
->active_stripes
);
318 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
))
319 list_add_tail(&sh
->lru
, temp_inactive_list
);
323 static void __release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
324 struct list_head
*temp_inactive_list
)
326 if (atomic_dec_and_test(&sh
->count
))
327 do_release_stripe(conf
, sh
, temp_inactive_list
);
331 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
333 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
334 * given time. Adding stripes only takes device lock, while deleting stripes
335 * only takes hash lock.
337 static void release_inactive_stripe_list(struct r5conf
*conf
,
338 struct list_head
*temp_inactive_list
,
342 bool do_wakeup
= false;
345 if (hash
== NR_STRIPE_HASH_LOCKS
) {
346 size
= NR_STRIPE_HASH_LOCKS
;
347 hash
= NR_STRIPE_HASH_LOCKS
- 1;
351 struct list_head
*list
= &temp_inactive_list
[size
- 1];
354 * We don't hold any lock here yet, get_active_stripe() might
355 * remove stripes from the list
357 if (!list_empty_careful(list
)) {
358 spin_lock_irqsave(conf
->hash_locks
+ hash
, flags
);
359 if (list_empty(conf
->inactive_list
+ hash
) &&
361 atomic_dec(&conf
->empty_inactive_list_nr
);
362 list_splice_tail_init(list
, conf
->inactive_list
+ hash
);
364 spin_unlock_irqrestore(conf
->hash_locks
+ hash
, flags
);
371 wake_up(&conf
->wait_for_stripe
);
372 if (conf
->retry_read_aligned
)
373 md_wakeup_thread(conf
->mddev
->thread
);
377 /* should hold conf->device_lock already */
378 static int release_stripe_list(struct r5conf
*conf
,
379 struct list_head
*temp_inactive_list
)
381 struct stripe_head
*sh
;
383 struct llist_node
*head
;
385 head
= llist_del_all(&conf
->released_stripes
);
386 head
= llist_reverse_order(head
);
390 sh
= llist_entry(head
, struct stripe_head
, release_list
);
391 head
= llist_next(head
);
392 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
394 clear_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
);
396 * Don't worry the bit is set here, because if the bit is set
397 * again, the count is always > 1. This is true for
398 * STRIPE_ON_UNPLUG_LIST bit too.
400 hash
= sh
->hash_lock_index
;
401 __release_stripe(conf
, sh
, &temp_inactive_list
[hash
]);
408 static void release_stripe(struct stripe_head
*sh
)
410 struct r5conf
*conf
= sh
->raid_conf
;
412 struct list_head list
;
416 if (unlikely(!conf
->mddev
->thread
) ||
417 test_and_set_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
))
419 wakeup
= llist_add(&sh
->release_list
, &conf
->released_stripes
);
421 md_wakeup_thread(conf
->mddev
->thread
);
424 local_irq_save(flags
);
425 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
426 if (atomic_dec_and_lock(&sh
->count
, &conf
->device_lock
)) {
427 INIT_LIST_HEAD(&list
);
428 hash
= sh
->hash_lock_index
;
429 do_release_stripe(conf
, sh
, &list
);
430 spin_unlock(&conf
->device_lock
);
431 release_inactive_stripe_list(conf
, &list
, hash
);
433 local_irq_restore(flags
);
436 static inline void remove_hash(struct stripe_head
*sh
)
438 pr_debug("remove_hash(), stripe %llu\n",
439 (unsigned long long)sh
->sector
);
441 hlist_del_init(&sh
->hash
);
444 static inline void insert_hash(struct r5conf
*conf
, struct stripe_head
*sh
)
446 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
448 pr_debug("insert_hash(), stripe %llu\n",
449 (unsigned long long)sh
->sector
);
451 hlist_add_head(&sh
->hash
, hp
);
455 /* find an idle stripe, make sure it is unhashed, and return it. */
456 static struct stripe_head
*get_free_stripe(struct r5conf
*conf
, int hash
)
458 struct stripe_head
*sh
= NULL
;
459 struct list_head
*first
;
461 if (list_empty(conf
->inactive_list
+ hash
))
463 first
= (conf
->inactive_list
+ hash
)->next
;
464 sh
= list_entry(first
, struct stripe_head
, lru
);
465 list_del_init(first
);
467 atomic_inc(&conf
->active_stripes
);
468 BUG_ON(hash
!= sh
->hash_lock_index
);
469 if (list_empty(conf
->inactive_list
+ hash
))
470 atomic_inc(&conf
->empty_inactive_list_nr
);
475 static void shrink_buffers(struct stripe_head
*sh
)
479 int num
= sh
->raid_conf
->pool_size
;
481 for (i
= 0; i
< num
; i
++) {
485 sh
->dev
[i
].page
= NULL
;
490 static int grow_buffers(struct stripe_head
*sh
)
493 int num
= sh
->raid_conf
->pool_size
;
495 for (i
= 0; i
< num
; i
++) {
498 if (!(page
= alloc_page(GFP_KERNEL
))) {
501 sh
->dev
[i
].page
= page
;
506 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
);
507 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
508 struct stripe_head
*sh
);
510 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int previous
)
512 struct r5conf
*conf
= sh
->raid_conf
;
515 BUG_ON(atomic_read(&sh
->count
) != 0);
516 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
517 BUG_ON(stripe_operations_active(sh
));
519 pr_debug("init_stripe called, stripe %llu\n",
520 (unsigned long long)sh
->sector
);
524 seq
= read_seqcount_begin(&conf
->gen_lock
);
525 sh
->generation
= conf
->generation
- previous
;
526 sh
->disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
528 stripe_set_idx(sector
, conf
, previous
, sh
);
532 for (i
= sh
->disks
; i
--; ) {
533 struct r5dev
*dev
= &sh
->dev
[i
];
535 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
536 test_bit(R5_LOCKED
, &dev
->flags
)) {
537 printk(KERN_ERR
"sector=%llx i=%d %p %p %p %p %d\n",
538 (unsigned long long)sh
->sector
, i
, dev
->toread
,
539 dev
->read
, dev
->towrite
, dev
->written
,
540 test_bit(R5_LOCKED
, &dev
->flags
));
544 raid5_build_block(sh
, i
, previous
);
546 if (read_seqcount_retry(&conf
->gen_lock
, seq
))
548 insert_hash(conf
, sh
);
549 sh
->cpu
= smp_processor_id();
552 static struct stripe_head
*__find_stripe(struct r5conf
*conf
, sector_t sector
,
555 struct stripe_head
*sh
;
557 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
558 hlist_for_each_entry(sh
, stripe_hash(conf
, sector
), hash
)
559 if (sh
->sector
== sector
&& sh
->generation
== generation
)
561 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
566 * Need to check if array has failed when deciding whether to:
568 * - remove non-faulty devices
571 * This determination is simple when no reshape is happening.
572 * However if there is a reshape, we need to carefully check
573 * both the before and after sections.
574 * This is because some failed devices may only affect one
575 * of the two sections, and some non-in_sync devices may
576 * be insync in the section most affected by failed devices.
578 static int calc_degraded(struct r5conf
*conf
)
580 int degraded
, degraded2
;
585 for (i
= 0; i
< conf
->previous_raid_disks
; i
++) {
586 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
587 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
588 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
589 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
591 else if (test_bit(In_sync
, &rdev
->flags
))
594 /* not in-sync or faulty.
595 * If the reshape increases the number of devices,
596 * this is being recovered by the reshape, so
597 * this 'previous' section is not in_sync.
598 * If the number of devices is being reduced however,
599 * the device can only be part of the array if
600 * we are reverting a reshape, so this section will
603 if (conf
->raid_disks
>= conf
->previous_raid_disks
)
607 if (conf
->raid_disks
== conf
->previous_raid_disks
)
611 for (i
= 0; i
< conf
->raid_disks
; i
++) {
612 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
613 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
614 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
615 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
617 else if (test_bit(In_sync
, &rdev
->flags
))
620 /* not in-sync or faulty.
621 * If reshape increases the number of devices, this
622 * section has already been recovered, else it
623 * almost certainly hasn't.
625 if (conf
->raid_disks
<= conf
->previous_raid_disks
)
629 if (degraded2
> degraded
)
634 static int has_failed(struct r5conf
*conf
)
638 if (conf
->mddev
->reshape_position
== MaxSector
)
639 return conf
->mddev
->degraded
> conf
->max_degraded
;
641 degraded
= calc_degraded(conf
);
642 if (degraded
> conf
->max_degraded
)
647 static struct stripe_head
*
648 get_active_stripe(struct r5conf
*conf
, sector_t sector
,
649 int previous
, int noblock
, int noquiesce
)
651 struct stripe_head
*sh
;
652 int hash
= stripe_hash_locks_hash(sector
);
654 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
656 spin_lock_irq(conf
->hash_locks
+ hash
);
659 wait_event_lock_irq(conf
->wait_for_stripe
,
660 conf
->quiesce
== 0 || noquiesce
,
661 *(conf
->hash_locks
+ hash
));
662 sh
= __find_stripe(conf
, sector
, conf
->generation
- previous
);
664 if (!conf
->inactive_blocked
)
665 sh
= get_free_stripe(conf
, hash
);
666 if (noblock
&& sh
== NULL
)
669 conf
->inactive_blocked
= 1;
671 conf
->wait_for_stripe
,
672 !list_empty(conf
->inactive_list
+ hash
) &&
673 (atomic_read(&conf
->active_stripes
)
674 < (conf
->max_nr_stripes
* 3 / 4)
675 || !conf
->inactive_blocked
),
676 *(conf
->hash_locks
+ hash
));
677 conf
->inactive_blocked
= 0;
679 init_stripe(sh
, sector
, previous
);
680 atomic_inc(&sh
->count
);
683 spin_lock(&conf
->device_lock
);
684 if (atomic_read(&sh
->count
)) {
685 BUG_ON(!list_empty(&sh
->lru
)
686 && !test_bit(STRIPE_EXPANDING
, &sh
->state
)
687 && !test_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
)
690 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
691 atomic_inc(&conf
->active_stripes
);
692 BUG_ON(list_empty(&sh
->lru
) &&
693 !test_bit(STRIPE_EXPANDING
, &sh
->state
));
694 list_del_init(&sh
->lru
);
696 sh
->group
->stripes_cnt
--;
700 atomic_inc(&sh
->count
);
701 spin_unlock(&conf
->device_lock
);
703 } while (sh
== NULL
);
705 spin_unlock_irq(conf
->hash_locks
+ hash
);
709 /* Determine if 'data_offset' or 'new_data_offset' should be used
710 * in this stripe_head.
712 static int use_new_offset(struct r5conf
*conf
, struct stripe_head
*sh
)
714 sector_t progress
= conf
->reshape_progress
;
715 /* Need a memory barrier to make sure we see the value
716 * of conf->generation, or ->data_offset that was set before
717 * reshape_progress was updated.
720 if (progress
== MaxSector
)
722 if (sh
->generation
== conf
->generation
- 1)
724 /* We are in a reshape, and this is a new-generation stripe,
725 * so use new_data_offset.
731 raid5_end_read_request(struct bio
*bi
, int error
);
733 raid5_end_write_request(struct bio
*bi
, int error
);
735 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
737 struct r5conf
*conf
= sh
->raid_conf
;
738 int i
, disks
= sh
->disks
;
742 for (i
= disks
; i
--; ) {
744 int replace_only
= 0;
745 struct bio
*bi
, *rbi
;
746 struct md_rdev
*rdev
, *rrdev
= NULL
;
747 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
)) {
748 if (test_and_clear_bit(R5_WantFUA
, &sh
->dev
[i
].flags
))
752 if (test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
754 } else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
756 else if (test_and_clear_bit(R5_WantReplace
,
757 &sh
->dev
[i
].flags
)) {
762 if (test_and_clear_bit(R5_SyncIO
, &sh
->dev
[i
].flags
))
765 bi
= &sh
->dev
[i
].req
;
766 rbi
= &sh
->dev
[i
].rreq
; /* For writing to replacement */
769 rrdev
= rcu_dereference(conf
->disks
[i
].replacement
);
770 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
771 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
780 /* We raced and saw duplicates */
783 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
) && rrdev
)
788 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
791 atomic_inc(&rdev
->nr_pending
);
792 if (rrdev
&& test_bit(Faulty
, &rrdev
->flags
))
795 atomic_inc(&rrdev
->nr_pending
);
798 /* We have already checked bad blocks for reads. Now
799 * need to check for writes. We never accept write errors
800 * on the replacement, so we don't to check rrdev.
802 while ((rw
& WRITE
) && rdev
&&
803 test_bit(WriteErrorSeen
, &rdev
->flags
)) {
806 int bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
807 &first_bad
, &bad_sectors
);
812 set_bit(BlockedBadBlocks
, &rdev
->flags
);
813 if (!conf
->mddev
->external
&&
814 conf
->mddev
->flags
) {
815 /* It is very unlikely, but we might
816 * still need to write out the
817 * bad block log - better give it
819 md_check_recovery(conf
->mddev
);
822 * Because md_wait_for_blocked_rdev
823 * will dec nr_pending, we must
824 * increment it first.
826 atomic_inc(&rdev
->nr_pending
);
827 md_wait_for_blocked_rdev(rdev
, conf
->mddev
);
829 /* Acknowledged bad block - skip the write */
830 rdev_dec_pending(rdev
, conf
->mddev
);
836 if (s
->syncing
|| s
->expanding
|| s
->expanded
838 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
840 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
843 bi
->bi_bdev
= rdev
->bdev
;
845 bi
->bi_end_io
= (rw
& WRITE
)
846 ? raid5_end_write_request
847 : raid5_end_read_request
;
850 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
851 __func__
, (unsigned long long)sh
->sector
,
853 atomic_inc(&sh
->count
);
854 if (use_new_offset(conf
, sh
))
855 bi
->bi_iter
.bi_sector
= (sh
->sector
856 + rdev
->new_data_offset
);
858 bi
->bi_iter
.bi_sector
= (sh
->sector
859 + rdev
->data_offset
);
860 if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
861 bi
->bi_rw
|= REQ_NOMERGE
;
864 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
865 bi
->bi_io_vec
[0].bv_offset
= 0;
866 bi
->bi_iter
.bi_size
= STRIPE_SIZE
;
868 * If this is discard request, set bi_vcnt 0. We don't
869 * want to confuse SCSI because SCSI will replace payload
871 if (rw
& REQ_DISCARD
)
874 set_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
);
876 if (conf
->mddev
->gendisk
)
877 trace_block_bio_remap(bdev_get_queue(bi
->bi_bdev
),
878 bi
, disk_devt(conf
->mddev
->gendisk
),
880 generic_make_request(bi
);
883 if (s
->syncing
|| s
->expanding
|| s
->expanded
885 md_sync_acct(rrdev
->bdev
, STRIPE_SECTORS
);
887 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
890 rbi
->bi_bdev
= rrdev
->bdev
;
892 BUG_ON(!(rw
& WRITE
));
893 rbi
->bi_end_io
= raid5_end_write_request
;
894 rbi
->bi_private
= sh
;
896 pr_debug("%s: for %llu schedule op %ld on "
897 "replacement disc %d\n",
898 __func__
, (unsigned long long)sh
->sector
,
900 atomic_inc(&sh
->count
);
901 if (use_new_offset(conf
, sh
))
902 rbi
->bi_iter
.bi_sector
= (sh
->sector
903 + rrdev
->new_data_offset
);
905 rbi
->bi_iter
.bi_sector
= (sh
->sector
906 + rrdev
->data_offset
);
908 rbi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
909 rbi
->bi_io_vec
[0].bv_offset
= 0;
910 rbi
->bi_iter
.bi_size
= STRIPE_SIZE
;
912 * If this is discard request, set bi_vcnt 0. We don't
913 * want to confuse SCSI because SCSI will replace payload
915 if (rw
& REQ_DISCARD
)
917 if (conf
->mddev
->gendisk
)
918 trace_block_bio_remap(bdev_get_queue(rbi
->bi_bdev
),
919 rbi
, disk_devt(conf
->mddev
->gendisk
),
921 generic_make_request(rbi
);
923 if (!rdev
&& !rrdev
) {
925 set_bit(STRIPE_DEGRADED
, &sh
->state
);
926 pr_debug("skip op %ld on disc %d for sector %llu\n",
927 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
928 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
929 set_bit(STRIPE_HANDLE
, &sh
->state
);
934 static struct dma_async_tx_descriptor
*
935 async_copy_data(int frombio
, struct bio
*bio
, struct page
*page
,
936 sector_t sector
, struct dma_async_tx_descriptor
*tx
)
939 struct bvec_iter iter
;
940 struct page
*bio_page
;
942 struct async_submit_ctl submit
;
943 enum async_tx_flags flags
= 0;
945 if (bio
->bi_iter
.bi_sector
>= sector
)
946 page_offset
= (signed)(bio
->bi_iter
.bi_sector
- sector
) * 512;
948 page_offset
= (signed)(sector
- bio
->bi_iter
.bi_sector
) * -512;
951 flags
|= ASYNC_TX_FENCE
;
952 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
, NULL
);
954 bio_for_each_segment(bvl
, bio
, iter
) {
955 int len
= bvl
.bv_len
;
959 if (page_offset
< 0) {
960 b_offset
= -page_offset
;
961 page_offset
+= b_offset
;
965 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
966 clen
= STRIPE_SIZE
- page_offset
;
971 b_offset
+= bvl
.bv_offset
;
972 bio_page
= bvl
.bv_page
;
974 tx
= async_memcpy(page
, bio_page
, page_offset
,
975 b_offset
, clen
, &submit
);
977 tx
= async_memcpy(bio_page
, page
, b_offset
,
978 page_offset
, clen
, &submit
);
980 /* chain the operations */
981 submit
.depend_tx
= tx
;
983 if (clen
< len
) /* hit end of page */
991 static void ops_complete_biofill(void *stripe_head_ref
)
993 struct stripe_head
*sh
= stripe_head_ref
;
994 struct bio
*return_bi
= NULL
;
997 pr_debug("%s: stripe %llu\n", __func__
,
998 (unsigned long long)sh
->sector
);
1000 /* clear completed biofills */
1001 for (i
= sh
->disks
; i
--; ) {
1002 struct r5dev
*dev
= &sh
->dev
[i
];
1004 /* acknowledge completion of a biofill operation */
1005 /* and check if we need to reply to a read request,
1006 * new R5_Wantfill requests are held off until
1007 * !STRIPE_BIOFILL_RUN
1009 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
1010 struct bio
*rbi
, *rbi2
;
1015 while (rbi
&& rbi
->bi_iter
.bi_sector
<
1016 dev
->sector
+ STRIPE_SECTORS
) {
1017 rbi2
= r5_next_bio(rbi
, dev
->sector
);
1018 if (!raid5_dec_bi_active_stripes(rbi
)) {
1019 rbi
->bi_next
= return_bi
;
1026 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
1028 return_io(return_bi
);
1030 set_bit(STRIPE_HANDLE
, &sh
->state
);
1034 static void ops_run_biofill(struct stripe_head
*sh
)
1036 struct dma_async_tx_descriptor
*tx
= NULL
;
1037 struct async_submit_ctl submit
;
1040 pr_debug("%s: stripe %llu\n", __func__
,
1041 (unsigned long long)sh
->sector
);
1043 for (i
= sh
->disks
; i
--; ) {
1044 struct r5dev
*dev
= &sh
->dev
[i
];
1045 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
1047 spin_lock_irq(&sh
->stripe_lock
);
1048 dev
->read
= rbi
= dev
->toread
;
1050 spin_unlock_irq(&sh
->stripe_lock
);
1051 while (rbi
&& rbi
->bi_iter
.bi_sector
<
1052 dev
->sector
+ STRIPE_SECTORS
) {
1053 tx
= async_copy_data(0, rbi
, dev
->page
,
1055 rbi
= r5_next_bio(rbi
, dev
->sector
);
1060 atomic_inc(&sh
->count
);
1061 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_biofill
, sh
, NULL
);
1062 async_trigger_callback(&submit
);
1065 static void mark_target_uptodate(struct stripe_head
*sh
, int target
)
1072 tgt
= &sh
->dev
[target
];
1073 set_bit(R5_UPTODATE
, &tgt
->flags
);
1074 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1075 clear_bit(R5_Wantcompute
, &tgt
->flags
);
1078 static void ops_complete_compute(void *stripe_head_ref
)
1080 struct stripe_head
*sh
= stripe_head_ref
;
1082 pr_debug("%s: stripe %llu\n", __func__
,
1083 (unsigned long long)sh
->sector
);
1085 /* mark the computed target(s) as uptodate */
1086 mark_target_uptodate(sh
, sh
->ops
.target
);
1087 mark_target_uptodate(sh
, sh
->ops
.target2
);
1089 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
1090 if (sh
->check_state
== check_state_compute_run
)
1091 sh
->check_state
= check_state_compute_result
;
1092 set_bit(STRIPE_HANDLE
, &sh
->state
);
1096 /* return a pointer to the address conversion region of the scribble buffer */
1097 static addr_conv_t
*to_addr_conv(struct stripe_head
*sh
,
1098 struct raid5_percpu
*percpu
)
1100 return percpu
->scribble
+ sizeof(struct page
*) * (sh
->disks
+ 2);
1103 static struct dma_async_tx_descriptor
*
1104 ops_run_compute5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1106 int disks
= sh
->disks
;
1107 struct page
**xor_srcs
= percpu
->scribble
;
1108 int target
= sh
->ops
.target
;
1109 struct r5dev
*tgt
= &sh
->dev
[target
];
1110 struct page
*xor_dest
= tgt
->page
;
1112 struct dma_async_tx_descriptor
*tx
;
1113 struct async_submit_ctl submit
;
1116 pr_debug("%s: stripe %llu block: %d\n",
1117 __func__
, (unsigned long long)sh
->sector
, target
);
1118 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1120 for (i
= disks
; i
--; )
1122 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1124 atomic_inc(&sh
->count
);
1126 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
, NULL
,
1127 ops_complete_compute
, sh
, to_addr_conv(sh
, percpu
));
1128 if (unlikely(count
== 1))
1129 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1131 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1136 /* set_syndrome_sources - populate source buffers for gen_syndrome
1137 * @srcs - (struct page *) array of size sh->disks
1138 * @sh - stripe_head to parse
1140 * Populates srcs in proper layout order for the stripe and returns the
1141 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1142 * destination buffer is recorded in srcs[count] and the Q destination
1143 * is recorded in srcs[count+1]].
1145 static int set_syndrome_sources(struct page
**srcs
, struct stripe_head
*sh
)
1147 int disks
= sh
->disks
;
1148 int syndrome_disks
= sh
->ddf_layout
? disks
: (disks
- 2);
1149 int d0_idx
= raid6_d0(sh
);
1153 for (i
= 0; i
< disks
; i
++)
1159 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1161 srcs
[slot
] = sh
->dev
[i
].page
;
1162 i
= raid6_next_disk(i
, disks
);
1163 } while (i
!= d0_idx
);
1165 return syndrome_disks
;
1168 static struct dma_async_tx_descriptor
*
1169 ops_run_compute6_1(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1171 int disks
= sh
->disks
;
1172 struct page
**blocks
= percpu
->scribble
;
1174 int qd_idx
= sh
->qd_idx
;
1175 struct dma_async_tx_descriptor
*tx
;
1176 struct async_submit_ctl submit
;
1182 if (sh
->ops
.target
< 0)
1183 target
= sh
->ops
.target2
;
1184 else if (sh
->ops
.target2
< 0)
1185 target
= sh
->ops
.target
;
1187 /* we should only have one valid target */
1190 pr_debug("%s: stripe %llu block: %d\n",
1191 __func__
, (unsigned long long)sh
->sector
, target
);
1193 tgt
= &sh
->dev
[target
];
1194 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1197 atomic_inc(&sh
->count
);
1199 if (target
== qd_idx
) {
1200 count
= set_syndrome_sources(blocks
, sh
);
1201 blocks
[count
] = NULL
; /* regenerating p is not necessary */
1202 BUG_ON(blocks
[count
+1] != dest
); /* q should already be set */
1203 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1204 ops_complete_compute
, sh
,
1205 to_addr_conv(sh
, percpu
));
1206 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1208 /* Compute any data- or p-drive using XOR */
1210 for (i
= disks
; i
-- ; ) {
1211 if (i
== target
|| i
== qd_idx
)
1213 blocks
[count
++] = sh
->dev
[i
].page
;
1216 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1217 NULL
, ops_complete_compute
, sh
,
1218 to_addr_conv(sh
, percpu
));
1219 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
, &submit
);
1225 static struct dma_async_tx_descriptor
*
1226 ops_run_compute6_2(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1228 int i
, count
, disks
= sh
->disks
;
1229 int syndrome_disks
= sh
->ddf_layout
? disks
: disks
-2;
1230 int d0_idx
= raid6_d0(sh
);
1231 int faila
= -1, failb
= -1;
1232 int target
= sh
->ops
.target
;
1233 int target2
= sh
->ops
.target2
;
1234 struct r5dev
*tgt
= &sh
->dev
[target
];
1235 struct r5dev
*tgt2
= &sh
->dev
[target2
];
1236 struct dma_async_tx_descriptor
*tx
;
1237 struct page
**blocks
= percpu
->scribble
;
1238 struct async_submit_ctl submit
;
1240 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1241 __func__
, (unsigned long long)sh
->sector
, target
, target2
);
1242 BUG_ON(target
< 0 || target2
< 0);
1243 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1244 BUG_ON(!test_bit(R5_Wantcompute
, &tgt2
->flags
));
1246 /* we need to open-code set_syndrome_sources to handle the
1247 * slot number conversion for 'faila' and 'failb'
1249 for (i
= 0; i
< disks
; i
++)
1254 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1256 blocks
[slot
] = sh
->dev
[i
].page
;
1262 i
= raid6_next_disk(i
, disks
);
1263 } while (i
!= d0_idx
);
1265 BUG_ON(faila
== failb
);
1268 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1269 __func__
, (unsigned long long)sh
->sector
, faila
, failb
);
1271 atomic_inc(&sh
->count
);
1273 if (failb
== syndrome_disks
+1) {
1274 /* Q disk is one of the missing disks */
1275 if (faila
== syndrome_disks
) {
1276 /* Missing P+Q, just recompute */
1277 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1278 ops_complete_compute
, sh
,
1279 to_addr_conv(sh
, percpu
));
1280 return async_gen_syndrome(blocks
, 0, syndrome_disks
+2,
1281 STRIPE_SIZE
, &submit
);
1285 int qd_idx
= sh
->qd_idx
;
1287 /* Missing D+Q: recompute D from P, then recompute Q */
1288 if (target
== qd_idx
)
1289 data_target
= target2
;
1291 data_target
= target
;
1294 for (i
= disks
; i
-- ; ) {
1295 if (i
== data_target
|| i
== qd_idx
)
1297 blocks
[count
++] = sh
->dev
[i
].page
;
1299 dest
= sh
->dev
[data_target
].page
;
1300 init_async_submit(&submit
,
1301 ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1303 to_addr_conv(sh
, percpu
));
1304 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
,
1307 count
= set_syndrome_sources(blocks
, sh
);
1308 init_async_submit(&submit
, ASYNC_TX_FENCE
, tx
,
1309 ops_complete_compute
, sh
,
1310 to_addr_conv(sh
, percpu
));
1311 return async_gen_syndrome(blocks
, 0, count
+2,
1312 STRIPE_SIZE
, &submit
);
1315 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1316 ops_complete_compute
, sh
,
1317 to_addr_conv(sh
, percpu
));
1318 if (failb
== syndrome_disks
) {
1319 /* We're missing D+P. */
1320 return async_raid6_datap_recov(syndrome_disks
+2,
1324 /* We're missing D+D. */
1325 return async_raid6_2data_recov(syndrome_disks
+2,
1326 STRIPE_SIZE
, faila
, failb
,
1333 static void ops_complete_prexor(void *stripe_head_ref
)
1335 struct stripe_head
*sh
= stripe_head_ref
;
1337 pr_debug("%s: stripe %llu\n", __func__
,
1338 (unsigned long long)sh
->sector
);
1341 static struct dma_async_tx_descriptor
*
1342 ops_run_prexor(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1343 struct dma_async_tx_descriptor
*tx
)
1345 int disks
= sh
->disks
;
1346 struct page
**xor_srcs
= percpu
->scribble
;
1347 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1348 struct async_submit_ctl submit
;
1350 /* existing parity data subtracted */
1351 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1353 pr_debug("%s: stripe %llu\n", __func__
,
1354 (unsigned long long)sh
->sector
);
1356 for (i
= disks
; i
--; ) {
1357 struct r5dev
*dev
= &sh
->dev
[i
];
1358 /* Only process blocks that are known to be uptodate */
1359 if (test_bit(R5_Wantdrain
, &dev
->flags
))
1360 xor_srcs
[count
++] = dev
->page
;
1363 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
1364 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
));
1365 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1370 static struct dma_async_tx_descriptor
*
1371 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
1373 int disks
= sh
->disks
;
1376 pr_debug("%s: stripe %llu\n", __func__
,
1377 (unsigned long long)sh
->sector
);
1379 for (i
= disks
; i
--; ) {
1380 struct r5dev
*dev
= &sh
->dev
[i
];
1383 if (test_and_clear_bit(R5_Wantdrain
, &dev
->flags
)) {
1386 spin_lock_irq(&sh
->stripe_lock
);
1387 chosen
= dev
->towrite
;
1388 dev
->towrite
= NULL
;
1389 BUG_ON(dev
->written
);
1390 wbi
= dev
->written
= chosen
;
1391 spin_unlock_irq(&sh
->stripe_lock
);
1393 while (wbi
&& wbi
->bi_iter
.bi_sector
<
1394 dev
->sector
+ STRIPE_SECTORS
) {
1395 if (wbi
->bi_rw
& REQ_FUA
)
1396 set_bit(R5_WantFUA
, &dev
->flags
);
1397 if (wbi
->bi_rw
& REQ_SYNC
)
1398 set_bit(R5_SyncIO
, &dev
->flags
);
1399 if (wbi
->bi_rw
& REQ_DISCARD
)
1400 set_bit(R5_Discard
, &dev
->flags
);
1402 tx
= async_copy_data(1, wbi
, dev
->page
,
1404 wbi
= r5_next_bio(wbi
, dev
->sector
);
1412 static void ops_complete_reconstruct(void *stripe_head_ref
)
1414 struct stripe_head
*sh
= stripe_head_ref
;
1415 int disks
= sh
->disks
;
1416 int pd_idx
= sh
->pd_idx
;
1417 int qd_idx
= sh
->qd_idx
;
1419 bool fua
= false, sync
= false, discard
= false;
1421 pr_debug("%s: stripe %llu\n", __func__
,
1422 (unsigned long long)sh
->sector
);
1424 for (i
= disks
; i
--; ) {
1425 fua
|= test_bit(R5_WantFUA
, &sh
->dev
[i
].flags
);
1426 sync
|= test_bit(R5_SyncIO
, &sh
->dev
[i
].flags
);
1427 discard
|= test_bit(R5_Discard
, &sh
->dev
[i
].flags
);
1430 for (i
= disks
; i
--; ) {
1431 struct r5dev
*dev
= &sh
->dev
[i
];
1433 if (dev
->written
|| i
== pd_idx
|| i
== qd_idx
) {
1435 set_bit(R5_UPTODATE
, &dev
->flags
);
1437 set_bit(R5_WantFUA
, &dev
->flags
);
1439 set_bit(R5_SyncIO
, &dev
->flags
);
1443 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
1444 sh
->reconstruct_state
= reconstruct_state_drain_result
;
1445 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
1446 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
1448 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
1449 sh
->reconstruct_state
= reconstruct_state_result
;
1452 set_bit(STRIPE_HANDLE
, &sh
->state
);
1457 ops_run_reconstruct5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1458 struct dma_async_tx_descriptor
*tx
)
1460 int disks
= sh
->disks
;
1461 struct page
**xor_srcs
= percpu
->scribble
;
1462 struct async_submit_ctl submit
;
1463 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1464 struct page
*xor_dest
;
1466 unsigned long flags
;
1468 pr_debug("%s: stripe %llu\n", __func__
,
1469 (unsigned long long)sh
->sector
);
1471 for (i
= 0; i
< sh
->disks
; i
++) {
1474 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1477 if (i
>= sh
->disks
) {
1478 atomic_inc(&sh
->count
);
1479 set_bit(R5_Discard
, &sh
->dev
[pd_idx
].flags
);
1480 ops_complete_reconstruct(sh
);
1483 /* check if prexor is active which means only process blocks
1484 * that are part of a read-modify-write (written)
1486 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1488 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1489 for (i
= disks
; i
--; ) {
1490 struct r5dev
*dev
= &sh
->dev
[i
];
1492 xor_srcs
[count
++] = dev
->page
;
1495 xor_dest
= sh
->dev
[pd_idx
].page
;
1496 for (i
= disks
; i
--; ) {
1497 struct r5dev
*dev
= &sh
->dev
[i
];
1499 xor_srcs
[count
++] = dev
->page
;
1503 /* 1/ if we prexor'd then the dest is reused as a source
1504 * 2/ if we did not prexor then we are redoing the parity
1505 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1506 * for the synchronous xor case
1508 flags
= ASYNC_TX_ACK
|
1509 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
1511 atomic_inc(&sh
->count
);
1513 init_async_submit(&submit
, flags
, tx
, ops_complete_reconstruct
, sh
,
1514 to_addr_conv(sh
, percpu
));
1515 if (unlikely(count
== 1))
1516 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1518 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1522 ops_run_reconstruct6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1523 struct dma_async_tx_descriptor
*tx
)
1525 struct async_submit_ctl submit
;
1526 struct page
**blocks
= percpu
->scribble
;
1529 pr_debug("%s: stripe %llu\n", __func__
, (unsigned long long)sh
->sector
);
1531 for (i
= 0; i
< sh
->disks
; i
++) {
1532 if (sh
->pd_idx
== i
|| sh
->qd_idx
== i
)
1534 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1537 if (i
>= sh
->disks
) {
1538 atomic_inc(&sh
->count
);
1539 set_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
1540 set_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
1541 ops_complete_reconstruct(sh
);
1545 count
= set_syndrome_sources(blocks
, sh
);
1547 atomic_inc(&sh
->count
);
1549 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_reconstruct
,
1550 sh
, to_addr_conv(sh
, percpu
));
1551 async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1554 static void ops_complete_check(void *stripe_head_ref
)
1556 struct stripe_head
*sh
= stripe_head_ref
;
1558 pr_debug("%s: stripe %llu\n", __func__
,
1559 (unsigned long long)sh
->sector
);
1561 sh
->check_state
= check_state_check_result
;
1562 set_bit(STRIPE_HANDLE
, &sh
->state
);
1566 static void ops_run_check_p(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1568 int disks
= sh
->disks
;
1569 int pd_idx
= sh
->pd_idx
;
1570 int qd_idx
= sh
->qd_idx
;
1571 struct page
*xor_dest
;
1572 struct page
**xor_srcs
= percpu
->scribble
;
1573 struct dma_async_tx_descriptor
*tx
;
1574 struct async_submit_ctl submit
;
1578 pr_debug("%s: stripe %llu\n", __func__
,
1579 (unsigned long long)sh
->sector
);
1582 xor_dest
= sh
->dev
[pd_idx
].page
;
1583 xor_srcs
[count
++] = xor_dest
;
1584 for (i
= disks
; i
--; ) {
1585 if (i
== pd_idx
|| i
== qd_idx
)
1587 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1590 init_async_submit(&submit
, 0, NULL
, NULL
, NULL
,
1591 to_addr_conv(sh
, percpu
));
1592 tx
= async_xor_val(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
1593 &sh
->ops
.zero_sum_result
, &submit
);
1595 atomic_inc(&sh
->count
);
1596 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_check
, sh
, NULL
);
1597 tx
= async_trigger_callback(&submit
);
1600 static void ops_run_check_pq(struct stripe_head
*sh
, struct raid5_percpu
*percpu
, int checkp
)
1602 struct page
**srcs
= percpu
->scribble
;
1603 struct async_submit_ctl submit
;
1606 pr_debug("%s: stripe %llu checkp: %d\n", __func__
,
1607 (unsigned long long)sh
->sector
, checkp
);
1609 count
= set_syndrome_sources(srcs
, sh
);
1613 atomic_inc(&sh
->count
);
1614 init_async_submit(&submit
, ASYNC_TX_ACK
, NULL
, ops_complete_check
,
1615 sh
, to_addr_conv(sh
, percpu
));
1616 async_syndrome_val(srcs
, 0, count
+2, STRIPE_SIZE
,
1617 &sh
->ops
.zero_sum_result
, percpu
->spare_page
, &submit
);
1620 static void raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
1622 int overlap_clear
= 0, i
, disks
= sh
->disks
;
1623 struct dma_async_tx_descriptor
*tx
= NULL
;
1624 struct r5conf
*conf
= sh
->raid_conf
;
1625 int level
= conf
->level
;
1626 struct raid5_percpu
*percpu
;
1630 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1631 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
1632 ops_run_biofill(sh
);
1636 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
1638 tx
= ops_run_compute5(sh
, percpu
);
1640 if (sh
->ops
.target2
< 0 || sh
->ops
.target
< 0)
1641 tx
= ops_run_compute6_1(sh
, percpu
);
1643 tx
= ops_run_compute6_2(sh
, percpu
);
1645 /* terminate the chain if reconstruct is not set to be run */
1646 if (tx
&& !test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
))
1650 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
))
1651 tx
= ops_run_prexor(sh
, percpu
, tx
);
1653 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
1654 tx
= ops_run_biodrain(sh
, tx
);
1658 if (test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
)) {
1660 ops_run_reconstruct5(sh
, percpu
, tx
);
1662 ops_run_reconstruct6(sh
, percpu
, tx
);
1665 if (test_bit(STRIPE_OP_CHECK
, &ops_request
)) {
1666 if (sh
->check_state
== check_state_run
)
1667 ops_run_check_p(sh
, percpu
);
1668 else if (sh
->check_state
== check_state_run_q
)
1669 ops_run_check_pq(sh
, percpu
, 0);
1670 else if (sh
->check_state
== check_state_run_pq
)
1671 ops_run_check_pq(sh
, percpu
, 1);
1677 for (i
= disks
; i
--; ) {
1678 struct r5dev
*dev
= &sh
->dev
[i
];
1679 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
1680 wake_up(&sh
->raid_conf
->wait_for_overlap
);
1685 static int grow_one_stripe(struct r5conf
*conf
, int hash
)
1687 struct stripe_head
*sh
;
1688 sh
= kmem_cache_zalloc(conf
->slab_cache
, GFP_KERNEL
);
1692 sh
->raid_conf
= conf
;
1694 spin_lock_init(&sh
->stripe_lock
);
1696 if (grow_buffers(sh
)) {
1698 kmem_cache_free(conf
->slab_cache
, sh
);
1701 sh
->hash_lock_index
= hash
;
1702 /* we just created an active stripe so... */
1703 atomic_set(&sh
->count
, 1);
1704 atomic_inc(&conf
->active_stripes
);
1705 INIT_LIST_HEAD(&sh
->lru
);
1710 static int grow_stripes(struct r5conf
*conf
, int num
)
1712 struct kmem_cache
*sc
;
1713 int devs
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
1716 if (conf
->mddev
->gendisk
)
1717 sprintf(conf
->cache_name
[0],
1718 "raid%d-%s", conf
->level
, mdname(conf
->mddev
));
1720 sprintf(conf
->cache_name
[0],
1721 "raid%d-%p", conf
->level
, conf
->mddev
);
1722 sprintf(conf
->cache_name
[1], "%s-alt", conf
->cache_name
[0]);
1724 conf
->active_name
= 0;
1725 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
1726 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
1730 conf
->slab_cache
= sc
;
1731 conf
->pool_size
= devs
;
1732 hash
= conf
->max_nr_stripes
% NR_STRIPE_HASH_LOCKS
;
1734 if (!grow_one_stripe(conf
, hash
))
1736 conf
->max_nr_stripes
++;
1737 hash
= (hash
+ 1) % NR_STRIPE_HASH_LOCKS
;
1743 * scribble_len - return the required size of the scribble region
1744 * @num - total number of disks in the array
1746 * The size must be enough to contain:
1747 * 1/ a struct page pointer for each device in the array +2
1748 * 2/ room to convert each entry in (1) to its corresponding dma
1749 * (dma_map_page()) or page (page_address()) address.
1751 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1752 * calculate over all devices (not just the data blocks), using zeros in place
1753 * of the P and Q blocks.
1755 static size_t scribble_len(int num
)
1759 len
= sizeof(struct page
*) * (num
+2) + sizeof(addr_conv_t
) * (num
+2);
1764 static int resize_stripes(struct r5conf
*conf
, int newsize
)
1766 /* Make all the stripes able to hold 'newsize' devices.
1767 * New slots in each stripe get 'page' set to a new page.
1769 * This happens in stages:
1770 * 1/ create a new kmem_cache and allocate the required number of
1772 * 2/ gather all the old stripe_heads and transfer the pages across
1773 * to the new stripe_heads. This will have the side effect of
1774 * freezing the array as once all stripe_heads have been collected,
1775 * no IO will be possible. Old stripe heads are freed once their
1776 * pages have been transferred over, and the old kmem_cache is
1777 * freed when all stripes are done.
1778 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1779 * we simple return a failre status - no need to clean anything up.
1780 * 4/ allocate new pages for the new slots in the new stripe_heads.
1781 * If this fails, we don't bother trying the shrink the
1782 * stripe_heads down again, we just leave them as they are.
1783 * As each stripe_head is processed the new one is released into
1786 * Once step2 is started, we cannot afford to wait for a write,
1787 * so we use GFP_NOIO allocations.
1789 struct stripe_head
*osh
, *nsh
;
1790 LIST_HEAD(newstripes
);
1791 struct disk_info
*ndisks
;
1794 struct kmem_cache
*sc
;
1798 if (newsize
<= conf
->pool_size
)
1799 return 0; /* never bother to shrink */
1801 err
= md_allow_write(conf
->mddev
);
1806 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
1807 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
1812 for (i
= conf
->max_nr_stripes
; i
; i
--) {
1813 nsh
= kmem_cache_zalloc(sc
, GFP_KERNEL
);
1817 nsh
->raid_conf
= conf
;
1818 spin_lock_init(&nsh
->stripe_lock
);
1820 list_add(&nsh
->lru
, &newstripes
);
1823 /* didn't get enough, give up */
1824 while (!list_empty(&newstripes
)) {
1825 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1826 list_del(&nsh
->lru
);
1827 kmem_cache_free(sc
, nsh
);
1829 kmem_cache_destroy(sc
);
1832 /* Step 2 - Must use GFP_NOIO now.
1833 * OK, we have enough stripes, start collecting inactive
1834 * stripes and copying them over
1838 list_for_each_entry(nsh
, &newstripes
, lru
) {
1839 lock_device_hash_lock(conf
, hash
);
1840 wait_event_cmd(conf
->wait_for_stripe
,
1841 !list_empty(conf
->inactive_list
+ hash
),
1842 unlock_device_hash_lock(conf
, hash
),
1843 lock_device_hash_lock(conf
, hash
));
1844 osh
= get_free_stripe(conf
, hash
);
1845 unlock_device_hash_lock(conf
, hash
);
1846 atomic_set(&nsh
->count
, 1);
1847 for(i
=0; i
<conf
->pool_size
; i
++)
1848 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
1849 for( ; i
<newsize
; i
++)
1850 nsh
->dev
[i
].page
= NULL
;
1851 nsh
->hash_lock_index
= hash
;
1852 kmem_cache_free(conf
->slab_cache
, osh
);
1854 if (cnt
>= conf
->max_nr_stripes
/ NR_STRIPE_HASH_LOCKS
+
1855 !!((conf
->max_nr_stripes
% NR_STRIPE_HASH_LOCKS
) > hash
)) {
1860 kmem_cache_destroy(conf
->slab_cache
);
1863 * At this point, we are holding all the stripes so the array
1864 * is completely stalled, so now is a good time to resize
1865 * conf->disks and the scribble region
1867 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
1869 for (i
=0; i
<conf
->raid_disks
; i
++)
1870 ndisks
[i
] = conf
->disks
[i
];
1872 conf
->disks
= ndisks
;
1877 conf
->scribble_len
= scribble_len(newsize
);
1878 for_each_present_cpu(cpu
) {
1879 struct raid5_percpu
*percpu
;
1882 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1883 scribble
= kmalloc(conf
->scribble_len
, GFP_NOIO
);
1886 kfree(percpu
->scribble
);
1887 percpu
->scribble
= scribble
;
1895 /* Step 4, return new stripes to service */
1896 while(!list_empty(&newstripes
)) {
1897 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1898 list_del_init(&nsh
->lru
);
1900 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
1901 if (nsh
->dev
[i
].page
== NULL
) {
1902 struct page
*p
= alloc_page(GFP_NOIO
);
1903 nsh
->dev
[i
].page
= p
;
1907 release_stripe(nsh
);
1909 /* critical section pass, GFP_NOIO no longer needed */
1911 conf
->slab_cache
= sc
;
1912 conf
->active_name
= 1-conf
->active_name
;
1913 conf
->pool_size
= newsize
;
1917 static int drop_one_stripe(struct r5conf
*conf
, int hash
)
1919 struct stripe_head
*sh
;
1921 spin_lock_irq(conf
->hash_locks
+ hash
);
1922 sh
= get_free_stripe(conf
, hash
);
1923 spin_unlock_irq(conf
->hash_locks
+ hash
);
1926 BUG_ON(atomic_read(&sh
->count
));
1928 kmem_cache_free(conf
->slab_cache
, sh
);
1929 atomic_dec(&conf
->active_stripes
);
1933 static void shrink_stripes(struct r5conf
*conf
)
1936 for (hash
= 0; hash
< NR_STRIPE_HASH_LOCKS
; hash
++)
1937 while (drop_one_stripe(conf
, hash
))
1940 if (conf
->slab_cache
)
1941 kmem_cache_destroy(conf
->slab_cache
);
1942 conf
->slab_cache
= NULL
;
1945 static void raid5_end_read_request(struct bio
* bi
, int error
)
1947 struct stripe_head
*sh
= bi
->bi_private
;
1948 struct r5conf
*conf
= sh
->raid_conf
;
1949 int disks
= sh
->disks
, i
;
1950 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1951 char b
[BDEVNAME_SIZE
];
1952 struct md_rdev
*rdev
= NULL
;
1955 for (i
=0 ; i
<disks
; i
++)
1956 if (bi
== &sh
->dev
[i
].req
)
1959 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1960 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1966 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
1967 /* If replacement finished while this request was outstanding,
1968 * 'replacement' might be NULL already.
1969 * In that case it moved down to 'rdev'.
1970 * rdev is not removed until all requests are finished.
1972 rdev
= conf
->disks
[i
].replacement
;
1974 rdev
= conf
->disks
[i
].rdev
;
1976 if (use_new_offset(conf
, sh
))
1977 s
= sh
->sector
+ rdev
->new_data_offset
;
1979 s
= sh
->sector
+ rdev
->data_offset
;
1981 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1982 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1983 /* Note that this cannot happen on a
1984 * replacement device. We just fail those on
1989 "md/raid:%s: read error corrected"
1990 " (%lu sectors at %llu on %s)\n",
1991 mdname(conf
->mddev
), STRIPE_SECTORS
,
1992 (unsigned long long)s
,
1993 bdevname(rdev
->bdev
, b
));
1994 atomic_add(STRIPE_SECTORS
, &rdev
->corrected_errors
);
1995 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1996 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1997 } else if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
1998 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2000 if (atomic_read(&rdev
->read_errors
))
2001 atomic_set(&rdev
->read_errors
, 0);
2003 const char *bdn
= bdevname(rdev
->bdev
, b
);
2007 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
2008 atomic_inc(&rdev
->read_errors
);
2009 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
2012 "md/raid:%s: read error on replacement device "
2013 "(sector %llu on %s).\n",
2014 mdname(conf
->mddev
),
2015 (unsigned long long)s
,
2017 else if (conf
->mddev
->degraded
>= conf
->max_degraded
) {
2021 "md/raid:%s: read error not correctable "
2022 "(sector %llu on %s).\n",
2023 mdname(conf
->mddev
),
2024 (unsigned long long)s
,
2026 } else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
)) {
2031 "md/raid:%s: read error NOT corrected!! "
2032 "(sector %llu on %s).\n",
2033 mdname(conf
->mddev
),
2034 (unsigned long long)s
,
2036 } else if (atomic_read(&rdev
->read_errors
)
2037 > conf
->max_nr_stripes
)
2039 "md/raid:%s: Too many read errors, failing device %s.\n",
2040 mdname(conf
->mddev
), bdn
);
2043 if (set_bad
&& test_bit(In_sync
, &rdev
->flags
)
2044 && !test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
2047 if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
)) {
2048 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2049 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2051 set_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
2053 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
2054 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2056 && test_bit(In_sync
, &rdev
->flags
)
2057 && rdev_set_badblocks(
2058 rdev
, sh
->sector
, STRIPE_SECTORS
, 0)))
2059 md_error(conf
->mddev
, rdev
);
2062 rdev_dec_pending(rdev
, conf
->mddev
);
2063 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2064 set_bit(STRIPE_HANDLE
, &sh
->state
);
2068 static void raid5_end_write_request(struct bio
*bi
, int error
)
2070 struct stripe_head
*sh
= bi
->bi_private
;
2071 struct r5conf
*conf
= sh
->raid_conf
;
2072 int disks
= sh
->disks
, i
;
2073 struct md_rdev
*uninitialized_var(rdev
);
2074 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2077 int replacement
= 0;
2079 for (i
= 0 ; i
< disks
; i
++) {
2080 if (bi
== &sh
->dev
[i
].req
) {
2081 rdev
= conf
->disks
[i
].rdev
;
2084 if (bi
== &sh
->dev
[i
].rreq
) {
2085 rdev
= conf
->disks
[i
].replacement
;
2089 /* rdev was removed and 'replacement'
2090 * replaced it. rdev is not removed
2091 * until all requests are finished.
2093 rdev
= conf
->disks
[i
].rdev
;
2097 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2098 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
2107 md_error(conf
->mddev
, rdev
);
2108 else if (is_badblock(rdev
, sh
->sector
,
2110 &first_bad
, &bad_sectors
))
2111 set_bit(R5_MadeGoodRepl
, &sh
->dev
[i
].flags
);
2114 set_bit(STRIPE_DEGRADED
, &sh
->state
);
2115 set_bit(WriteErrorSeen
, &rdev
->flags
);
2116 set_bit(R5_WriteError
, &sh
->dev
[i
].flags
);
2117 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2118 set_bit(MD_RECOVERY_NEEDED
,
2119 &rdev
->mddev
->recovery
);
2120 } else if (is_badblock(rdev
, sh
->sector
,
2122 &first_bad
, &bad_sectors
)) {
2123 set_bit(R5_MadeGood
, &sh
->dev
[i
].flags
);
2124 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))
2125 /* That was a successful write so make
2126 * sure it looks like we already did
2129 set_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2132 rdev_dec_pending(rdev
, conf
->mddev
);
2134 if (!test_and_clear_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
))
2135 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2136 set_bit(STRIPE_HANDLE
, &sh
->state
);
2140 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
);
2142 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
)
2144 struct r5dev
*dev
= &sh
->dev
[i
];
2146 bio_init(&dev
->req
);
2147 dev
->req
.bi_io_vec
= &dev
->vec
;
2149 dev
->req
.bi_max_vecs
++;
2150 dev
->req
.bi_private
= sh
;
2151 dev
->vec
.bv_page
= dev
->page
;
2153 bio_init(&dev
->rreq
);
2154 dev
->rreq
.bi_io_vec
= &dev
->rvec
;
2155 dev
->rreq
.bi_vcnt
++;
2156 dev
->rreq
.bi_max_vecs
++;
2157 dev
->rreq
.bi_private
= sh
;
2158 dev
->rvec
.bv_page
= dev
->page
;
2161 dev
->sector
= compute_blocknr(sh
, i
, previous
);
2164 static void error(struct mddev
*mddev
, struct md_rdev
*rdev
)
2166 char b
[BDEVNAME_SIZE
];
2167 struct r5conf
*conf
= mddev
->private;
2168 unsigned long flags
;
2169 pr_debug("raid456: error called\n");
2171 spin_lock_irqsave(&conf
->device_lock
, flags
);
2172 clear_bit(In_sync
, &rdev
->flags
);
2173 mddev
->degraded
= calc_degraded(conf
);
2174 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2175 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2177 set_bit(Blocked
, &rdev
->flags
);
2178 set_bit(Faulty
, &rdev
->flags
);
2179 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
2181 "md/raid:%s: Disk failure on %s, disabling device.\n"
2182 "md/raid:%s: Operation continuing on %d devices.\n",
2184 bdevname(rdev
->bdev
, b
),
2186 conf
->raid_disks
- mddev
->degraded
);
2190 * Input: a 'big' sector number,
2191 * Output: index of the data and parity disk, and the sector # in them.
2193 static sector_t
raid5_compute_sector(struct r5conf
*conf
, sector_t r_sector
,
2194 int previous
, int *dd_idx
,
2195 struct stripe_head
*sh
)
2197 sector_t stripe
, stripe2
;
2198 sector_t chunk_number
;
2199 unsigned int chunk_offset
;
2202 sector_t new_sector
;
2203 int algorithm
= previous
? conf
->prev_algo
2205 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
2206 : conf
->chunk_sectors
;
2207 int raid_disks
= previous
? conf
->previous_raid_disks
2209 int data_disks
= raid_disks
- conf
->max_degraded
;
2211 /* First compute the information on this sector */
2214 * Compute the chunk number and the sector offset inside the chunk
2216 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
2217 chunk_number
= r_sector
;
2220 * Compute the stripe number
2222 stripe
= chunk_number
;
2223 *dd_idx
= sector_div(stripe
, data_disks
);
2226 * Select the parity disk based on the user selected algorithm.
2228 pd_idx
= qd_idx
= -1;
2229 switch(conf
->level
) {
2231 pd_idx
= data_disks
;
2234 switch (algorithm
) {
2235 case ALGORITHM_LEFT_ASYMMETRIC
:
2236 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
2237 if (*dd_idx
>= pd_idx
)
2240 case ALGORITHM_RIGHT_ASYMMETRIC
:
2241 pd_idx
= sector_div(stripe2
, raid_disks
);
2242 if (*dd_idx
>= pd_idx
)
2245 case ALGORITHM_LEFT_SYMMETRIC
:
2246 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
2247 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2249 case ALGORITHM_RIGHT_SYMMETRIC
:
2250 pd_idx
= sector_div(stripe2
, raid_disks
);
2251 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2253 case ALGORITHM_PARITY_0
:
2257 case ALGORITHM_PARITY_N
:
2258 pd_idx
= data_disks
;
2266 switch (algorithm
) {
2267 case ALGORITHM_LEFT_ASYMMETRIC
:
2268 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2269 qd_idx
= pd_idx
+ 1;
2270 if (pd_idx
== raid_disks
-1) {
2271 (*dd_idx
)++; /* Q D D D P */
2273 } else if (*dd_idx
>= pd_idx
)
2274 (*dd_idx
) += 2; /* D D P Q D */
2276 case ALGORITHM_RIGHT_ASYMMETRIC
:
2277 pd_idx
= sector_div(stripe2
, raid_disks
);
2278 qd_idx
= pd_idx
+ 1;
2279 if (pd_idx
== raid_disks
-1) {
2280 (*dd_idx
)++; /* Q D D D P */
2282 } else if (*dd_idx
>= pd_idx
)
2283 (*dd_idx
) += 2; /* D D P Q D */
2285 case ALGORITHM_LEFT_SYMMETRIC
:
2286 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2287 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2288 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2290 case ALGORITHM_RIGHT_SYMMETRIC
:
2291 pd_idx
= sector_div(stripe2
, raid_disks
);
2292 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2293 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2296 case ALGORITHM_PARITY_0
:
2301 case ALGORITHM_PARITY_N
:
2302 pd_idx
= data_disks
;
2303 qd_idx
= data_disks
+ 1;
2306 case ALGORITHM_ROTATING_ZERO_RESTART
:
2307 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2308 * of blocks for computing Q is different.
2310 pd_idx
= sector_div(stripe2
, raid_disks
);
2311 qd_idx
= pd_idx
+ 1;
2312 if (pd_idx
== raid_disks
-1) {
2313 (*dd_idx
)++; /* Q D D D P */
2315 } else if (*dd_idx
>= pd_idx
)
2316 (*dd_idx
) += 2; /* D D P Q D */
2320 case ALGORITHM_ROTATING_N_RESTART
:
2321 /* Same a left_asymmetric, by first stripe is
2322 * D D D P Q rather than
2326 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2327 qd_idx
= pd_idx
+ 1;
2328 if (pd_idx
== raid_disks
-1) {
2329 (*dd_idx
)++; /* Q D D D P */
2331 } else if (*dd_idx
>= pd_idx
)
2332 (*dd_idx
) += 2; /* D D P Q D */
2336 case ALGORITHM_ROTATING_N_CONTINUE
:
2337 /* Same as left_symmetric but Q is before P */
2338 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2339 qd_idx
= (pd_idx
+ raid_disks
- 1) % raid_disks
;
2340 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2344 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2345 /* RAID5 left_asymmetric, with Q on last device */
2346 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2347 if (*dd_idx
>= pd_idx
)
2349 qd_idx
= raid_disks
- 1;
2352 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2353 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2354 if (*dd_idx
>= pd_idx
)
2356 qd_idx
= raid_disks
- 1;
2359 case ALGORITHM_LEFT_SYMMETRIC_6
:
2360 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2361 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2362 qd_idx
= raid_disks
- 1;
2365 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2366 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2367 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2368 qd_idx
= raid_disks
- 1;
2371 case ALGORITHM_PARITY_0_6
:
2374 qd_idx
= raid_disks
- 1;
2384 sh
->pd_idx
= pd_idx
;
2385 sh
->qd_idx
= qd_idx
;
2386 sh
->ddf_layout
= ddf_layout
;
2389 * Finally, compute the new sector number
2391 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
2396 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
)
2398 struct r5conf
*conf
= sh
->raid_conf
;
2399 int raid_disks
= sh
->disks
;
2400 int data_disks
= raid_disks
- conf
->max_degraded
;
2401 sector_t new_sector
= sh
->sector
, check
;
2402 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
2403 : conf
->chunk_sectors
;
2404 int algorithm
= previous
? conf
->prev_algo
2408 sector_t chunk_number
;
2409 int dummy1
, dd_idx
= i
;
2411 struct stripe_head sh2
;
2414 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
2415 stripe
= new_sector
;
2417 if (i
== sh
->pd_idx
)
2419 switch(conf
->level
) {
2422 switch (algorithm
) {
2423 case ALGORITHM_LEFT_ASYMMETRIC
:
2424 case ALGORITHM_RIGHT_ASYMMETRIC
:
2428 case ALGORITHM_LEFT_SYMMETRIC
:
2429 case ALGORITHM_RIGHT_SYMMETRIC
:
2432 i
-= (sh
->pd_idx
+ 1);
2434 case ALGORITHM_PARITY_0
:
2437 case ALGORITHM_PARITY_N
:
2444 if (i
== sh
->qd_idx
)
2445 return 0; /* It is the Q disk */
2446 switch (algorithm
) {
2447 case ALGORITHM_LEFT_ASYMMETRIC
:
2448 case ALGORITHM_RIGHT_ASYMMETRIC
:
2449 case ALGORITHM_ROTATING_ZERO_RESTART
:
2450 case ALGORITHM_ROTATING_N_RESTART
:
2451 if (sh
->pd_idx
== raid_disks
-1)
2452 i
--; /* Q D D D P */
2453 else if (i
> sh
->pd_idx
)
2454 i
-= 2; /* D D P Q D */
2456 case ALGORITHM_LEFT_SYMMETRIC
:
2457 case ALGORITHM_RIGHT_SYMMETRIC
:
2458 if (sh
->pd_idx
== raid_disks
-1)
2459 i
--; /* Q D D D P */
2464 i
-= (sh
->pd_idx
+ 2);
2467 case ALGORITHM_PARITY_0
:
2470 case ALGORITHM_PARITY_N
:
2472 case ALGORITHM_ROTATING_N_CONTINUE
:
2473 /* Like left_symmetric, but P is before Q */
2474 if (sh
->pd_idx
== 0)
2475 i
--; /* P D D D Q */
2480 i
-= (sh
->pd_idx
+ 1);
2483 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2484 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2488 case ALGORITHM_LEFT_SYMMETRIC_6
:
2489 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2491 i
+= data_disks
+ 1;
2492 i
-= (sh
->pd_idx
+ 1);
2494 case ALGORITHM_PARITY_0_6
:
2503 chunk_number
= stripe
* data_disks
+ i
;
2504 r_sector
= chunk_number
* sectors_per_chunk
+ chunk_offset
;
2506 check
= raid5_compute_sector(conf
, r_sector
,
2507 previous
, &dummy1
, &sh2
);
2508 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| sh2
.pd_idx
!= sh
->pd_idx
2509 || sh2
.qd_idx
!= sh
->qd_idx
) {
2510 printk(KERN_ERR
"md/raid:%s: compute_blocknr: map not correct\n",
2511 mdname(conf
->mddev
));
2519 schedule_reconstruction(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2520 int rcw
, int expand
)
2522 int i
, pd_idx
= sh
->pd_idx
, disks
= sh
->disks
;
2523 struct r5conf
*conf
= sh
->raid_conf
;
2524 int level
= conf
->level
;
2528 for (i
= disks
; i
--; ) {
2529 struct r5dev
*dev
= &sh
->dev
[i
];
2532 set_bit(R5_LOCKED
, &dev
->flags
);
2533 set_bit(R5_Wantdrain
, &dev
->flags
);
2535 clear_bit(R5_UPTODATE
, &dev
->flags
);
2539 /* if we are not expanding this is a proper write request, and
2540 * there will be bios with new data to be drained into the
2545 /* False alarm, nothing to do */
2547 sh
->reconstruct_state
= reconstruct_state_drain_run
;
2548 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2550 sh
->reconstruct_state
= reconstruct_state_run
;
2552 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2554 if (s
->locked
+ conf
->max_degraded
== disks
)
2555 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2556 atomic_inc(&conf
->pending_full_writes
);
2559 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
2560 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
2562 for (i
= disks
; i
--; ) {
2563 struct r5dev
*dev
= &sh
->dev
[i
];
2568 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
2569 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2570 set_bit(R5_Wantdrain
, &dev
->flags
);
2571 set_bit(R5_LOCKED
, &dev
->flags
);
2572 clear_bit(R5_UPTODATE
, &dev
->flags
);
2577 /* False alarm - nothing to do */
2579 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
2580 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
2581 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2582 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2585 /* keep the parity disk(s) locked while asynchronous operations
2588 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
2589 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2593 int qd_idx
= sh
->qd_idx
;
2594 struct r5dev
*dev
= &sh
->dev
[qd_idx
];
2596 set_bit(R5_LOCKED
, &dev
->flags
);
2597 clear_bit(R5_UPTODATE
, &dev
->flags
);
2601 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2602 __func__
, (unsigned long long)sh
->sector
,
2603 s
->locked
, s
->ops_request
);
2607 * Each stripe/dev can have one or more bion attached.
2608 * toread/towrite point to the first in a chain.
2609 * The bi_next chain must be in order.
2611 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
, int forwrite
)
2614 struct r5conf
*conf
= sh
->raid_conf
;
2617 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2618 (unsigned long long)bi
->bi_iter
.bi_sector
,
2619 (unsigned long long)sh
->sector
);
2622 * If several bio share a stripe. The bio bi_phys_segments acts as a
2623 * reference count to avoid race. The reference count should already be
2624 * increased before this function is called (for example, in
2625 * make_request()), so other bio sharing this stripe will not free the
2626 * stripe. If a stripe is owned by one stripe, the stripe lock will
2629 spin_lock_irq(&sh
->stripe_lock
);
2631 bip
= &sh
->dev
[dd_idx
].towrite
;
2635 bip
= &sh
->dev
[dd_idx
].toread
;
2636 while (*bip
&& (*bip
)->bi_iter
.bi_sector
< bi
->bi_iter
.bi_sector
) {
2637 if (bio_end_sector(*bip
) > bi
->bi_iter
.bi_sector
)
2639 bip
= & (*bip
)->bi_next
;
2641 if (*bip
&& (*bip
)->bi_iter
.bi_sector
< bio_end_sector(bi
))
2644 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
2648 raid5_inc_bi_active_stripes(bi
);
2651 /* check if page is covered */
2652 sector_t sector
= sh
->dev
[dd_idx
].sector
;
2653 for (bi
=sh
->dev
[dd_idx
].towrite
;
2654 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
2655 bi
&& bi
->bi_iter
.bi_sector
<= sector
;
2656 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
2657 if (bio_end_sector(bi
) >= sector
)
2658 sector
= bio_end_sector(bi
);
2660 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
2661 set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
);
2664 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2665 (unsigned long long)(*bip
)->bi_iter
.bi_sector
,
2666 (unsigned long long)sh
->sector
, dd_idx
);
2667 spin_unlock_irq(&sh
->stripe_lock
);
2669 if (conf
->mddev
->bitmap
&& firstwrite
) {
2670 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
2672 sh
->bm_seq
= conf
->seq_flush
+1;
2673 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
2678 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
2679 spin_unlock_irq(&sh
->stripe_lock
);
2683 static void end_reshape(struct r5conf
*conf
);
2685 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
2686 struct stripe_head
*sh
)
2688 int sectors_per_chunk
=
2689 previous
? conf
->prev_chunk_sectors
: conf
->chunk_sectors
;
2691 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
2692 int disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
2694 raid5_compute_sector(conf
,
2695 stripe
* (disks
- conf
->max_degraded
)
2696 *sectors_per_chunk
+ chunk_offset
,
2702 handle_failed_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
2703 struct stripe_head_state
*s
, int disks
,
2704 struct bio
**return_bi
)
2707 for (i
= disks
; i
--; ) {
2711 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2712 struct md_rdev
*rdev
;
2714 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2715 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
2716 atomic_inc(&rdev
->nr_pending
);
2721 if (!rdev_set_badblocks(
2725 md_error(conf
->mddev
, rdev
);
2726 rdev_dec_pending(rdev
, conf
->mddev
);
2729 spin_lock_irq(&sh
->stripe_lock
);
2730 /* fail all writes first */
2731 bi
= sh
->dev
[i
].towrite
;
2732 sh
->dev
[i
].towrite
= NULL
;
2733 spin_unlock_irq(&sh
->stripe_lock
);
2737 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2738 wake_up(&conf
->wait_for_overlap
);
2740 while (bi
&& bi
->bi_iter
.bi_sector
<
2741 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2742 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2743 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2744 if (!raid5_dec_bi_active_stripes(bi
)) {
2745 md_write_end(conf
->mddev
);
2746 bi
->bi_next
= *return_bi
;
2752 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
2753 STRIPE_SECTORS
, 0, 0);
2755 /* and fail all 'written' */
2756 bi
= sh
->dev
[i
].written
;
2757 sh
->dev
[i
].written
= NULL
;
2758 if (bi
) bitmap_end
= 1;
2759 while (bi
&& bi
->bi_iter
.bi_sector
<
2760 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2761 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2762 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2763 if (!raid5_dec_bi_active_stripes(bi
)) {
2764 md_write_end(conf
->mddev
);
2765 bi
->bi_next
= *return_bi
;
2771 /* fail any reads if this device is non-operational and
2772 * the data has not reached the cache yet.
2774 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
2775 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
2776 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
2777 spin_lock_irq(&sh
->stripe_lock
);
2778 bi
= sh
->dev
[i
].toread
;
2779 sh
->dev
[i
].toread
= NULL
;
2780 spin_unlock_irq(&sh
->stripe_lock
);
2781 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2782 wake_up(&conf
->wait_for_overlap
);
2783 while (bi
&& bi
->bi_iter
.bi_sector
<
2784 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2785 struct bio
*nextbi
=
2786 r5_next_bio(bi
, sh
->dev
[i
].sector
);
2787 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2788 if (!raid5_dec_bi_active_stripes(bi
)) {
2789 bi
->bi_next
= *return_bi
;
2796 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
2797 STRIPE_SECTORS
, 0, 0);
2798 /* If we were in the middle of a write the parity block might
2799 * still be locked - so just clear all R5_LOCKED flags
2801 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2804 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2805 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2806 md_wakeup_thread(conf
->mddev
->thread
);
2810 handle_failed_sync(struct r5conf
*conf
, struct stripe_head
*sh
,
2811 struct stripe_head_state
*s
)
2816 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2817 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
2818 wake_up(&conf
->wait_for_overlap
);
2821 /* There is nothing more to do for sync/check/repair.
2822 * Don't even need to abort as that is handled elsewhere
2823 * if needed, and not always wanted e.g. if there is a known
2825 * For recover/replace we need to record a bad block on all
2826 * non-sync devices, or abort the recovery
2828 if (test_bit(MD_RECOVERY_RECOVER
, &conf
->mddev
->recovery
)) {
2829 /* During recovery devices cannot be removed, so
2830 * locking and refcounting of rdevs is not needed
2832 for (i
= 0; i
< conf
->raid_disks
; i
++) {
2833 struct md_rdev
*rdev
= conf
->disks
[i
].rdev
;
2835 && !test_bit(Faulty
, &rdev
->flags
)
2836 && !test_bit(In_sync
, &rdev
->flags
)
2837 && !rdev_set_badblocks(rdev
, sh
->sector
,
2840 rdev
= conf
->disks
[i
].replacement
;
2842 && !test_bit(Faulty
, &rdev
->flags
)
2843 && !test_bit(In_sync
, &rdev
->flags
)
2844 && !rdev_set_badblocks(rdev
, sh
->sector
,
2849 conf
->recovery_disabled
=
2850 conf
->mddev
->recovery_disabled
;
2852 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, !abort
);
2855 static int want_replace(struct stripe_head
*sh
, int disk_idx
)
2857 struct md_rdev
*rdev
;
2859 /* Doing recovery so rcu locking not required */
2860 rdev
= sh
->raid_conf
->disks
[disk_idx
].replacement
;
2862 && !test_bit(Faulty
, &rdev
->flags
)
2863 && !test_bit(In_sync
, &rdev
->flags
)
2864 && (rdev
->recovery_offset
<= sh
->sector
2865 || rdev
->mddev
->recovery_cp
<= sh
->sector
))
2871 /* fetch_block - checks the given member device to see if its data needs
2872 * to be read or computed to satisfy a request.
2874 * Returns 1 when no more member devices need to be checked, otherwise returns
2875 * 0 to tell the loop in handle_stripe_fill to continue
2877 static int fetch_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2878 int disk_idx
, int disks
)
2880 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
2881 struct r5dev
*fdev
[2] = { &sh
->dev
[s
->failed_num
[0]],
2882 &sh
->dev
[s
->failed_num
[1]] };
2884 /* is the data in this block needed, and can we get it? */
2885 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2886 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2888 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2889 s
->syncing
|| s
->expanding
||
2890 (s
->replacing
&& want_replace(sh
, disk_idx
)) ||
2891 (s
->failed
>= 1 && fdev
[0]->toread
) ||
2892 (s
->failed
>= 2 && fdev
[1]->toread
) ||
2893 (sh
->raid_conf
->level
<= 5 && s
->failed
&& fdev
[0]->towrite
&&
2894 !test_bit(R5_OVERWRITE
, &fdev
[0]->flags
)) ||
2895 (sh
->raid_conf
->level
== 6 && s
->failed
&& s
->to_write
))) {
2896 /* we would like to get this block, possibly by computing it,
2897 * otherwise read it if the backing disk is insync
2899 BUG_ON(test_bit(R5_Wantcompute
, &dev
->flags
));
2900 BUG_ON(test_bit(R5_Wantread
, &dev
->flags
));
2901 if ((s
->uptodate
== disks
- 1) &&
2902 (s
->failed
&& (disk_idx
== s
->failed_num
[0] ||
2903 disk_idx
== s
->failed_num
[1]))) {
2904 /* have disk failed, and we're requested to fetch it;
2907 pr_debug("Computing stripe %llu block %d\n",
2908 (unsigned long long)sh
->sector
, disk_idx
);
2909 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2910 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2911 set_bit(R5_Wantcompute
, &dev
->flags
);
2912 sh
->ops
.target
= disk_idx
;
2913 sh
->ops
.target2
= -1; /* no 2nd target */
2915 /* Careful: from this point on 'uptodate' is in the eye
2916 * of raid_run_ops which services 'compute' operations
2917 * before writes. R5_Wantcompute flags a block that will
2918 * be R5_UPTODATE by the time it is needed for a
2919 * subsequent operation.
2923 } else if (s
->uptodate
== disks
-2 && s
->failed
>= 2) {
2924 /* Computing 2-failure is *very* expensive; only
2925 * do it if failed >= 2
2928 for (other
= disks
; other
--; ) {
2929 if (other
== disk_idx
)
2931 if (!test_bit(R5_UPTODATE
,
2932 &sh
->dev
[other
].flags
))
2936 pr_debug("Computing stripe %llu blocks %d,%d\n",
2937 (unsigned long long)sh
->sector
,
2939 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2940 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2941 set_bit(R5_Wantcompute
, &sh
->dev
[disk_idx
].flags
);
2942 set_bit(R5_Wantcompute
, &sh
->dev
[other
].flags
);
2943 sh
->ops
.target
= disk_idx
;
2944 sh
->ops
.target2
= other
;
2948 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2949 set_bit(R5_LOCKED
, &dev
->flags
);
2950 set_bit(R5_Wantread
, &dev
->flags
);
2952 pr_debug("Reading block %d (sync=%d)\n",
2953 disk_idx
, s
->syncing
);
2961 * handle_stripe_fill - read or compute data to satisfy pending requests.
2963 static void handle_stripe_fill(struct stripe_head
*sh
,
2964 struct stripe_head_state
*s
,
2969 /* look for blocks to read/compute, skip this if a compute
2970 * is already in flight, or if the stripe contents are in the
2971 * midst of changing due to a write
2973 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
2974 !sh
->reconstruct_state
)
2975 for (i
= disks
; i
--; )
2976 if (fetch_block(sh
, s
, i
, disks
))
2978 set_bit(STRIPE_HANDLE
, &sh
->state
);
2982 /* handle_stripe_clean_event
2983 * any written block on an uptodate or failed drive can be returned.
2984 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2985 * never LOCKED, so we don't need to test 'failed' directly.
2987 static void handle_stripe_clean_event(struct r5conf
*conf
,
2988 struct stripe_head
*sh
, int disks
, struct bio
**return_bi
)
2992 int discard_pending
= 0;
2994 for (i
= disks
; i
--; )
2995 if (sh
->dev
[i
].written
) {
2997 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2998 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
2999 test_bit(R5_Discard
, &dev
->flags
))) {
3000 /* We can return any write requests */
3001 struct bio
*wbi
, *wbi2
;
3002 pr_debug("Return write for disc %d\n", i
);
3003 if (test_and_clear_bit(R5_Discard
, &dev
->flags
))
3004 clear_bit(R5_UPTODATE
, &dev
->flags
);
3006 dev
->written
= NULL
;
3007 while (wbi
&& wbi
->bi_iter
.bi_sector
<
3008 dev
->sector
+ STRIPE_SECTORS
) {
3009 wbi2
= r5_next_bio(wbi
, dev
->sector
);
3010 if (!raid5_dec_bi_active_stripes(wbi
)) {
3011 md_write_end(conf
->mddev
);
3012 wbi
->bi_next
= *return_bi
;
3017 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
3019 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
3021 } else if (test_bit(R5_Discard
, &dev
->flags
))
3022 discard_pending
= 1;
3024 if (!discard_pending
&&
3025 test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
)) {
3026 clear_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
3027 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
3028 if (sh
->qd_idx
>= 0) {
3029 clear_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
3030 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
);
3032 /* now that discard is done we can proceed with any sync */
3033 clear_bit(STRIPE_DISCARD
, &sh
->state
);
3035 * SCSI discard will change some bio fields and the stripe has
3036 * no updated data, so remove it from hash list and the stripe
3037 * will be reinitialized
3039 spin_lock_irq(&conf
->device_lock
);
3041 spin_unlock_irq(&conf
->device_lock
);
3042 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
))
3043 set_bit(STRIPE_HANDLE
, &sh
->state
);
3047 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
3048 if (atomic_dec_and_test(&conf
->pending_full_writes
))
3049 md_wakeup_thread(conf
->mddev
->thread
);
3052 static void handle_stripe_dirtying(struct r5conf
*conf
,
3053 struct stripe_head
*sh
,
3054 struct stripe_head_state
*s
,
3057 int rmw
= 0, rcw
= 0, i
;
3058 sector_t recovery_cp
= conf
->mddev
->recovery_cp
;
3060 /* RAID6 requires 'rcw' in current implementation.
3061 * Otherwise, check whether resync is now happening or should start.
3062 * If yes, then the array is dirty (after unclean shutdown or
3063 * initial creation), so parity in some stripes might be inconsistent.
3064 * In this case, we need to always do reconstruct-write, to ensure
3065 * that in case of drive failure or read-error correction, we
3066 * generate correct data from the parity.
3068 if (conf
->max_degraded
== 2 ||
3069 (recovery_cp
< MaxSector
&& sh
->sector
>= recovery_cp
)) {
3070 /* Calculate the real rcw later - for now make it
3071 * look like rcw is cheaper
3074 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3075 conf
->max_degraded
, (unsigned long long)recovery_cp
,
3076 (unsigned long long)sh
->sector
);
3077 } else for (i
= disks
; i
--; ) {
3078 /* would I have to read this buffer for read_modify_write */
3079 struct r5dev
*dev
= &sh
->dev
[i
];
3080 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
3081 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3082 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3083 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3084 if (test_bit(R5_Insync
, &dev
->flags
))
3087 rmw
+= 2*disks
; /* cannot read it */
3089 /* Would I have to read this buffer for reconstruct_write */
3090 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) && i
!= sh
->pd_idx
&&
3091 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3092 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3093 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3094 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
3099 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3100 (unsigned long long)sh
->sector
, rmw
, rcw
);
3101 set_bit(STRIPE_HANDLE
, &sh
->state
);
3102 if (rmw
< rcw
&& rmw
> 0) {
3103 /* prefer read-modify-write, but need to get some data */
3104 if (conf
->mddev
->queue
)
3105 blk_add_trace_msg(conf
->mddev
->queue
,
3106 "raid5 rmw %llu %d",
3107 (unsigned long long)sh
->sector
, rmw
);
3108 for (i
= disks
; i
--; ) {
3109 struct r5dev
*dev
= &sh
->dev
[i
];
3110 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
3111 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3112 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3113 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
3114 test_bit(R5_Insync
, &dev
->flags
)) {
3116 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
3117 pr_debug("Read_old block "
3118 "%d for r-m-w\n", i
);
3119 set_bit(R5_LOCKED
, &dev
->flags
);
3120 set_bit(R5_Wantread
, &dev
->flags
);
3123 set_bit(STRIPE_DELAYED
, &sh
->state
);
3124 set_bit(STRIPE_HANDLE
, &sh
->state
);
3129 if (rcw
<= rmw
&& rcw
> 0) {
3130 /* want reconstruct write, but need to get some data */
3133 for (i
= disks
; i
--; ) {
3134 struct r5dev
*dev
= &sh
->dev
[i
];
3135 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
3136 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
3137 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3138 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3139 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3141 if (!test_bit(R5_Insync
, &dev
->flags
))
3142 continue; /* it's a failed drive */
3144 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
3145 pr_debug("Read_old block "
3146 "%d for Reconstruct\n", i
);
3147 set_bit(R5_LOCKED
, &dev
->flags
);
3148 set_bit(R5_Wantread
, &dev
->flags
);
3152 set_bit(STRIPE_DELAYED
, &sh
->state
);
3153 set_bit(STRIPE_HANDLE
, &sh
->state
);
3157 if (rcw
&& conf
->mddev
->queue
)
3158 blk_add_trace_msg(conf
->mddev
->queue
, "raid5 rcw %llu %d %d %d",
3159 (unsigned long long)sh
->sector
,
3160 rcw
, qread
, test_bit(STRIPE_DELAYED
, &sh
->state
));
3162 /* now if nothing is locked, and if we have enough data,
3163 * we can start a write request
3165 /* since handle_stripe can be called at any time we need to handle the
3166 * case where a compute block operation has been submitted and then a
3167 * subsequent call wants to start a write request. raid_run_ops only
3168 * handles the case where compute block and reconstruct are requested
3169 * simultaneously. If this is not the case then new writes need to be
3170 * held off until the compute completes.
3172 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
3173 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
3174 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
3175 schedule_reconstruction(sh
, s
, rcw
== 0, 0);
3178 static void handle_parity_checks5(struct r5conf
*conf
, struct stripe_head
*sh
,
3179 struct stripe_head_state
*s
, int disks
)
3181 struct r5dev
*dev
= NULL
;
3183 set_bit(STRIPE_HANDLE
, &sh
->state
);
3185 switch (sh
->check_state
) {
3186 case check_state_idle
:
3187 /* start a new check operation if there are no failures */
3188 if (s
->failed
== 0) {
3189 BUG_ON(s
->uptodate
!= disks
);
3190 sh
->check_state
= check_state_run
;
3191 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
3192 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
3196 dev
= &sh
->dev
[s
->failed_num
[0]];
3198 case check_state_compute_result
:
3199 sh
->check_state
= check_state_idle
;
3201 dev
= &sh
->dev
[sh
->pd_idx
];
3203 /* check that a write has not made the stripe insync */
3204 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
3207 /* either failed parity check, or recovery is happening */
3208 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
3209 BUG_ON(s
->uptodate
!= disks
);
3211 set_bit(R5_LOCKED
, &dev
->flags
);
3213 set_bit(R5_Wantwrite
, &dev
->flags
);
3215 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
3216 set_bit(STRIPE_INSYNC
, &sh
->state
);
3218 case check_state_run
:
3219 break; /* we will be called again upon completion */
3220 case check_state_check_result
:
3221 sh
->check_state
= check_state_idle
;
3223 /* if a failure occurred during the check operation, leave
3224 * STRIPE_INSYNC not set and let the stripe be handled again
3229 /* handle a successful check operation, if parity is correct
3230 * we are done. Otherwise update the mismatch count and repair
3231 * parity if !MD_RECOVERY_CHECK
3233 if ((sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) == 0)
3234 /* parity is correct (on disc,
3235 * not in buffer any more)
3237 set_bit(STRIPE_INSYNC
, &sh
->state
);
3239 atomic64_add(STRIPE_SECTORS
, &conf
->mddev
->resync_mismatches
);
3240 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
3241 /* don't try to repair!! */
3242 set_bit(STRIPE_INSYNC
, &sh
->state
);
3244 sh
->check_state
= check_state_compute_run
;
3245 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3246 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3247 set_bit(R5_Wantcompute
,
3248 &sh
->dev
[sh
->pd_idx
].flags
);
3249 sh
->ops
.target
= sh
->pd_idx
;
3250 sh
->ops
.target2
= -1;
3255 case check_state_compute_run
:
3258 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
3259 __func__
, sh
->check_state
,
3260 (unsigned long long) sh
->sector
);
3266 static void handle_parity_checks6(struct r5conf
*conf
, struct stripe_head
*sh
,
3267 struct stripe_head_state
*s
,
3270 int pd_idx
= sh
->pd_idx
;
3271 int qd_idx
= sh
->qd_idx
;
3274 set_bit(STRIPE_HANDLE
, &sh
->state
);
3276 BUG_ON(s
->failed
> 2);
3278 /* Want to check and possibly repair P and Q.
3279 * However there could be one 'failed' device, in which
3280 * case we can only check one of them, possibly using the
3281 * other to generate missing data
3284 switch (sh
->check_state
) {
3285 case check_state_idle
:
3286 /* start a new check operation if there are < 2 failures */
3287 if (s
->failed
== s
->q_failed
) {
3288 /* The only possible failed device holds Q, so it
3289 * makes sense to check P (If anything else were failed,
3290 * we would have used P to recreate it).
3292 sh
->check_state
= check_state_run
;
3294 if (!s
->q_failed
&& s
->failed
< 2) {
3295 /* Q is not failed, and we didn't use it to generate
3296 * anything, so it makes sense to check it
3298 if (sh
->check_state
== check_state_run
)
3299 sh
->check_state
= check_state_run_pq
;
3301 sh
->check_state
= check_state_run_q
;
3304 /* discard potentially stale zero_sum_result */
3305 sh
->ops
.zero_sum_result
= 0;
3307 if (sh
->check_state
== check_state_run
) {
3308 /* async_xor_zero_sum destroys the contents of P */
3309 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
3312 if (sh
->check_state
>= check_state_run
&&
3313 sh
->check_state
<= check_state_run_pq
) {
3314 /* async_syndrome_zero_sum preserves P and Q, so
3315 * no need to mark them !uptodate here
3317 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
3321 /* we have 2-disk failure */
3322 BUG_ON(s
->failed
!= 2);
3324 case check_state_compute_result
:
3325 sh
->check_state
= check_state_idle
;
3327 /* check that a write has not made the stripe insync */
3328 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
3331 /* now write out any block on a failed drive,
3332 * or P or Q if they were recomputed
3334 BUG_ON(s
->uptodate
< disks
- 1); /* We don't need Q to recover */
3335 if (s
->failed
== 2) {
3336 dev
= &sh
->dev
[s
->failed_num
[1]];
3338 set_bit(R5_LOCKED
, &dev
->flags
);
3339 set_bit(R5_Wantwrite
, &dev
->flags
);
3341 if (s
->failed
>= 1) {
3342 dev
= &sh
->dev
[s
->failed_num
[0]];
3344 set_bit(R5_LOCKED
, &dev
->flags
);
3345 set_bit(R5_Wantwrite
, &dev
->flags
);
3347 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
3348 dev
= &sh
->dev
[pd_idx
];
3350 set_bit(R5_LOCKED
, &dev
->flags
);
3351 set_bit(R5_Wantwrite
, &dev
->flags
);
3353 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
3354 dev
= &sh
->dev
[qd_idx
];
3356 set_bit(R5_LOCKED
, &dev
->flags
);
3357 set_bit(R5_Wantwrite
, &dev
->flags
);
3359 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
3361 set_bit(STRIPE_INSYNC
, &sh
->state
);
3363 case check_state_run
:
3364 case check_state_run_q
:
3365 case check_state_run_pq
:
3366 break; /* we will be called again upon completion */
3367 case check_state_check_result
:
3368 sh
->check_state
= check_state_idle
;
3370 /* handle a successful check operation, if parity is correct
3371 * we are done. Otherwise update the mismatch count and repair
3372 * parity if !MD_RECOVERY_CHECK
3374 if (sh
->ops
.zero_sum_result
== 0) {
3375 /* both parities are correct */
3377 set_bit(STRIPE_INSYNC
, &sh
->state
);
3379 /* in contrast to the raid5 case we can validate
3380 * parity, but still have a failure to write
3383 sh
->check_state
= check_state_compute_result
;
3384 /* Returning at this point means that we may go
3385 * off and bring p and/or q uptodate again so
3386 * we make sure to check zero_sum_result again
3387 * to verify if p or q need writeback
3391 atomic64_add(STRIPE_SECTORS
, &conf
->mddev
->resync_mismatches
);
3392 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
3393 /* don't try to repair!! */
3394 set_bit(STRIPE_INSYNC
, &sh
->state
);
3396 int *target
= &sh
->ops
.target
;
3398 sh
->ops
.target
= -1;
3399 sh
->ops
.target2
= -1;
3400 sh
->check_state
= check_state_compute_run
;
3401 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3402 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3403 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
3404 set_bit(R5_Wantcompute
,
3405 &sh
->dev
[pd_idx
].flags
);
3407 target
= &sh
->ops
.target2
;
3410 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
3411 set_bit(R5_Wantcompute
,
3412 &sh
->dev
[qd_idx
].flags
);
3419 case check_state_compute_run
:
3422 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
3423 __func__
, sh
->check_state
,
3424 (unsigned long long) sh
->sector
);
3429 static void handle_stripe_expansion(struct r5conf
*conf
, struct stripe_head
*sh
)
3433 /* We have read all the blocks in this stripe and now we need to
3434 * copy some of them into a target stripe for expand.
3436 struct dma_async_tx_descriptor
*tx
= NULL
;
3437 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3438 for (i
= 0; i
< sh
->disks
; i
++)
3439 if (i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
) {
3441 struct stripe_head
*sh2
;
3442 struct async_submit_ctl submit
;
3444 sector_t bn
= compute_blocknr(sh
, i
, 1);
3445 sector_t s
= raid5_compute_sector(conf
, bn
, 0,
3447 sh2
= get_active_stripe(conf
, s
, 0, 1, 1);
3449 /* so far only the early blocks of this stripe
3450 * have been requested. When later blocks
3451 * get requested, we will try again
3454 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
3455 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
3456 /* must have already done this block */
3457 release_stripe(sh2
);
3461 /* place all the copies on one channel */
3462 init_async_submit(&submit
, 0, tx
, NULL
, NULL
, NULL
);
3463 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
3464 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
3467 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
3468 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
3469 for (j
= 0; j
< conf
->raid_disks
; j
++)
3470 if (j
!= sh2
->pd_idx
&&
3472 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
3474 if (j
== conf
->raid_disks
) {
3475 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
3476 set_bit(STRIPE_HANDLE
, &sh2
->state
);
3478 release_stripe(sh2
);
3481 /* done submitting copies, wait for them to complete */
3482 async_tx_quiesce(&tx
);
3486 * handle_stripe - do things to a stripe.
3488 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3489 * state of various bits to see what needs to be done.
3491 * return some read requests which now have data
3492 * return some write requests which are safely on storage
3493 * schedule a read on some buffers
3494 * schedule a write of some buffers
3495 * return confirmation of parity correctness
3499 static void analyse_stripe(struct stripe_head
*sh
, struct stripe_head_state
*s
)
3501 struct r5conf
*conf
= sh
->raid_conf
;
3502 int disks
= sh
->disks
;
3505 int do_recovery
= 0;
3507 memset(s
, 0, sizeof(*s
));
3509 s
->expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3510 s
->expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3511 s
->failed_num
[0] = -1;
3512 s
->failed_num
[1] = -1;
3514 /* Now to look around and see what can be done */
3516 for (i
=disks
; i
--; ) {
3517 struct md_rdev
*rdev
;
3524 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3526 dev
->toread
, dev
->towrite
, dev
->written
);
3527 /* maybe we can reply to a read
3529 * new wantfill requests are only permitted while
3530 * ops_complete_biofill is guaranteed to be inactive
3532 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
3533 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
3534 set_bit(R5_Wantfill
, &dev
->flags
);
3536 /* now count some things */
3537 if (test_bit(R5_LOCKED
, &dev
->flags
))
3539 if (test_bit(R5_UPTODATE
, &dev
->flags
))
3541 if (test_bit(R5_Wantcompute
, &dev
->flags
)) {
3543 BUG_ON(s
->compute
> 2);
3546 if (test_bit(R5_Wantfill
, &dev
->flags
))
3548 else if (dev
->toread
)
3552 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
3557 /* Prefer to use the replacement for reads, but only
3558 * if it is recovered enough and has no bad blocks.
3560 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
3561 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) &&
3562 rdev
->recovery_offset
>= sh
->sector
+ STRIPE_SECTORS
&&
3563 !is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
3564 &first_bad
, &bad_sectors
))
3565 set_bit(R5_ReadRepl
, &dev
->flags
);
3568 set_bit(R5_NeedReplace
, &dev
->flags
);
3569 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3570 clear_bit(R5_ReadRepl
, &dev
->flags
);
3572 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
3575 is_bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
3576 &first_bad
, &bad_sectors
);
3577 if (s
->blocked_rdev
== NULL
3578 && (test_bit(Blocked
, &rdev
->flags
)
3581 set_bit(BlockedBadBlocks
,
3583 s
->blocked_rdev
= rdev
;
3584 atomic_inc(&rdev
->nr_pending
);
3587 clear_bit(R5_Insync
, &dev
->flags
);
3591 /* also not in-sync */
3592 if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
3593 test_bit(R5_UPTODATE
, &dev
->flags
)) {
3594 /* treat as in-sync, but with a read error
3595 * which we can now try to correct
3597 set_bit(R5_Insync
, &dev
->flags
);
3598 set_bit(R5_ReadError
, &dev
->flags
);
3600 } else if (test_bit(In_sync
, &rdev
->flags
))
3601 set_bit(R5_Insync
, &dev
->flags
);
3602 else if (sh
->sector
+ STRIPE_SECTORS
<= rdev
->recovery_offset
)
3603 /* in sync if before recovery_offset */
3604 set_bit(R5_Insync
, &dev
->flags
);
3605 else if (test_bit(R5_UPTODATE
, &dev
->flags
) &&
3606 test_bit(R5_Expanded
, &dev
->flags
))
3607 /* If we've reshaped into here, we assume it is Insync.
3608 * We will shortly update recovery_offset to make
3611 set_bit(R5_Insync
, &dev
->flags
);
3613 if (test_bit(R5_WriteError
, &dev
->flags
)) {
3614 /* This flag does not apply to '.replacement'
3615 * only to .rdev, so make sure to check that*/
3616 struct md_rdev
*rdev2
= rcu_dereference(
3617 conf
->disks
[i
].rdev
);
3619 clear_bit(R5_Insync
, &dev
->flags
);
3620 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
3621 s
->handle_bad_blocks
= 1;
3622 atomic_inc(&rdev2
->nr_pending
);
3624 clear_bit(R5_WriteError
, &dev
->flags
);
3626 if (test_bit(R5_MadeGood
, &dev
->flags
)) {
3627 /* This flag does not apply to '.replacement'
3628 * only to .rdev, so make sure to check that*/
3629 struct md_rdev
*rdev2
= rcu_dereference(
3630 conf
->disks
[i
].rdev
);
3631 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
3632 s
->handle_bad_blocks
= 1;
3633 atomic_inc(&rdev2
->nr_pending
);
3635 clear_bit(R5_MadeGood
, &dev
->flags
);
3637 if (test_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
3638 struct md_rdev
*rdev2
= rcu_dereference(
3639 conf
->disks
[i
].replacement
);
3640 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
3641 s
->handle_bad_blocks
= 1;
3642 atomic_inc(&rdev2
->nr_pending
);
3644 clear_bit(R5_MadeGoodRepl
, &dev
->flags
);
3646 if (!test_bit(R5_Insync
, &dev
->flags
)) {
3647 /* The ReadError flag will just be confusing now */
3648 clear_bit(R5_ReadError
, &dev
->flags
);
3649 clear_bit(R5_ReWrite
, &dev
->flags
);
3651 if (test_bit(R5_ReadError
, &dev
->flags
))
3652 clear_bit(R5_Insync
, &dev
->flags
);
3653 if (!test_bit(R5_Insync
, &dev
->flags
)) {
3655 s
->failed_num
[s
->failed
] = i
;
3657 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
3661 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
3662 /* If there is a failed device being replaced,
3663 * we must be recovering.
3664 * else if we are after recovery_cp, we must be syncing
3665 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3666 * else we can only be replacing
3667 * sync and recovery both need to read all devices, and so
3668 * use the same flag.
3671 sh
->sector
>= conf
->mddev
->recovery_cp
||
3672 test_bit(MD_RECOVERY_REQUESTED
, &(conf
->mddev
->recovery
)))
3680 static void handle_stripe(struct stripe_head
*sh
)
3682 struct stripe_head_state s
;
3683 struct r5conf
*conf
= sh
->raid_conf
;
3686 int disks
= sh
->disks
;
3687 struct r5dev
*pdev
, *qdev
;
3689 clear_bit(STRIPE_HANDLE
, &sh
->state
);
3690 if (test_and_set_bit_lock(STRIPE_ACTIVE
, &sh
->state
)) {
3691 /* already being handled, ensure it gets handled
3692 * again when current action finishes */
3693 set_bit(STRIPE_HANDLE
, &sh
->state
);
3697 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
)) {
3698 spin_lock(&sh
->stripe_lock
);
3699 /* Cannot process 'sync' concurrently with 'discard' */
3700 if (!test_bit(STRIPE_DISCARD
, &sh
->state
) &&
3701 test_and_clear_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
)) {
3702 set_bit(STRIPE_SYNCING
, &sh
->state
);
3703 clear_bit(STRIPE_INSYNC
, &sh
->state
);
3704 clear_bit(STRIPE_REPLACED
, &sh
->state
);
3706 spin_unlock(&sh
->stripe_lock
);
3708 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3710 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3711 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3712 (unsigned long long)sh
->sector
, sh
->state
,
3713 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->qd_idx
,
3714 sh
->check_state
, sh
->reconstruct_state
);
3716 analyse_stripe(sh
, &s
);
3718 if (s
.handle_bad_blocks
) {
3719 set_bit(STRIPE_HANDLE
, &sh
->state
);
3723 if (unlikely(s
.blocked_rdev
)) {
3724 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
3725 s
.replacing
|| s
.to_write
|| s
.written
) {
3726 set_bit(STRIPE_HANDLE
, &sh
->state
);
3729 /* There is nothing for the blocked_rdev to block */
3730 rdev_dec_pending(s
.blocked_rdev
, conf
->mddev
);
3731 s
.blocked_rdev
= NULL
;
3734 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
3735 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
3736 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
3739 pr_debug("locked=%d uptodate=%d to_read=%d"
3740 " to_write=%d failed=%d failed_num=%d,%d\n",
3741 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
3742 s
.failed_num
[0], s
.failed_num
[1]);
3743 /* check if the array has lost more than max_degraded devices and,
3744 * if so, some requests might need to be failed.
3746 if (s
.failed
> conf
->max_degraded
) {
3747 sh
->check_state
= 0;
3748 sh
->reconstruct_state
= 0;
3749 if (s
.to_read
+s
.to_write
+s
.written
)
3750 handle_failed_stripe(conf
, sh
, &s
, disks
, &s
.return_bi
);
3751 if (s
.syncing
+ s
.replacing
)
3752 handle_failed_sync(conf
, sh
, &s
);
3755 /* Now we check to see if any write operations have recently
3759 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
3761 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
3762 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
3763 sh
->reconstruct_state
= reconstruct_state_idle
;
3765 /* All the 'written' buffers and the parity block are ready to
3766 * be written back to disk
3768 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
) &&
3769 !test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
));
3770 BUG_ON(sh
->qd_idx
>= 0 &&
3771 !test_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
) &&
3772 !test_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
));
3773 for (i
= disks
; i
--; ) {
3774 struct r5dev
*dev
= &sh
->dev
[i
];
3775 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
3776 (i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
3778 pr_debug("Writing block %d\n", i
);
3779 set_bit(R5_Wantwrite
, &dev
->flags
);
3782 if (!test_bit(R5_Insync
, &dev
->flags
) ||
3783 ((i
== sh
->pd_idx
|| i
== sh
->qd_idx
) &&
3785 set_bit(STRIPE_INSYNC
, &sh
->state
);
3788 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3789 s
.dec_preread_active
= 1;
3793 * might be able to return some write requests if the parity blocks
3794 * are safe, or on a failed drive
3796 pdev
= &sh
->dev
[sh
->pd_idx
];
3797 s
.p_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->pd_idx
)
3798 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->pd_idx
);
3799 qdev
= &sh
->dev
[sh
->qd_idx
];
3800 s
.q_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->qd_idx
)
3801 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->qd_idx
)
3805 (s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
3806 && !test_bit(R5_LOCKED
, &pdev
->flags
)
3807 && (test_bit(R5_UPTODATE
, &pdev
->flags
) ||
3808 test_bit(R5_Discard
, &pdev
->flags
))))) &&
3809 (s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
3810 && !test_bit(R5_LOCKED
, &qdev
->flags
)
3811 && (test_bit(R5_UPTODATE
, &qdev
->flags
) ||
3812 test_bit(R5_Discard
, &qdev
->flags
))))))
3813 handle_stripe_clean_event(conf
, sh
, disks
, &s
.return_bi
);
3815 /* Now we might consider reading some blocks, either to check/generate
3816 * parity, or to satisfy requests
3817 * or to load a block that is being partially written.
3819 if (s
.to_read
|| s
.non_overwrite
3820 || (conf
->level
== 6 && s
.to_write
&& s
.failed
)
3821 || (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
))
3824 handle_stripe_fill(sh
, &s
, disks
);
3826 /* Now to consider new write requests and what else, if anything
3827 * should be read. We do not handle new writes when:
3828 * 1/ A 'write' operation (copy+xor) is already in flight.
3829 * 2/ A 'check' operation is in flight, as it may clobber the parity
3832 if (s
.to_write
&& !sh
->reconstruct_state
&& !sh
->check_state
)
3833 handle_stripe_dirtying(conf
, sh
, &s
, disks
);
3835 /* maybe we need to check and possibly fix the parity for this stripe
3836 * Any reads will already have been scheduled, so we just see if enough
3837 * data is available. The parity check is held off while parity
3838 * dependent operations are in flight.
3840 if (sh
->check_state
||
3841 (s
.syncing
&& s
.locked
== 0 &&
3842 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
3843 !test_bit(STRIPE_INSYNC
, &sh
->state
))) {
3844 if (conf
->level
== 6)
3845 handle_parity_checks6(conf
, sh
, &s
, disks
);
3847 handle_parity_checks5(conf
, sh
, &s
, disks
);
3850 if ((s
.replacing
|| s
.syncing
) && s
.locked
== 0
3851 && !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)
3852 && !test_bit(STRIPE_REPLACED
, &sh
->state
)) {
3853 /* Write out to replacement devices where possible */
3854 for (i
= 0; i
< conf
->raid_disks
; i
++)
3855 if (test_bit(R5_NeedReplace
, &sh
->dev
[i
].flags
)) {
3856 WARN_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
3857 set_bit(R5_WantReplace
, &sh
->dev
[i
].flags
);
3858 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3862 set_bit(STRIPE_INSYNC
, &sh
->state
);
3863 set_bit(STRIPE_REPLACED
, &sh
->state
);
3865 if ((s
.syncing
|| s
.replacing
) && s
.locked
== 0 &&
3866 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
3867 test_bit(STRIPE_INSYNC
, &sh
->state
)) {
3868 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3869 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3870 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
3871 wake_up(&conf
->wait_for_overlap
);
3874 /* If the failed drives are just a ReadError, then we might need
3875 * to progress the repair/check process
3877 if (s
.failed
<= conf
->max_degraded
&& !conf
->mddev
->ro
)
3878 for (i
= 0; i
< s
.failed
; i
++) {
3879 struct r5dev
*dev
= &sh
->dev
[s
.failed_num
[i
]];
3880 if (test_bit(R5_ReadError
, &dev
->flags
)
3881 && !test_bit(R5_LOCKED
, &dev
->flags
)
3882 && test_bit(R5_UPTODATE
, &dev
->flags
)
3884 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
3885 set_bit(R5_Wantwrite
, &dev
->flags
);
3886 set_bit(R5_ReWrite
, &dev
->flags
);
3887 set_bit(R5_LOCKED
, &dev
->flags
);
3890 /* let's read it back */
3891 set_bit(R5_Wantread
, &dev
->flags
);
3892 set_bit(R5_LOCKED
, &dev
->flags
);
3899 /* Finish reconstruct operations initiated by the expansion process */
3900 if (sh
->reconstruct_state
== reconstruct_state_result
) {
3901 struct stripe_head
*sh_src
3902 = get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
3903 if (sh_src
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh_src
->state
)) {
3904 /* sh cannot be written until sh_src has been read.
3905 * so arrange for sh to be delayed a little
3907 set_bit(STRIPE_DELAYED
, &sh
->state
);
3908 set_bit(STRIPE_HANDLE
, &sh
->state
);
3909 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
3911 atomic_inc(&conf
->preread_active_stripes
);
3912 release_stripe(sh_src
);
3916 release_stripe(sh_src
);
3918 sh
->reconstruct_state
= reconstruct_state_idle
;
3919 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
3920 for (i
= conf
->raid_disks
; i
--; ) {
3921 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
3922 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3927 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
3928 !sh
->reconstruct_state
) {
3929 /* Need to write out all blocks after computing parity */
3930 sh
->disks
= conf
->raid_disks
;
3931 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
3932 schedule_reconstruction(sh
, &s
, 1, 1);
3933 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
3934 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3935 atomic_dec(&conf
->reshape_stripes
);
3936 wake_up(&conf
->wait_for_overlap
);
3937 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3940 if (s
.expanding
&& s
.locked
== 0 &&
3941 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
3942 handle_stripe_expansion(conf
, sh
);
3945 /* wait for this device to become unblocked */
3946 if (unlikely(s
.blocked_rdev
)) {
3947 if (conf
->mddev
->external
)
3948 md_wait_for_blocked_rdev(s
.blocked_rdev
,
3951 /* Internal metadata will immediately
3952 * be written by raid5d, so we don't
3953 * need to wait here.
3955 rdev_dec_pending(s
.blocked_rdev
,
3959 if (s
.handle_bad_blocks
)
3960 for (i
= disks
; i
--; ) {
3961 struct md_rdev
*rdev
;
3962 struct r5dev
*dev
= &sh
->dev
[i
];
3963 if (test_and_clear_bit(R5_WriteError
, &dev
->flags
)) {
3964 /* We own a safe reference to the rdev */
3965 rdev
= conf
->disks
[i
].rdev
;
3966 if (!rdev_set_badblocks(rdev
, sh
->sector
,
3968 md_error(conf
->mddev
, rdev
);
3969 rdev_dec_pending(rdev
, conf
->mddev
);
3971 if (test_and_clear_bit(R5_MadeGood
, &dev
->flags
)) {
3972 rdev
= conf
->disks
[i
].rdev
;
3973 rdev_clear_badblocks(rdev
, sh
->sector
,
3975 rdev_dec_pending(rdev
, conf
->mddev
);
3977 if (test_and_clear_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
3978 rdev
= conf
->disks
[i
].replacement
;
3980 /* rdev have been moved down */
3981 rdev
= conf
->disks
[i
].rdev
;
3982 rdev_clear_badblocks(rdev
, sh
->sector
,
3984 rdev_dec_pending(rdev
, conf
->mddev
);
3989 raid_run_ops(sh
, s
.ops_request
);
3993 if (s
.dec_preread_active
) {
3994 /* We delay this until after ops_run_io so that if make_request
3995 * is waiting on a flush, it won't continue until the writes
3996 * have actually been submitted.
3998 atomic_dec(&conf
->preread_active_stripes
);
3999 if (atomic_read(&conf
->preread_active_stripes
) <
4001 md_wakeup_thread(conf
->mddev
->thread
);
4004 return_io(s
.return_bi
);
4006 clear_bit_unlock(STRIPE_ACTIVE
, &sh
->state
);
4009 static void raid5_activate_delayed(struct r5conf
*conf
)
4011 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
4012 while (!list_empty(&conf
->delayed_list
)) {
4013 struct list_head
*l
= conf
->delayed_list
.next
;
4014 struct stripe_head
*sh
;
4015 sh
= list_entry(l
, struct stripe_head
, lru
);
4017 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4018 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4019 atomic_inc(&conf
->preread_active_stripes
);
4020 list_add_tail(&sh
->lru
, &conf
->hold_list
);
4021 raid5_wakeup_stripe_thread(sh
);
4026 static void activate_bit_delay(struct r5conf
*conf
,
4027 struct list_head
*temp_inactive_list
)
4029 /* device_lock is held */
4030 struct list_head head
;
4031 list_add(&head
, &conf
->bitmap_list
);
4032 list_del_init(&conf
->bitmap_list
);
4033 while (!list_empty(&head
)) {
4034 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
4036 list_del_init(&sh
->lru
);
4037 atomic_inc(&sh
->count
);
4038 hash
= sh
->hash_lock_index
;
4039 __release_stripe(conf
, sh
, &temp_inactive_list
[hash
]);
4043 int md_raid5_congested(struct mddev
*mddev
, int bits
)
4045 struct r5conf
*conf
= mddev
->private;
4047 /* No difference between reads and writes. Just check
4048 * how busy the stripe_cache is
4051 if (conf
->inactive_blocked
)
4055 if (atomic_read(&conf
->empty_inactive_list_nr
))
4060 EXPORT_SYMBOL_GPL(md_raid5_congested
);
4062 static int raid5_congested(void *data
, int bits
)
4064 struct mddev
*mddev
= data
;
4066 return mddev_congested(mddev
, bits
) ||
4067 md_raid5_congested(mddev
, bits
);
4070 /* We want read requests to align with chunks where possible,
4071 * but write requests don't need to.
4073 static int raid5_mergeable_bvec(struct request_queue
*q
,
4074 struct bvec_merge_data
*bvm
,
4075 struct bio_vec
*biovec
)
4077 struct mddev
*mddev
= q
->queuedata
;
4078 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
4080 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
4081 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
4083 if ((bvm
->bi_rw
& 1) == WRITE
)
4084 return biovec
->bv_len
; /* always allow writes to be mergeable */
4086 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
4087 chunk_sectors
= mddev
->new_chunk_sectors
;
4088 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
4089 if (max
< 0) max
= 0;
4090 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
4091 return biovec
->bv_len
;
4097 static int in_chunk_boundary(struct mddev
*mddev
, struct bio
*bio
)
4099 sector_t sector
= bio
->bi_iter
.bi_sector
+ get_start_sect(bio
->bi_bdev
);
4100 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
4101 unsigned int bio_sectors
= bio_sectors(bio
);
4103 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
4104 chunk_sectors
= mddev
->new_chunk_sectors
;
4105 return chunk_sectors
>=
4106 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
4110 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4111 * later sampled by raid5d.
4113 static void add_bio_to_retry(struct bio
*bi
,struct r5conf
*conf
)
4115 unsigned long flags
;
4117 spin_lock_irqsave(&conf
->device_lock
, flags
);
4119 bi
->bi_next
= conf
->retry_read_aligned_list
;
4120 conf
->retry_read_aligned_list
= bi
;
4122 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
4123 md_wakeup_thread(conf
->mddev
->thread
);
4127 static struct bio
*remove_bio_from_retry(struct r5conf
*conf
)
4131 bi
= conf
->retry_read_aligned
;
4133 conf
->retry_read_aligned
= NULL
;
4136 bi
= conf
->retry_read_aligned_list
;
4138 conf
->retry_read_aligned_list
= bi
->bi_next
;
4141 * this sets the active strip count to 1 and the processed
4142 * strip count to zero (upper 8 bits)
4144 raid5_set_bi_stripes(bi
, 1); /* biased count of active stripes */
4152 * The "raid5_align_endio" should check if the read succeeded and if it
4153 * did, call bio_endio on the original bio (having bio_put the new bio
4155 * If the read failed..
4157 static void raid5_align_endio(struct bio
*bi
, int error
)
4159 struct bio
* raid_bi
= bi
->bi_private
;
4160 struct mddev
*mddev
;
4161 struct r5conf
*conf
;
4162 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
4163 struct md_rdev
*rdev
;
4167 rdev
= (void*)raid_bi
->bi_next
;
4168 raid_bi
->bi_next
= NULL
;
4169 mddev
= rdev
->mddev
;
4170 conf
= mddev
->private;
4172 rdev_dec_pending(rdev
, conf
->mddev
);
4174 if (!error
&& uptodate
) {
4175 trace_block_bio_complete(bdev_get_queue(raid_bi
->bi_bdev
),
4177 bio_endio(raid_bi
, 0);
4178 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
4179 wake_up(&conf
->wait_for_stripe
);
4184 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4186 add_bio_to_retry(raid_bi
, conf
);
4189 static int bio_fits_rdev(struct bio
*bi
)
4191 struct request_queue
*q
= bdev_get_queue(bi
->bi_bdev
);
4193 if (bio_sectors(bi
) > queue_max_sectors(q
))
4195 blk_recount_segments(q
, bi
);
4196 if (bi
->bi_phys_segments
> queue_max_segments(q
))
4199 if (q
->merge_bvec_fn
)
4200 /* it's too hard to apply the merge_bvec_fn at this stage,
4209 static int chunk_aligned_read(struct mddev
*mddev
, struct bio
* raid_bio
)
4211 struct r5conf
*conf
= mddev
->private;
4213 struct bio
* align_bi
;
4214 struct md_rdev
*rdev
;
4215 sector_t end_sector
;
4217 if (!in_chunk_boundary(mddev
, raid_bio
)) {
4218 pr_debug("chunk_aligned_read : non aligned\n");
4222 * use bio_clone_mddev to make a copy of the bio
4224 align_bi
= bio_clone_mddev(raid_bio
, GFP_NOIO
, mddev
);
4228 * set bi_end_io to a new function, and set bi_private to the
4231 align_bi
->bi_end_io
= raid5_align_endio
;
4232 align_bi
->bi_private
= raid_bio
;
4236 align_bi
->bi_iter
.bi_sector
=
4237 raid5_compute_sector(conf
, raid_bio
->bi_iter
.bi_sector
,
4240 end_sector
= bio_end_sector(align_bi
);
4242 rdev
= rcu_dereference(conf
->disks
[dd_idx
].replacement
);
4243 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
) ||
4244 rdev
->recovery_offset
< end_sector
) {
4245 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
4247 (test_bit(Faulty
, &rdev
->flags
) ||
4248 !(test_bit(In_sync
, &rdev
->flags
) ||
4249 rdev
->recovery_offset
>= end_sector
)))
4256 atomic_inc(&rdev
->nr_pending
);
4258 raid_bio
->bi_next
= (void*)rdev
;
4259 align_bi
->bi_bdev
= rdev
->bdev
;
4260 align_bi
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
4262 if (!bio_fits_rdev(align_bi
) ||
4263 is_badblock(rdev
, align_bi
->bi_iter
.bi_sector
,
4264 bio_sectors(align_bi
),
4265 &first_bad
, &bad_sectors
)) {
4266 /* too big in some way, or has a known bad block */
4268 rdev_dec_pending(rdev
, mddev
);
4272 /* No reshape active, so we can trust rdev->data_offset */
4273 align_bi
->bi_iter
.bi_sector
+= rdev
->data_offset
;
4275 spin_lock_irq(&conf
->device_lock
);
4276 wait_event_lock_irq(conf
->wait_for_stripe
,
4279 atomic_inc(&conf
->active_aligned_reads
);
4280 spin_unlock_irq(&conf
->device_lock
);
4283 trace_block_bio_remap(bdev_get_queue(align_bi
->bi_bdev
),
4284 align_bi
, disk_devt(mddev
->gendisk
),
4285 raid_bio
->bi_iter
.bi_sector
);
4286 generic_make_request(align_bi
);
4295 /* __get_priority_stripe - get the next stripe to process
4297 * Full stripe writes are allowed to pass preread active stripes up until
4298 * the bypass_threshold is exceeded. In general the bypass_count
4299 * increments when the handle_list is handled before the hold_list; however, it
4300 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4301 * stripe with in flight i/o. The bypass_count will be reset when the
4302 * head of the hold_list has changed, i.e. the head was promoted to the
4305 static struct stripe_head
*__get_priority_stripe(struct r5conf
*conf
, int group
)
4307 struct stripe_head
*sh
= NULL
, *tmp
;
4308 struct list_head
*handle_list
= NULL
;
4309 struct r5worker_group
*wg
= NULL
;
4311 if (conf
->worker_cnt_per_group
== 0) {
4312 handle_list
= &conf
->handle_list
;
4313 } else if (group
!= ANY_GROUP
) {
4314 handle_list
= &conf
->worker_groups
[group
].handle_list
;
4315 wg
= &conf
->worker_groups
[group
];
4318 for (i
= 0; i
< conf
->group_cnt
; i
++) {
4319 handle_list
= &conf
->worker_groups
[i
].handle_list
;
4320 wg
= &conf
->worker_groups
[i
];
4321 if (!list_empty(handle_list
))
4326 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4328 list_empty(handle_list
) ? "empty" : "busy",
4329 list_empty(&conf
->hold_list
) ? "empty" : "busy",
4330 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
4332 if (!list_empty(handle_list
)) {
4333 sh
= list_entry(handle_list
->next
, typeof(*sh
), lru
);
4335 if (list_empty(&conf
->hold_list
))
4336 conf
->bypass_count
= 0;
4337 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
4338 if (conf
->hold_list
.next
== conf
->last_hold
)
4339 conf
->bypass_count
++;
4341 conf
->last_hold
= conf
->hold_list
.next
;
4342 conf
->bypass_count
-= conf
->bypass_threshold
;
4343 if (conf
->bypass_count
< 0)
4344 conf
->bypass_count
= 0;
4347 } else if (!list_empty(&conf
->hold_list
) &&
4348 ((conf
->bypass_threshold
&&
4349 conf
->bypass_count
> conf
->bypass_threshold
) ||
4350 atomic_read(&conf
->pending_full_writes
) == 0)) {
4352 list_for_each_entry(tmp
, &conf
->hold_list
, lru
) {
4353 if (conf
->worker_cnt_per_group
== 0 ||
4354 group
== ANY_GROUP
||
4355 !cpu_online(tmp
->cpu
) ||
4356 cpu_to_group(tmp
->cpu
) == group
) {
4363 conf
->bypass_count
-= conf
->bypass_threshold
;
4364 if (conf
->bypass_count
< 0)
4365 conf
->bypass_count
= 0;
4377 list_del_init(&sh
->lru
);
4378 atomic_inc(&sh
->count
);
4379 BUG_ON(atomic_read(&sh
->count
) != 1);
4383 struct raid5_plug_cb
{
4384 struct blk_plug_cb cb
;
4385 struct list_head list
;
4386 struct list_head temp_inactive_list
[NR_STRIPE_HASH_LOCKS
];
4389 static void raid5_unplug(struct blk_plug_cb
*blk_cb
, bool from_schedule
)
4391 struct raid5_plug_cb
*cb
= container_of(
4392 blk_cb
, struct raid5_plug_cb
, cb
);
4393 struct stripe_head
*sh
;
4394 struct mddev
*mddev
= cb
->cb
.data
;
4395 struct r5conf
*conf
= mddev
->private;
4399 if (cb
->list
.next
&& !list_empty(&cb
->list
)) {
4400 spin_lock_irq(&conf
->device_lock
);
4401 while (!list_empty(&cb
->list
)) {
4402 sh
= list_first_entry(&cb
->list
, struct stripe_head
, lru
);
4403 list_del_init(&sh
->lru
);
4405 * avoid race release_stripe_plug() sees
4406 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4407 * is still in our list
4409 smp_mb__before_clear_bit();
4410 clear_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
);
4412 * STRIPE_ON_RELEASE_LIST could be set here. In that
4413 * case, the count is always > 1 here
4415 hash
= sh
->hash_lock_index
;
4416 __release_stripe(conf
, sh
, &cb
->temp_inactive_list
[hash
]);
4419 spin_unlock_irq(&conf
->device_lock
);
4421 release_inactive_stripe_list(conf
, cb
->temp_inactive_list
,
4422 NR_STRIPE_HASH_LOCKS
);
4424 trace_block_unplug(mddev
->queue
, cnt
, !from_schedule
);
4428 static void release_stripe_plug(struct mddev
*mddev
,
4429 struct stripe_head
*sh
)
4431 struct blk_plug_cb
*blk_cb
= blk_check_plugged(
4432 raid5_unplug
, mddev
,
4433 sizeof(struct raid5_plug_cb
));
4434 struct raid5_plug_cb
*cb
;
4441 cb
= container_of(blk_cb
, struct raid5_plug_cb
, cb
);
4443 if (cb
->list
.next
== NULL
) {
4445 INIT_LIST_HEAD(&cb
->list
);
4446 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
4447 INIT_LIST_HEAD(cb
->temp_inactive_list
+ i
);
4450 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
))
4451 list_add_tail(&sh
->lru
, &cb
->list
);
4456 static void make_discard_request(struct mddev
*mddev
, struct bio
*bi
)
4458 struct r5conf
*conf
= mddev
->private;
4459 sector_t logical_sector
, last_sector
;
4460 struct stripe_head
*sh
;
4464 if (mddev
->reshape_position
!= MaxSector
)
4465 /* Skip discard while reshape is happening */
4468 logical_sector
= bi
->bi_iter
.bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
4469 last_sector
= bi
->bi_iter
.bi_sector
+ (bi
->bi_iter
.bi_size
>>9);
4472 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
4474 stripe_sectors
= conf
->chunk_sectors
*
4475 (conf
->raid_disks
- conf
->max_degraded
);
4476 logical_sector
= DIV_ROUND_UP_SECTOR_T(logical_sector
,
4478 sector_div(last_sector
, stripe_sectors
);
4480 logical_sector
*= conf
->chunk_sectors
;
4481 last_sector
*= conf
->chunk_sectors
;
4483 for (; logical_sector
< last_sector
;
4484 logical_sector
+= STRIPE_SECTORS
) {
4488 sh
= get_active_stripe(conf
, logical_sector
, 0, 0, 0);
4489 prepare_to_wait(&conf
->wait_for_overlap
, &w
,
4490 TASK_UNINTERRUPTIBLE
);
4491 set_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
4492 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
4497 clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
4498 spin_lock_irq(&sh
->stripe_lock
);
4499 for (d
= 0; d
< conf
->raid_disks
; d
++) {
4500 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
4502 if (sh
->dev
[d
].towrite
|| sh
->dev
[d
].toread
) {
4503 set_bit(R5_Overlap
, &sh
->dev
[d
].flags
);
4504 spin_unlock_irq(&sh
->stripe_lock
);
4510 set_bit(STRIPE_DISCARD
, &sh
->state
);
4511 finish_wait(&conf
->wait_for_overlap
, &w
);
4512 for (d
= 0; d
< conf
->raid_disks
; d
++) {
4513 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
4515 sh
->dev
[d
].towrite
= bi
;
4516 set_bit(R5_OVERWRITE
, &sh
->dev
[d
].flags
);
4517 raid5_inc_bi_active_stripes(bi
);
4519 spin_unlock_irq(&sh
->stripe_lock
);
4520 if (conf
->mddev
->bitmap
) {
4522 d
< conf
->raid_disks
- conf
->max_degraded
;
4524 bitmap_startwrite(mddev
->bitmap
,
4528 sh
->bm_seq
= conf
->seq_flush
+ 1;
4529 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
4532 set_bit(STRIPE_HANDLE
, &sh
->state
);
4533 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4534 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4535 atomic_inc(&conf
->preread_active_stripes
);
4536 release_stripe_plug(mddev
, sh
);
4539 remaining
= raid5_dec_bi_active_stripes(bi
);
4540 if (remaining
== 0) {
4541 md_write_end(mddev
);
4546 static void make_request(struct mddev
*mddev
, struct bio
* bi
)
4548 struct r5conf
*conf
= mddev
->private;
4550 sector_t new_sector
;
4551 sector_t logical_sector
, last_sector
;
4552 struct stripe_head
*sh
;
4553 const int rw
= bio_data_dir(bi
);
4556 if (unlikely(bi
->bi_rw
& REQ_FLUSH
)) {
4557 md_flush_request(mddev
, bi
);
4561 md_write_start(mddev
, bi
);
4564 mddev
->reshape_position
== MaxSector
&&
4565 chunk_aligned_read(mddev
,bi
))
4568 if (unlikely(bi
->bi_rw
& REQ_DISCARD
)) {
4569 make_discard_request(mddev
, bi
);
4573 logical_sector
= bi
->bi_iter
.bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
4574 last_sector
= bio_end_sector(bi
);
4576 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
4578 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
4584 seq
= read_seqcount_begin(&conf
->gen_lock
);
4586 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
4587 if (unlikely(conf
->reshape_progress
!= MaxSector
)) {
4588 /* spinlock is needed as reshape_progress may be
4589 * 64bit on a 32bit platform, and so it might be
4590 * possible to see a half-updated value
4591 * Of course reshape_progress could change after
4592 * the lock is dropped, so once we get a reference
4593 * to the stripe that we think it is, we will have
4596 spin_lock_irq(&conf
->device_lock
);
4597 if (mddev
->reshape_backwards
4598 ? logical_sector
< conf
->reshape_progress
4599 : logical_sector
>= conf
->reshape_progress
) {
4602 if (mddev
->reshape_backwards
4603 ? logical_sector
< conf
->reshape_safe
4604 : logical_sector
>= conf
->reshape_safe
) {
4605 spin_unlock_irq(&conf
->device_lock
);
4610 spin_unlock_irq(&conf
->device_lock
);
4613 new_sector
= raid5_compute_sector(conf
, logical_sector
,
4616 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4617 (unsigned long long)new_sector
,
4618 (unsigned long long)logical_sector
);
4620 sh
= get_active_stripe(conf
, new_sector
, previous
,
4621 (bi
->bi_rw
&RWA_MASK
), 0);
4623 if (unlikely(previous
)) {
4624 /* expansion might have moved on while waiting for a
4625 * stripe, so we must do the range check again.
4626 * Expansion could still move past after this
4627 * test, but as we are holding a reference to
4628 * 'sh', we know that if that happens,
4629 * STRIPE_EXPANDING will get set and the expansion
4630 * won't proceed until we finish with the stripe.
4633 spin_lock_irq(&conf
->device_lock
);
4634 if (mddev
->reshape_backwards
4635 ? logical_sector
>= conf
->reshape_progress
4636 : logical_sector
< conf
->reshape_progress
)
4637 /* mismatch, need to try again */
4639 spin_unlock_irq(&conf
->device_lock
);
4646 if (read_seqcount_retry(&conf
->gen_lock
, seq
)) {
4647 /* Might have got the wrong stripe_head
4655 logical_sector
>= mddev
->suspend_lo
&&
4656 logical_sector
< mddev
->suspend_hi
) {
4658 /* As the suspend_* range is controlled by
4659 * userspace, we want an interruptible
4662 flush_signals(current
);
4663 prepare_to_wait(&conf
->wait_for_overlap
,
4664 &w
, TASK_INTERRUPTIBLE
);
4665 if (logical_sector
>= mddev
->suspend_lo
&&
4666 logical_sector
< mddev
->suspend_hi
)
4671 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
4672 !add_stripe_bio(sh
, bi
, dd_idx
, rw
)) {
4673 /* Stripe is busy expanding or
4674 * add failed due to overlap. Flush everything
4677 md_wakeup_thread(mddev
->thread
);
4682 finish_wait(&conf
->wait_for_overlap
, &w
);
4683 set_bit(STRIPE_HANDLE
, &sh
->state
);
4684 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4685 if ((bi
->bi_rw
& REQ_SYNC
) &&
4686 !test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4687 atomic_inc(&conf
->preread_active_stripes
);
4688 release_stripe_plug(mddev
, sh
);
4690 /* cannot get stripe for read-ahead, just give-up */
4691 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
4692 finish_wait(&conf
->wait_for_overlap
, &w
);
4697 remaining
= raid5_dec_bi_active_stripes(bi
);
4698 if (remaining
== 0) {
4701 md_write_end(mddev
);
4703 trace_block_bio_complete(bdev_get_queue(bi
->bi_bdev
),
4709 static sector_t
raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
);
4711 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
)
4713 /* reshaping is quite different to recovery/resync so it is
4714 * handled quite separately ... here.
4716 * On each call to sync_request, we gather one chunk worth of
4717 * destination stripes and flag them as expanding.
4718 * Then we find all the source stripes and request reads.
4719 * As the reads complete, handle_stripe will copy the data
4720 * into the destination stripe and release that stripe.
4722 struct r5conf
*conf
= mddev
->private;
4723 struct stripe_head
*sh
;
4724 sector_t first_sector
, last_sector
;
4725 int raid_disks
= conf
->previous_raid_disks
;
4726 int data_disks
= raid_disks
- conf
->max_degraded
;
4727 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
4730 sector_t writepos
, readpos
, safepos
;
4731 sector_t stripe_addr
;
4732 int reshape_sectors
;
4733 struct list_head stripes
;
4735 if (sector_nr
== 0) {
4736 /* If restarting in the middle, skip the initial sectors */
4737 if (mddev
->reshape_backwards
&&
4738 conf
->reshape_progress
< raid5_size(mddev
, 0, 0)) {
4739 sector_nr
= raid5_size(mddev
, 0, 0)
4740 - conf
->reshape_progress
;
4741 } else if (!mddev
->reshape_backwards
&&
4742 conf
->reshape_progress
> 0)
4743 sector_nr
= conf
->reshape_progress
;
4744 sector_div(sector_nr
, new_data_disks
);
4746 mddev
->curr_resync_completed
= sector_nr
;
4747 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4753 /* We need to process a full chunk at a time.
4754 * If old and new chunk sizes differ, we need to process the
4757 if (mddev
->new_chunk_sectors
> mddev
->chunk_sectors
)
4758 reshape_sectors
= mddev
->new_chunk_sectors
;
4760 reshape_sectors
= mddev
->chunk_sectors
;
4762 /* We update the metadata at least every 10 seconds, or when
4763 * the data about to be copied would over-write the source of
4764 * the data at the front of the range. i.e. one new_stripe
4765 * along from reshape_progress new_maps to after where
4766 * reshape_safe old_maps to
4768 writepos
= conf
->reshape_progress
;
4769 sector_div(writepos
, new_data_disks
);
4770 readpos
= conf
->reshape_progress
;
4771 sector_div(readpos
, data_disks
);
4772 safepos
= conf
->reshape_safe
;
4773 sector_div(safepos
, data_disks
);
4774 if (mddev
->reshape_backwards
) {
4775 writepos
-= min_t(sector_t
, reshape_sectors
, writepos
);
4776 readpos
+= reshape_sectors
;
4777 safepos
+= reshape_sectors
;
4779 writepos
+= reshape_sectors
;
4780 readpos
-= min_t(sector_t
, reshape_sectors
, readpos
);
4781 safepos
-= min_t(sector_t
, reshape_sectors
, safepos
);
4784 /* Having calculated the 'writepos' possibly use it
4785 * to set 'stripe_addr' which is where we will write to.
4787 if (mddev
->reshape_backwards
) {
4788 BUG_ON(conf
->reshape_progress
== 0);
4789 stripe_addr
= writepos
;
4790 BUG_ON((mddev
->dev_sectors
&
4791 ~((sector_t
)reshape_sectors
- 1))
4792 - reshape_sectors
- stripe_addr
4795 BUG_ON(writepos
!= sector_nr
+ reshape_sectors
);
4796 stripe_addr
= sector_nr
;
4799 /* 'writepos' is the most advanced device address we might write.
4800 * 'readpos' is the least advanced device address we might read.
4801 * 'safepos' is the least address recorded in the metadata as having
4803 * If there is a min_offset_diff, these are adjusted either by
4804 * increasing the safepos/readpos if diff is negative, or
4805 * increasing writepos if diff is positive.
4806 * If 'readpos' is then behind 'writepos', there is no way that we can
4807 * ensure safety in the face of a crash - that must be done by userspace
4808 * making a backup of the data. So in that case there is no particular
4809 * rush to update metadata.
4810 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4811 * update the metadata to advance 'safepos' to match 'readpos' so that
4812 * we can be safe in the event of a crash.
4813 * So we insist on updating metadata if safepos is behind writepos and
4814 * readpos is beyond writepos.
4815 * In any case, update the metadata every 10 seconds.
4816 * Maybe that number should be configurable, but I'm not sure it is
4817 * worth it.... maybe it could be a multiple of safemode_delay???
4819 if (conf
->min_offset_diff
< 0) {
4820 safepos
+= -conf
->min_offset_diff
;
4821 readpos
+= -conf
->min_offset_diff
;
4823 writepos
+= conf
->min_offset_diff
;
4825 if ((mddev
->reshape_backwards
4826 ? (safepos
> writepos
&& readpos
< writepos
)
4827 : (safepos
< writepos
&& readpos
> writepos
)) ||
4828 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
4829 /* Cannot proceed until we've updated the superblock... */
4830 wait_event(conf
->wait_for_overlap
,
4831 atomic_read(&conf
->reshape_stripes
)==0
4832 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
4833 if (atomic_read(&conf
->reshape_stripes
) != 0)
4835 mddev
->reshape_position
= conf
->reshape_progress
;
4836 mddev
->curr_resync_completed
= sector_nr
;
4837 conf
->reshape_checkpoint
= jiffies
;
4838 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4839 md_wakeup_thread(mddev
->thread
);
4840 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
4841 test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
4842 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
4844 spin_lock_irq(&conf
->device_lock
);
4845 conf
->reshape_safe
= mddev
->reshape_position
;
4846 spin_unlock_irq(&conf
->device_lock
);
4847 wake_up(&conf
->wait_for_overlap
);
4848 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4851 INIT_LIST_HEAD(&stripes
);
4852 for (i
= 0; i
< reshape_sectors
; i
+= STRIPE_SECTORS
) {
4854 int skipped_disk
= 0;
4855 sh
= get_active_stripe(conf
, stripe_addr
+i
, 0, 0, 1);
4856 set_bit(STRIPE_EXPANDING
, &sh
->state
);
4857 atomic_inc(&conf
->reshape_stripes
);
4858 /* If any of this stripe is beyond the end of the old
4859 * array, then we need to zero those blocks
4861 for (j
=sh
->disks
; j
--;) {
4863 if (j
== sh
->pd_idx
)
4865 if (conf
->level
== 6 &&
4868 s
= compute_blocknr(sh
, j
, 0);
4869 if (s
< raid5_size(mddev
, 0, 0)) {
4873 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
4874 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
4875 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
4877 if (!skipped_disk
) {
4878 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
4879 set_bit(STRIPE_HANDLE
, &sh
->state
);
4881 list_add(&sh
->lru
, &stripes
);
4883 spin_lock_irq(&conf
->device_lock
);
4884 if (mddev
->reshape_backwards
)
4885 conf
->reshape_progress
-= reshape_sectors
* new_data_disks
;
4887 conf
->reshape_progress
+= reshape_sectors
* new_data_disks
;
4888 spin_unlock_irq(&conf
->device_lock
);
4889 /* Ok, those stripe are ready. We can start scheduling
4890 * reads on the source stripes.
4891 * The source stripes are determined by mapping the first and last
4892 * block on the destination stripes.
4895 raid5_compute_sector(conf
, stripe_addr
*(new_data_disks
),
4898 raid5_compute_sector(conf
, ((stripe_addr
+reshape_sectors
)
4899 * new_data_disks
- 1),
4901 if (last_sector
>= mddev
->dev_sectors
)
4902 last_sector
= mddev
->dev_sectors
- 1;
4903 while (first_sector
<= last_sector
) {
4904 sh
= get_active_stripe(conf
, first_sector
, 1, 0, 1);
4905 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
4906 set_bit(STRIPE_HANDLE
, &sh
->state
);
4908 first_sector
+= STRIPE_SECTORS
;
4910 /* Now that the sources are clearly marked, we can release
4911 * the destination stripes
4913 while (!list_empty(&stripes
)) {
4914 sh
= list_entry(stripes
.next
, struct stripe_head
, lru
);
4915 list_del_init(&sh
->lru
);
4918 /* If this takes us to the resync_max point where we have to pause,
4919 * then we need to write out the superblock.
4921 sector_nr
+= reshape_sectors
;
4922 if ((sector_nr
- mddev
->curr_resync_completed
) * 2
4923 >= mddev
->resync_max
- mddev
->curr_resync_completed
) {
4924 /* Cannot proceed until we've updated the superblock... */
4925 wait_event(conf
->wait_for_overlap
,
4926 atomic_read(&conf
->reshape_stripes
) == 0
4927 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
4928 if (atomic_read(&conf
->reshape_stripes
) != 0)
4930 mddev
->reshape_position
= conf
->reshape_progress
;
4931 mddev
->curr_resync_completed
= sector_nr
;
4932 conf
->reshape_checkpoint
= jiffies
;
4933 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4934 md_wakeup_thread(mddev
->thread
);
4935 wait_event(mddev
->sb_wait
,
4936 !test_bit(MD_CHANGE_DEVS
, &mddev
->flags
)
4937 || test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
4938 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
4940 spin_lock_irq(&conf
->device_lock
);
4941 conf
->reshape_safe
= mddev
->reshape_position
;
4942 spin_unlock_irq(&conf
->device_lock
);
4943 wake_up(&conf
->wait_for_overlap
);
4944 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4947 return reshape_sectors
;
4950 /* FIXME go_faster isn't used */
4951 static inline sector_t
sync_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
4953 struct r5conf
*conf
= mddev
->private;
4954 struct stripe_head
*sh
;
4955 sector_t max_sector
= mddev
->dev_sectors
;
4956 sector_t sync_blocks
;
4957 int still_degraded
= 0;
4960 if (sector_nr
>= max_sector
) {
4961 /* just being told to finish up .. nothing much to do */
4963 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
4968 if (mddev
->curr_resync
< max_sector
) /* aborted */
4969 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
4971 else /* completed sync */
4973 bitmap_close_sync(mddev
->bitmap
);
4978 /* Allow raid5_quiesce to complete */
4979 wait_event(conf
->wait_for_overlap
, conf
->quiesce
!= 2);
4981 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
4982 return reshape_request(mddev
, sector_nr
, skipped
);
4984 /* No need to check resync_max as we never do more than one
4985 * stripe, and as resync_max will always be on a chunk boundary,
4986 * if the check in md_do_sync didn't fire, there is no chance
4987 * of overstepping resync_max here
4990 /* if there is too many failed drives and we are trying
4991 * to resync, then assert that we are finished, because there is
4992 * nothing we can do.
4994 if (mddev
->degraded
>= conf
->max_degraded
&&
4995 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
4996 sector_t rv
= mddev
->dev_sectors
- sector_nr
;
5000 if (!test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
5002 !bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
5003 sync_blocks
>= STRIPE_SECTORS
) {
5004 /* we can skip this block, and probably more */
5005 sync_blocks
/= STRIPE_SECTORS
;
5007 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
5010 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
5012 sh
= get_active_stripe(conf
, sector_nr
, 0, 1, 0);
5014 sh
= get_active_stripe(conf
, sector_nr
, 0, 0, 0);
5015 /* make sure we don't swamp the stripe cache if someone else
5016 * is trying to get access
5018 schedule_timeout_uninterruptible(1);
5020 /* Need to check if array will still be degraded after recovery/resync
5021 * We don't need to check the 'failed' flag as when that gets set,
5024 for (i
= 0; i
< conf
->raid_disks
; i
++)
5025 if (conf
->disks
[i
].rdev
== NULL
)
5028 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
5030 set_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
);
5035 return STRIPE_SECTORS
;
5038 static int retry_aligned_read(struct r5conf
*conf
, struct bio
*raid_bio
)
5040 /* We may not be able to submit a whole bio at once as there
5041 * may not be enough stripe_heads available.
5042 * We cannot pre-allocate enough stripe_heads as we may need
5043 * more than exist in the cache (if we allow ever large chunks).
5044 * So we do one stripe head at a time and record in
5045 * ->bi_hw_segments how many have been done.
5047 * We *know* that this entire raid_bio is in one chunk, so
5048 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5050 struct stripe_head
*sh
;
5052 sector_t sector
, logical_sector
, last_sector
;
5057 logical_sector
= raid_bio
->bi_iter
.bi_sector
&
5058 ~((sector_t
)STRIPE_SECTORS
-1);
5059 sector
= raid5_compute_sector(conf
, logical_sector
,
5061 last_sector
= bio_end_sector(raid_bio
);
5063 for (; logical_sector
< last_sector
;
5064 logical_sector
+= STRIPE_SECTORS
,
5065 sector
+= STRIPE_SECTORS
,
5068 if (scnt
< raid5_bi_processed_stripes(raid_bio
))
5069 /* already done this stripe */
5072 sh
= get_active_stripe(conf
, sector
, 0, 1, 0);
5075 /* failed to get a stripe - must wait */
5076 raid5_set_bi_processed_stripes(raid_bio
, scnt
);
5077 conf
->retry_read_aligned
= raid_bio
;
5081 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0)) {
5083 raid5_set_bi_processed_stripes(raid_bio
, scnt
);
5084 conf
->retry_read_aligned
= raid_bio
;
5088 set_bit(R5_ReadNoMerge
, &sh
->dev
[dd_idx
].flags
);
5093 remaining
= raid5_dec_bi_active_stripes(raid_bio
);
5094 if (remaining
== 0) {
5095 trace_block_bio_complete(bdev_get_queue(raid_bio
->bi_bdev
),
5097 bio_endio(raid_bio
, 0);
5099 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
5100 wake_up(&conf
->wait_for_stripe
);
5104 static int handle_active_stripes(struct r5conf
*conf
, int group
,
5105 struct r5worker
*worker
,
5106 struct list_head
*temp_inactive_list
)
5108 struct stripe_head
*batch
[MAX_STRIPE_BATCH
], *sh
;
5109 int i
, batch_size
= 0, hash
;
5110 bool release_inactive
= false;
5112 while (batch_size
< MAX_STRIPE_BATCH
&&
5113 (sh
= __get_priority_stripe(conf
, group
)) != NULL
)
5114 batch
[batch_size
++] = sh
;
5116 if (batch_size
== 0) {
5117 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
5118 if (!list_empty(temp_inactive_list
+ i
))
5120 if (i
== NR_STRIPE_HASH_LOCKS
)
5122 release_inactive
= true;
5124 spin_unlock_irq(&conf
->device_lock
);
5126 release_inactive_stripe_list(conf
, temp_inactive_list
,
5127 NR_STRIPE_HASH_LOCKS
);
5129 if (release_inactive
) {
5130 spin_lock_irq(&conf
->device_lock
);
5134 for (i
= 0; i
< batch_size
; i
++)
5135 handle_stripe(batch
[i
]);
5139 spin_lock_irq(&conf
->device_lock
);
5140 for (i
= 0; i
< batch_size
; i
++) {
5141 hash
= batch
[i
]->hash_lock_index
;
5142 __release_stripe(conf
, batch
[i
], &temp_inactive_list
[hash
]);
5147 static void raid5_do_work(struct work_struct
*work
)
5149 struct r5worker
*worker
= container_of(work
, struct r5worker
, work
);
5150 struct r5worker_group
*group
= worker
->group
;
5151 struct r5conf
*conf
= group
->conf
;
5152 int group_id
= group
- conf
->worker_groups
;
5154 struct blk_plug plug
;
5156 pr_debug("+++ raid5worker active\n");
5158 blk_start_plug(&plug
);
5160 spin_lock_irq(&conf
->device_lock
);
5162 int batch_size
, released
;
5164 released
= release_stripe_list(conf
, worker
->temp_inactive_list
);
5166 batch_size
= handle_active_stripes(conf
, group_id
, worker
,
5167 worker
->temp_inactive_list
);
5168 worker
->working
= false;
5169 if (!batch_size
&& !released
)
5171 handled
+= batch_size
;
5173 pr_debug("%d stripes handled\n", handled
);
5175 spin_unlock_irq(&conf
->device_lock
);
5176 blk_finish_plug(&plug
);
5178 pr_debug("--- raid5worker inactive\n");
5182 * This is our raid5 kernel thread.
5184 * We scan the hash table for stripes which can be handled now.
5185 * During the scan, completed stripes are saved for us by the interrupt
5186 * handler, so that they will not have to wait for our next wakeup.
5188 static void raid5d(struct md_thread
*thread
)
5190 struct mddev
*mddev
= thread
->mddev
;
5191 struct r5conf
*conf
= mddev
->private;
5193 struct blk_plug plug
;
5195 pr_debug("+++ raid5d active\n");
5197 md_check_recovery(mddev
);
5199 blk_start_plug(&plug
);
5201 spin_lock_irq(&conf
->device_lock
);
5204 int batch_size
, released
;
5206 released
= release_stripe_list(conf
, conf
->temp_inactive_list
);
5209 !list_empty(&conf
->bitmap_list
)) {
5210 /* Now is a good time to flush some bitmap updates */
5212 spin_unlock_irq(&conf
->device_lock
);
5213 bitmap_unplug(mddev
->bitmap
);
5214 spin_lock_irq(&conf
->device_lock
);
5215 conf
->seq_write
= conf
->seq_flush
;
5216 activate_bit_delay(conf
, conf
->temp_inactive_list
);
5218 raid5_activate_delayed(conf
);
5220 while ((bio
= remove_bio_from_retry(conf
))) {
5222 spin_unlock_irq(&conf
->device_lock
);
5223 ok
= retry_aligned_read(conf
, bio
);
5224 spin_lock_irq(&conf
->device_lock
);
5230 batch_size
= handle_active_stripes(conf
, ANY_GROUP
, NULL
,
5231 conf
->temp_inactive_list
);
5232 if (!batch_size
&& !released
)
5234 handled
+= batch_size
;
5236 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
)) {
5237 spin_unlock_irq(&conf
->device_lock
);
5238 md_check_recovery(mddev
);
5239 spin_lock_irq(&conf
->device_lock
);
5242 pr_debug("%d stripes handled\n", handled
);
5244 spin_unlock_irq(&conf
->device_lock
);
5246 async_tx_issue_pending_all();
5247 blk_finish_plug(&plug
);
5249 pr_debug("--- raid5d inactive\n");
5253 raid5_show_stripe_cache_size(struct mddev
*mddev
, char *page
)
5255 struct r5conf
*conf
= mddev
->private;
5257 return sprintf(page
, "%d\n", conf
->max_nr_stripes
);
5263 raid5_set_cache_size(struct mddev
*mddev
, int size
)
5265 struct r5conf
*conf
= mddev
->private;
5269 if (size
<= 16 || size
> 32768)
5271 hash
= (conf
->max_nr_stripes
- 1) % NR_STRIPE_HASH_LOCKS
;
5272 while (size
< conf
->max_nr_stripes
) {
5273 if (drop_one_stripe(conf
, hash
))
5274 conf
->max_nr_stripes
--;
5279 hash
= NR_STRIPE_HASH_LOCKS
- 1;
5281 err
= md_allow_write(mddev
);
5284 hash
= conf
->max_nr_stripes
% NR_STRIPE_HASH_LOCKS
;
5285 while (size
> conf
->max_nr_stripes
) {
5286 if (grow_one_stripe(conf
, hash
))
5287 conf
->max_nr_stripes
++;
5289 hash
= (hash
+ 1) % NR_STRIPE_HASH_LOCKS
;
5293 EXPORT_SYMBOL(raid5_set_cache_size
);
5296 raid5_store_stripe_cache_size(struct mddev
*mddev
, const char *page
, size_t len
)
5298 struct r5conf
*conf
= mddev
->private;
5302 if (len
>= PAGE_SIZE
)
5307 if (kstrtoul(page
, 10, &new))
5309 err
= raid5_set_cache_size(mddev
, new);
5315 static struct md_sysfs_entry
5316 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
5317 raid5_show_stripe_cache_size
,
5318 raid5_store_stripe_cache_size
);
5321 raid5_show_preread_threshold(struct mddev
*mddev
, char *page
)
5323 struct r5conf
*conf
= mddev
->private;
5325 return sprintf(page
, "%d\n", conf
->bypass_threshold
);
5331 raid5_store_preread_threshold(struct mddev
*mddev
, const char *page
, size_t len
)
5333 struct r5conf
*conf
= mddev
->private;
5335 if (len
>= PAGE_SIZE
)
5340 if (kstrtoul(page
, 10, &new))
5342 if (new > conf
->max_nr_stripes
)
5344 conf
->bypass_threshold
= new;
5348 static struct md_sysfs_entry
5349 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
5351 raid5_show_preread_threshold
,
5352 raid5_store_preread_threshold
);
5355 stripe_cache_active_show(struct mddev
*mddev
, char *page
)
5357 struct r5conf
*conf
= mddev
->private;
5359 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
5364 static struct md_sysfs_entry
5365 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
5368 raid5_show_group_thread_cnt(struct mddev
*mddev
, char *page
)
5370 struct r5conf
*conf
= mddev
->private;
5372 return sprintf(page
, "%d\n", conf
->worker_cnt_per_group
);
5377 static int alloc_thread_groups(struct r5conf
*conf
, int cnt
,
5379 int *worker_cnt_per_group
,
5380 struct r5worker_group
**worker_groups
);
5382 raid5_store_group_thread_cnt(struct mddev
*mddev
, const char *page
, size_t len
)
5384 struct r5conf
*conf
= mddev
->private;
5387 struct r5worker_group
*new_groups
, *old_groups
;
5388 int group_cnt
, worker_cnt_per_group
;
5390 if (len
>= PAGE_SIZE
)
5395 if (kstrtoul(page
, 10, &new))
5398 if (new == conf
->worker_cnt_per_group
)
5401 mddev_suspend(mddev
);
5403 old_groups
= conf
->worker_groups
;
5405 flush_workqueue(raid5_wq
);
5407 err
= alloc_thread_groups(conf
, new,
5408 &group_cnt
, &worker_cnt_per_group
,
5411 spin_lock_irq(&conf
->device_lock
);
5412 conf
->group_cnt
= group_cnt
;
5413 conf
->worker_cnt_per_group
= worker_cnt_per_group
;
5414 conf
->worker_groups
= new_groups
;
5415 spin_unlock_irq(&conf
->device_lock
);
5418 kfree(old_groups
[0].workers
);
5422 mddev_resume(mddev
);
5429 static struct md_sysfs_entry
5430 raid5_group_thread_cnt
= __ATTR(group_thread_cnt
, S_IRUGO
| S_IWUSR
,
5431 raid5_show_group_thread_cnt
,
5432 raid5_store_group_thread_cnt
);
5434 static struct attribute
*raid5_attrs
[] = {
5435 &raid5_stripecache_size
.attr
,
5436 &raid5_stripecache_active
.attr
,
5437 &raid5_preread_bypass_threshold
.attr
,
5438 &raid5_group_thread_cnt
.attr
,
5441 static struct attribute_group raid5_attrs_group
= {
5443 .attrs
= raid5_attrs
,
5446 static int alloc_thread_groups(struct r5conf
*conf
, int cnt
,
5448 int *worker_cnt_per_group
,
5449 struct r5worker_group
**worker_groups
)
5453 struct r5worker
*workers
;
5455 *worker_cnt_per_group
= cnt
;
5458 *worker_groups
= NULL
;
5461 *group_cnt
= num_possible_nodes();
5462 size
= sizeof(struct r5worker
) * cnt
;
5463 workers
= kzalloc(size
* *group_cnt
, GFP_NOIO
);
5464 *worker_groups
= kzalloc(sizeof(struct r5worker_group
) *
5465 *group_cnt
, GFP_NOIO
);
5466 if (!*worker_groups
|| !workers
) {
5468 kfree(*worker_groups
);
5472 for (i
= 0; i
< *group_cnt
; i
++) {
5473 struct r5worker_group
*group
;
5475 group
= &(*worker_groups
)[i
];
5476 INIT_LIST_HEAD(&group
->handle_list
);
5478 group
->workers
= workers
+ i
* cnt
;
5480 for (j
= 0; j
< cnt
; j
++) {
5481 struct r5worker
*worker
= group
->workers
+ j
;
5482 worker
->group
= group
;
5483 INIT_WORK(&worker
->work
, raid5_do_work
);
5485 for (k
= 0; k
< NR_STRIPE_HASH_LOCKS
; k
++)
5486 INIT_LIST_HEAD(worker
->temp_inactive_list
+ k
);
5493 static void free_thread_groups(struct r5conf
*conf
)
5495 if (conf
->worker_groups
)
5496 kfree(conf
->worker_groups
[0].workers
);
5497 kfree(conf
->worker_groups
);
5498 conf
->worker_groups
= NULL
;
5502 raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
5504 struct r5conf
*conf
= mddev
->private;
5507 sectors
= mddev
->dev_sectors
;
5509 /* size is defined by the smallest of previous and new size */
5510 raid_disks
= min(conf
->raid_disks
, conf
->previous_raid_disks
);
5512 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
5513 sectors
&= ~((sector_t
)mddev
->new_chunk_sectors
- 1);
5514 return sectors
* (raid_disks
- conf
->max_degraded
);
5517 static void raid5_free_percpu(struct r5conf
*conf
)
5519 struct raid5_percpu
*percpu
;
5526 for_each_possible_cpu(cpu
) {
5527 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
5528 safe_put_page(percpu
->spare_page
);
5529 kfree(percpu
->scribble
);
5531 #ifdef CONFIG_HOTPLUG_CPU
5532 unregister_cpu_notifier(&conf
->cpu_notify
);
5536 free_percpu(conf
->percpu
);
5539 static void free_conf(struct r5conf
*conf
)
5541 free_thread_groups(conf
);
5542 shrink_stripes(conf
);
5543 raid5_free_percpu(conf
);
5545 kfree(conf
->stripe_hashtbl
);
5549 #ifdef CONFIG_HOTPLUG_CPU
5550 static int raid456_cpu_notify(struct notifier_block
*nfb
, unsigned long action
,
5553 struct r5conf
*conf
= container_of(nfb
, struct r5conf
, cpu_notify
);
5554 long cpu
= (long)hcpu
;
5555 struct raid5_percpu
*percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
5558 case CPU_UP_PREPARE
:
5559 case CPU_UP_PREPARE_FROZEN
:
5560 if (conf
->level
== 6 && !percpu
->spare_page
)
5561 percpu
->spare_page
= alloc_page(GFP_KERNEL
);
5562 if (!percpu
->scribble
)
5563 percpu
->scribble
= kmalloc(conf
->scribble_len
, GFP_KERNEL
);
5565 if (!percpu
->scribble
||
5566 (conf
->level
== 6 && !percpu
->spare_page
)) {
5567 safe_put_page(percpu
->spare_page
);
5568 kfree(percpu
->scribble
);
5569 pr_err("%s: failed memory allocation for cpu%ld\n",
5571 return notifier_from_errno(-ENOMEM
);
5575 case CPU_DEAD_FROZEN
:
5576 safe_put_page(percpu
->spare_page
);
5577 kfree(percpu
->scribble
);
5578 percpu
->spare_page
= NULL
;
5579 percpu
->scribble
= NULL
;
5588 static int raid5_alloc_percpu(struct r5conf
*conf
)
5591 struct page
*spare_page
;
5592 struct raid5_percpu __percpu
*allcpus
;
5596 allcpus
= alloc_percpu(struct raid5_percpu
);
5599 conf
->percpu
= allcpus
;
5603 for_each_present_cpu(cpu
) {
5604 if (conf
->level
== 6) {
5605 spare_page
= alloc_page(GFP_KERNEL
);
5610 per_cpu_ptr(conf
->percpu
, cpu
)->spare_page
= spare_page
;
5612 scribble
= kmalloc(conf
->scribble_len
, GFP_KERNEL
);
5617 per_cpu_ptr(conf
->percpu
, cpu
)->scribble
= scribble
;
5619 #ifdef CONFIG_HOTPLUG_CPU
5620 conf
->cpu_notify
.notifier_call
= raid456_cpu_notify
;
5621 conf
->cpu_notify
.priority
= 0;
5623 err
= register_cpu_notifier(&conf
->cpu_notify
);
5630 static struct r5conf
*setup_conf(struct mddev
*mddev
)
5632 struct r5conf
*conf
;
5633 int raid_disk
, memory
, max_disks
;
5634 struct md_rdev
*rdev
;
5635 struct disk_info
*disk
;
5638 int group_cnt
, worker_cnt_per_group
;
5639 struct r5worker_group
*new_group
;
5641 if (mddev
->new_level
!= 5
5642 && mddev
->new_level
!= 4
5643 && mddev
->new_level
!= 6) {
5644 printk(KERN_ERR
"md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5645 mdname(mddev
), mddev
->new_level
);
5646 return ERR_PTR(-EIO
);
5648 if ((mddev
->new_level
== 5
5649 && !algorithm_valid_raid5(mddev
->new_layout
)) ||
5650 (mddev
->new_level
== 6
5651 && !algorithm_valid_raid6(mddev
->new_layout
))) {
5652 printk(KERN_ERR
"md/raid:%s: layout %d not supported\n",
5653 mdname(mddev
), mddev
->new_layout
);
5654 return ERR_PTR(-EIO
);
5656 if (mddev
->new_level
== 6 && mddev
->raid_disks
< 4) {
5657 printk(KERN_ERR
"md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5658 mdname(mddev
), mddev
->raid_disks
);
5659 return ERR_PTR(-EINVAL
);
5662 if (!mddev
->new_chunk_sectors
||
5663 (mddev
->new_chunk_sectors
<< 9) % PAGE_SIZE
||
5664 !is_power_of_2(mddev
->new_chunk_sectors
)) {
5665 printk(KERN_ERR
"md/raid:%s: invalid chunk size %d\n",
5666 mdname(mddev
), mddev
->new_chunk_sectors
<< 9);
5667 return ERR_PTR(-EINVAL
);
5670 conf
= kzalloc(sizeof(struct r5conf
), GFP_KERNEL
);
5673 /* Don't enable multi-threading by default*/
5674 if (!alloc_thread_groups(conf
, 0, &group_cnt
, &worker_cnt_per_group
,
5676 conf
->group_cnt
= group_cnt
;
5677 conf
->worker_cnt_per_group
= worker_cnt_per_group
;
5678 conf
->worker_groups
= new_group
;
5681 spin_lock_init(&conf
->device_lock
);
5682 seqcount_init(&conf
->gen_lock
);
5683 init_waitqueue_head(&conf
->wait_for_stripe
);
5684 init_waitqueue_head(&conf
->wait_for_overlap
);
5685 INIT_LIST_HEAD(&conf
->handle_list
);
5686 INIT_LIST_HEAD(&conf
->hold_list
);
5687 INIT_LIST_HEAD(&conf
->delayed_list
);
5688 INIT_LIST_HEAD(&conf
->bitmap_list
);
5689 init_llist_head(&conf
->released_stripes
);
5690 atomic_set(&conf
->active_stripes
, 0);
5691 atomic_set(&conf
->preread_active_stripes
, 0);
5692 atomic_set(&conf
->active_aligned_reads
, 0);
5693 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
5694 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
5696 conf
->raid_disks
= mddev
->raid_disks
;
5697 if (mddev
->reshape_position
== MaxSector
)
5698 conf
->previous_raid_disks
= mddev
->raid_disks
;
5700 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
5701 max_disks
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
5702 conf
->scribble_len
= scribble_len(max_disks
);
5704 conf
->disks
= kzalloc(max_disks
* sizeof(struct disk_info
),
5709 conf
->mddev
= mddev
;
5711 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
5714 /* We init hash_locks[0] separately to that it can be used
5715 * as the reference lock in the spin_lock_nest_lock() call
5716 * in lock_all_device_hash_locks_irq in order to convince
5717 * lockdep that we know what we are doing.
5719 spin_lock_init(conf
->hash_locks
);
5720 for (i
= 1; i
< NR_STRIPE_HASH_LOCKS
; i
++)
5721 spin_lock_init(conf
->hash_locks
+ i
);
5723 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
5724 INIT_LIST_HEAD(conf
->inactive_list
+ i
);
5726 for (i
= 0; i
< NR_STRIPE_HASH_LOCKS
; i
++)
5727 INIT_LIST_HEAD(conf
->temp_inactive_list
+ i
);
5729 conf
->level
= mddev
->new_level
;
5730 if (raid5_alloc_percpu(conf
) != 0)
5733 pr_debug("raid456: run(%s) called.\n", mdname(mddev
));
5735 rdev_for_each(rdev
, mddev
) {
5736 raid_disk
= rdev
->raid_disk
;
5737 if (raid_disk
>= max_disks
5740 disk
= conf
->disks
+ raid_disk
;
5742 if (test_bit(Replacement
, &rdev
->flags
)) {
5743 if (disk
->replacement
)
5745 disk
->replacement
= rdev
;
5752 if (test_bit(In_sync
, &rdev
->flags
)) {
5753 char b
[BDEVNAME_SIZE
];
5754 printk(KERN_INFO
"md/raid:%s: device %s operational as raid"
5756 mdname(mddev
), bdevname(rdev
->bdev
, b
), raid_disk
);
5757 } else if (rdev
->saved_raid_disk
!= raid_disk
)
5758 /* Cannot rely on bitmap to complete recovery */
5762 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
5763 conf
->level
= mddev
->new_level
;
5764 if (conf
->level
== 6)
5765 conf
->max_degraded
= 2;
5767 conf
->max_degraded
= 1;
5768 conf
->algorithm
= mddev
->new_layout
;
5769 conf
->reshape_progress
= mddev
->reshape_position
;
5770 if (conf
->reshape_progress
!= MaxSector
) {
5771 conf
->prev_chunk_sectors
= mddev
->chunk_sectors
;
5772 conf
->prev_algo
= mddev
->layout
;
5775 memory
= conf
->max_nr_stripes
* (sizeof(struct stripe_head
) +
5776 max_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
5777 atomic_set(&conf
->empty_inactive_list_nr
, NR_STRIPE_HASH_LOCKS
);
5778 if (grow_stripes(conf
, NR_STRIPES
)) {
5780 "md/raid:%s: couldn't allocate %dkB for buffers\n",
5781 mdname(mddev
), memory
);
5784 printk(KERN_INFO
"md/raid:%s: allocated %dkB\n",
5785 mdname(mddev
), memory
);
5787 sprintf(pers_name
, "raid%d", mddev
->new_level
);
5788 conf
->thread
= md_register_thread(raid5d
, mddev
, pers_name
);
5789 if (!conf
->thread
) {
5791 "md/raid:%s: couldn't allocate thread.\n",
5801 return ERR_PTR(-EIO
);
5803 return ERR_PTR(-ENOMEM
);
5807 static int only_parity(int raid_disk
, int algo
, int raid_disks
, int max_degraded
)
5810 case ALGORITHM_PARITY_0
:
5811 if (raid_disk
< max_degraded
)
5814 case ALGORITHM_PARITY_N
:
5815 if (raid_disk
>= raid_disks
- max_degraded
)
5818 case ALGORITHM_PARITY_0_6
:
5819 if (raid_disk
== 0 ||
5820 raid_disk
== raid_disks
- 1)
5823 case ALGORITHM_LEFT_ASYMMETRIC_6
:
5824 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
5825 case ALGORITHM_LEFT_SYMMETRIC_6
:
5826 case ALGORITHM_RIGHT_SYMMETRIC_6
:
5827 if (raid_disk
== raid_disks
- 1)
5833 static int run(struct mddev
*mddev
)
5835 struct r5conf
*conf
;
5836 int working_disks
= 0;
5837 int dirty_parity_disks
= 0;
5838 struct md_rdev
*rdev
;
5839 sector_t reshape_offset
= 0;
5841 long long min_offset_diff
= 0;
5844 if (mddev
->recovery_cp
!= MaxSector
)
5845 printk(KERN_NOTICE
"md/raid:%s: not clean"
5846 " -- starting background reconstruction\n",
5849 rdev_for_each(rdev
, mddev
) {
5851 if (rdev
->raid_disk
< 0)
5853 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
5855 min_offset_diff
= diff
;
5857 } else if (mddev
->reshape_backwards
&&
5858 diff
< min_offset_diff
)
5859 min_offset_diff
= diff
;
5860 else if (!mddev
->reshape_backwards
&&
5861 diff
> min_offset_diff
)
5862 min_offset_diff
= diff
;
5865 if (mddev
->reshape_position
!= MaxSector
) {
5866 /* Check that we can continue the reshape.
5867 * Difficulties arise if the stripe we would write to
5868 * next is at or after the stripe we would read from next.
5869 * For a reshape that changes the number of devices, this
5870 * is only possible for a very short time, and mdadm makes
5871 * sure that time appears to have past before assembling
5872 * the array. So we fail if that time hasn't passed.
5873 * For a reshape that keeps the number of devices the same
5874 * mdadm must be monitoring the reshape can keeping the
5875 * critical areas read-only and backed up. It will start
5876 * the array in read-only mode, so we check for that.
5878 sector_t here_new
, here_old
;
5880 int max_degraded
= (mddev
->level
== 6 ? 2 : 1);
5882 if (mddev
->new_level
!= mddev
->level
) {
5883 printk(KERN_ERR
"md/raid:%s: unsupported reshape "
5884 "required - aborting.\n",
5888 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
5889 /* reshape_position must be on a new-stripe boundary, and one
5890 * further up in new geometry must map after here in old
5893 here_new
= mddev
->reshape_position
;
5894 if (sector_div(here_new
, mddev
->new_chunk_sectors
*
5895 (mddev
->raid_disks
- max_degraded
))) {
5896 printk(KERN_ERR
"md/raid:%s: reshape_position not "
5897 "on a stripe boundary\n", mdname(mddev
));
5900 reshape_offset
= here_new
* mddev
->new_chunk_sectors
;
5901 /* here_new is the stripe we will write to */
5902 here_old
= mddev
->reshape_position
;
5903 sector_div(here_old
, mddev
->chunk_sectors
*
5904 (old_disks
-max_degraded
));
5905 /* here_old is the first stripe that we might need to read
5907 if (mddev
->delta_disks
== 0) {
5908 if ((here_new
* mddev
->new_chunk_sectors
!=
5909 here_old
* mddev
->chunk_sectors
)) {
5910 printk(KERN_ERR
"md/raid:%s: reshape position is"
5911 " confused - aborting\n", mdname(mddev
));
5914 /* We cannot be sure it is safe to start an in-place
5915 * reshape. It is only safe if user-space is monitoring
5916 * and taking constant backups.
5917 * mdadm always starts a situation like this in
5918 * readonly mode so it can take control before
5919 * allowing any writes. So just check for that.
5921 if (abs(min_offset_diff
) >= mddev
->chunk_sectors
&&
5922 abs(min_offset_diff
) >= mddev
->new_chunk_sectors
)
5923 /* not really in-place - so OK */;
5924 else if (mddev
->ro
== 0) {
5925 printk(KERN_ERR
"md/raid:%s: in-place reshape "
5926 "must be started in read-only mode "
5931 } else if (mddev
->reshape_backwards
5932 ? (here_new
* mddev
->new_chunk_sectors
+ min_offset_diff
<=
5933 here_old
* mddev
->chunk_sectors
)
5934 : (here_new
* mddev
->new_chunk_sectors
>=
5935 here_old
* mddev
->chunk_sectors
+ (-min_offset_diff
))) {
5936 /* Reading from the same stripe as writing to - bad */
5937 printk(KERN_ERR
"md/raid:%s: reshape_position too early for "
5938 "auto-recovery - aborting.\n",
5942 printk(KERN_INFO
"md/raid:%s: reshape will continue\n",
5944 /* OK, we should be able to continue; */
5946 BUG_ON(mddev
->level
!= mddev
->new_level
);
5947 BUG_ON(mddev
->layout
!= mddev
->new_layout
);
5948 BUG_ON(mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
);
5949 BUG_ON(mddev
->delta_disks
!= 0);
5952 if (mddev
->private == NULL
)
5953 conf
= setup_conf(mddev
);
5955 conf
= mddev
->private;
5958 return PTR_ERR(conf
);
5960 conf
->min_offset_diff
= min_offset_diff
;
5961 mddev
->thread
= conf
->thread
;
5962 conf
->thread
= NULL
;
5963 mddev
->private = conf
;
5965 for (i
= 0; i
< conf
->raid_disks
&& conf
->previous_raid_disks
;
5967 rdev
= conf
->disks
[i
].rdev
;
5968 if (!rdev
&& conf
->disks
[i
].replacement
) {
5969 /* The replacement is all we have yet */
5970 rdev
= conf
->disks
[i
].replacement
;
5971 conf
->disks
[i
].replacement
= NULL
;
5972 clear_bit(Replacement
, &rdev
->flags
);
5973 conf
->disks
[i
].rdev
= rdev
;
5977 if (conf
->disks
[i
].replacement
&&
5978 conf
->reshape_progress
!= MaxSector
) {
5979 /* replacements and reshape simply do not mix. */
5980 printk(KERN_ERR
"md: cannot handle concurrent "
5981 "replacement and reshape.\n");
5984 if (test_bit(In_sync
, &rdev
->flags
)) {
5988 /* This disc is not fully in-sync. However if it
5989 * just stored parity (beyond the recovery_offset),
5990 * when we don't need to be concerned about the
5991 * array being dirty.
5992 * When reshape goes 'backwards', we never have
5993 * partially completed devices, so we only need
5994 * to worry about reshape going forwards.
5996 /* Hack because v0.91 doesn't store recovery_offset properly. */
5997 if (mddev
->major_version
== 0 &&
5998 mddev
->minor_version
> 90)
5999 rdev
->recovery_offset
= reshape_offset
;
6001 if (rdev
->recovery_offset
< reshape_offset
) {
6002 /* We need to check old and new layout */
6003 if (!only_parity(rdev
->raid_disk
,
6006 conf
->max_degraded
))
6009 if (!only_parity(rdev
->raid_disk
,
6011 conf
->previous_raid_disks
,
6012 conf
->max_degraded
))
6014 dirty_parity_disks
++;
6018 * 0 for a fully functional array, 1 or 2 for a degraded array.
6020 mddev
->degraded
= calc_degraded(conf
);
6022 if (has_failed(conf
)) {
6023 printk(KERN_ERR
"md/raid:%s: not enough operational devices"
6024 " (%d/%d failed)\n",
6025 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
6029 /* device size must be a multiple of chunk size */
6030 mddev
->dev_sectors
&= ~(mddev
->chunk_sectors
- 1);
6031 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
6033 if (mddev
->degraded
> dirty_parity_disks
&&
6034 mddev
->recovery_cp
!= MaxSector
) {
6035 if (mddev
->ok_start_degraded
)
6037 "md/raid:%s: starting dirty degraded array"
6038 " - data corruption possible.\n",
6042 "md/raid:%s: cannot start dirty degraded array.\n",
6048 if (mddev
->degraded
== 0)
6049 printk(KERN_INFO
"md/raid:%s: raid level %d active with %d out of %d"
6050 " devices, algorithm %d\n", mdname(mddev
), conf
->level
,
6051 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
6054 printk(KERN_ALERT
"md/raid:%s: raid level %d active with %d"
6055 " out of %d devices, algorithm %d\n",
6056 mdname(mddev
), conf
->level
,
6057 mddev
->raid_disks
- mddev
->degraded
,
6058 mddev
->raid_disks
, mddev
->new_layout
);
6060 print_raid5_conf(conf
);
6062 if (conf
->reshape_progress
!= MaxSector
) {
6063 conf
->reshape_safe
= conf
->reshape_progress
;
6064 atomic_set(&conf
->reshape_stripes
, 0);
6065 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
6066 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
6067 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
6068 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
6069 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
6074 /* Ok, everything is just fine now */
6075 if (mddev
->to_remove
== &raid5_attrs_group
)
6076 mddev
->to_remove
= NULL
;
6077 else if (mddev
->kobj
.sd
&&
6078 sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
6080 "raid5: failed to create sysfs attributes for %s\n",
6082 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
6086 bool discard_supported
= true;
6087 /* read-ahead size must cover two whole stripes, which
6088 * is 2 * (datadisks) * chunksize where 'n' is the
6089 * number of raid devices
6091 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
6092 int stripe
= data_disks
*
6093 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
6094 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
6095 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
6097 blk_queue_merge_bvec(mddev
->queue
, raid5_mergeable_bvec
);
6099 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
6100 mddev
->queue
->backing_dev_info
.congested_fn
= raid5_congested
;
6102 chunk_size
= mddev
->chunk_sectors
<< 9;
6103 blk_queue_io_min(mddev
->queue
, chunk_size
);
6104 blk_queue_io_opt(mddev
->queue
, chunk_size
*
6105 (conf
->raid_disks
- conf
->max_degraded
));
6106 mddev
->queue
->limits
.raid_partial_stripes_expensive
= 1;
6108 * We can only discard a whole stripe. It doesn't make sense to
6109 * discard data disk but write parity disk
6111 stripe
= stripe
* PAGE_SIZE
;
6112 /* Round up to power of 2, as discard handling
6113 * currently assumes that */
6114 while ((stripe
-1) & stripe
)
6115 stripe
= (stripe
| (stripe
-1)) + 1;
6116 mddev
->queue
->limits
.discard_alignment
= stripe
;
6117 mddev
->queue
->limits
.discard_granularity
= stripe
;
6119 * unaligned part of discard request will be ignored, so can't
6120 * guarantee discard_zerors_data
6122 mddev
->queue
->limits
.discard_zeroes_data
= 0;
6124 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
6126 rdev_for_each(rdev
, mddev
) {
6127 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
6128 rdev
->data_offset
<< 9);
6129 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
6130 rdev
->new_data_offset
<< 9);
6132 * discard_zeroes_data is required, otherwise data
6133 * could be lost. Consider a scenario: discard a stripe
6134 * (the stripe could be inconsistent if
6135 * discard_zeroes_data is 0); write one disk of the
6136 * stripe (the stripe could be inconsistent again
6137 * depending on which disks are used to calculate
6138 * parity); the disk is broken; The stripe data of this
6141 if (!blk_queue_discard(bdev_get_queue(rdev
->bdev
)) ||
6142 !bdev_get_queue(rdev
->bdev
)->
6143 limits
.discard_zeroes_data
)
6144 discard_supported
= false;
6147 if (discard_supported
&&
6148 mddev
->queue
->limits
.max_discard_sectors
>= stripe
&&
6149 mddev
->queue
->limits
.discard_granularity
>= stripe
)
6150 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
6153 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
6159 md_unregister_thread(&mddev
->thread
);
6160 print_raid5_conf(conf
);
6162 mddev
->private = NULL
;
6163 printk(KERN_ALERT
"md/raid:%s: failed to run raid set.\n", mdname(mddev
));
6167 static int stop(struct mddev
*mddev
)
6169 struct r5conf
*conf
= mddev
->private;
6171 md_unregister_thread(&mddev
->thread
);
6173 mddev
->queue
->backing_dev_info
.congested_fn
= NULL
;
6175 mddev
->private = NULL
;
6176 mddev
->to_remove
= &raid5_attrs_group
;
6180 static void status(struct seq_file
*seq
, struct mddev
*mddev
)
6182 struct r5conf
*conf
= mddev
->private;
6185 seq_printf(seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
,
6186 mddev
->chunk_sectors
/ 2, mddev
->layout
);
6187 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
6188 for (i
= 0; i
< conf
->raid_disks
; i
++)
6189 seq_printf (seq
, "%s",
6190 conf
->disks
[i
].rdev
&&
6191 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
6192 seq_printf (seq
, "]");
6195 static void print_raid5_conf (struct r5conf
*conf
)
6198 struct disk_info
*tmp
;
6200 printk(KERN_DEBUG
"RAID conf printout:\n");
6202 printk("(conf==NULL)\n");
6205 printk(KERN_DEBUG
" --- level:%d rd:%d wd:%d\n", conf
->level
,
6207 conf
->raid_disks
- conf
->mddev
->degraded
);
6209 for (i
= 0; i
< conf
->raid_disks
; i
++) {
6210 char b
[BDEVNAME_SIZE
];
6211 tmp
= conf
->disks
+ i
;
6213 printk(KERN_DEBUG
" disk %d, o:%d, dev:%s\n",
6214 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
6215 bdevname(tmp
->rdev
->bdev
, b
));
6219 static int raid5_spare_active(struct mddev
*mddev
)
6222 struct r5conf
*conf
= mddev
->private;
6223 struct disk_info
*tmp
;
6225 unsigned long flags
;
6227 for (i
= 0; i
< conf
->raid_disks
; i
++) {
6228 tmp
= conf
->disks
+ i
;
6229 if (tmp
->replacement
6230 && tmp
->replacement
->recovery_offset
== MaxSector
6231 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
6232 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
6233 /* Replacement has just become active. */
6235 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
6238 /* Replaced device not technically faulty,
6239 * but we need to be sure it gets removed
6240 * and never re-added.
6242 set_bit(Faulty
, &tmp
->rdev
->flags
);
6243 sysfs_notify_dirent_safe(
6244 tmp
->rdev
->sysfs_state
);
6246 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
6247 } else if (tmp
->rdev
6248 && tmp
->rdev
->recovery_offset
== MaxSector
6249 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
6250 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
6252 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
6255 spin_lock_irqsave(&conf
->device_lock
, flags
);
6256 mddev
->degraded
= calc_degraded(conf
);
6257 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
6258 print_raid5_conf(conf
);
6262 static int raid5_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
6264 struct r5conf
*conf
= mddev
->private;
6266 int number
= rdev
->raid_disk
;
6267 struct md_rdev
**rdevp
;
6268 struct disk_info
*p
= conf
->disks
+ number
;
6270 print_raid5_conf(conf
);
6271 if (rdev
== p
->rdev
)
6273 else if (rdev
== p
->replacement
)
6274 rdevp
= &p
->replacement
;
6278 if (number
>= conf
->raid_disks
&&
6279 conf
->reshape_progress
== MaxSector
)
6280 clear_bit(In_sync
, &rdev
->flags
);
6282 if (test_bit(In_sync
, &rdev
->flags
) ||
6283 atomic_read(&rdev
->nr_pending
)) {
6287 /* Only remove non-faulty devices if recovery
6290 if (!test_bit(Faulty
, &rdev
->flags
) &&
6291 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
6292 !has_failed(conf
) &&
6293 (!p
->replacement
|| p
->replacement
== rdev
) &&
6294 number
< conf
->raid_disks
) {
6300 if (atomic_read(&rdev
->nr_pending
)) {
6301 /* lost the race, try later */
6304 } else if (p
->replacement
) {
6305 /* We must have just cleared 'rdev' */
6306 p
->rdev
= p
->replacement
;
6307 clear_bit(Replacement
, &p
->replacement
->flags
);
6308 smp_mb(); /* Make sure other CPUs may see both as identical
6309 * but will never see neither - if they are careful
6311 p
->replacement
= NULL
;
6312 clear_bit(WantReplacement
, &rdev
->flags
);
6314 /* We might have just removed the Replacement as faulty-
6315 * clear the bit just in case
6317 clear_bit(WantReplacement
, &rdev
->flags
);
6320 print_raid5_conf(conf
);
6324 static int raid5_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
6326 struct r5conf
*conf
= mddev
->private;
6329 struct disk_info
*p
;
6331 int last
= conf
->raid_disks
- 1;
6333 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
6336 if (rdev
->saved_raid_disk
< 0 && has_failed(conf
))
6337 /* no point adding a device */
6340 if (rdev
->raid_disk
>= 0)
6341 first
= last
= rdev
->raid_disk
;
6344 * find the disk ... but prefer rdev->saved_raid_disk
6347 if (rdev
->saved_raid_disk
>= 0 &&
6348 rdev
->saved_raid_disk
>= first
&&
6349 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
6350 first
= rdev
->saved_raid_disk
;
6352 for (disk
= first
; disk
<= last
; disk
++) {
6353 p
= conf
->disks
+ disk
;
6354 if (p
->rdev
== NULL
) {
6355 clear_bit(In_sync
, &rdev
->flags
);
6356 rdev
->raid_disk
= disk
;
6358 if (rdev
->saved_raid_disk
!= disk
)
6360 rcu_assign_pointer(p
->rdev
, rdev
);
6364 for (disk
= first
; disk
<= last
; disk
++) {
6365 p
= conf
->disks
+ disk
;
6366 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
6367 p
->replacement
== NULL
) {
6368 clear_bit(In_sync
, &rdev
->flags
);
6369 set_bit(Replacement
, &rdev
->flags
);
6370 rdev
->raid_disk
= disk
;
6373 rcu_assign_pointer(p
->replacement
, rdev
);
6378 print_raid5_conf(conf
);
6382 static int raid5_resize(struct mddev
*mddev
, sector_t sectors
)
6384 /* no resync is happening, and there is enough space
6385 * on all devices, so we can resize.
6386 * We need to make sure resync covers any new space.
6387 * If the array is shrinking we should possibly wait until
6388 * any io in the removed space completes, but it hardly seems
6392 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
6393 newsize
= raid5_size(mddev
, sectors
, mddev
->raid_disks
);
6394 if (mddev
->external_size
&&
6395 mddev
->array_sectors
> newsize
)
6397 if (mddev
->bitmap
) {
6398 int ret
= bitmap_resize(mddev
->bitmap
, sectors
, 0, 0);
6402 md_set_array_sectors(mddev
, newsize
);
6403 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
6404 revalidate_disk(mddev
->gendisk
);
6405 if (sectors
> mddev
->dev_sectors
&&
6406 mddev
->recovery_cp
> mddev
->dev_sectors
) {
6407 mddev
->recovery_cp
= mddev
->dev_sectors
;
6408 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
6410 mddev
->dev_sectors
= sectors
;
6411 mddev
->resync_max_sectors
= sectors
;
6415 static int check_stripe_cache(struct mddev
*mddev
)
6417 /* Can only proceed if there are plenty of stripe_heads.
6418 * We need a minimum of one full stripe,, and for sensible progress
6419 * it is best to have about 4 times that.
6420 * If we require 4 times, then the default 256 4K stripe_heads will
6421 * allow for chunk sizes up to 256K, which is probably OK.
6422 * If the chunk size is greater, user-space should request more
6423 * stripe_heads first.
6425 struct r5conf
*conf
= mddev
->private;
6426 if (((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
6427 > conf
->max_nr_stripes
||
6428 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
6429 > conf
->max_nr_stripes
) {
6430 printk(KERN_WARNING
"md/raid:%s: reshape: not enough stripes. Needed %lu\n",
6432 ((max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
) << 9)
6439 static int check_reshape(struct mddev
*mddev
)
6441 struct r5conf
*conf
= mddev
->private;
6443 if (mddev
->delta_disks
== 0 &&
6444 mddev
->new_layout
== mddev
->layout
&&
6445 mddev
->new_chunk_sectors
== mddev
->chunk_sectors
)
6446 return 0; /* nothing to do */
6447 if (has_failed(conf
))
6449 if (mddev
->delta_disks
< 0 && mddev
->reshape_position
== MaxSector
) {
6450 /* We might be able to shrink, but the devices must
6451 * be made bigger first.
6452 * For raid6, 4 is the minimum size.
6453 * Otherwise 2 is the minimum
6456 if (mddev
->level
== 6)
6458 if (mddev
->raid_disks
+ mddev
->delta_disks
< min
)
6462 if (!check_stripe_cache(mddev
))
6465 return resize_stripes(conf
, (conf
->previous_raid_disks
6466 + mddev
->delta_disks
));
6469 static int raid5_start_reshape(struct mddev
*mddev
)
6471 struct r5conf
*conf
= mddev
->private;
6472 struct md_rdev
*rdev
;
6474 unsigned long flags
;
6476 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
6479 if (!check_stripe_cache(mddev
))
6482 if (has_failed(conf
))
6485 rdev_for_each(rdev
, mddev
) {
6486 if (!test_bit(In_sync
, &rdev
->flags
)
6487 && !test_bit(Faulty
, &rdev
->flags
))
6491 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
6492 /* Not enough devices even to make a degraded array
6497 /* Refuse to reduce size of the array. Any reductions in
6498 * array size must be through explicit setting of array_size
6501 if (raid5_size(mddev
, 0, conf
->raid_disks
+ mddev
->delta_disks
)
6502 < mddev
->array_sectors
) {
6503 printk(KERN_ERR
"md/raid:%s: array size must be reduced "
6504 "before number of disks\n", mdname(mddev
));
6508 atomic_set(&conf
->reshape_stripes
, 0);
6509 spin_lock_irq(&conf
->device_lock
);
6510 write_seqcount_begin(&conf
->gen_lock
);
6511 conf
->previous_raid_disks
= conf
->raid_disks
;
6512 conf
->raid_disks
+= mddev
->delta_disks
;
6513 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
6514 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
6515 conf
->prev_algo
= conf
->algorithm
;
6516 conf
->algorithm
= mddev
->new_layout
;
6518 /* Code that selects data_offset needs to see the generation update
6519 * if reshape_progress has been set - so a memory barrier needed.
6522 if (mddev
->reshape_backwards
)
6523 conf
->reshape_progress
= raid5_size(mddev
, 0, 0);
6525 conf
->reshape_progress
= 0;
6526 conf
->reshape_safe
= conf
->reshape_progress
;
6527 write_seqcount_end(&conf
->gen_lock
);
6528 spin_unlock_irq(&conf
->device_lock
);
6530 /* Now make sure any requests that proceeded on the assumption
6531 * the reshape wasn't running - like Discard or Read - have
6534 mddev_suspend(mddev
);
6535 mddev_resume(mddev
);
6537 /* Add some new drives, as many as will fit.
6538 * We know there are enough to make the newly sized array work.
6539 * Don't add devices if we are reducing the number of
6540 * devices in the array. This is because it is not possible
6541 * to correctly record the "partially reconstructed" state of
6542 * such devices during the reshape and confusion could result.
6544 if (mddev
->delta_disks
>= 0) {
6545 rdev_for_each(rdev
, mddev
)
6546 if (rdev
->raid_disk
< 0 &&
6547 !test_bit(Faulty
, &rdev
->flags
)) {
6548 if (raid5_add_disk(mddev
, rdev
) == 0) {
6550 >= conf
->previous_raid_disks
)
6551 set_bit(In_sync
, &rdev
->flags
);
6553 rdev
->recovery_offset
= 0;
6555 if (sysfs_link_rdev(mddev
, rdev
))
6556 /* Failure here is OK */;
6558 } else if (rdev
->raid_disk
>= conf
->previous_raid_disks
6559 && !test_bit(Faulty
, &rdev
->flags
)) {
6560 /* This is a spare that was manually added */
6561 set_bit(In_sync
, &rdev
->flags
);
6564 /* When a reshape changes the number of devices,
6565 * ->degraded is measured against the larger of the
6566 * pre and post number of devices.
6568 spin_lock_irqsave(&conf
->device_lock
, flags
);
6569 mddev
->degraded
= calc_degraded(conf
);
6570 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
6572 mddev
->raid_disks
= conf
->raid_disks
;
6573 mddev
->reshape_position
= conf
->reshape_progress
;
6574 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
6576 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
6577 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
6578 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
6579 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
6580 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
6582 if (!mddev
->sync_thread
) {
6583 mddev
->recovery
= 0;
6584 spin_lock_irq(&conf
->device_lock
);
6585 write_seqcount_begin(&conf
->gen_lock
);
6586 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
6587 mddev
->new_chunk_sectors
=
6588 conf
->chunk_sectors
= conf
->prev_chunk_sectors
;
6589 mddev
->new_layout
= conf
->algorithm
= conf
->prev_algo
;
6590 rdev_for_each(rdev
, mddev
)
6591 rdev
->new_data_offset
= rdev
->data_offset
;
6593 conf
->generation
--;
6594 conf
->reshape_progress
= MaxSector
;
6595 mddev
->reshape_position
= MaxSector
;
6596 write_seqcount_end(&conf
->gen_lock
);
6597 spin_unlock_irq(&conf
->device_lock
);
6600 conf
->reshape_checkpoint
= jiffies
;
6601 md_wakeup_thread(mddev
->sync_thread
);
6602 md_new_event(mddev
);
6606 /* This is called from the reshape thread and should make any
6607 * changes needed in 'conf'
6609 static void end_reshape(struct r5conf
*conf
)
6612 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
6613 struct md_rdev
*rdev
;
6615 spin_lock_irq(&conf
->device_lock
);
6616 conf
->previous_raid_disks
= conf
->raid_disks
;
6617 rdev_for_each(rdev
, conf
->mddev
)
6618 rdev
->data_offset
= rdev
->new_data_offset
;
6620 conf
->reshape_progress
= MaxSector
;
6621 spin_unlock_irq(&conf
->device_lock
);
6622 wake_up(&conf
->wait_for_overlap
);
6624 /* read-ahead size must cover two whole stripes, which is
6625 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6627 if (conf
->mddev
->queue
) {
6628 int data_disks
= conf
->raid_disks
- conf
->max_degraded
;
6629 int stripe
= data_disks
* ((conf
->chunk_sectors
<< 9)
6631 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
6632 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
6637 /* This is called from the raid5d thread with mddev_lock held.
6638 * It makes config changes to the device.
6640 static void raid5_finish_reshape(struct mddev
*mddev
)
6642 struct r5conf
*conf
= mddev
->private;
6644 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
6646 if (mddev
->delta_disks
> 0) {
6647 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
6648 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
6649 revalidate_disk(mddev
->gendisk
);
6652 spin_lock_irq(&conf
->device_lock
);
6653 mddev
->degraded
= calc_degraded(conf
);
6654 spin_unlock_irq(&conf
->device_lock
);
6655 for (d
= conf
->raid_disks
;
6656 d
< conf
->raid_disks
- mddev
->delta_disks
;
6658 struct md_rdev
*rdev
= conf
->disks
[d
].rdev
;
6660 clear_bit(In_sync
, &rdev
->flags
);
6661 rdev
= conf
->disks
[d
].replacement
;
6663 clear_bit(In_sync
, &rdev
->flags
);
6666 mddev
->layout
= conf
->algorithm
;
6667 mddev
->chunk_sectors
= conf
->chunk_sectors
;
6668 mddev
->reshape_position
= MaxSector
;
6669 mddev
->delta_disks
= 0;
6670 mddev
->reshape_backwards
= 0;
6674 static void raid5_quiesce(struct mddev
*mddev
, int state
)
6676 struct r5conf
*conf
= mddev
->private;
6679 case 2: /* resume for a suspend */
6680 wake_up(&conf
->wait_for_overlap
);
6683 case 1: /* stop all writes */
6684 lock_all_device_hash_locks_irq(conf
);
6685 /* '2' tells resync/reshape to pause so that all
6686 * active stripes can drain
6689 wait_event_cmd(conf
->wait_for_stripe
,
6690 atomic_read(&conf
->active_stripes
) == 0 &&
6691 atomic_read(&conf
->active_aligned_reads
) == 0,
6692 unlock_all_device_hash_locks_irq(conf
),
6693 lock_all_device_hash_locks_irq(conf
));
6695 unlock_all_device_hash_locks_irq(conf
);
6696 /* allow reshape to continue */
6697 wake_up(&conf
->wait_for_overlap
);
6700 case 0: /* re-enable writes */
6701 lock_all_device_hash_locks_irq(conf
);
6703 wake_up(&conf
->wait_for_stripe
);
6704 wake_up(&conf
->wait_for_overlap
);
6705 unlock_all_device_hash_locks_irq(conf
);
6711 static void *raid45_takeover_raid0(struct mddev
*mddev
, int level
)
6713 struct r0conf
*raid0_conf
= mddev
->private;
6716 /* for raid0 takeover only one zone is supported */
6717 if (raid0_conf
->nr_strip_zones
> 1) {
6718 printk(KERN_ERR
"md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6720 return ERR_PTR(-EINVAL
);
6723 sectors
= raid0_conf
->strip_zone
[0].zone_end
;
6724 sector_div(sectors
, raid0_conf
->strip_zone
[0].nb_dev
);
6725 mddev
->dev_sectors
= sectors
;
6726 mddev
->new_level
= level
;
6727 mddev
->new_layout
= ALGORITHM_PARITY_N
;
6728 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
6729 mddev
->raid_disks
+= 1;
6730 mddev
->delta_disks
= 1;
6731 /* make sure it will be not marked as dirty */
6732 mddev
->recovery_cp
= MaxSector
;
6734 return setup_conf(mddev
);
6738 static void *raid5_takeover_raid1(struct mddev
*mddev
)
6742 if (mddev
->raid_disks
!= 2 ||
6743 mddev
->degraded
> 1)
6744 return ERR_PTR(-EINVAL
);
6746 /* Should check if there are write-behind devices? */
6748 chunksect
= 64*2; /* 64K by default */
6750 /* The array must be an exact multiple of chunksize */
6751 while (chunksect
&& (mddev
->array_sectors
& (chunksect
-1)))
6754 if ((chunksect
<<9) < STRIPE_SIZE
)
6755 /* array size does not allow a suitable chunk size */
6756 return ERR_PTR(-EINVAL
);
6758 mddev
->new_level
= 5;
6759 mddev
->new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
6760 mddev
->new_chunk_sectors
= chunksect
;
6762 return setup_conf(mddev
);
6765 static void *raid5_takeover_raid6(struct mddev
*mddev
)
6769 switch (mddev
->layout
) {
6770 case ALGORITHM_LEFT_ASYMMETRIC_6
:
6771 new_layout
= ALGORITHM_LEFT_ASYMMETRIC
;
6773 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
6774 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC
;
6776 case ALGORITHM_LEFT_SYMMETRIC_6
:
6777 new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
6779 case ALGORITHM_RIGHT_SYMMETRIC_6
:
6780 new_layout
= ALGORITHM_RIGHT_SYMMETRIC
;
6782 case ALGORITHM_PARITY_0_6
:
6783 new_layout
= ALGORITHM_PARITY_0
;
6785 case ALGORITHM_PARITY_N
:
6786 new_layout
= ALGORITHM_PARITY_N
;
6789 return ERR_PTR(-EINVAL
);
6791 mddev
->new_level
= 5;
6792 mddev
->new_layout
= new_layout
;
6793 mddev
->delta_disks
= -1;
6794 mddev
->raid_disks
-= 1;
6795 return setup_conf(mddev
);
6799 static int raid5_check_reshape(struct mddev
*mddev
)
6801 /* For a 2-drive array, the layout and chunk size can be changed
6802 * immediately as not restriping is needed.
6803 * For larger arrays we record the new value - after validation
6804 * to be used by a reshape pass.
6806 struct r5conf
*conf
= mddev
->private;
6807 int new_chunk
= mddev
->new_chunk_sectors
;
6809 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid5(mddev
->new_layout
))
6811 if (new_chunk
> 0) {
6812 if (!is_power_of_2(new_chunk
))
6814 if (new_chunk
< (PAGE_SIZE
>>9))
6816 if (mddev
->array_sectors
& (new_chunk
-1))
6817 /* not factor of array size */
6821 /* They look valid */
6823 if (mddev
->raid_disks
== 2) {
6824 /* can make the change immediately */
6825 if (mddev
->new_layout
>= 0) {
6826 conf
->algorithm
= mddev
->new_layout
;
6827 mddev
->layout
= mddev
->new_layout
;
6829 if (new_chunk
> 0) {
6830 conf
->chunk_sectors
= new_chunk
;
6831 mddev
->chunk_sectors
= new_chunk
;
6833 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
6834 md_wakeup_thread(mddev
->thread
);
6836 return check_reshape(mddev
);
6839 static int raid6_check_reshape(struct mddev
*mddev
)
6841 int new_chunk
= mddev
->new_chunk_sectors
;
6843 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid6(mddev
->new_layout
))
6845 if (new_chunk
> 0) {
6846 if (!is_power_of_2(new_chunk
))
6848 if (new_chunk
< (PAGE_SIZE
>> 9))
6850 if (mddev
->array_sectors
& (new_chunk
-1))
6851 /* not factor of array size */
6855 /* They look valid */
6856 return check_reshape(mddev
);
6859 static void *raid5_takeover(struct mddev
*mddev
)
6861 /* raid5 can take over:
6862 * raid0 - if there is only one strip zone - make it a raid4 layout
6863 * raid1 - if there are two drives. We need to know the chunk size
6864 * raid4 - trivial - just use a raid4 layout.
6865 * raid6 - Providing it is a *_6 layout
6867 if (mddev
->level
== 0)
6868 return raid45_takeover_raid0(mddev
, 5);
6869 if (mddev
->level
== 1)
6870 return raid5_takeover_raid1(mddev
);
6871 if (mddev
->level
== 4) {
6872 mddev
->new_layout
= ALGORITHM_PARITY_N
;
6873 mddev
->new_level
= 5;
6874 return setup_conf(mddev
);
6876 if (mddev
->level
== 6)
6877 return raid5_takeover_raid6(mddev
);
6879 return ERR_PTR(-EINVAL
);
6882 static void *raid4_takeover(struct mddev
*mddev
)
6884 /* raid4 can take over:
6885 * raid0 - if there is only one strip zone
6886 * raid5 - if layout is right
6888 if (mddev
->level
== 0)
6889 return raid45_takeover_raid0(mddev
, 4);
6890 if (mddev
->level
== 5 &&
6891 mddev
->layout
== ALGORITHM_PARITY_N
) {
6892 mddev
->new_layout
= 0;
6893 mddev
->new_level
= 4;
6894 return setup_conf(mddev
);
6896 return ERR_PTR(-EINVAL
);
6899 static struct md_personality raid5_personality
;
6901 static void *raid6_takeover(struct mddev
*mddev
)
6903 /* Currently can only take over a raid5. We map the
6904 * personality to an equivalent raid6 personality
6905 * with the Q block at the end.
6909 if (mddev
->pers
!= &raid5_personality
)
6910 return ERR_PTR(-EINVAL
);
6911 if (mddev
->degraded
> 1)
6912 return ERR_PTR(-EINVAL
);
6913 if (mddev
->raid_disks
> 253)
6914 return ERR_PTR(-EINVAL
);
6915 if (mddev
->raid_disks
< 3)
6916 return ERR_PTR(-EINVAL
);
6918 switch (mddev
->layout
) {
6919 case ALGORITHM_LEFT_ASYMMETRIC
:
6920 new_layout
= ALGORITHM_LEFT_ASYMMETRIC_6
;
6922 case ALGORITHM_RIGHT_ASYMMETRIC
:
6923 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC_6
;
6925 case ALGORITHM_LEFT_SYMMETRIC
:
6926 new_layout
= ALGORITHM_LEFT_SYMMETRIC_6
;
6928 case ALGORITHM_RIGHT_SYMMETRIC
:
6929 new_layout
= ALGORITHM_RIGHT_SYMMETRIC_6
;
6931 case ALGORITHM_PARITY_0
:
6932 new_layout
= ALGORITHM_PARITY_0_6
;
6934 case ALGORITHM_PARITY_N
:
6935 new_layout
= ALGORITHM_PARITY_N
;
6938 return ERR_PTR(-EINVAL
);
6940 mddev
->new_level
= 6;
6941 mddev
->new_layout
= new_layout
;
6942 mddev
->delta_disks
= 1;
6943 mddev
->raid_disks
+= 1;
6944 return setup_conf(mddev
);
6948 static struct md_personality raid6_personality
=
6952 .owner
= THIS_MODULE
,
6953 .make_request
= make_request
,
6957 .error_handler
= error
,
6958 .hot_add_disk
= raid5_add_disk
,
6959 .hot_remove_disk
= raid5_remove_disk
,
6960 .spare_active
= raid5_spare_active
,
6961 .sync_request
= sync_request
,
6962 .resize
= raid5_resize
,
6964 .check_reshape
= raid6_check_reshape
,
6965 .start_reshape
= raid5_start_reshape
,
6966 .finish_reshape
= raid5_finish_reshape
,
6967 .quiesce
= raid5_quiesce
,
6968 .takeover
= raid6_takeover
,
6970 static struct md_personality raid5_personality
=
6974 .owner
= THIS_MODULE
,
6975 .make_request
= make_request
,
6979 .error_handler
= error
,
6980 .hot_add_disk
= raid5_add_disk
,
6981 .hot_remove_disk
= raid5_remove_disk
,
6982 .spare_active
= raid5_spare_active
,
6983 .sync_request
= sync_request
,
6984 .resize
= raid5_resize
,
6986 .check_reshape
= raid5_check_reshape
,
6987 .start_reshape
= raid5_start_reshape
,
6988 .finish_reshape
= raid5_finish_reshape
,
6989 .quiesce
= raid5_quiesce
,
6990 .takeover
= raid5_takeover
,
6993 static struct md_personality raid4_personality
=
6997 .owner
= THIS_MODULE
,
6998 .make_request
= make_request
,
7002 .error_handler
= error
,
7003 .hot_add_disk
= raid5_add_disk
,
7004 .hot_remove_disk
= raid5_remove_disk
,
7005 .spare_active
= raid5_spare_active
,
7006 .sync_request
= sync_request
,
7007 .resize
= raid5_resize
,
7009 .check_reshape
= raid5_check_reshape
,
7010 .start_reshape
= raid5_start_reshape
,
7011 .finish_reshape
= raid5_finish_reshape
,
7012 .quiesce
= raid5_quiesce
,
7013 .takeover
= raid4_takeover
,
7016 static int __init
raid5_init(void)
7018 raid5_wq
= alloc_workqueue("raid5wq",
7019 WQ_UNBOUND
|WQ_MEM_RECLAIM
|WQ_CPU_INTENSIVE
|WQ_SYSFS
, 0);
7022 register_md_personality(&raid6_personality
);
7023 register_md_personality(&raid5_personality
);
7024 register_md_personality(&raid4_personality
);
7028 static void raid5_exit(void)
7030 unregister_md_personality(&raid6_personality
);
7031 unregister_md_personality(&raid5_personality
);
7032 unregister_md_personality(&raid4_personality
);
7033 destroy_workqueue(raid5_wq
);
7036 module_init(raid5_init
);
7037 module_exit(raid5_exit
);
7038 MODULE_LICENSE("GPL");
7039 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7040 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7041 MODULE_ALIAS("md-raid5");
7042 MODULE_ALIAS("md-raid4");
7043 MODULE_ALIAS("md-level-5");
7044 MODULE_ALIAS("md-level-4");
7045 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7046 MODULE_ALIAS("md-raid6");
7047 MODULE_ALIAS("md-level-6");
7049 /* This used to be two separate modules, they were: */
7050 MODULE_ALIAS("raid5");
7051 MODULE_ALIAS("raid6");