2 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
4 * Author: Mike Lavender, mike@steroidmicros.com
6 * Copyright (c) 2005, Intec Automation Inc.
8 * Some parts are based on lart.c by Abraham Van Der Merwe
10 * Cleaned up and generalized based on mtd_dataflash.c
12 * This code is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
18 #include <linux/init.h>
19 #include <linux/err.h>
20 #include <linux/errno.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/interrupt.h>
24 #include <linux/mutex.h>
25 #include <linux/math64.h>
26 #include <linux/slab.h>
27 #include <linux/sched.h>
28 #include <linux/mod_devicetable.h>
30 #include <linux/mtd/cfi.h>
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/of_platform.h>
35 #include <linux/spi/spi.h>
36 #include <linux/spi/flash.h>
39 #define OPCODE_WREN 0x06 /* Write enable */
40 #define OPCODE_RDSR 0x05 /* Read status register */
41 #define OPCODE_WRSR 0x01 /* Write status register 1 byte */
42 #define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
43 #define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
44 #define OPCODE_QUAD_READ 0x6b /* Read data bytes */
45 #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
46 #define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
47 #define OPCODE_BE_4K_PMC 0xd7 /* Erase 4KiB block on PMC chips */
48 #define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
49 #define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
50 #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
51 #define OPCODE_RDID 0x9f /* Read JEDEC ID */
52 #define OPCODE_RDCR 0x35 /* Read configuration register */
54 /* 4-byte address opcodes - used on Spansion and some Macronix flashes. */
55 #define OPCODE_NORM_READ_4B 0x13 /* Read data bytes (low frequency) */
56 #define OPCODE_FAST_READ_4B 0x0c /* Read data bytes (high frequency) */
57 #define OPCODE_QUAD_READ_4B 0x6c /* Read data bytes */
58 #define OPCODE_PP_4B 0x12 /* Page program (up to 256 bytes) */
59 #define OPCODE_SE_4B 0xdc /* Sector erase (usually 64KiB) */
61 /* Used for SST flashes only. */
62 #define OPCODE_BP 0x02 /* Byte program */
63 #define OPCODE_WRDI 0x04 /* Write disable */
64 #define OPCODE_AAI_WP 0xad /* Auto address increment word program */
66 /* Used for Macronix and Winbond flashes. */
67 #define OPCODE_EN4B 0xb7 /* Enter 4-byte mode */
68 #define OPCODE_EX4B 0xe9 /* Exit 4-byte mode */
70 /* Used for Spansion flashes only. */
71 #define OPCODE_BRWR 0x17 /* Bank register write */
73 /* Status Register bits. */
74 #define SR_WIP 1 /* Write in progress */
75 #define SR_WEL 2 /* Write enable latch */
76 /* meaning of other SR_* bits may differ between vendors */
77 #define SR_BP0 4 /* Block protect 0 */
78 #define SR_BP1 8 /* Block protect 1 */
79 #define SR_BP2 0x10 /* Block protect 2 */
80 #define SR_SRWD 0x80 /* SR write protect */
82 #define SR_QUAD_EN_MX 0x40 /* Macronix Quad I/O */
84 /* Configuration Register bits. */
85 #define CR_QUAD_EN_SPAN 0x2 /* Spansion Quad I/O */
87 /* Define max times to check status register before we give up. */
88 #define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
89 #define MAX_CMD_SIZE 6
91 #define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16)
93 /****************************************************************************/
102 struct spi_device
*spi
;
111 enum read_type flash_read
;
114 static inline struct m25p
*mtd_to_m25p(struct mtd_info
*mtd
)
116 return container_of(mtd
, struct m25p
, mtd
);
119 /****************************************************************************/
122 * Internal helper functions
126 * Read the status register, returning its value in the location
127 * Return the status register value.
128 * Returns negative if error occurred.
130 static int read_sr(struct m25p
*flash
)
133 u8 code
= OPCODE_RDSR
;
136 retval
= spi_write_then_read(flash
->spi
, &code
, 1, &val
, 1);
139 dev_err(&flash
->spi
->dev
, "error %d reading SR\n",
148 * Read configuration register, returning its value in the
149 * location. Return the configuration register value.
150 * Returns negative if error occured.
152 static int read_cr(struct m25p
*flash
)
154 u8 code
= OPCODE_RDCR
;
158 ret
= spi_write_then_read(flash
->spi
, &code
, 1, &val
, 1);
160 dev_err(&flash
->spi
->dev
, "error %d reading CR\n", ret
);
168 * Write status register 1 byte
169 * Returns negative if error occurred.
171 static int write_sr(struct m25p
*flash
, u8 val
)
173 flash
->command
[0] = OPCODE_WRSR
;
174 flash
->command
[1] = val
;
176 return spi_write(flash
->spi
, flash
->command
, 2);
180 * Set write enable latch with Write Enable command.
181 * Returns negative if error occurred.
183 static inline int write_enable(struct m25p
*flash
)
185 u8 code
= OPCODE_WREN
;
187 return spi_write_then_read(flash
->spi
, &code
, 1, NULL
, 0);
191 * Send write disble instruction to the chip.
193 static inline int write_disable(struct m25p
*flash
)
195 u8 code
= OPCODE_WRDI
;
197 return spi_write_then_read(flash
->spi
, &code
, 1, NULL
, 0);
201 * Enable/disable 4-byte addressing mode.
203 static inline int set_4byte(struct m25p
*flash
, u32 jedec_id
, int enable
)
206 bool need_wren
= false;
208 switch (JEDEC_MFR(jedec_id
)) {
209 case CFI_MFR_ST
: /* Micron, actually */
210 /* Some Micron need WREN command; all will accept it */
212 case CFI_MFR_MACRONIX
:
213 case 0xEF /* winbond */:
217 flash
->command
[0] = enable
? OPCODE_EN4B
: OPCODE_EX4B
;
218 status
= spi_write(flash
->spi
, flash
->command
, 1);
221 write_disable(flash
);
226 flash
->command
[0] = OPCODE_BRWR
;
227 flash
->command
[1] = enable
<< 7;
228 return spi_write(flash
->spi
, flash
->command
, 2);
233 * Service routine to read status register until ready, or timeout occurs.
234 * Returns non-zero if error.
236 static int wait_till_ready(struct m25p
*flash
)
238 unsigned long deadline
;
241 deadline
= jiffies
+ MAX_READY_WAIT_JIFFIES
;
244 if ((sr
= read_sr(flash
)) < 0)
246 else if (!(sr
& SR_WIP
))
251 } while (!time_after_eq(jiffies
, deadline
));
257 * Write status Register and configuration register with 2 bytes
258 * The first byte will be written to the status register, while the
259 * second byte will be written to the configuration register.
260 * Return negative if error occured.
262 static int write_sr_cr(struct m25p
*flash
, u16 val
)
264 flash
->command
[0] = OPCODE_WRSR
;
265 flash
->command
[1] = val
& 0xff;
266 flash
->command
[2] = (val
>> 8);
268 return spi_write(flash
->spi
, flash
->command
, 3);
271 static int macronix_quad_enable(struct m25p
*flash
)
275 cmd
[0] = OPCODE_WRSR
;
277 val
= read_sr(flash
);
278 cmd
[1] = val
| SR_QUAD_EN_MX
;
281 spi_write(flash
->spi
, &cmd
, 2);
283 if (wait_till_ready(flash
))
286 ret
= read_sr(flash
);
287 if (!(ret
> 0 && (ret
& SR_QUAD_EN_MX
))) {
288 dev_err(&flash
->spi
->dev
, "Macronix Quad bit not set\n");
295 static int spansion_quad_enable(struct m25p
*flash
)
298 int quad_en
= CR_QUAD_EN_SPAN
<< 8;
302 ret
= write_sr_cr(flash
, quad_en
);
304 dev_err(&flash
->spi
->dev
,
305 "error while writing configuration register\n");
309 /* read back and check it */
310 ret
= read_cr(flash
);
311 if (!(ret
> 0 && (ret
& CR_QUAD_EN_SPAN
))) {
312 dev_err(&flash
->spi
->dev
, "Spansion Quad bit not set\n");
319 static int set_quad_mode(struct m25p
*flash
, u32 jedec_id
)
323 switch (JEDEC_MFR(jedec_id
)) {
324 case CFI_MFR_MACRONIX
:
325 status
= macronix_quad_enable(flash
);
327 dev_err(&flash
->spi
->dev
,
328 "Macronix quad-read not enabled\n");
333 status
= spansion_quad_enable(flash
);
335 dev_err(&flash
->spi
->dev
,
336 "Spansion quad-read not enabled\n");
344 * Erase the whole flash memory
346 * Returns 0 if successful, non-zero otherwise.
348 static int erase_chip(struct m25p
*flash
)
350 pr_debug("%s: %s %lldKiB\n", dev_name(&flash
->spi
->dev
), __func__
,
351 (long long)(flash
->mtd
.size
>> 10));
353 /* Wait until finished previous write command. */
354 if (wait_till_ready(flash
))
357 /* Send write enable, then erase commands. */
360 /* Set up command buffer. */
361 flash
->command
[0] = OPCODE_CHIP_ERASE
;
363 spi_write(flash
->spi
, flash
->command
, 1);
368 static void m25p_addr2cmd(struct m25p
*flash
, unsigned int addr
, u8
*cmd
)
370 /* opcode is in cmd[0] */
371 cmd
[1] = addr
>> (flash
->addr_width
* 8 - 8);
372 cmd
[2] = addr
>> (flash
->addr_width
* 8 - 16);
373 cmd
[3] = addr
>> (flash
->addr_width
* 8 - 24);
374 cmd
[4] = addr
>> (flash
->addr_width
* 8 - 32);
377 static int m25p_cmdsz(struct m25p
*flash
)
379 return 1 + flash
->addr_width
;
383 * Erase one sector of flash memory at offset ``offset'' which is any
384 * address within the sector which should be erased.
386 * Returns 0 if successful, non-zero otherwise.
388 static int erase_sector(struct m25p
*flash
, u32 offset
)
390 pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash
->spi
->dev
),
391 __func__
, flash
->mtd
.erasesize
/ 1024, offset
);
393 /* Wait until finished previous write command. */
394 if (wait_till_ready(flash
))
397 /* Send write enable, then erase commands. */
400 /* Set up command buffer. */
401 flash
->command
[0] = flash
->erase_opcode
;
402 m25p_addr2cmd(flash
, offset
, flash
->command
);
404 spi_write(flash
->spi
, flash
->command
, m25p_cmdsz(flash
));
409 /****************************************************************************/
416 * Erase an address range on the flash chip. The address range may extend
417 * one or more erase sectors. Return an error is there is a problem erasing.
419 static int m25p80_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
421 struct m25p
*flash
= mtd_to_m25p(mtd
);
425 pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash
->spi
->dev
),
426 __func__
, (long long)instr
->addr
,
427 (long long)instr
->len
);
429 div_u64_rem(instr
->len
, mtd
->erasesize
, &rem
);
436 mutex_lock(&flash
->lock
);
438 /* whole-chip erase? */
439 if (len
== flash
->mtd
.size
) {
440 if (erase_chip(flash
)) {
441 instr
->state
= MTD_ERASE_FAILED
;
442 mutex_unlock(&flash
->lock
);
446 /* REVISIT in some cases we could speed up erasing large regions
447 * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
448 * to use "small sector erase", but that's not always optimal.
451 /* "sector"-at-a-time erase */
454 if (erase_sector(flash
, addr
)) {
455 instr
->state
= MTD_ERASE_FAILED
;
456 mutex_unlock(&flash
->lock
);
460 addr
+= mtd
->erasesize
;
461 len
-= mtd
->erasesize
;
465 mutex_unlock(&flash
->lock
);
467 instr
->state
= MTD_ERASE_DONE
;
468 mtd_erase_callback(instr
);
474 * Dummy Cycle calculation for different type of read.
475 * It can be used to support more commands with
476 * different dummy cycle requirements.
478 static inline int m25p80_dummy_cycles_read(struct m25p
*flash
)
480 switch (flash
->flash_read
) {
487 dev_err(&flash
->spi
->dev
, "No valid read type supported\n");
492 static inline unsigned int m25p80_rx_nbits(const struct m25p
*flash
)
494 switch (flash
->flash_read
) {
503 * Read an address range from the flash chip. The address range
504 * may be any size provided it is within the physical boundaries.
506 static int m25p80_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
507 size_t *retlen
, u_char
*buf
)
509 struct m25p
*flash
= mtd_to_m25p(mtd
);
510 struct spi_transfer t
[2];
511 struct spi_message m
;
515 pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash
->spi
->dev
),
516 __func__
, (u32
)from
, len
);
518 spi_message_init(&m
);
519 memset(t
, 0, (sizeof t
));
521 dummy
= m25p80_dummy_cycles_read(flash
);
523 dev_err(&flash
->spi
->dev
, "No valid read command supported\n");
527 t
[0].tx_buf
= flash
->command
;
528 t
[0].len
= m25p_cmdsz(flash
) + dummy
;
529 spi_message_add_tail(&t
[0], &m
);
532 t
[1].rx_nbits
= m25p80_rx_nbits(flash
);
534 spi_message_add_tail(&t
[1], &m
);
536 mutex_lock(&flash
->lock
);
538 /* Wait till previous write/erase is done. */
539 if (wait_till_ready(flash
)) {
540 /* REVISIT status return?? */
541 mutex_unlock(&flash
->lock
);
545 /* Set up the write data buffer. */
546 opcode
= flash
->read_opcode
;
547 flash
->command
[0] = opcode
;
548 m25p_addr2cmd(flash
, from
, flash
->command
);
550 spi_sync(flash
->spi
, &m
);
552 *retlen
= m
.actual_length
- m25p_cmdsz(flash
) - dummy
;
554 mutex_unlock(&flash
->lock
);
560 * Write an address range to the flash chip. Data must be written in
561 * FLASH_PAGESIZE chunks. The address range may be any size provided
562 * it is within the physical boundaries.
564 static int m25p80_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
565 size_t *retlen
, const u_char
*buf
)
567 struct m25p
*flash
= mtd_to_m25p(mtd
);
568 u32 page_offset
, page_size
;
569 struct spi_transfer t
[2];
570 struct spi_message m
;
572 pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash
->spi
->dev
),
573 __func__
, (u32
)to
, len
);
575 spi_message_init(&m
);
576 memset(t
, 0, (sizeof t
));
578 t
[0].tx_buf
= flash
->command
;
579 t
[0].len
= m25p_cmdsz(flash
);
580 spi_message_add_tail(&t
[0], &m
);
583 spi_message_add_tail(&t
[1], &m
);
585 mutex_lock(&flash
->lock
);
587 /* Wait until finished previous write command. */
588 if (wait_till_ready(flash
)) {
589 mutex_unlock(&flash
->lock
);
595 /* Set up the opcode in the write buffer. */
596 flash
->command
[0] = flash
->program_opcode
;
597 m25p_addr2cmd(flash
, to
, flash
->command
);
599 page_offset
= to
& (flash
->page_size
- 1);
601 /* do all the bytes fit onto one page? */
602 if (page_offset
+ len
<= flash
->page_size
) {
605 spi_sync(flash
->spi
, &m
);
607 *retlen
= m
.actual_length
- m25p_cmdsz(flash
);
611 /* the size of data remaining on the first page */
612 page_size
= flash
->page_size
- page_offset
;
614 t
[1].len
= page_size
;
615 spi_sync(flash
->spi
, &m
);
617 *retlen
= m
.actual_length
- m25p_cmdsz(flash
);
619 /* write everything in flash->page_size chunks */
620 for (i
= page_size
; i
< len
; i
+= page_size
) {
622 if (page_size
> flash
->page_size
)
623 page_size
= flash
->page_size
;
625 /* write the next page to flash */
626 m25p_addr2cmd(flash
, to
+ i
, flash
->command
);
628 t
[1].tx_buf
= buf
+ i
;
629 t
[1].len
= page_size
;
631 wait_till_ready(flash
);
635 spi_sync(flash
->spi
, &m
);
637 *retlen
+= m
.actual_length
- m25p_cmdsz(flash
);
641 mutex_unlock(&flash
->lock
);
646 static int sst_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
647 size_t *retlen
, const u_char
*buf
)
649 struct m25p
*flash
= mtd_to_m25p(mtd
);
650 struct spi_transfer t
[2];
651 struct spi_message m
;
655 pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash
->spi
->dev
),
656 __func__
, (u32
)to
, len
);
658 spi_message_init(&m
);
659 memset(t
, 0, (sizeof t
));
661 t
[0].tx_buf
= flash
->command
;
662 t
[0].len
= m25p_cmdsz(flash
);
663 spi_message_add_tail(&t
[0], &m
);
666 spi_message_add_tail(&t
[1], &m
);
668 mutex_lock(&flash
->lock
);
670 /* Wait until finished previous write command. */
671 ret
= wait_till_ready(flash
);
678 /* Start write from odd address. */
680 flash
->command
[0] = OPCODE_BP
;
681 m25p_addr2cmd(flash
, to
, flash
->command
);
683 /* write one byte. */
685 spi_sync(flash
->spi
, &m
);
686 ret
= wait_till_ready(flash
);
689 *retlen
+= m
.actual_length
- m25p_cmdsz(flash
);
693 flash
->command
[0] = OPCODE_AAI_WP
;
694 m25p_addr2cmd(flash
, to
, flash
->command
);
696 /* Write out most of the data here. */
697 cmd_sz
= m25p_cmdsz(flash
);
698 for (; actual
< len
- 1; actual
+= 2) {
700 /* write two bytes. */
702 t
[1].tx_buf
= buf
+ actual
;
704 spi_sync(flash
->spi
, &m
);
705 ret
= wait_till_ready(flash
);
708 *retlen
+= m
.actual_length
- cmd_sz
;
712 write_disable(flash
);
713 ret
= wait_till_ready(flash
);
717 /* Write out trailing byte if it exists. */
720 flash
->command
[0] = OPCODE_BP
;
721 m25p_addr2cmd(flash
, to
, flash
->command
);
722 t
[0].len
= m25p_cmdsz(flash
);
724 t
[1].tx_buf
= buf
+ actual
;
726 spi_sync(flash
->spi
, &m
);
727 ret
= wait_till_ready(flash
);
730 *retlen
+= m
.actual_length
- m25p_cmdsz(flash
);
731 write_disable(flash
);
735 mutex_unlock(&flash
->lock
);
739 static int m25p80_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
741 struct m25p
*flash
= mtd_to_m25p(mtd
);
742 uint32_t offset
= ofs
;
743 uint8_t status_old
, status_new
;
746 mutex_lock(&flash
->lock
);
747 /* Wait until finished previous command */
748 if (wait_till_ready(flash
)) {
753 status_old
= read_sr(flash
);
755 if (offset
< flash
->mtd
.size
-(flash
->mtd
.size
/2))
756 status_new
= status_old
| SR_BP2
| SR_BP1
| SR_BP0
;
757 else if (offset
< flash
->mtd
.size
-(flash
->mtd
.size
/4))
758 status_new
= (status_old
& ~SR_BP0
) | SR_BP2
| SR_BP1
;
759 else if (offset
< flash
->mtd
.size
-(flash
->mtd
.size
/8))
760 status_new
= (status_old
& ~SR_BP1
) | SR_BP2
| SR_BP0
;
761 else if (offset
< flash
->mtd
.size
-(flash
->mtd
.size
/16))
762 status_new
= (status_old
& ~(SR_BP0
|SR_BP1
)) | SR_BP2
;
763 else if (offset
< flash
->mtd
.size
-(flash
->mtd
.size
/32))
764 status_new
= (status_old
& ~SR_BP2
) | SR_BP1
| SR_BP0
;
765 else if (offset
< flash
->mtd
.size
-(flash
->mtd
.size
/64))
766 status_new
= (status_old
& ~(SR_BP2
|SR_BP0
)) | SR_BP1
;
768 status_new
= (status_old
& ~(SR_BP2
|SR_BP1
)) | SR_BP0
;
770 /* Only modify protection if it will not unlock other areas */
771 if ((status_new
&(SR_BP2
|SR_BP1
|SR_BP0
)) >
772 (status_old
&(SR_BP2
|SR_BP1
|SR_BP0
))) {
774 if (write_sr(flash
, status_new
) < 0) {
780 err
: mutex_unlock(&flash
->lock
);
784 static int m25p80_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
786 struct m25p
*flash
= mtd_to_m25p(mtd
);
787 uint32_t offset
= ofs
;
788 uint8_t status_old
, status_new
;
791 mutex_lock(&flash
->lock
);
792 /* Wait until finished previous command */
793 if (wait_till_ready(flash
)) {
798 status_old
= read_sr(flash
);
800 if (offset
+len
> flash
->mtd
.size
-(flash
->mtd
.size
/64))
801 status_new
= status_old
& ~(SR_BP2
|SR_BP1
|SR_BP0
);
802 else if (offset
+len
> flash
->mtd
.size
-(flash
->mtd
.size
/32))
803 status_new
= (status_old
& ~(SR_BP2
|SR_BP1
)) | SR_BP0
;
804 else if (offset
+len
> flash
->mtd
.size
-(flash
->mtd
.size
/16))
805 status_new
= (status_old
& ~(SR_BP2
|SR_BP0
)) | SR_BP1
;
806 else if (offset
+len
> flash
->mtd
.size
-(flash
->mtd
.size
/8))
807 status_new
= (status_old
& ~SR_BP2
) | SR_BP1
| SR_BP0
;
808 else if (offset
+len
> flash
->mtd
.size
-(flash
->mtd
.size
/4))
809 status_new
= (status_old
& ~(SR_BP0
|SR_BP1
)) | SR_BP2
;
810 else if (offset
+len
> flash
->mtd
.size
-(flash
->mtd
.size
/2))
811 status_new
= (status_old
& ~SR_BP1
) | SR_BP2
| SR_BP0
;
813 status_new
= (status_old
& ~SR_BP0
) | SR_BP2
| SR_BP1
;
815 /* Only modify protection if it will not lock other areas */
816 if ((status_new
&(SR_BP2
|SR_BP1
|SR_BP0
)) <
817 (status_old
&(SR_BP2
|SR_BP1
|SR_BP0
))) {
819 if (write_sr(flash
, status_new
) < 0) {
825 err
: mutex_unlock(&flash
->lock
);
829 /****************************************************************************/
832 * SPI device driver setup and teardown
836 /* JEDEC id zero means "no ID" (most older chips); otherwise it has
837 * a high byte of zero plus three data bytes: the manufacturer id,
838 * then a two byte device id.
843 /* The size listed here is what works with OPCODE_SE, which isn't
844 * necessarily called a "sector" by the vendor.
846 unsigned sector_size
;
853 #define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
854 #define M25P_NO_ERASE 0x02 /* No erase command needed */
855 #define SST_WRITE 0x04 /* use SST byte programming */
856 #define M25P_NO_FR 0x08 /* Can't do fastread */
857 #define SECT_4K_PMC 0x10 /* OPCODE_BE_4K_PMC works uniformly */
858 #define M25P80_QUAD_READ 0x20 /* Flash supports Quad Read */
861 #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
862 ((kernel_ulong_t)&(struct flash_info) { \
863 .jedec_id = (_jedec_id), \
864 .ext_id = (_ext_id), \
865 .sector_size = (_sector_size), \
866 .n_sectors = (_n_sectors), \
871 #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
872 ((kernel_ulong_t)&(struct flash_info) { \
873 .sector_size = (_sector_size), \
874 .n_sectors = (_n_sectors), \
875 .page_size = (_page_size), \
876 .addr_width = (_addr_width), \
880 /* NOTE: double check command sets and memory organization when you add
881 * more flash chips. This current list focusses on newer chips, which
882 * have been converging on command sets which including JEDEC ID.
884 static const struct spi_device_id m25p_ids
[] = {
885 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
886 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K
) },
887 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K
) },
889 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K
) },
890 { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K
) },
891 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K
) },
893 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K
) },
894 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K
) },
895 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K
) },
896 { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K
) },
898 { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K
) },
901 { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K
) },
902 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
903 { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
904 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
905 { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K
) },
906 { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
909 { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K
) },
912 { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, M25P_NO_ERASE
| M25P_NO_FR
) },
913 { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, M25P_NO_ERASE
| M25P_NO_FR
) },
916 { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K
) },
917 { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K
) },
919 /* Intel/Numonyx -- xxxs33b */
920 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
921 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
922 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
925 { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K
) },
926 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K
) },
927 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
928 { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K
) },
929 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
930 { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K
) },
931 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
932 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
933 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
934 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
935 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
936 { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, M25P80_QUAD_READ
) },
939 { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, 0) },
940 { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, 0) },
941 { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, 0) },
942 { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K
) },
943 { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K
) },
946 { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC
) },
947 { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC
) },
948 { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K
) },
950 /* Spansion -- single (large) sector size only, at least
951 * for the chips listed here (without boot sectors).
953 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, 0) },
954 { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) },
955 { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
956 { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, M25P80_QUAD_READ
) },
957 { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, M25P80_QUAD_READ
) },
958 { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
959 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
960 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
961 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
962 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
963 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
964 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
965 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
966 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
967 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
968 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K
) },
969 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K
) },
971 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
972 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K
| SST_WRITE
) },
973 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K
| SST_WRITE
) },
974 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K
| SST_WRITE
) },
975 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K
| SST_WRITE
) },
976 { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K
) },
977 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K
| SST_WRITE
) },
978 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K
| SST_WRITE
) },
979 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K
| SST_WRITE
) },
980 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K
| SST_WRITE
) },
982 /* ST Microelectronics -- newer production may have feature updates */
983 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
984 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
985 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
986 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
987 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
988 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
989 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
990 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
991 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
992 { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, 0) },
994 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
995 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
996 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
997 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
998 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
999 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
1000 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
1001 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
1002 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
1004 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
1005 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
1006 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
1008 { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
1009 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
1010 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K
) },
1012 { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K
) },
1013 { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K
) },
1014 { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K
) },
1015 { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K
) },
1016 { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
1018 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
1019 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K
) },
1020 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K
) },
1021 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K
) },
1022 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K
) },
1023 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K
) },
1024 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K
) },
1025 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K
) },
1026 { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K
) },
1027 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K
) },
1028 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K
) },
1029 { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K
) },
1030 { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K
) },
1031 { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K
) },
1032 { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K
) },
1033 { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K
) },
1035 /* Catalyst / On Semiconductor -- non-JEDEC */
1036 { "cat25c11", CAT25_INFO( 16, 8, 16, 1, M25P_NO_ERASE
| M25P_NO_FR
) },
1037 { "cat25c03", CAT25_INFO( 32, 8, 16, 2, M25P_NO_ERASE
| M25P_NO_FR
) },
1038 { "cat25c09", CAT25_INFO( 128, 8, 32, 2, M25P_NO_ERASE
| M25P_NO_FR
) },
1039 { "cat25c17", CAT25_INFO( 256, 8, 32, 2, M25P_NO_ERASE
| M25P_NO_FR
) },
1040 { "cat25128", CAT25_INFO(2048, 8, 64, 2, M25P_NO_ERASE
| M25P_NO_FR
) },
1043 MODULE_DEVICE_TABLE(spi
, m25p_ids
);
1045 static const struct spi_device_id
*jedec_probe(struct spi_device
*spi
)
1048 u8 code
= OPCODE_RDID
;
1052 struct flash_info
*info
;
1054 /* JEDEC also defines an optional "extended device information"
1055 * string for after vendor-specific data, after the three bytes
1056 * we use here. Supporting some chips might require using it.
1058 tmp
= spi_write_then_read(spi
, &code
, 1, id
, 5);
1060 pr_debug("%s: error %d reading JEDEC ID\n",
1061 dev_name(&spi
->dev
), tmp
);
1062 return ERR_PTR(tmp
);
1070 ext_jedec
= id
[3] << 8 | id
[4];
1072 for (tmp
= 0; tmp
< ARRAY_SIZE(m25p_ids
) - 1; tmp
++) {
1073 info
= (void *)m25p_ids
[tmp
].driver_data
;
1074 if (info
->jedec_id
== jedec
) {
1075 if (info
->ext_id
!= 0 && info
->ext_id
!= ext_jedec
)
1077 return &m25p_ids
[tmp
];
1080 dev_err(&spi
->dev
, "unrecognized JEDEC id %06x\n", jedec
);
1081 return ERR_PTR(-ENODEV
);
1086 * board specific setup should have ensured the SPI clock used here
1087 * matches what the READ command supports, at least until this driver
1088 * understands FAST_READ (for clocks over 25 MHz).
1090 static int m25p_probe(struct spi_device
*spi
)
1092 const struct spi_device_id
*id
= spi_get_device_id(spi
);
1093 struct flash_platform_data
*data
;
1095 struct flash_info
*info
;
1097 struct mtd_part_parser_data ppdata
;
1098 struct device_node
*np
= spi
->dev
.of_node
;
1101 /* Platform data helps sort out which chip type we have, as
1102 * well as how this board partitions it. If we don't have
1103 * a chip ID, try the JEDEC id commands; they'll work for most
1104 * newer chips, even if we don't recognize the particular chip.
1106 data
= dev_get_platdata(&spi
->dev
);
1107 if (data
&& data
->type
) {
1108 const struct spi_device_id
*plat_id
;
1110 for (i
= 0; i
< ARRAY_SIZE(m25p_ids
) - 1; i
++) {
1111 plat_id
= &m25p_ids
[i
];
1112 if (strcmp(data
->type
, plat_id
->name
))
1117 if (i
< ARRAY_SIZE(m25p_ids
) - 1)
1120 dev_warn(&spi
->dev
, "unrecognized id %s\n", data
->type
);
1123 info
= (void *)id
->driver_data
;
1125 if (info
->jedec_id
) {
1126 const struct spi_device_id
*jid
;
1128 jid
= jedec_probe(spi
);
1130 return PTR_ERR(jid
);
1131 } else if (jid
!= id
) {
1133 * JEDEC knows better, so overwrite platform ID. We
1134 * can't trust partitions any longer, but we'll let
1135 * mtd apply them anyway, since some partitions may be
1136 * marked read-only, and we don't want to lose that
1137 * information, even if it's not 100% accurate.
1139 dev_warn(&spi
->dev
, "found %s, expected %s\n",
1140 jid
->name
, id
->name
);
1142 info
= (void *)jid
->driver_data
;
1146 flash
= devm_kzalloc(&spi
->dev
, sizeof(*flash
), GFP_KERNEL
);
1150 flash
->command
= devm_kzalloc(&spi
->dev
, MAX_CMD_SIZE
, GFP_KERNEL
);
1151 if (!flash
->command
)
1155 mutex_init(&flash
->lock
);
1156 spi_set_drvdata(spi
, flash
);
1159 * Atmel, SST and Intel/Numonyx serial flash tend to power
1160 * up with the software protection bits set
1163 if (JEDEC_MFR(info
->jedec_id
) == CFI_MFR_ATMEL
||
1164 JEDEC_MFR(info
->jedec_id
) == CFI_MFR_INTEL
||
1165 JEDEC_MFR(info
->jedec_id
) == CFI_MFR_SST
) {
1166 write_enable(flash
);
1170 if (data
&& data
->name
)
1171 flash
->mtd
.name
= data
->name
;
1173 flash
->mtd
.name
= dev_name(&spi
->dev
);
1175 flash
->mtd
.type
= MTD_NORFLASH
;
1176 flash
->mtd
.writesize
= 1;
1177 flash
->mtd
.flags
= MTD_CAP_NORFLASH
;
1178 flash
->mtd
.size
= info
->sector_size
* info
->n_sectors
;
1179 flash
->mtd
._erase
= m25p80_erase
;
1180 flash
->mtd
._read
= m25p80_read
;
1182 /* flash protection support for STmicro chips */
1183 if (JEDEC_MFR(info
->jedec_id
) == CFI_MFR_ST
) {
1184 flash
->mtd
._lock
= m25p80_lock
;
1185 flash
->mtd
._unlock
= m25p80_unlock
;
1188 /* sst flash chips use AAI word program */
1189 if (info
->flags
& SST_WRITE
)
1190 flash
->mtd
._write
= sst_write
;
1192 flash
->mtd
._write
= m25p80_write
;
1194 /* prefer "small sector" erase if possible */
1195 if (info
->flags
& SECT_4K
) {
1196 flash
->erase_opcode
= OPCODE_BE_4K
;
1197 flash
->mtd
.erasesize
= 4096;
1198 } else if (info
->flags
& SECT_4K_PMC
) {
1199 flash
->erase_opcode
= OPCODE_BE_4K_PMC
;
1200 flash
->mtd
.erasesize
= 4096;
1202 flash
->erase_opcode
= OPCODE_SE
;
1203 flash
->mtd
.erasesize
= info
->sector_size
;
1206 if (info
->flags
& M25P_NO_ERASE
)
1207 flash
->mtd
.flags
|= MTD_NO_ERASE
;
1209 ppdata
.of_node
= spi
->dev
.of_node
;
1210 flash
->mtd
.dev
.parent
= &spi
->dev
;
1211 flash
->page_size
= info
->page_size
;
1212 flash
->mtd
.writebufsize
= flash
->page_size
;
1215 /* If we were instantiated by DT, use it */
1216 if (of_property_read_bool(np
, "m25p,fast-read"))
1217 flash
->flash_read
= M25P80_FAST
;
1219 flash
->flash_read
= M25P80_NORMAL
;
1221 /* If we weren't instantiated by DT, default to fast-read */
1222 flash
->flash_read
= M25P80_FAST
;
1225 /* Some devices cannot do fast-read, no matter what DT tells us */
1226 if (info
->flags
& M25P_NO_FR
)
1227 flash
->flash_read
= M25P80_NORMAL
;
1229 /* Quad-read mode takes precedence over fast/normal */
1230 if (spi
->mode
& SPI_RX_QUAD
&& info
->flags
& M25P80_QUAD_READ
) {
1231 ret
= set_quad_mode(flash
, info
->jedec_id
);
1233 dev_err(&flash
->spi
->dev
, "quad mode not supported\n");
1236 flash
->flash_read
= M25P80_QUAD
;
1239 /* Default commands */
1240 switch (flash
->flash_read
) {
1242 flash
->read_opcode
= OPCODE_QUAD_READ
;
1245 flash
->read_opcode
= OPCODE_FAST_READ
;
1248 flash
->read_opcode
= OPCODE_NORM_READ
;
1251 dev_err(&flash
->spi
->dev
, "No Read opcode defined\n");
1255 flash
->program_opcode
= OPCODE_PP
;
1257 if (info
->addr_width
)
1258 flash
->addr_width
= info
->addr_width
;
1259 else if (flash
->mtd
.size
> 0x1000000) {
1260 /* enable 4-byte addressing if the device exceeds 16MiB */
1261 flash
->addr_width
= 4;
1262 if (JEDEC_MFR(info
->jedec_id
) == CFI_MFR_AMD
) {
1263 /* Dedicated 4-byte command set */
1264 switch (flash
->flash_read
) {
1266 flash
->read_opcode
= OPCODE_QUAD_READ_4B
;
1269 flash
->read_opcode
= OPCODE_FAST_READ_4B
;
1272 flash
->read_opcode
= OPCODE_NORM_READ_4B
;
1275 flash
->program_opcode
= OPCODE_PP_4B
;
1276 /* No small sector erase for 4-byte command set */
1277 flash
->erase_opcode
= OPCODE_SE_4B
;
1278 flash
->mtd
.erasesize
= info
->sector_size
;
1280 set_4byte(flash
, info
->jedec_id
, 1);
1282 flash
->addr_width
= 3;
1285 dev_info(&spi
->dev
, "%s (%lld Kbytes)\n", id
->name
,
1286 (long long)flash
->mtd
.size
>> 10);
1288 pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) "
1289 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1291 (long long)flash
->mtd
.size
, (long long)(flash
->mtd
.size
>> 20),
1292 flash
->mtd
.erasesize
, flash
->mtd
.erasesize
/ 1024,
1293 flash
->mtd
.numeraseregions
);
1295 if (flash
->mtd
.numeraseregions
)
1296 for (i
= 0; i
< flash
->mtd
.numeraseregions
; i
++)
1297 pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, "
1298 ".erasesize = 0x%.8x (%uKiB), "
1299 ".numblocks = %d }\n",
1300 i
, (long long)flash
->mtd
.eraseregions
[i
].offset
,
1301 flash
->mtd
.eraseregions
[i
].erasesize
,
1302 flash
->mtd
.eraseregions
[i
].erasesize
/ 1024,
1303 flash
->mtd
.eraseregions
[i
].numblocks
);
1306 /* partitions should match sector boundaries; and it may be good to
1307 * use readonly partitions for writeprotected sectors (BP2..BP0).
1309 return mtd_device_parse_register(&flash
->mtd
, NULL
, &ppdata
,
1310 data
? data
->parts
: NULL
,
1311 data
? data
->nr_parts
: 0);
1315 static int m25p_remove(struct spi_device
*spi
)
1317 struct m25p
*flash
= spi_get_drvdata(spi
);
1319 /* Clean up MTD stuff. */
1320 return mtd_device_unregister(&flash
->mtd
);
1324 static struct spi_driver m25p80_driver
= {
1327 .owner
= THIS_MODULE
,
1329 .id_table
= m25p_ids
,
1330 .probe
= m25p_probe
,
1331 .remove
= m25p_remove
,
1333 /* REVISIT: many of these chips have deep power-down modes, which
1334 * should clearly be entered on suspend() to minimize power use.
1335 * And also when they're otherwise idle...
1339 module_spi_driver(m25p80_driver
);
1341 MODULE_LICENSE("GPL");
1342 MODULE_AUTHOR("Mike Lavender");
1343 MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");