fix a kmap leak in virtio_console
[linux/fpc-iii.git] / drivers / net / dsa / mv88e6xxx.c
blob17314ed9456d32c961aea31db10a650a2ffb1392
1 /*
2 * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
3 * Copyright (c) 2008 Marvell Semiconductor
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 */
11 #include <linux/delay.h>
12 #include <linux/jiffies.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/netdevice.h>
16 #include <linux/phy.h>
17 #include <net/dsa.h>
18 #include "mv88e6xxx.h"
20 /* If the switch's ADDR[4:0] strap pins are strapped to zero, it will
21 * use all 32 SMI bus addresses on its SMI bus, and all switch registers
22 * will be directly accessible on some {device address,register address}
23 * pair. If the ADDR[4:0] pins are not strapped to zero, the switch
24 * will only respond to SMI transactions to that specific address, and
25 * an indirect addressing mechanism needs to be used to access its
26 * registers.
28 static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
30 int ret;
31 int i;
33 for (i = 0; i < 16; i++) {
34 ret = mdiobus_read(bus, sw_addr, 0);
35 if (ret < 0)
36 return ret;
38 if ((ret & 0x8000) == 0)
39 return 0;
42 return -ETIMEDOUT;
45 int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, int reg)
47 int ret;
49 if (sw_addr == 0)
50 return mdiobus_read(bus, addr, reg);
52 /* Wait for the bus to become free. */
53 ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
54 if (ret < 0)
55 return ret;
57 /* Transmit the read command. */
58 ret = mdiobus_write(bus, sw_addr, 0, 0x9800 | (addr << 5) | reg);
59 if (ret < 0)
60 return ret;
62 /* Wait for the read command to complete. */
63 ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
64 if (ret < 0)
65 return ret;
67 /* Read the data. */
68 ret = mdiobus_read(bus, sw_addr, 1);
69 if (ret < 0)
70 return ret;
72 return ret & 0xffff;
75 int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
77 struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
78 int ret;
80 mutex_lock(&ps->smi_mutex);
81 ret = __mv88e6xxx_reg_read(ds->master_mii_bus,
82 ds->pd->sw_addr, addr, reg);
83 mutex_unlock(&ps->smi_mutex);
85 return ret;
88 int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
89 int reg, u16 val)
91 int ret;
93 if (sw_addr == 0)
94 return mdiobus_write(bus, addr, reg, val);
96 /* Wait for the bus to become free. */
97 ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
98 if (ret < 0)
99 return ret;
101 /* Transmit the data to write. */
102 ret = mdiobus_write(bus, sw_addr, 1, val);
103 if (ret < 0)
104 return ret;
106 /* Transmit the write command. */
107 ret = mdiobus_write(bus, sw_addr, 0, 0x9400 | (addr << 5) | reg);
108 if (ret < 0)
109 return ret;
111 /* Wait for the write command to complete. */
112 ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
113 if (ret < 0)
114 return ret;
116 return 0;
119 int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
121 struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
122 int ret;
124 mutex_lock(&ps->smi_mutex);
125 ret = __mv88e6xxx_reg_write(ds->master_mii_bus,
126 ds->pd->sw_addr, addr, reg, val);
127 mutex_unlock(&ps->smi_mutex);
129 return ret;
132 int mv88e6xxx_config_prio(struct dsa_switch *ds)
134 /* Configure the IP ToS mapping registers. */
135 REG_WRITE(REG_GLOBAL, 0x10, 0x0000);
136 REG_WRITE(REG_GLOBAL, 0x11, 0x0000);
137 REG_WRITE(REG_GLOBAL, 0x12, 0x5555);
138 REG_WRITE(REG_GLOBAL, 0x13, 0x5555);
139 REG_WRITE(REG_GLOBAL, 0x14, 0xaaaa);
140 REG_WRITE(REG_GLOBAL, 0x15, 0xaaaa);
141 REG_WRITE(REG_GLOBAL, 0x16, 0xffff);
142 REG_WRITE(REG_GLOBAL, 0x17, 0xffff);
144 /* Configure the IEEE 802.1p priority mapping register. */
145 REG_WRITE(REG_GLOBAL, 0x18, 0xfa41);
147 return 0;
150 int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
152 REG_WRITE(REG_GLOBAL, 0x01, (addr[0] << 8) | addr[1]);
153 REG_WRITE(REG_GLOBAL, 0x02, (addr[2] << 8) | addr[3]);
154 REG_WRITE(REG_GLOBAL, 0x03, (addr[4] << 8) | addr[5]);
156 return 0;
159 int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
161 int i;
162 int ret;
164 for (i = 0; i < 6; i++) {
165 int j;
167 /* Write the MAC address byte. */
168 REG_WRITE(REG_GLOBAL2, 0x0d, 0x8000 | (i << 8) | addr[i]);
170 /* Wait for the write to complete. */
171 for (j = 0; j < 16; j++) {
172 ret = REG_READ(REG_GLOBAL2, 0x0d);
173 if ((ret & 0x8000) == 0)
174 break;
176 if (j == 16)
177 return -ETIMEDOUT;
180 return 0;
183 int mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
185 if (addr >= 0)
186 return mv88e6xxx_reg_read(ds, addr, regnum);
187 return 0xffff;
190 int mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum, u16 val)
192 if (addr >= 0)
193 return mv88e6xxx_reg_write(ds, addr, regnum, val);
194 return 0;
197 #ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
198 static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
200 int ret;
201 unsigned long timeout;
203 ret = REG_READ(REG_GLOBAL, 0x04);
204 REG_WRITE(REG_GLOBAL, 0x04, ret & ~0x4000);
206 timeout = jiffies + 1 * HZ;
207 while (time_before(jiffies, timeout)) {
208 ret = REG_READ(REG_GLOBAL, 0x00);
209 usleep_range(1000, 2000);
210 if ((ret & 0xc000) != 0xc000)
211 return 0;
214 return -ETIMEDOUT;
217 static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
219 int ret;
220 unsigned long timeout;
222 ret = REG_READ(REG_GLOBAL, 0x04);
223 REG_WRITE(REG_GLOBAL, 0x04, ret | 0x4000);
225 timeout = jiffies + 1 * HZ;
226 while (time_before(jiffies, timeout)) {
227 ret = REG_READ(REG_GLOBAL, 0x00);
228 usleep_range(1000, 2000);
229 if ((ret & 0xc000) == 0xc000)
230 return 0;
233 return -ETIMEDOUT;
236 static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
238 struct mv88e6xxx_priv_state *ps;
240 ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
241 if (mutex_trylock(&ps->ppu_mutex)) {
242 struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;
244 if (mv88e6xxx_ppu_enable(ds) == 0)
245 ps->ppu_disabled = 0;
246 mutex_unlock(&ps->ppu_mutex);
250 static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
252 struct mv88e6xxx_priv_state *ps = (void *)_ps;
254 schedule_work(&ps->ppu_work);
257 static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
259 struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
260 int ret;
262 mutex_lock(&ps->ppu_mutex);
264 /* If the PHY polling unit is enabled, disable it so that
265 * we can access the PHY registers. If it was already
266 * disabled, cancel the timer that is going to re-enable
267 * it.
269 if (!ps->ppu_disabled) {
270 ret = mv88e6xxx_ppu_disable(ds);
271 if (ret < 0) {
272 mutex_unlock(&ps->ppu_mutex);
273 return ret;
275 ps->ppu_disabled = 1;
276 } else {
277 del_timer(&ps->ppu_timer);
278 ret = 0;
281 return ret;
284 static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
286 struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
288 /* Schedule a timer to re-enable the PHY polling unit. */
289 mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
290 mutex_unlock(&ps->ppu_mutex);
293 void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
295 struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
297 mutex_init(&ps->ppu_mutex);
298 INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
299 init_timer(&ps->ppu_timer);
300 ps->ppu_timer.data = (unsigned long)ps;
301 ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
304 int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
306 int ret;
308 ret = mv88e6xxx_ppu_access_get(ds);
309 if (ret >= 0) {
310 ret = mv88e6xxx_reg_read(ds, addr, regnum);
311 mv88e6xxx_ppu_access_put(ds);
314 return ret;
317 int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
318 int regnum, u16 val)
320 int ret;
322 ret = mv88e6xxx_ppu_access_get(ds);
323 if (ret >= 0) {
324 ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
325 mv88e6xxx_ppu_access_put(ds);
328 return ret;
330 #endif
332 void mv88e6xxx_poll_link(struct dsa_switch *ds)
334 int i;
336 for (i = 0; i < DSA_MAX_PORTS; i++) {
337 struct net_device *dev;
338 int uninitialized_var(port_status);
339 int link;
340 int speed;
341 int duplex;
342 int fc;
344 dev = ds->ports[i];
345 if (dev == NULL)
346 continue;
348 link = 0;
349 if (dev->flags & IFF_UP) {
350 port_status = mv88e6xxx_reg_read(ds, REG_PORT(i), 0x00);
351 if (port_status < 0)
352 continue;
354 link = !!(port_status & 0x0800);
357 if (!link) {
358 if (netif_carrier_ok(dev)) {
359 netdev_info(dev, "link down\n");
360 netif_carrier_off(dev);
362 continue;
365 switch (port_status & 0x0300) {
366 case 0x0000:
367 speed = 10;
368 break;
369 case 0x0100:
370 speed = 100;
371 break;
372 case 0x0200:
373 speed = 1000;
374 break;
375 default:
376 speed = -1;
377 break;
379 duplex = (port_status & 0x0400) ? 1 : 0;
380 fc = (port_status & 0x8000) ? 1 : 0;
382 if (!netif_carrier_ok(dev)) {
383 netdev_info(dev,
384 "link up, %d Mb/s, %s duplex, flow control %sabled\n",
385 speed,
386 duplex ? "full" : "half",
387 fc ? "en" : "dis");
388 netif_carrier_on(dev);
393 static int mv88e6xxx_stats_wait(struct dsa_switch *ds)
395 int ret;
396 int i;
398 for (i = 0; i < 10; i++) {
399 ret = REG_READ(REG_GLOBAL, 0x1d);
400 if ((ret & 0x8000) == 0)
401 return 0;
404 return -ETIMEDOUT;
407 static int mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
409 int ret;
411 /* Snapshot the hardware statistics counters for this port. */
412 REG_WRITE(REG_GLOBAL, 0x1d, 0xdc00 | port);
414 /* Wait for the snapshotting to complete. */
415 ret = mv88e6xxx_stats_wait(ds);
416 if (ret < 0)
417 return ret;
419 return 0;
422 static void mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
424 u32 _val;
425 int ret;
427 *val = 0;
429 ret = mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x1d, 0xcc00 | stat);
430 if (ret < 0)
431 return;
433 ret = mv88e6xxx_stats_wait(ds);
434 if (ret < 0)
435 return;
437 ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1e);
438 if (ret < 0)
439 return;
441 _val = ret << 16;
443 ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1f);
444 if (ret < 0)
445 return;
447 *val = _val | ret;
450 void mv88e6xxx_get_strings(struct dsa_switch *ds,
451 int nr_stats, struct mv88e6xxx_hw_stat *stats,
452 int port, uint8_t *data)
454 int i;
456 for (i = 0; i < nr_stats; i++) {
457 memcpy(data + i * ETH_GSTRING_LEN,
458 stats[i].string, ETH_GSTRING_LEN);
462 void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
463 int nr_stats, struct mv88e6xxx_hw_stat *stats,
464 int port, uint64_t *data)
466 struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
467 int ret;
468 int i;
470 mutex_lock(&ps->stats_mutex);
472 ret = mv88e6xxx_stats_snapshot(ds, port);
473 if (ret < 0) {
474 mutex_unlock(&ps->stats_mutex);
475 return;
478 /* Read each of the counters. */
479 for (i = 0; i < nr_stats; i++) {
480 struct mv88e6xxx_hw_stat *s = stats + i;
481 u32 low;
482 u32 high;
484 mv88e6xxx_stats_read(ds, s->reg, &low);
485 if (s->sizeof_stat == 8)
486 mv88e6xxx_stats_read(ds, s->reg + 1, &high);
487 else
488 high = 0;
490 data[i] = (((u64)high) << 32) | low;
493 mutex_unlock(&ps->stats_mutex);
496 static int __init mv88e6xxx_init(void)
498 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
499 register_switch_driver(&mv88e6131_switch_driver);
500 #endif
501 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
502 register_switch_driver(&mv88e6123_61_65_switch_driver);
503 #endif
504 return 0;
506 module_init(mv88e6xxx_init);
508 static void __exit mv88e6xxx_cleanup(void)
510 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6123_61_65)
511 unregister_switch_driver(&mv88e6123_61_65_switch_driver);
512 #endif
513 #if IS_ENABLED(CONFIG_NET_DSA_MV88E6131)
514 unregister_switch_driver(&mv88e6131_switch_driver);
515 #endif
517 module_exit(mv88e6xxx_cleanup);
519 MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
520 MODULE_DESCRIPTION("Driver for Marvell 88E6XXX ethernet switch chips");
521 MODULE_LICENSE("GPL");