fix a kmap leak in virtio_console
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath10k / htt_rx.c
blobfe8bd1b59f0e2651ee27b742087aedeb5e96a56c
1 /*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include "core.h"
19 #include "htc.h"
20 #include "htt.h"
21 #include "txrx.h"
22 #include "debug.h"
23 #include "trace.h"
25 #include <linux/log2.h>
27 /* slightly larger than one large A-MPDU */
28 #define HTT_RX_RING_SIZE_MIN 128
30 /* roughly 20 ms @ 1 Gbps of 1500B MSDUs */
31 #define HTT_RX_RING_SIZE_MAX 2048
33 #define HTT_RX_AVG_FRM_BYTES 1000
35 /* ms, very conservative */
36 #define HTT_RX_HOST_LATENCY_MAX_MS 20
38 /* ms, conservative */
39 #define HTT_RX_HOST_LATENCY_WORST_LIKELY_MS 10
41 /* when under memory pressure rx ring refill may fail and needs a retry */
42 #define HTT_RX_RING_REFILL_RETRY_MS 50
45 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb);
48 static int ath10k_htt_rx_ring_size(struct ath10k_htt *htt)
50 int size;
53 * It is expected that the host CPU will typically be able to
54 * service the rx indication from one A-MPDU before the rx
55 * indication from the subsequent A-MPDU happens, roughly 1-2 ms
56 * later. However, the rx ring should be sized very conservatively,
57 * to accomodate the worst reasonable delay before the host CPU
58 * services a rx indication interrupt.
60 * The rx ring need not be kept full of empty buffers. In theory,
61 * the htt host SW can dynamically track the low-water mark in the
62 * rx ring, and dynamically adjust the level to which the rx ring
63 * is filled with empty buffers, to dynamically meet the desired
64 * low-water mark.
66 * In contrast, it's difficult to resize the rx ring itself, once
67 * it's in use. Thus, the ring itself should be sized very
68 * conservatively, while the degree to which the ring is filled
69 * with empty buffers should be sized moderately conservatively.
72 /* 1e6 bps/mbps / 1e3 ms per sec = 1000 */
73 size =
74 htt->max_throughput_mbps +
75 1000 /
76 (8 * HTT_RX_AVG_FRM_BYTES) * HTT_RX_HOST_LATENCY_MAX_MS;
78 if (size < HTT_RX_RING_SIZE_MIN)
79 size = HTT_RX_RING_SIZE_MIN;
81 if (size > HTT_RX_RING_SIZE_MAX)
82 size = HTT_RX_RING_SIZE_MAX;
84 size = roundup_pow_of_two(size);
86 return size;
89 static int ath10k_htt_rx_ring_fill_level(struct ath10k_htt *htt)
91 int size;
93 /* 1e6 bps/mbps / 1e3 ms per sec = 1000 */
94 size =
95 htt->max_throughput_mbps *
96 1000 /
97 (8 * HTT_RX_AVG_FRM_BYTES) * HTT_RX_HOST_LATENCY_WORST_LIKELY_MS;
100 * Make sure the fill level is at least 1 less than the ring size.
101 * Leaving 1 element empty allows the SW to easily distinguish
102 * between a full ring vs. an empty ring.
104 if (size >= htt->rx_ring.size)
105 size = htt->rx_ring.size - 1;
107 return size;
110 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt)
112 struct sk_buff *skb;
113 struct ath10k_skb_cb *cb;
114 int i;
116 for (i = 0; i < htt->rx_ring.fill_cnt; i++) {
117 skb = htt->rx_ring.netbufs_ring[i];
118 cb = ATH10K_SKB_CB(skb);
119 dma_unmap_single(htt->ar->dev, cb->paddr,
120 skb->len + skb_tailroom(skb),
121 DMA_FROM_DEVICE);
122 dev_kfree_skb_any(skb);
125 htt->rx_ring.fill_cnt = 0;
128 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
130 struct htt_rx_desc *rx_desc;
131 struct sk_buff *skb;
132 dma_addr_t paddr;
133 int ret = 0, idx;
135 idx = __le32_to_cpu(*(htt->rx_ring.alloc_idx.vaddr));
136 while (num > 0) {
137 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN);
138 if (!skb) {
139 ret = -ENOMEM;
140 goto fail;
143 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN))
144 skb_pull(skb,
145 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) -
146 skb->data);
148 /* Clear rx_desc attention word before posting to Rx ring */
149 rx_desc = (struct htt_rx_desc *)skb->data;
150 rx_desc->attention.flags = __cpu_to_le32(0);
152 paddr = dma_map_single(htt->ar->dev, skb->data,
153 skb->len + skb_tailroom(skb),
154 DMA_FROM_DEVICE);
156 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) {
157 dev_kfree_skb_any(skb);
158 ret = -ENOMEM;
159 goto fail;
162 ATH10K_SKB_CB(skb)->paddr = paddr;
163 htt->rx_ring.netbufs_ring[idx] = skb;
164 htt->rx_ring.paddrs_ring[idx] = __cpu_to_le32(paddr);
165 htt->rx_ring.fill_cnt++;
167 num--;
168 idx++;
169 idx &= htt->rx_ring.size_mask;
172 fail:
173 *(htt->rx_ring.alloc_idx.vaddr) = __cpu_to_le32(idx);
174 return ret;
177 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num)
179 lockdep_assert_held(&htt->rx_ring.lock);
180 return __ath10k_htt_rx_ring_fill_n(htt, num);
183 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt)
185 int ret, num_deficit, num_to_fill;
187 /* Refilling the whole RX ring buffer proves to be a bad idea. The
188 * reason is RX may take up significant amount of CPU cycles and starve
189 * other tasks, e.g. TX on an ethernet device while acting as a bridge
190 * with ath10k wlan interface. This ended up with very poor performance
191 * once CPU the host system was overwhelmed with RX on ath10k.
193 * By limiting the number of refills the replenishing occurs
194 * progressively. This in turns makes use of the fact tasklets are
195 * processed in FIFO order. This means actual RX processing can starve
196 * out refilling. If there's not enough buffers on RX ring FW will not
197 * report RX until it is refilled with enough buffers. This
198 * automatically balances load wrt to CPU power.
200 * This probably comes at a cost of lower maximum throughput but
201 * improves the avarage and stability. */
202 spin_lock_bh(&htt->rx_ring.lock);
203 num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt;
204 num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit);
205 num_deficit -= num_to_fill;
206 ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill);
207 if (ret == -ENOMEM) {
209 * Failed to fill it to the desired level -
210 * we'll start a timer and try again next time.
211 * As long as enough buffers are left in the ring for
212 * another A-MPDU rx, no special recovery is needed.
214 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies +
215 msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS));
216 } else if (num_deficit > 0) {
217 tasklet_schedule(&htt->rx_replenish_task);
219 spin_unlock_bh(&htt->rx_ring.lock);
222 static void ath10k_htt_rx_ring_refill_retry(unsigned long arg)
224 struct ath10k_htt *htt = (struct ath10k_htt *)arg;
225 ath10k_htt_rx_msdu_buff_replenish(htt);
228 static unsigned ath10k_htt_rx_ring_elems(struct ath10k_htt *htt)
230 return (__le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr) -
231 htt->rx_ring.sw_rd_idx.msdu_payld) & htt->rx_ring.size_mask;
234 void ath10k_htt_rx_detach(struct ath10k_htt *htt)
236 int sw_rd_idx = htt->rx_ring.sw_rd_idx.msdu_payld;
238 del_timer_sync(&htt->rx_ring.refill_retry_timer);
239 tasklet_kill(&htt->rx_replenish_task);
241 while (sw_rd_idx != __le32_to_cpu(*(htt->rx_ring.alloc_idx.vaddr))) {
242 struct sk_buff *skb =
243 htt->rx_ring.netbufs_ring[sw_rd_idx];
244 struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb);
246 dma_unmap_single(htt->ar->dev, cb->paddr,
247 skb->len + skb_tailroom(skb),
248 DMA_FROM_DEVICE);
249 dev_kfree_skb_any(htt->rx_ring.netbufs_ring[sw_rd_idx]);
250 sw_rd_idx++;
251 sw_rd_idx &= htt->rx_ring.size_mask;
254 dma_free_coherent(htt->ar->dev,
255 (htt->rx_ring.size *
256 sizeof(htt->rx_ring.paddrs_ring)),
257 htt->rx_ring.paddrs_ring,
258 htt->rx_ring.base_paddr);
260 dma_free_coherent(htt->ar->dev,
261 sizeof(*htt->rx_ring.alloc_idx.vaddr),
262 htt->rx_ring.alloc_idx.vaddr,
263 htt->rx_ring.alloc_idx.paddr);
265 kfree(htt->rx_ring.netbufs_ring);
268 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt)
270 int idx;
271 struct sk_buff *msdu;
273 spin_lock_bh(&htt->rx_ring.lock);
275 if (ath10k_htt_rx_ring_elems(htt) == 0)
276 ath10k_warn("htt rx ring is empty!\n");
278 idx = htt->rx_ring.sw_rd_idx.msdu_payld;
279 msdu = htt->rx_ring.netbufs_ring[idx];
281 idx++;
282 idx &= htt->rx_ring.size_mask;
283 htt->rx_ring.sw_rd_idx.msdu_payld = idx;
284 htt->rx_ring.fill_cnt--;
286 spin_unlock_bh(&htt->rx_ring.lock);
287 return msdu;
290 static void ath10k_htt_rx_free_msdu_chain(struct sk_buff *skb)
292 struct sk_buff *next;
294 while (skb) {
295 next = skb->next;
296 dev_kfree_skb_any(skb);
297 skb = next;
301 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt,
302 u8 **fw_desc, int *fw_desc_len,
303 struct sk_buff **head_msdu,
304 struct sk_buff **tail_msdu)
306 int msdu_len, msdu_chaining = 0;
307 struct sk_buff *msdu;
308 struct htt_rx_desc *rx_desc;
310 if (ath10k_htt_rx_ring_elems(htt) == 0)
311 ath10k_warn("htt rx ring is empty!\n");
313 if (htt->rx_confused) {
314 ath10k_warn("htt is confused. refusing rx\n");
315 return 0;
318 msdu = *head_msdu = ath10k_htt_rx_netbuf_pop(htt);
319 while (msdu) {
320 int last_msdu, msdu_len_invalid, msdu_chained;
322 dma_unmap_single(htt->ar->dev,
323 ATH10K_SKB_CB(msdu)->paddr,
324 msdu->len + skb_tailroom(msdu),
325 DMA_FROM_DEVICE);
327 ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx: ",
328 msdu->data, msdu->len + skb_tailroom(msdu));
330 rx_desc = (struct htt_rx_desc *)msdu->data;
332 /* FIXME: we must report msdu payload since this is what caller
333 * expects now */
334 skb_put(msdu, offsetof(struct htt_rx_desc, msdu_payload));
335 skb_pull(msdu, offsetof(struct htt_rx_desc, msdu_payload));
338 * Sanity check - confirm the HW is finished filling in the
339 * rx data.
340 * If the HW and SW are working correctly, then it's guaranteed
341 * that the HW's MAC DMA is done before this point in the SW.
342 * To prevent the case that we handle a stale Rx descriptor,
343 * just assert for now until we have a way to recover.
345 if (!(__le32_to_cpu(rx_desc->attention.flags)
346 & RX_ATTENTION_FLAGS_MSDU_DONE)) {
347 ath10k_htt_rx_free_msdu_chain(*head_msdu);
348 *head_msdu = NULL;
349 msdu = NULL;
350 ath10k_err("htt rx stopped. cannot recover\n");
351 htt->rx_confused = true;
352 break;
356 * Copy the FW rx descriptor for this MSDU from the rx
357 * indication message into the MSDU's netbuf. HL uses the
358 * same rx indication message definition as LL, and simply
359 * appends new info (fields from the HW rx desc, and the
360 * MSDU payload itself). So, the offset into the rx
361 * indication message only has to account for the standard
362 * offset of the per-MSDU FW rx desc info within the
363 * message, and how many bytes of the per-MSDU FW rx desc
364 * info have already been consumed. (And the endianness of
365 * the host, since for a big-endian host, the rx ind
366 * message contents, including the per-MSDU rx desc bytes,
367 * were byteswapped during upload.)
369 if (*fw_desc_len > 0) {
370 rx_desc->fw_desc.info0 = **fw_desc;
372 * The target is expected to only provide the basic
373 * per-MSDU rx descriptors. Just to be sure, verify
374 * that the target has not attached extension data
375 * (e.g. LRO flow ID).
378 /* or more, if there's extension data */
379 (*fw_desc)++;
380 (*fw_desc_len)--;
381 } else {
383 * When an oversized AMSDU happened, FW will lost
384 * some of MSDU status - in this case, the FW
385 * descriptors provided will be less than the
386 * actual MSDUs inside this MPDU. Mark the FW
387 * descriptors so that it will still deliver to
388 * upper stack, if no CRC error for this MPDU.
390 * FIX THIS - the FW descriptors are actually for
391 * MSDUs in the end of this A-MSDU instead of the
392 * beginning.
394 rx_desc->fw_desc.info0 = 0;
397 msdu_len_invalid = !!(__le32_to_cpu(rx_desc->attention.flags)
398 & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR |
399 RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR));
400 msdu_len = MS(__le32_to_cpu(rx_desc->msdu_start.info0),
401 RX_MSDU_START_INFO0_MSDU_LENGTH);
402 msdu_chained = rx_desc->frag_info.ring2_more_count;
404 if (msdu_len_invalid)
405 msdu_len = 0;
407 skb_trim(msdu, 0);
408 skb_put(msdu, min(msdu_len, HTT_RX_MSDU_SIZE));
409 msdu_len -= msdu->len;
411 /* FIXME: Do chained buffers include htt_rx_desc or not? */
412 while (msdu_chained--) {
413 struct sk_buff *next = ath10k_htt_rx_netbuf_pop(htt);
415 dma_unmap_single(htt->ar->dev,
416 ATH10K_SKB_CB(next)->paddr,
417 next->len + skb_tailroom(next),
418 DMA_FROM_DEVICE);
420 ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx: ",
421 next->data,
422 next->len + skb_tailroom(next));
424 skb_trim(next, 0);
425 skb_put(next, min(msdu_len, HTT_RX_BUF_SIZE));
426 msdu_len -= next->len;
428 msdu->next = next;
429 msdu = next;
430 msdu_chaining = 1;
433 if (msdu_len > 0) {
434 /* This may suggest FW bug? */
435 ath10k_warn("htt rx msdu len not consumed (%d)\n",
436 msdu_len);
439 last_msdu = __le32_to_cpu(rx_desc->msdu_end.info0) &
440 RX_MSDU_END_INFO0_LAST_MSDU;
442 if (last_msdu) {
443 msdu->next = NULL;
444 break;
445 } else {
446 struct sk_buff *next = ath10k_htt_rx_netbuf_pop(htt);
447 msdu->next = next;
448 msdu = next;
451 *tail_msdu = msdu;
454 * Don't refill the ring yet.
456 * First, the elements popped here are still in use - it is not
457 * safe to overwrite them until the matching call to
458 * mpdu_desc_list_next. Second, for efficiency it is preferable to
459 * refill the rx ring with 1 PPDU's worth of rx buffers (something
460 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers
461 * (something like 3 buffers). Consequently, we'll rely on the txrx
462 * SW to tell us when it is done pulling all the PPDU's rx buffers
463 * out of the rx ring, and then refill it just once.
466 return msdu_chaining;
469 static void ath10k_htt_rx_replenish_task(unsigned long ptr)
471 struct ath10k_htt *htt = (struct ath10k_htt *)ptr;
472 ath10k_htt_rx_msdu_buff_replenish(htt);
475 int ath10k_htt_rx_attach(struct ath10k_htt *htt)
477 dma_addr_t paddr;
478 void *vaddr;
479 struct timer_list *timer = &htt->rx_ring.refill_retry_timer;
481 htt->rx_ring.size = ath10k_htt_rx_ring_size(htt);
482 if (!is_power_of_2(htt->rx_ring.size)) {
483 ath10k_warn("htt rx ring size is not power of 2\n");
484 return -EINVAL;
487 htt->rx_ring.size_mask = htt->rx_ring.size - 1;
490 * Set the initial value for the level to which the rx ring
491 * should be filled, based on the max throughput and the
492 * worst likely latency for the host to fill the rx ring
493 * with new buffers. In theory, this fill level can be
494 * dynamically adjusted from the initial value set here, to
495 * reflect the actual host latency rather than a
496 * conservative assumption about the host latency.
498 htt->rx_ring.fill_level = ath10k_htt_rx_ring_fill_level(htt);
500 htt->rx_ring.netbufs_ring =
501 kmalloc(htt->rx_ring.size * sizeof(struct sk_buff *),
502 GFP_KERNEL);
503 if (!htt->rx_ring.netbufs_ring)
504 goto err_netbuf;
506 vaddr = dma_alloc_coherent(htt->ar->dev,
507 (htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring)),
508 &paddr, GFP_DMA);
509 if (!vaddr)
510 goto err_dma_ring;
512 htt->rx_ring.paddrs_ring = vaddr;
513 htt->rx_ring.base_paddr = paddr;
515 vaddr = dma_alloc_coherent(htt->ar->dev,
516 sizeof(*htt->rx_ring.alloc_idx.vaddr),
517 &paddr, GFP_DMA);
518 if (!vaddr)
519 goto err_dma_idx;
521 htt->rx_ring.alloc_idx.vaddr = vaddr;
522 htt->rx_ring.alloc_idx.paddr = paddr;
523 htt->rx_ring.sw_rd_idx.msdu_payld = 0;
524 *htt->rx_ring.alloc_idx.vaddr = 0;
526 /* Initialize the Rx refill retry timer */
527 setup_timer(timer, ath10k_htt_rx_ring_refill_retry, (unsigned long)htt);
529 spin_lock_init(&htt->rx_ring.lock);
531 htt->rx_ring.fill_cnt = 0;
532 if (__ath10k_htt_rx_ring_fill_n(htt, htt->rx_ring.fill_level))
533 goto err_fill_ring;
535 tasklet_init(&htt->rx_replenish_task, ath10k_htt_rx_replenish_task,
536 (unsigned long)htt);
538 ath10k_dbg(ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n",
539 htt->rx_ring.size, htt->rx_ring.fill_level);
540 return 0;
542 err_fill_ring:
543 ath10k_htt_rx_ring_free(htt);
544 dma_free_coherent(htt->ar->dev,
545 sizeof(*htt->rx_ring.alloc_idx.vaddr),
546 htt->rx_ring.alloc_idx.vaddr,
547 htt->rx_ring.alloc_idx.paddr);
548 err_dma_idx:
549 dma_free_coherent(htt->ar->dev,
550 (htt->rx_ring.size *
551 sizeof(htt->rx_ring.paddrs_ring)),
552 htt->rx_ring.paddrs_ring,
553 htt->rx_ring.base_paddr);
554 err_dma_ring:
555 kfree(htt->rx_ring.netbufs_ring);
556 err_netbuf:
557 return -ENOMEM;
560 static int ath10k_htt_rx_crypto_param_len(enum htt_rx_mpdu_encrypt_type type)
562 switch (type) {
563 case HTT_RX_MPDU_ENCRYPT_WEP40:
564 case HTT_RX_MPDU_ENCRYPT_WEP104:
565 return 4;
566 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
567 case HTT_RX_MPDU_ENCRYPT_WEP128: /* not tested */
568 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
569 case HTT_RX_MPDU_ENCRYPT_WAPI: /* not tested */
570 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
571 return 8;
572 case HTT_RX_MPDU_ENCRYPT_NONE:
573 return 0;
576 ath10k_warn("unknown encryption type %d\n", type);
577 return 0;
580 static int ath10k_htt_rx_crypto_tail_len(enum htt_rx_mpdu_encrypt_type type)
582 switch (type) {
583 case HTT_RX_MPDU_ENCRYPT_NONE:
584 case HTT_RX_MPDU_ENCRYPT_WEP40:
585 case HTT_RX_MPDU_ENCRYPT_WEP104:
586 case HTT_RX_MPDU_ENCRYPT_WEP128:
587 case HTT_RX_MPDU_ENCRYPT_WAPI:
588 return 0;
589 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC:
590 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA:
591 return 4;
592 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2:
593 return 8;
596 ath10k_warn("unknown encryption type %d\n", type);
597 return 0;
600 /* Applies for first msdu in chain, before altering it. */
601 static struct ieee80211_hdr *ath10k_htt_rx_skb_get_hdr(struct sk_buff *skb)
603 struct htt_rx_desc *rxd;
604 enum rx_msdu_decap_format fmt;
606 rxd = (void *)skb->data - sizeof(*rxd);
607 fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
608 RX_MSDU_START_INFO1_DECAP_FORMAT);
610 if (fmt == RX_MSDU_DECAP_RAW)
611 return (void *)skb->data;
612 else
613 return (void *)skb->data - RX_HTT_HDR_STATUS_LEN;
616 /* This function only applies for first msdu in an msdu chain */
617 static bool ath10k_htt_rx_hdr_is_amsdu(struct ieee80211_hdr *hdr)
619 if (ieee80211_is_data_qos(hdr->frame_control)) {
620 u8 *qc = ieee80211_get_qos_ctl(hdr);
621 if (qc[0] & 0x80)
622 return true;
624 return false;
627 struct rfc1042_hdr {
628 u8 llc_dsap;
629 u8 llc_ssap;
630 u8 llc_ctrl;
631 u8 snap_oui[3];
632 __be16 snap_type;
633 } __packed;
635 struct amsdu_subframe_hdr {
636 u8 dst[ETH_ALEN];
637 u8 src[ETH_ALEN];
638 __be16 len;
639 } __packed;
641 static void ath10k_htt_rx_amsdu(struct ath10k_htt *htt,
642 struct htt_rx_info *info)
644 struct htt_rx_desc *rxd;
645 struct sk_buff *first;
646 struct sk_buff *skb = info->skb;
647 enum rx_msdu_decap_format fmt;
648 enum htt_rx_mpdu_encrypt_type enctype;
649 struct ieee80211_hdr *hdr;
650 u8 hdr_buf[64], addr[ETH_ALEN], *qos;
651 unsigned int hdr_len;
653 rxd = (void *)skb->data - sizeof(*rxd);
654 enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
655 RX_MPDU_START_INFO0_ENCRYPT_TYPE);
657 hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status;
658 hdr_len = ieee80211_hdrlen(hdr->frame_control);
659 memcpy(hdr_buf, hdr, hdr_len);
660 hdr = (struct ieee80211_hdr *)hdr_buf;
662 first = skb;
663 while (skb) {
664 void *decap_hdr;
665 int len;
667 rxd = (void *)skb->data - sizeof(*rxd);
668 fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
669 RX_MSDU_START_INFO1_DECAP_FORMAT);
670 decap_hdr = (void *)rxd->rx_hdr_status;
672 skb->ip_summed = ath10k_htt_rx_get_csum_state(skb);
674 /* First frame in an A-MSDU chain has more decapped data. */
675 if (skb == first) {
676 len = round_up(ieee80211_hdrlen(hdr->frame_control), 4);
677 len += round_up(ath10k_htt_rx_crypto_param_len(enctype),
679 decap_hdr += len;
682 switch (fmt) {
683 case RX_MSDU_DECAP_RAW:
684 /* remove trailing FCS */
685 skb_trim(skb, skb->len - FCS_LEN);
686 break;
687 case RX_MSDU_DECAP_NATIVE_WIFI:
688 /* pull decapped header and copy DA */
689 hdr = (struct ieee80211_hdr *)skb->data;
690 hdr_len = ieee80211_hdrlen(hdr->frame_control);
691 memcpy(addr, ieee80211_get_DA(hdr), ETH_ALEN);
692 skb_pull(skb, hdr_len);
694 /* push original 802.11 header */
695 hdr = (struct ieee80211_hdr *)hdr_buf;
696 hdr_len = ieee80211_hdrlen(hdr->frame_control);
697 memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
699 /* original A-MSDU header has the bit set but we're
700 * not including A-MSDU subframe header */
701 hdr = (struct ieee80211_hdr *)skb->data;
702 qos = ieee80211_get_qos_ctl(hdr);
703 qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
705 /* original 802.11 header has a different DA */
706 memcpy(ieee80211_get_DA(hdr), addr, ETH_ALEN);
707 break;
708 case RX_MSDU_DECAP_ETHERNET2_DIX:
709 /* strip ethernet header and insert decapped 802.11
710 * header, amsdu subframe header and rfc1042 header */
712 len = 0;
713 len += sizeof(struct rfc1042_hdr);
714 len += sizeof(struct amsdu_subframe_hdr);
716 skb_pull(skb, sizeof(struct ethhdr));
717 memcpy(skb_push(skb, len), decap_hdr, len);
718 memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
719 break;
720 case RX_MSDU_DECAP_8023_SNAP_LLC:
721 /* insert decapped 802.11 header making a singly
722 * A-MSDU */
723 memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
724 break;
727 info->skb = skb;
728 info->encrypt_type = enctype;
729 skb = skb->next;
730 info->skb->next = NULL;
732 if (skb)
733 info->amsdu_more = true;
735 ath10k_process_rx(htt->ar, info);
738 /* FIXME: It might be nice to re-assemble the A-MSDU when there's a
739 * monitor interface active for sniffing purposes. */
742 static void ath10k_htt_rx_msdu(struct ath10k_htt *htt, struct htt_rx_info *info)
744 struct sk_buff *skb = info->skb;
745 struct htt_rx_desc *rxd;
746 struct ieee80211_hdr *hdr;
747 enum rx_msdu_decap_format fmt;
748 enum htt_rx_mpdu_encrypt_type enctype;
749 int hdr_len;
750 void *rfc1042;
752 /* This shouldn't happen. If it does than it may be a FW bug. */
753 if (skb->next) {
754 ath10k_warn("received chained non A-MSDU frame\n");
755 ath10k_htt_rx_free_msdu_chain(skb->next);
756 skb->next = NULL;
759 rxd = (void *)skb->data - sizeof(*rxd);
760 fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
761 RX_MSDU_START_INFO1_DECAP_FORMAT);
762 enctype = MS(__le32_to_cpu(rxd->mpdu_start.info0),
763 RX_MPDU_START_INFO0_ENCRYPT_TYPE);
764 hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status;
765 hdr_len = ieee80211_hdrlen(hdr->frame_control);
767 skb->ip_summed = ath10k_htt_rx_get_csum_state(skb);
769 switch (fmt) {
770 case RX_MSDU_DECAP_RAW:
771 /* remove trailing FCS */
772 skb_trim(skb, skb->len - FCS_LEN);
773 break;
774 case RX_MSDU_DECAP_NATIVE_WIFI:
775 /* Pull decapped header */
776 hdr = (struct ieee80211_hdr *)skb->data;
777 hdr_len = ieee80211_hdrlen(hdr->frame_control);
778 skb_pull(skb, hdr_len);
780 /* Push original header */
781 hdr = (struct ieee80211_hdr *)rxd->rx_hdr_status;
782 hdr_len = ieee80211_hdrlen(hdr->frame_control);
783 memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
784 break;
785 case RX_MSDU_DECAP_ETHERNET2_DIX:
786 /* strip ethernet header and insert decapped 802.11 header and
787 * rfc1042 header */
789 rfc1042 = hdr;
790 rfc1042 += roundup(hdr_len, 4);
791 rfc1042 += roundup(ath10k_htt_rx_crypto_param_len(enctype), 4);
793 skb_pull(skb, sizeof(struct ethhdr));
794 memcpy(skb_push(skb, sizeof(struct rfc1042_hdr)),
795 rfc1042, sizeof(struct rfc1042_hdr));
796 memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
797 break;
798 case RX_MSDU_DECAP_8023_SNAP_LLC:
799 /* remove A-MSDU subframe header and insert
800 * decapped 802.11 header. rfc1042 header is already there */
802 skb_pull(skb, sizeof(struct amsdu_subframe_hdr));
803 memcpy(skb_push(skb, hdr_len), hdr, hdr_len);
804 break;
807 info->skb = skb;
808 info->encrypt_type = enctype;
810 ath10k_process_rx(htt->ar, info);
813 static bool ath10k_htt_rx_has_decrypt_err(struct sk_buff *skb)
815 struct htt_rx_desc *rxd;
816 u32 flags;
818 rxd = (void *)skb->data - sizeof(*rxd);
819 flags = __le32_to_cpu(rxd->attention.flags);
821 if (flags & RX_ATTENTION_FLAGS_DECRYPT_ERR)
822 return true;
824 return false;
827 static bool ath10k_htt_rx_has_fcs_err(struct sk_buff *skb)
829 struct htt_rx_desc *rxd;
830 u32 flags;
832 rxd = (void *)skb->data - sizeof(*rxd);
833 flags = __le32_to_cpu(rxd->attention.flags);
835 if (flags & RX_ATTENTION_FLAGS_FCS_ERR)
836 return true;
838 return false;
841 static bool ath10k_htt_rx_has_mic_err(struct sk_buff *skb)
843 struct htt_rx_desc *rxd;
844 u32 flags;
846 rxd = (void *)skb->data - sizeof(*rxd);
847 flags = __le32_to_cpu(rxd->attention.flags);
849 if (flags & RX_ATTENTION_FLAGS_TKIP_MIC_ERR)
850 return true;
852 return false;
855 static int ath10k_htt_rx_get_csum_state(struct sk_buff *skb)
857 struct htt_rx_desc *rxd;
858 u32 flags, info;
859 bool is_ip4, is_ip6;
860 bool is_tcp, is_udp;
861 bool ip_csum_ok, tcpudp_csum_ok;
863 rxd = (void *)skb->data - sizeof(*rxd);
864 flags = __le32_to_cpu(rxd->attention.flags);
865 info = __le32_to_cpu(rxd->msdu_start.info1);
867 is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO);
868 is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO);
869 is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO);
870 is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO);
871 ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL);
872 tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL);
874 if (!is_ip4 && !is_ip6)
875 return CHECKSUM_NONE;
876 if (!is_tcp && !is_udp)
877 return CHECKSUM_NONE;
878 if (!ip_csum_ok)
879 return CHECKSUM_NONE;
880 if (!tcpudp_csum_ok)
881 return CHECKSUM_NONE;
883 return CHECKSUM_UNNECESSARY;
886 static void ath10k_htt_rx_handler(struct ath10k_htt *htt,
887 struct htt_rx_indication *rx)
889 struct htt_rx_info info;
890 struct htt_rx_indication_mpdu_range *mpdu_ranges;
891 struct ieee80211_hdr *hdr;
892 int num_mpdu_ranges;
893 int fw_desc_len;
894 u8 *fw_desc;
895 int i, j;
897 memset(&info, 0, sizeof(info));
899 fw_desc_len = __le16_to_cpu(rx->prefix.fw_rx_desc_bytes);
900 fw_desc = (u8 *)&rx->fw_desc;
902 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1),
903 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES);
904 mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx);
906 ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ",
907 rx, sizeof(*rx) +
908 (sizeof(struct htt_rx_indication_mpdu_range) *
909 num_mpdu_ranges));
911 for (i = 0; i < num_mpdu_ranges; i++) {
912 info.status = mpdu_ranges[i].mpdu_range_status;
914 for (j = 0; j < mpdu_ranges[i].mpdu_count; j++) {
915 struct sk_buff *msdu_head, *msdu_tail;
916 enum htt_rx_mpdu_status status;
917 int msdu_chaining;
919 msdu_head = NULL;
920 msdu_tail = NULL;
921 msdu_chaining = ath10k_htt_rx_amsdu_pop(htt,
922 &fw_desc,
923 &fw_desc_len,
924 &msdu_head,
925 &msdu_tail);
927 if (!msdu_head) {
928 ath10k_warn("htt rx no data!\n");
929 continue;
932 if (msdu_head->len == 0) {
933 ath10k_dbg(ATH10K_DBG_HTT,
934 "htt rx dropping due to zero-len\n");
935 ath10k_htt_rx_free_msdu_chain(msdu_head);
936 continue;
939 if (ath10k_htt_rx_has_decrypt_err(msdu_head)) {
940 ath10k_htt_rx_free_msdu_chain(msdu_head);
941 continue;
944 status = info.status;
946 /* Skip mgmt frames while we handle this in WMI */
947 if (status == HTT_RX_IND_MPDU_STATUS_MGMT_CTRL) {
948 ath10k_htt_rx_free_msdu_chain(msdu_head);
949 continue;
952 if (status != HTT_RX_IND_MPDU_STATUS_OK &&
953 status != HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR &&
954 !htt->ar->monitor_enabled) {
955 ath10k_dbg(ATH10K_DBG_HTT,
956 "htt rx ignoring frame w/ status %d\n",
957 status);
958 ath10k_htt_rx_free_msdu_chain(msdu_head);
959 continue;
962 if (test_bit(ATH10K_CAC_RUNNING, &htt->ar->dev_flags)) {
963 ath10k_htt_rx_free_msdu_chain(msdu_head);
964 continue;
967 /* FIXME: we do not support chaining yet.
968 * this needs investigation */
969 if (msdu_chaining) {
970 ath10k_warn("msdu_chaining is true\n");
971 ath10k_htt_rx_free_msdu_chain(msdu_head);
972 continue;
975 info.skb = msdu_head;
976 info.fcs_err = ath10k_htt_rx_has_fcs_err(msdu_head);
977 info.mic_err = ath10k_htt_rx_has_mic_err(msdu_head);
978 info.signal = ATH10K_DEFAULT_NOISE_FLOOR;
979 info.signal += rx->ppdu.combined_rssi;
981 info.rate.info0 = rx->ppdu.info0;
982 info.rate.info1 = __le32_to_cpu(rx->ppdu.info1);
983 info.rate.info2 = __le32_to_cpu(rx->ppdu.info2);
985 hdr = ath10k_htt_rx_skb_get_hdr(msdu_head);
987 if (ath10k_htt_rx_hdr_is_amsdu(hdr))
988 ath10k_htt_rx_amsdu(htt, &info);
989 else
990 ath10k_htt_rx_msdu(htt, &info);
994 tasklet_schedule(&htt->rx_replenish_task);
997 static void ath10k_htt_rx_frag_handler(struct ath10k_htt *htt,
998 struct htt_rx_fragment_indication *frag)
1000 struct sk_buff *msdu_head, *msdu_tail;
1001 struct htt_rx_desc *rxd;
1002 enum rx_msdu_decap_format fmt;
1003 struct htt_rx_info info = {};
1004 struct ieee80211_hdr *hdr;
1005 int msdu_chaining;
1006 bool tkip_mic_err;
1007 bool decrypt_err;
1008 u8 *fw_desc;
1009 int fw_desc_len, hdrlen, paramlen;
1010 int trim;
1012 fw_desc_len = __le16_to_cpu(frag->fw_rx_desc_bytes);
1013 fw_desc = (u8 *)frag->fw_msdu_rx_desc;
1015 msdu_head = NULL;
1016 msdu_tail = NULL;
1017 msdu_chaining = ath10k_htt_rx_amsdu_pop(htt, &fw_desc, &fw_desc_len,
1018 &msdu_head, &msdu_tail);
1020 ath10k_dbg(ATH10K_DBG_HTT_DUMP, "htt rx frag ahead\n");
1022 if (!msdu_head) {
1023 ath10k_warn("htt rx frag no data\n");
1024 return;
1027 if (msdu_chaining || msdu_head != msdu_tail) {
1028 ath10k_warn("aggregation with fragmentation?!\n");
1029 ath10k_htt_rx_free_msdu_chain(msdu_head);
1030 return;
1033 /* FIXME: implement signal strength */
1035 hdr = (struct ieee80211_hdr *)msdu_head->data;
1036 rxd = (void *)msdu_head->data - sizeof(*rxd);
1037 tkip_mic_err = !!(__le32_to_cpu(rxd->attention.flags) &
1038 RX_ATTENTION_FLAGS_TKIP_MIC_ERR);
1039 decrypt_err = !!(__le32_to_cpu(rxd->attention.flags) &
1040 RX_ATTENTION_FLAGS_DECRYPT_ERR);
1041 fmt = MS(__le32_to_cpu(rxd->msdu_start.info1),
1042 RX_MSDU_START_INFO1_DECAP_FORMAT);
1044 if (fmt != RX_MSDU_DECAP_RAW) {
1045 ath10k_warn("we dont support non-raw fragmented rx yet\n");
1046 dev_kfree_skb_any(msdu_head);
1047 goto end;
1050 info.skb = msdu_head;
1051 info.status = HTT_RX_IND_MPDU_STATUS_OK;
1052 info.encrypt_type = MS(__le32_to_cpu(rxd->mpdu_start.info0),
1053 RX_MPDU_START_INFO0_ENCRYPT_TYPE);
1054 info.skb->ip_summed = ath10k_htt_rx_get_csum_state(info.skb);
1056 if (tkip_mic_err) {
1057 ath10k_warn("tkip mic error\n");
1058 info.status = HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR;
1061 if (decrypt_err) {
1062 ath10k_warn("decryption err in fragmented rx\n");
1063 dev_kfree_skb_any(info.skb);
1064 goto end;
1067 if (info.encrypt_type != HTT_RX_MPDU_ENCRYPT_NONE) {
1068 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1069 paramlen = ath10k_htt_rx_crypto_param_len(info.encrypt_type);
1071 /* It is more efficient to move the header than the payload */
1072 memmove((void *)info.skb->data + paramlen,
1073 (void *)info.skb->data,
1074 hdrlen);
1075 skb_pull(info.skb, paramlen);
1076 hdr = (struct ieee80211_hdr *)info.skb->data;
1079 /* remove trailing FCS */
1080 trim = 4;
1082 /* remove crypto trailer */
1083 trim += ath10k_htt_rx_crypto_tail_len(info.encrypt_type);
1085 /* last fragment of TKIP frags has MIC */
1086 if (!ieee80211_has_morefrags(hdr->frame_control) &&
1087 info.encrypt_type == HTT_RX_MPDU_ENCRYPT_TKIP_WPA)
1088 trim += 8;
1090 if (trim > info.skb->len) {
1091 ath10k_warn("htt rx fragment: trailer longer than the frame itself? drop\n");
1092 dev_kfree_skb_any(info.skb);
1093 goto end;
1096 skb_trim(info.skb, info.skb->len - trim);
1098 ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt frag mpdu: ",
1099 info.skb->data, info.skb->len);
1100 ath10k_process_rx(htt->ar, &info);
1102 end:
1103 if (fw_desc_len > 0) {
1104 ath10k_dbg(ATH10K_DBG_HTT,
1105 "expecting more fragmented rx in one indication %d\n",
1106 fw_desc_len);
1110 void ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb)
1112 struct ath10k_htt *htt = &ar->htt;
1113 struct htt_resp *resp = (struct htt_resp *)skb->data;
1115 /* confirm alignment */
1116 if (!IS_ALIGNED((unsigned long)skb->data, 4))
1117 ath10k_warn("unaligned htt message, expect trouble\n");
1119 ath10k_dbg(ATH10K_DBG_HTT, "HTT RX, msg_type: 0x%0X\n",
1120 resp->hdr.msg_type);
1121 switch (resp->hdr.msg_type) {
1122 case HTT_T2H_MSG_TYPE_VERSION_CONF: {
1123 htt->target_version_major = resp->ver_resp.major;
1124 htt->target_version_minor = resp->ver_resp.minor;
1125 complete(&htt->target_version_received);
1126 break;
1128 case HTT_T2H_MSG_TYPE_RX_IND: {
1129 ath10k_htt_rx_handler(htt, &resp->rx_ind);
1130 break;
1132 case HTT_T2H_MSG_TYPE_PEER_MAP: {
1133 struct htt_peer_map_event ev = {
1134 .vdev_id = resp->peer_map.vdev_id,
1135 .peer_id = __le16_to_cpu(resp->peer_map.peer_id),
1137 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr));
1138 ath10k_peer_map_event(htt, &ev);
1139 break;
1141 case HTT_T2H_MSG_TYPE_PEER_UNMAP: {
1142 struct htt_peer_unmap_event ev = {
1143 .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id),
1145 ath10k_peer_unmap_event(htt, &ev);
1146 break;
1148 case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: {
1149 struct htt_tx_done tx_done = {};
1150 int status = __le32_to_cpu(resp->mgmt_tx_completion.status);
1152 tx_done.msdu_id =
1153 __le32_to_cpu(resp->mgmt_tx_completion.desc_id);
1155 switch (status) {
1156 case HTT_MGMT_TX_STATUS_OK:
1157 break;
1158 case HTT_MGMT_TX_STATUS_RETRY:
1159 tx_done.no_ack = true;
1160 break;
1161 case HTT_MGMT_TX_STATUS_DROP:
1162 tx_done.discard = true;
1163 break;
1166 ath10k_txrx_tx_unref(htt, &tx_done);
1167 break;
1169 case HTT_T2H_MSG_TYPE_TX_COMPL_IND: {
1170 struct htt_tx_done tx_done = {};
1171 int status = MS(resp->data_tx_completion.flags,
1172 HTT_DATA_TX_STATUS);
1173 __le16 msdu_id;
1174 int i;
1176 switch (status) {
1177 case HTT_DATA_TX_STATUS_NO_ACK:
1178 tx_done.no_ack = true;
1179 break;
1180 case HTT_DATA_TX_STATUS_OK:
1181 break;
1182 case HTT_DATA_TX_STATUS_DISCARD:
1183 case HTT_DATA_TX_STATUS_POSTPONE:
1184 case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL:
1185 tx_done.discard = true;
1186 break;
1187 default:
1188 ath10k_warn("unhandled tx completion status %d\n",
1189 status);
1190 tx_done.discard = true;
1191 break;
1194 ath10k_dbg(ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n",
1195 resp->data_tx_completion.num_msdus);
1197 for (i = 0; i < resp->data_tx_completion.num_msdus; i++) {
1198 msdu_id = resp->data_tx_completion.msdus[i];
1199 tx_done.msdu_id = __le16_to_cpu(msdu_id);
1200 ath10k_txrx_tx_unref(htt, &tx_done);
1202 break;
1204 case HTT_T2H_MSG_TYPE_SEC_IND: {
1205 struct ath10k *ar = htt->ar;
1206 struct htt_security_indication *ev = &resp->security_indication;
1208 ath10k_dbg(ATH10K_DBG_HTT,
1209 "sec ind peer_id %d unicast %d type %d\n",
1210 __le16_to_cpu(ev->peer_id),
1211 !!(ev->flags & HTT_SECURITY_IS_UNICAST),
1212 MS(ev->flags, HTT_SECURITY_TYPE));
1213 complete(&ar->install_key_done);
1214 break;
1216 case HTT_T2H_MSG_TYPE_RX_FRAG_IND: {
1217 ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
1218 skb->data, skb->len);
1219 ath10k_htt_rx_frag_handler(htt, &resp->rx_frag_ind);
1220 break;
1222 case HTT_T2H_MSG_TYPE_TEST:
1223 /* FIX THIS */
1224 break;
1225 case HTT_T2H_MSG_TYPE_STATS_CONF:
1226 trace_ath10k_htt_stats(skb->data, skb->len);
1227 break;
1228 case HTT_T2H_MSG_TYPE_TX_INSPECT_IND:
1229 case HTT_T2H_MSG_TYPE_RX_ADDBA:
1230 case HTT_T2H_MSG_TYPE_RX_DELBA:
1231 case HTT_T2H_MSG_TYPE_RX_FLUSH:
1232 default:
1233 ath10k_dbg(ATH10K_DBG_HTT, "htt event (%d) not handled\n",
1234 resp->hdr.msg_type);
1235 ath10k_dbg_dump(ATH10K_DBG_HTT_DUMP, NULL, "htt event: ",
1236 skb->data, skb->len);
1237 break;
1240 /* Free the indication buffer */
1241 dev_kfree_skb_any(skb);