fix a kmap leak in virtio_console
[linux/fpc-iii.git] / drivers / net / wireless / iwlwifi / dvm / calib.c
blobbe1086c87157c158834d622546e8bfc2b25b7dff
1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
6 * GPL LICENSE SUMMARY
8 * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
24 * The full GNU General Public License is included in this distribution
25 * in the file called COPYING.
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 * BSD LICENSE
33 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
63 #include <linux/slab.h>
64 #include <net/mac80211.h>
66 #include "iwl-trans.h"
68 #include "dev.h"
69 #include "calib.h"
70 #include "agn.h"
72 /*****************************************************************************
73 * INIT calibrations framework
74 *****************************************************************************/
76 /* Opaque calibration results */
77 struct iwl_calib_result {
78 struct list_head list;
79 size_t cmd_len;
80 struct iwl_calib_hdr hdr;
81 /* data follows */
84 struct statistics_general_data {
85 u32 beacon_silence_rssi_a;
86 u32 beacon_silence_rssi_b;
87 u32 beacon_silence_rssi_c;
88 u32 beacon_energy_a;
89 u32 beacon_energy_b;
90 u32 beacon_energy_c;
93 int iwl_send_calib_results(struct iwl_priv *priv)
95 struct iwl_host_cmd hcmd = {
96 .id = REPLY_PHY_CALIBRATION_CMD,
97 .flags = CMD_SYNC,
99 struct iwl_calib_result *res;
101 list_for_each_entry(res, &priv->calib_results, list) {
102 int ret;
104 hcmd.len[0] = res->cmd_len;
105 hcmd.data[0] = &res->hdr;
106 hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
107 ret = iwl_dvm_send_cmd(priv, &hcmd);
108 if (ret) {
109 IWL_ERR(priv, "Error %d on calib cmd %d\n",
110 ret, res->hdr.op_code);
111 return ret;
115 return 0;
118 int iwl_calib_set(struct iwl_priv *priv,
119 const struct iwl_calib_hdr *cmd, int len)
121 struct iwl_calib_result *res, *tmp;
123 res = kmalloc(sizeof(*res) + len - sizeof(struct iwl_calib_hdr),
124 GFP_ATOMIC);
125 if (!res)
126 return -ENOMEM;
127 memcpy(&res->hdr, cmd, len);
128 res->cmd_len = len;
130 list_for_each_entry(tmp, &priv->calib_results, list) {
131 if (tmp->hdr.op_code == res->hdr.op_code) {
132 list_replace(&tmp->list, &res->list);
133 kfree(tmp);
134 return 0;
138 /* wasn't in list already */
139 list_add_tail(&res->list, &priv->calib_results);
141 return 0;
144 void iwl_calib_free_results(struct iwl_priv *priv)
146 struct iwl_calib_result *res, *tmp;
148 list_for_each_entry_safe(res, tmp, &priv->calib_results, list) {
149 list_del(&res->list);
150 kfree(res);
154 /*****************************************************************************
155 * RUNTIME calibrations framework
156 *****************************************************************************/
158 /* "false alarms" are signals that our DSP tries to lock onto,
159 * but then determines that they are either noise, or transmissions
160 * from a distant wireless network (also "noise", really) that get
161 * "stepped on" by stronger transmissions within our own network.
162 * This algorithm attempts to set a sensitivity level that is high
163 * enough to receive all of our own network traffic, but not so
164 * high that our DSP gets too busy trying to lock onto non-network
165 * activity/noise. */
166 static int iwl_sens_energy_cck(struct iwl_priv *priv,
167 u32 norm_fa,
168 u32 rx_enable_time,
169 struct statistics_general_data *rx_info)
171 u32 max_nrg_cck = 0;
172 int i = 0;
173 u8 max_silence_rssi = 0;
174 u32 silence_ref = 0;
175 u8 silence_rssi_a = 0;
176 u8 silence_rssi_b = 0;
177 u8 silence_rssi_c = 0;
178 u32 val;
180 /* "false_alarms" values below are cross-multiplications to assess the
181 * numbers of false alarms within the measured period of actual Rx
182 * (Rx is off when we're txing), vs the min/max expected false alarms
183 * (some should be expected if rx is sensitive enough) in a
184 * hypothetical listening period of 200 time units (TU), 204.8 msec:
186 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
188 * */
189 u32 false_alarms = norm_fa * 200 * 1024;
190 u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
191 u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
192 struct iwl_sensitivity_data *data = NULL;
193 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
195 data = &(priv->sensitivity_data);
197 data->nrg_auto_corr_silence_diff = 0;
199 /* Find max silence rssi among all 3 receivers.
200 * This is background noise, which may include transmissions from other
201 * networks, measured during silence before our network's beacon */
202 silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
203 ALL_BAND_FILTER) >> 8);
204 silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
205 ALL_BAND_FILTER) >> 8);
206 silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
207 ALL_BAND_FILTER) >> 8);
209 val = max(silence_rssi_b, silence_rssi_c);
210 max_silence_rssi = max(silence_rssi_a, (u8) val);
212 /* Store silence rssi in 20-beacon history table */
213 data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
214 data->nrg_silence_idx++;
215 if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
216 data->nrg_silence_idx = 0;
218 /* Find max silence rssi across 20 beacon history */
219 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
220 val = data->nrg_silence_rssi[i];
221 silence_ref = max(silence_ref, val);
223 IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
224 silence_rssi_a, silence_rssi_b, silence_rssi_c,
225 silence_ref);
227 /* Find max rx energy (min value!) among all 3 receivers,
228 * measured during beacon frame.
229 * Save it in 10-beacon history table. */
230 i = data->nrg_energy_idx;
231 val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
232 data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
234 data->nrg_energy_idx++;
235 if (data->nrg_energy_idx >= 10)
236 data->nrg_energy_idx = 0;
238 /* Find min rx energy (max value) across 10 beacon history.
239 * This is the minimum signal level that we want to receive well.
240 * Add backoff (margin so we don't miss slightly lower energy frames).
241 * This establishes an upper bound (min value) for energy threshold. */
242 max_nrg_cck = data->nrg_value[0];
243 for (i = 1; i < 10; i++)
244 max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
245 max_nrg_cck += 6;
247 IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
248 rx_info->beacon_energy_a, rx_info->beacon_energy_b,
249 rx_info->beacon_energy_c, max_nrg_cck - 6);
251 /* Count number of consecutive beacons with fewer-than-desired
252 * false alarms. */
253 if (false_alarms < min_false_alarms)
254 data->num_in_cck_no_fa++;
255 else
256 data->num_in_cck_no_fa = 0;
257 IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
258 data->num_in_cck_no_fa);
260 /* If we got too many false alarms this time, reduce sensitivity */
261 if ((false_alarms > max_false_alarms) &&
262 (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
263 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
264 false_alarms, max_false_alarms);
265 IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
266 data->nrg_curr_state = IWL_FA_TOO_MANY;
267 /* Store for "fewer than desired" on later beacon */
268 data->nrg_silence_ref = silence_ref;
270 /* increase energy threshold (reduce nrg value)
271 * to decrease sensitivity */
272 data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
273 /* Else if we got fewer than desired, increase sensitivity */
274 } else if (false_alarms < min_false_alarms) {
275 data->nrg_curr_state = IWL_FA_TOO_FEW;
277 /* Compare silence level with silence level for most recent
278 * healthy number or too many false alarms */
279 data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
280 (s32)silence_ref;
282 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
283 false_alarms, min_false_alarms,
284 data->nrg_auto_corr_silence_diff);
286 /* Increase value to increase sensitivity, but only if:
287 * 1a) previous beacon did *not* have *too many* false alarms
288 * 1b) AND there's a significant difference in Rx levels
289 * from a previous beacon with too many, or healthy # FAs
290 * OR 2) We've seen a lot of beacons (100) with too few
291 * false alarms */
292 if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
293 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
294 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
296 IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
297 /* Increase nrg value to increase sensitivity */
298 val = data->nrg_th_cck + NRG_STEP_CCK;
299 data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
300 } else {
301 IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
304 /* Else we got a healthy number of false alarms, keep status quo */
305 } else {
306 IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
307 data->nrg_curr_state = IWL_FA_GOOD_RANGE;
309 /* Store for use in "fewer than desired" with later beacon */
310 data->nrg_silence_ref = silence_ref;
312 /* If previous beacon had too many false alarms,
313 * give it some extra margin by reducing sensitivity again
314 * (but don't go below measured energy of desired Rx) */
315 if (IWL_FA_TOO_MANY == data->nrg_prev_state) {
316 IWL_DEBUG_CALIB(priv, "... increasing margin\n");
317 if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
318 data->nrg_th_cck -= NRG_MARGIN;
319 else
320 data->nrg_th_cck = max_nrg_cck;
324 /* Make sure the energy threshold does not go above the measured
325 * energy of the desired Rx signals (reduced by backoff margin),
326 * or else we might start missing Rx frames.
327 * Lower value is higher energy, so we use max()!
329 data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
330 IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
332 data->nrg_prev_state = data->nrg_curr_state;
334 /* Auto-correlation CCK algorithm */
335 if (false_alarms > min_false_alarms) {
337 /* increase auto_corr values to decrease sensitivity
338 * so the DSP won't be disturbed by the noise
340 if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
341 data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
342 else {
343 val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
344 data->auto_corr_cck =
345 min((u32)ranges->auto_corr_max_cck, val);
347 val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
348 data->auto_corr_cck_mrc =
349 min((u32)ranges->auto_corr_max_cck_mrc, val);
350 } else if ((false_alarms < min_false_alarms) &&
351 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
352 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
354 /* Decrease auto_corr values to increase sensitivity */
355 val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
356 data->auto_corr_cck =
357 max((u32)ranges->auto_corr_min_cck, val);
358 val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
359 data->auto_corr_cck_mrc =
360 max((u32)ranges->auto_corr_min_cck_mrc, val);
363 return 0;
367 static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
368 u32 norm_fa,
369 u32 rx_enable_time)
371 u32 val;
372 u32 false_alarms = norm_fa * 200 * 1024;
373 u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
374 u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
375 struct iwl_sensitivity_data *data = NULL;
376 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
378 data = &(priv->sensitivity_data);
380 /* If we got too many false alarms this time, reduce sensitivity */
381 if (false_alarms > max_false_alarms) {
383 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
384 false_alarms, max_false_alarms);
386 val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
387 data->auto_corr_ofdm =
388 min((u32)ranges->auto_corr_max_ofdm, val);
390 val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
391 data->auto_corr_ofdm_mrc =
392 min((u32)ranges->auto_corr_max_ofdm_mrc, val);
394 val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
395 data->auto_corr_ofdm_x1 =
396 min((u32)ranges->auto_corr_max_ofdm_x1, val);
398 val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
399 data->auto_corr_ofdm_mrc_x1 =
400 min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
403 /* Else if we got fewer than desired, increase sensitivity */
404 else if (false_alarms < min_false_alarms) {
406 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
407 false_alarms, min_false_alarms);
409 val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
410 data->auto_corr_ofdm =
411 max((u32)ranges->auto_corr_min_ofdm, val);
413 val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
414 data->auto_corr_ofdm_mrc =
415 max((u32)ranges->auto_corr_min_ofdm_mrc, val);
417 val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
418 data->auto_corr_ofdm_x1 =
419 max((u32)ranges->auto_corr_min_ofdm_x1, val);
421 val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
422 data->auto_corr_ofdm_mrc_x1 =
423 max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
424 } else {
425 IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
426 min_false_alarms, false_alarms, max_false_alarms);
428 return 0;
431 static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv,
432 struct iwl_sensitivity_data *data,
433 __le16 *tbl)
435 tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
436 cpu_to_le16((u16)data->auto_corr_ofdm);
437 tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
438 cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
439 tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
440 cpu_to_le16((u16)data->auto_corr_ofdm_x1);
441 tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
442 cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
444 tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
445 cpu_to_le16((u16)data->auto_corr_cck);
446 tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
447 cpu_to_le16((u16)data->auto_corr_cck_mrc);
449 tbl[HD_MIN_ENERGY_CCK_DET_INDEX] =
450 cpu_to_le16((u16)data->nrg_th_cck);
451 tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] =
452 cpu_to_le16((u16)data->nrg_th_ofdm);
454 tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
455 cpu_to_le16(data->barker_corr_th_min);
456 tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
457 cpu_to_le16(data->barker_corr_th_min_mrc);
458 tbl[HD_OFDM_ENERGY_TH_IN_INDEX] =
459 cpu_to_le16(data->nrg_th_cca);
461 IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
462 data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
463 data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
464 data->nrg_th_ofdm);
466 IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
467 data->auto_corr_cck, data->auto_corr_cck_mrc,
468 data->nrg_th_cck);
471 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
472 static int iwl_sensitivity_write(struct iwl_priv *priv)
474 struct iwl_sensitivity_cmd cmd;
475 struct iwl_sensitivity_data *data = NULL;
476 struct iwl_host_cmd cmd_out = {
477 .id = SENSITIVITY_CMD,
478 .len = { sizeof(struct iwl_sensitivity_cmd), },
479 .flags = CMD_ASYNC,
480 .data = { &cmd, },
483 data = &(priv->sensitivity_data);
485 memset(&cmd, 0, sizeof(cmd));
487 iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]);
489 /* Update uCode's "work" table, and copy it to DSP */
490 cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
492 /* Don't send command to uCode if nothing has changed */
493 if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
494 sizeof(u16)*HD_TABLE_SIZE)) {
495 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
496 return 0;
499 /* Copy table for comparison next time */
500 memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
501 sizeof(u16)*HD_TABLE_SIZE);
503 return iwl_dvm_send_cmd(priv, &cmd_out);
506 /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
507 static int iwl_enhance_sensitivity_write(struct iwl_priv *priv)
509 struct iwl_enhance_sensitivity_cmd cmd;
510 struct iwl_sensitivity_data *data = NULL;
511 struct iwl_host_cmd cmd_out = {
512 .id = SENSITIVITY_CMD,
513 .len = { sizeof(struct iwl_enhance_sensitivity_cmd), },
514 .flags = CMD_ASYNC,
515 .data = { &cmd, },
518 data = &(priv->sensitivity_data);
520 memset(&cmd, 0, sizeof(cmd));
522 iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]);
524 if (priv->lib->hd_v2) {
525 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
526 HD_INA_NON_SQUARE_DET_OFDM_DATA_V2;
527 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
528 HD_INA_NON_SQUARE_DET_CCK_DATA_V2;
529 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
530 HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2;
531 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
532 HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
533 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
534 HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
535 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
536 HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2;
537 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
538 HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2;
539 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
540 HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
541 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
542 HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
543 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
544 HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2;
545 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
546 HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2;
547 } else {
548 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
549 HD_INA_NON_SQUARE_DET_OFDM_DATA_V1;
550 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
551 HD_INA_NON_SQUARE_DET_CCK_DATA_V1;
552 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
553 HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1;
554 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
555 HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
556 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
557 HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
558 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
559 HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1;
560 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
561 HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1;
562 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
563 HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
564 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
565 HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
566 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
567 HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1;
568 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
569 HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1;
572 /* Update uCode's "work" table, and copy it to DSP */
573 cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
575 /* Don't send command to uCode if nothing has changed */
576 if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]),
577 sizeof(u16)*HD_TABLE_SIZE) &&
578 !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX],
579 &(priv->enhance_sensitivity_tbl[0]),
580 sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) {
581 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
582 return 0;
585 /* Copy table for comparison next time */
586 memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]),
587 sizeof(u16)*HD_TABLE_SIZE);
588 memcpy(&(priv->enhance_sensitivity_tbl[0]),
589 &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]),
590 sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES);
592 return iwl_dvm_send_cmd(priv, &cmd_out);
595 void iwl_init_sensitivity(struct iwl_priv *priv)
597 int ret = 0;
598 int i;
599 struct iwl_sensitivity_data *data = NULL;
600 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
602 if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
603 return;
605 IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
607 /* Clear driver's sensitivity algo data */
608 data = &(priv->sensitivity_data);
610 if (ranges == NULL)
611 return;
613 memset(data, 0, sizeof(struct iwl_sensitivity_data));
615 data->num_in_cck_no_fa = 0;
616 data->nrg_curr_state = IWL_FA_TOO_MANY;
617 data->nrg_prev_state = IWL_FA_TOO_MANY;
618 data->nrg_silence_ref = 0;
619 data->nrg_silence_idx = 0;
620 data->nrg_energy_idx = 0;
622 for (i = 0; i < 10; i++)
623 data->nrg_value[i] = 0;
625 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
626 data->nrg_silence_rssi[i] = 0;
628 data->auto_corr_ofdm = ranges->auto_corr_min_ofdm;
629 data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
630 data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1;
631 data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
632 data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
633 data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
634 data->nrg_th_cck = ranges->nrg_th_cck;
635 data->nrg_th_ofdm = ranges->nrg_th_ofdm;
636 data->barker_corr_th_min = ranges->barker_corr_th_min;
637 data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
638 data->nrg_th_cca = ranges->nrg_th_cca;
640 data->last_bad_plcp_cnt_ofdm = 0;
641 data->last_fa_cnt_ofdm = 0;
642 data->last_bad_plcp_cnt_cck = 0;
643 data->last_fa_cnt_cck = 0;
645 if (priv->fw->enhance_sensitivity_table)
646 ret |= iwl_enhance_sensitivity_write(priv);
647 else
648 ret |= iwl_sensitivity_write(priv);
649 IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
652 void iwl_sensitivity_calibration(struct iwl_priv *priv)
654 u32 rx_enable_time;
655 u32 fa_cck;
656 u32 fa_ofdm;
657 u32 bad_plcp_cck;
658 u32 bad_plcp_ofdm;
659 u32 norm_fa_ofdm;
660 u32 norm_fa_cck;
661 struct iwl_sensitivity_data *data = NULL;
662 struct statistics_rx_non_phy *rx_info;
663 struct statistics_rx_phy *ofdm, *cck;
664 struct statistics_general_data statis;
666 if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
667 return;
669 data = &(priv->sensitivity_data);
671 if (!iwl_is_any_associated(priv)) {
672 IWL_DEBUG_CALIB(priv, "<< - not associated\n");
673 return;
676 spin_lock_bh(&priv->statistics.lock);
677 rx_info = &priv->statistics.rx_non_phy;
678 ofdm = &priv->statistics.rx_ofdm;
679 cck = &priv->statistics.rx_cck;
680 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
681 IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
682 spin_unlock_bh(&priv->statistics.lock);
683 return;
686 /* Extract Statistics: */
687 rx_enable_time = le32_to_cpu(rx_info->channel_load);
688 fa_cck = le32_to_cpu(cck->false_alarm_cnt);
689 fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
690 bad_plcp_cck = le32_to_cpu(cck->plcp_err);
691 bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
693 statis.beacon_silence_rssi_a =
694 le32_to_cpu(rx_info->beacon_silence_rssi_a);
695 statis.beacon_silence_rssi_b =
696 le32_to_cpu(rx_info->beacon_silence_rssi_b);
697 statis.beacon_silence_rssi_c =
698 le32_to_cpu(rx_info->beacon_silence_rssi_c);
699 statis.beacon_energy_a =
700 le32_to_cpu(rx_info->beacon_energy_a);
701 statis.beacon_energy_b =
702 le32_to_cpu(rx_info->beacon_energy_b);
703 statis.beacon_energy_c =
704 le32_to_cpu(rx_info->beacon_energy_c);
706 spin_unlock_bh(&priv->statistics.lock);
708 IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
710 if (!rx_enable_time) {
711 IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n");
712 return;
715 /* These statistics increase monotonically, and do not reset
716 * at each beacon. Calculate difference from last value, or just
717 * use the new statistics value if it has reset or wrapped around. */
718 if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
719 data->last_bad_plcp_cnt_cck = bad_plcp_cck;
720 else {
721 bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
722 data->last_bad_plcp_cnt_cck += bad_plcp_cck;
725 if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
726 data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
727 else {
728 bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
729 data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
732 if (data->last_fa_cnt_ofdm > fa_ofdm)
733 data->last_fa_cnt_ofdm = fa_ofdm;
734 else {
735 fa_ofdm -= data->last_fa_cnt_ofdm;
736 data->last_fa_cnt_ofdm += fa_ofdm;
739 if (data->last_fa_cnt_cck > fa_cck)
740 data->last_fa_cnt_cck = fa_cck;
741 else {
742 fa_cck -= data->last_fa_cnt_cck;
743 data->last_fa_cnt_cck += fa_cck;
746 /* Total aborted signal locks */
747 norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
748 norm_fa_cck = fa_cck + bad_plcp_cck;
750 IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck,
751 bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
753 iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
754 iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
755 if (priv->fw->enhance_sensitivity_table)
756 iwl_enhance_sensitivity_write(priv);
757 else
758 iwl_sensitivity_write(priv);
761 static inline u8 find_first_chain(u8 mask)
763 if (mask & ANT_A)
764 return CHAIN_A;
765 if (mask & ANT_B)
766 return CHAIN_B;
767 return CHAIN_C;
771 * Run disconnected antenna algorithm to find out which antennas are
772 * disconnected.
774 static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig,
775 struct iwl_chain_noise_data *data)
777 u32 active_chains = 0;
778 u32 max_average_sig;
779 u16 max_average_sig_antenna_i;
780 u8 num_tx_chains;
781 u8 first_chain;
782 u16 i = 0;
784 average_sig[0] = data->chain_signal_a / IWL_CAL_NUM_BEACONS;
785 average_sig[1] = data->chain_signal_b / IWL_CAL_NUM_BEACONS;
786 average_sig[2] = data->chain_signal_c / IWL_CAL_NUM_BEACONS;
788 if (average_sig[0] >= average_sig[1]) {
789 max_average_sig = average_sig[0];
790 max_average_sig_antenna_i = 0;
791 active_chains = (1 << max_average_sig_antenna_i);
792 } else {
793 max_average_sig = average_sig[1];
794 max_average_sig_antenna_i = 1;
795 active_chains = (1 << max_average_sig_antenna_i);
798 if (average_sig[2] >= max_average_sig) {
799 max_average_sig = average_sig[2];
800 max_average_sig_antenna_i = 2;
801 active_chains = (1 << max_average_sig_antenna_i);
804 IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
805 average_sig[0], average_sig[1], average_sig[2]);
806 IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
807 max_average_sig, max_average_sig_antenna_i);
809 /* Compare signal strengths for all 3 receivers. */
810 for (i = 0; i < NUM_RX_CHAINS; i++) {
811 if (i != max_average_sig_antenna_i) {
812 s32 rssi_delta = (max_average_sig - average_sig[i]);
814 /* If signal is very weak, compared with
815 * strongest, mark it as disconnected. */
816 if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
817 data->disconn_array[i] = 1;
818 else
819 active_chains |= (1 << i);
820 IWL_DEBUG_CALIB(priv, "i = %d rssiDelta = %d "
821 "disconn_array[i] = %d\n",
822 i, rssi_delta, data->disconn_array[i]);
827 * The above algorithm sometimes fails when the ucode
828 * reports 0 for all chains. It's not clear why that
829 * happens to start with, but it is then causing trouble
830 * because this can make us enable more chains than the
831 * hardware really has.
833 * To be safe, simply mask out any chains that we know
834 * are not on the device.
836 active_chains &= priv->nvm_data->valid_rx_ant;
838 num_tx_chains = 0;
839 for (i = 0; i < NUM_RX_CHAINS; i++) {
840 /* loops on all the bits of
841 * priv->hw_setting.valid_tx_ant */
842 u8 ant_msk = (1 << i);
843 if (!(priv->nvm_data->valid_tx_ant & ant_msk))
844 continue;
846 num_tx_chains++;
847 if (data->disconn_array[i] == 0)
848 /* there is a Tx antenna connected */
849 break;
850 if (num_tx_chains == priv->hw_params.tx_chains_num &&
851 data->disconn_array[i]) {
853 * If all chains are disconnected
854 * connect the first valid tx chain
856 first_chain =
857 find_first_chain(priv->nvm_data->valid_tx_ant);
858 data->disconn_array[first_chain] = 0;
859 active_chains |= BIT(first_chain);
860 IWL_DEBUG_CALIB(priv,
861 "All Tx chains are disconnected W/A - declare %d as connected\n",
862 first_chain);
863 break;
867 if (active_chains != priv->nvm_data->valid_rx_ant &&
868 active_chains != priv->chain_noise_data.active_chains)
869 IWL_DEBUG_CALIB(priv,
870 "Detected that not all antennas are connected! "
871 "Connected: %#x, valid: %#x.\n",
872 active_chains,
873 priv->nvm_data->valid_rx_ant);
875 /* Save for use within RXON, TX, SCAN commands, etc. */
876 data->active_chains = active_chains;
877 IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
878 active_chains);
881 static void iwlagn_gain_computation(struct iwl_priv *priv,
882 u32 average_noise[NUM_RX_CHAINS],
883 u8 default_chain)
885 int i;
886 s32 delta_g;
887 struct iwl_chain_noise_data *data = &priv->chain_noise_data;
890 * Find Gain Code for the chains based on "default chain"
892 for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) {
893 if ((data->disconn_array[i])) {
894 data->delta_gain_code[i] = 0;
895 continue;
898 delta_g = (priv->lib->chain_noise_scale *
899 ((s32)average_noise[default_chain] -
900 (s32)average_noise[i])) / 1500;
902 /* bound gain by 2 bits value max, 3rd bit is sign */
903 data->delta_gain_code[i] =
904 min(abs(delta_g),
905 (long) CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
907 if (delta_g < 0)
909 * set negative sign ...
910 * note to Intel developers: This is uCode API format,
911 * not the format of any internal device registers.
912 * Do not change this format for e.g. 6050 or similar
913 * devices. Change format only if more resolution
914 * (i.e. more than 2 bits magnitude) is needed.
916 data->delta_gain_code[i] |= (1 << 2);
919 IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d ANT_C = %d\n",
920 data->delta_gain_code[1], data->delta_gain_code[2]);
922 if (!data->radio_write) {
923 struct iwl_calib_chain_noise_gain_cmd cmd;
925 memset(&cmd, 0, sizeof(cmd));
927 iwl_set_calib_hdr(&cmd.hdr,
928 priv->phy_calib_chain_noise_gain_cmd);
929 cmd.delta_gain_1 = data->delta_gain_code[1];
930 cmd.delta_gain_2 = data->delta_gain_code[2];
931 iwl_dvm_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD,
932 CMD_ASYNC, sizeof(cmd), &cmd);
934 data->radio_write = 1;
935 data->state = IWL_CHAIN_NOISE_CALIBRATED;
940 * Accumulate 16 beacons of signal and noise statistics for each of
941 * 3 receivers/antennas/rx-chains, then figure out:
942 * 1) Which antennas are connected.
943 * 2) Differential rx gain settings to balance the 3 receivers.
945 void iwl_chain_noise_calibration(struct iwl_priv *priv)
947 struct iwl_chain_noise_data *data = NULL;
949 u32 chain_noise_a;
950 u32 chain_noise_b;
951 u32 chain_noise_c;
952 u32 chain_sig_a;
953 u32 chain_sig_b;
954 u32 chain_sig_c;
955 u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
956 u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
957 u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
958 u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
959 u16 i = 0;
960 u16 rxon_chnum = INITIALIZATION_VALUE;
961 u16 stat_chnum = INITIALIZATION_VALUE;
962 u8 rxon_band24;
963 u8 stat_band24;
964 struct statistics_rx_non_phy *rx_info;
967 * MULTI-FIXME:
968 * When we support multiple interfaces on different channels,
969 * this must be modified/fixed.
971 struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
973 if (priv->calib_disabled & IWL_CHAIN_NOISE_CALIB_DISABLED)
974 return;
976 data = &(priv->chain_noise_data);
979 * Accumulate just the first "chain_noise_num_beacons" after
980 * the first association, then we're done forever.
982 if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
983 if (data->state == IWL_CHAIN_NOISE_ALIVE)
984 IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
985 return;
988 spin_lock_bh(&priv->statistics.lock);
990 rx_info = &priv->statistics.rx_non_phy;
992 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
993 IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
994 spin_unlock_bh(&priv->statistics.lock);
995 return;
998 rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
999 rxon_chnum = le16_to_cpu(ctx->staging.channel);
1000 stat_band24 =
1001 !!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
1002 stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16;
1004 /* Make sure we accumulate data for just the associated channel
1005 * (even if scanning). */
1006 if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
1007 IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
1008 rxon_chnum, rxon_band24);
1009 spin_unlock_bh(&priv->statistics.lock);
1010 return;
1014 * Accumulate beacon statistics values across
1015 * "chain_noise_num_beacons"
1017 chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
1018 IN_BAND_FILTER;
1019 chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
1020 IN_BAND_FILTER;
1021 chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
1022 IN_BAND_FILTER;
1024 chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
1025 chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
1026 chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
1028 spin_unlock_bh(&priv->statistics.lock);
1030 data->beacon_count++;
1032 data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
1033 data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
1034 data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
1036 data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
1037 data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
1038 data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
1040 IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
1041 rxon_chnum, rxon_band24, data->beacon_count);
1042 IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
1043 chain_sig_a, chain_sig_b, chain_sig_c);
1044 IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
1045 chain_noise_a, chain_noise_b, chain_noise_c);
1047 /* If this is the "chain_noise_num_beacons", determine:
1048 * 1) Disconnected antennas (using signal strengths)
1049 * 2) Differential gain (using silence noise) to balance receivers */
1050 if (data->beacon_count != IWL_CAL_NUM_BEACONS)
1051 return;
1053 /* Analyze signal for disconnected antenna */
1054 if (priv->lib->bt_params &&
1055 priv->lib->bt_params->advanced_bt_coexist) {
1056 /* Disable disconnected antenna algorithm for advanced
1057 bt coex, assuming valid antennas are connected */
1058 data->active_chains = priv->nvm_data->valid_rx_ant;
1059 for (i = 0; i < NUM_RX_CHAINS; i++)
1060 if (!(data->active_chains & (1<<i)))
1061 data->disconn_array[i] = 1;
1062 } else
1063 iwl_find_disconn_antenna(priv, average_sig, data);
1065 /* Analyze noise for rx balance */
1066 average_noise[0] = data->chain_noise_a / IWL_CAL_NUM_BEACONS;
1067 average_noise[1] = data->chain_noise_b / IWL_CAL_NUM_BEACONS;
1068 average_noise[2] = data->chain_noise_c / IWL_CAL_NUM_BEACONS;
1070 for (i = 0; i < NUM_RX_CHAINS; i++) {
1071 if (!(data->disconn_array[i]) &&
1072 (average_noise[i] <= min_average_noise)) {
1073 /* This means that chain i is active and has
1074 * lower noise values so far: */
1075 min_average_noise = average_noise[i];
1076 min_average_noise_antenna_i = i;
1080 IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
1081 average_noise[0], average_noise[1],
1082 average_noise[2]);
1084 IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
1085 min_average_noise, min_average_noise_antenna_i);
1087 iwlagn_gain_computation(
1088 priv, average_noise,
1089 find_first_chain(priv->nvm_data->valid_rx_ant));
1091 /* Some power changes may have been made during the calibration.
1092 * Update and commit the RXON
1094 iwl_update_chain_flags(priv);
1096 data->state = IWL_CHAIN_NOISE_DONE;
1097 iwl_power_update_mode(priv, false);
1100 void iwl_reset_run_time_calib(struct iwl_priv *priv)
1102 int i;
1103 memset(&(priv->sensitivity_data), 0,
1104 sizeof(struct iwl_sensitivity_data));
1105 memset(&(priv->chain_noise_data), 0,
1106 sizeof(struct iwl_chain_noise_data));
1107 for (i = 0; i < NUM_RX_CHAINS; i++)
1108 priv->chain_noise_data.delta_gain_code[i] =
1109 CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
1111 /* Ask for statistics now, the uCode will send notification
1112 * periodically after association */
1113 iwl_send_statistics_request(priv, CMD_ASYNC, true);