fix a kmap leak in virtio_console
[linux/fpc-iii.git] / drivers / net / wireless / iwlwifi / dvm / commands.h
blob751ae1d10b7f6d27650e1a1a966a65651dd2ca30
1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
6 * GPL LICENSE SUMMARY
8 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
24 * The full GNU General Public License is included in this distribution
25 * in the file called COPYING.
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 * BSD LICENSE
33 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
45 * distribution.
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
62 *****************************************************************************/
64 * Please use this file (commands.h) only for uCode API definitions.
65 * Please use iwl-xxxx-hw.h for hardware-related definitions.
66 * Please use dev.h for driver implementation definitions.
69 #ifndef __iwl_commands_h__
70 #define __iwl_commands_h__
72 #include <linux/ieee80211.h>
73 #include <linux/types.h>
76 enum {
77 REPLY_ALIVE = 0x1,
78 REPLY_ERROR = 0x2,
79 REPLY_ECHO = 0x3, /* test command */
81 /* RXON and QOS commands */
82 REPLY_RXON = 0x10,
83 REPLY_RXON_ASSOC = 0x11,
84 REPLY_QOS_PARAM = 0x13,
85 REPLY_RXON_TIMING = 0x14,
87 /* Multi-Station support */
88 REPLY_ADD_STA = 0x18,
89 REPLY_REMOVE_STA = 0x19,
90 REPLY_REMOVE_ALL_STA = 0x1a, /* not used */
91 REPLY_TXFIFO_FLUSH = 0x1e,
93 /* Security */
94 REPLY_WEPKEY = 0x20,
96 /* RX, TX, LEDs */
97 REPLY_TX = 0x1c,
98 REPLY_LEDS_CMD = 0x48,
99 REPLY_TX_LINK_QUALITY_CMD = 0x4e,
101 /* WiMAX coexistence */
102 COEX_PRIORITY_TABLE_CMD = 0x5a,
103 COEX_MEDIUM_NOTIFICATION = 0x5b,
104 COEX_EVENT_CMD = 0x5c,
106 /* Calibration */
107 TEMPERATURE_NOTIFICATION = 0x62,
108 CALIBRATION_CFG_CMD = 0x65,
109 CALIBRATION_RES_NOTIFICATION = 0x66,
110 CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
112 /* 802.11h related */
113 REPLY_QUIET_CMD = 0x71, /* not used */
114 REPLY_CHANNEL_SWITCH = 0x72,
115 CHANNEL_SWITCH_NOTIFICATION = 0x73,
116 REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
117 SPECTRUM_MEASURE_NOTIFICATION = 0x75,
119 /* Power Management */
120 POWER_TABLE_CMD = 0x77,
121 PM_SLEEP_NOTIFICATION = 0x7A,
122 PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
124 /* Scan commands and notifications */
125 REPLY_SCAN_CMD = 0x80,
126 REPLY_SCAN_ABORT_CMD = 0x81,
127 SCAN_START_NOTIFICATION = 0x82,
128 SCAN_RESULTS_NOTIFICATION = 0x83,
129 SCAN_COMPLETE_NOTIFICATION = 0x84,
131 /* IBSS/AP commands */
132 BEACON_NOTIFICATION = 0x90,
133 REPLY_TX_BEACON = 0x91,
134 WHO_IS_AWAKE_NOTIFICATION = 0x94, /* not used */
136 /* Miscellaneous commands */
137 REPLY_TX_POWER_DBM_CMD = 0x95,
138 QUIET_NOTIFICATION = 0x96, /* not used */
139 REPLY_TX_PWR_TABLE_CMD = 0x97,
140 REPLY_TX_POWER_DBM_CMD_V1 = 0x98, /* old version of API */
141 TX_ANT_CONFIGURATION_CMD = 0x98,
142 MEASURE_ABORT_NOTIFICATION = 0x99, /* not used */
144 /* Bluetooth device coexistence config command */
145 REPLY_BT_CONFIG = 0x9b,
147 /* Statistics */
148 REPLY_STATISTICS_CMD = 0x9c,
149 STATISTICS_NOTIFICATION = 0x9d,
151 /* RF-KILL commands and notifications */
152 REPLY_CARD_STATE_CMD = 0xa0,
153 CARD_STATE_NOTIFICATION = 0xa1,
155 /* Missed beacons notification */
156 MISSED_BEACONS_NOTIFICATION = 0xa2,
158 REPLY_CT_KILL_CONFIG_CMD = 0xa4,
159 SENSITIVITY_CMD = 0xa8,
160 REPLY_PHY_CALIBRATION_CMD = 0xb0,
161 REPLY_RX_PHY_CMD = 0xc0,
162 REPLY_RX_MPDU_CMD = 0xc1,
163 REPLY_RX = 0xc3,
164 REPLY_COMPRESSED_BA = 0xc5,
166 /* BT Coex */
167 REPLY_BT_COEX_PRIO_TABLE = 0xcc,
168 REPLY_BT_COEX_PROT_ENV = 0xcd,
169 REPLY_BT_COEX_PROFILE_NOTIF = 0xce,
171 /* PAN commands */
172 REPLY_WIPAN_PARAMS = 0xb2,
173 REPLY_WIPAN_RXON = 0xb3, /* use REPLY_RXON structure */
174 REPLY_WIPAN_RXON_TIMING = 0xb4, /* use REPLY_RXON_TIMING structure */
175 REPLY_WIPAN_RXON_ASSOC = 0xb6, /* use REPLY_RXON_ASSOC structure */
176 REPLY_WIPAN_QOS_PARAM = 0xb7, /* use REPLY_QOS_PARAM structure */
177 REPLY_WIPAN_WEPKEY = 0xb8, /* use REPLY_WEPKEY structure */
178 REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9,
179 REPLY_WIPAN_NOA_NOTIFICATION = 0xbc,
180 REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd,
182 REPLY_WOWLAN_PATTERNS = 0xe0,
183 REPLY_WOWLAN_WAKEUP_FILTER = 0xe1,
184 REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2,
185 REPLY_WOWLAN_TKIP_PARAMS = 0xe3,
186 REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4,
187 REPLY_WOWLAN_GET_STATUS = 0xe5,
188 REPLY_D3_CONFIG = 0xd3,
190 REPLY_MAX = 0xff
194 * Minimum number of queues. MAX_NUM is defined in hw specific files.
195 * Set the minimum to accommodate
196 * - 4 standard TX queues
197 * - the command queue
198 * - 4 PAN TX queues
199 * - the PAN multicast queue, and
200 * - the AUX (TX during scan dwell) queue.
202 #define IWL_MIN_NUM_QUEUES 11
205 * Command queue depends on iPAN support.
207 #define IWL_DEFAULT_CMD_QUEUE_NUM 4
208 #define IWL_IPAN_CMD_QUEUE_NUM 9
210 #define IWL_TX_FIFO_BK 0 /* shared */
211 #define IWL_TX_FIFO_BE 1
212 #define IWL_TX_FIFO_VI 2 /* shared */
213 #define IWL_TX_FIFO_VO 3
214 #define IWL_TX_FIFO_BK_IPAN IWL_TX_FIFO_BK
215 #define IWL_TX_FIFO_BE_IPAN 4
216 #define IWL_TX_FIFO_VI_IPAN IWL_TX_FIFO_VI
217 #define IWL_TX_FIFO_VO_IPAN 5
218 /* re-uses the VO FIFO, uCode will properly flush/schedule */
219 #define IWL_TX_FIFO_AUX 5
220 #define IWL_TX_FIFO_UNUSED 255
222 #define IWLAGN_CMD_FIFO_NUM 7
225 * This queue number is required for proper operation
226 * because the ucode will stop/start the scheduler as
227 * required.
229 #define IWL_IPAN_MCAST_QUEUE 8
231 /******************************************************************************
232 * (0)
233 * Commonly used structures and definitions:
234 * Command header, rate_n_flags, txpower
236 *****************************************************************************/
239 * iwlagn rate_n_flags bit fields
241 * rate_n_flags format is used in following iwlagn commands:
242 * REPLY_RX (response only)
243 * REPLY_RX_MPDU (response only)
244 * REPLY_TX (both command and response)
245 * REPLY_TX_LINK_QUALITY_CMD
247 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
248 * 2-0: 0) 6 Mbps
249 * 1) 12 Mbps
250 * 2) 18 Mbps
251 * 3) 24 Mbps
252 * 4) 36 Mbps
253 * 5) 48 Mbps
254 * 6) 54 Mbps
255 * 7) 60 Mbps
257 * 4-3: 0) Single stream (SISO)
258 * 1) Dual stream (MIMO)
259 * 2) Triple stream (MIMO)
261 * 5: Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
263 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
264 * 3-0: 0xD) 6 Mbps
265 * 0xF) 9 Mbps
266 * 0x5) 12 Mbps
267 * 0x7) 18 Mbps
268 * 0x9) 24 Mbps
269 * 0xB) 36 Mbps
270 * 0x1) 48 Mbps
271 * 0x3) 54 Mbps
273 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
274 * 6-0: 10) 1 Mbps
275 * 20) 2 Mbps
276 * 55) 5.5 Mbps
277 * 110) 11 Mbps
279 #define RATE_MCS_CODE_MSK 0x7
280 #define RATE_MCS_SPATIAL_POS 3
281 #define RATE_MCS_SPATIAL_MSK 0x18
282 #define RATE_MCS_HT_DUP_POS 5
283 #define RATE_MCS_HT_DUP_MSK 0x20
284 /* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */
285 #define RATE_MCS_RATE_MSK 0xff
287 /* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
288 #define RATE_MCS_FLAGS_POS 8
289 #define RATE_MCS_HT_POS 8
290 #define RATE_MCS_HT_MSK 0x100
292 /* Bit 9: (1) CCK, (0) OFDM. HT (bit 8) must be "0" for this bit to be valid */
293 #define RATE_MCS_CCK_POS 9
294 #define RATE_MCS_CCK_MSK 0x200
296 /* Bit 10: (1) Use Green Field preamble */
297 #define RATE_MCS_GF_POS 10
298 #define RATE_MCS_GF_MSK 0x400
300 /* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
301 #define RATE_MCS_HT40_POS 11
302 #define RATE_MCS_HT40_MSK 0x800
304 /* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
305 #define RATE_MCS_DUP_POS 12
306 #define RATE_MCS_DUP_MSK 0x1000
308 /* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
309 #define RATE_MCS_SGI_POS 13
310 #define RATE_MCS_SGI_MSK 0x2000
313 * rate_n_flags Tx antenna masks
314 * 4965 has 2 transmitters
315 * 5100 has 1 transmitter B
316 * 5150 has 1 transmitter A
317 * 5300 has 3 transmitters
318 * 5350 has 3 transmitters
319 * bit14:16
321 #define RATE_MCS_ANT_POS 14
322 #define RATE_MCS_ANT_A_MSK 0x04000
323 #define RATE_MCS_ANT_B_MSK 0x08000
324 #define RATE_MCS_ANT_C_MSK 0x10000
325 #define RATE_MCS_ANT_AB_MSK (RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
326 #define RATE_MCS_ANT_ABC_MSK (RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
327 #define RATE_ANT_NUM 3
329 #define POWER_TABLE_NUM_ENTRIES 33
330 #define POWER_TABLE_NUM_HT_OFDM_ENTRIES 32
331 #define POWER_TABLE_CCK_ENTRY 32
333 #define IWL_PWR_NUM_HT_OFDM_ENTRIES 24
334 #define IWL_PWR_CCK_ENTRIES 2
337 * struct tx_power_dual_stream
339 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
341 * Same format as iwl_tx_power_dual_stream, but __le32
343 struct tx_power_dual_stream {
344 __le32 dw;
345 } __packed;
348 * Command REPLY_TX_POWER_DBM_CMD = 0x98
349 * struct iwlagn_tx_power_dbm_cmd
351 #define IWLAGN_TX_POWER_AUTO 0x7f
352 #define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6)
354 struct iwlagn_tx_power_dbm_cmd {
355 s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
356 u8 flags;
357 s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
358 u8 reserved;
359 } __packed;
362 * Command TX_ANT_CONFIGURATION_CMD = 0x98
363 * This command is used to configure valid Tx antenna.
364 * By default uCode concludes the valid antenna according to the radio flavor.
365 * This command enables the driver to override/modify this conclusion.
367 struct iwl_tx_ant_config_cmd {
368 __le32 valid;
369 } __packed;
371 /******************************************************************************
372 * (0a)
373 * Alive and Error Commands & Responses:
375 *****************************************************************************/
377 #define UCODE_VALID_OK cpu_to_le32(0x1)
380 * REPLY_ALIVE = 0x1 (response only, not a command)
382 * uCode issues this "alive" notification once the runtime image is ready
383 * to receive commands from the driver. This is the *second* "alive"
384 * notification that the driver will receive after rebooting uCode;
385 * this "alive" is indicated by subtype field != 9.
387 * See comments documenting "BSM" (bootstrap state machine).
389 * This response includes two pointers to structures within the device's
390 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
392 * 1) log_event_table_ptr indicates base of the event log. This traces
393 * a 256-entry history of uCode execution within a circular buffer.
394 * Its header format is:
396 * __le32 log_size; log capacity (in number of entries)
397 * __le32 type; (1) timestamp with each entry, (0) no timestamp
398 * __le32 wraps; # times uCode has wrapped to top of circular buffer
399 * __le32 write_index; next circular buffer entry that uCode would fill
401 * The header is followed by the circular buffer of log entries. Entries
402 * with timestamps have the following format:
404 * __le32 event_id; range 0 - 1500
405 * __le32 timestamp; low 32 bits of TSF (of network, if associated)
406 * __le32 data; event_id-specific data value
408 * Entries without timestamps contain only event_id and data.
411 * 2) error_event_table_ptr indicates base of the error log. This contains
412 * information about any uCode error that occurs. For agn, the format
413 * of the error log is defined by struct iwl_error_event_table.
415 * The Linux driver can print both logs to the system log when a uCode error
416 * occurs.
420 * Note: This structure is read from the device with IO accesses,
421 * and the reading already does the endian conversion. As it is
422 * read with u32-sized accesses, any members with a different size
423 * need to be ordered correctly though!
425 struct iwl_error_event_table {
426 u32 valid; /* (nonzero) valid, (0) log is empty */
427 u32 error_id; /* type of error */
428 u32 pc; /* program counter */
429 u32 blink1; /* branch link */
430 u32 blink2; /* branch link */
431 u32 ilink1; /* interrupt link */
432 u32 ilink2; /* interrupt link */
433 u32 data1; /* error-specific data */
434 u32 data2; /* error-specific data */
435 u32 line; /* source code line of error */
436 u32 bcon_time; /* beacon timer */
437 u32 tsf_low; /* network timestamp function timer */
438 u32 tsf_hi; /* network timestamp function timer */
439 u32 gp1; /* GP1 timer register */
440 u32 gp2; /* GP2 timer register */
441 u32 gp3; /* GP3 timer register */
442 u32 ucode_ver; /* uCode version */
443 u32 hw_ver; /* HW Silicon version */
444 u32 brd_ver; /* HW board version */
445 u32 log_pc; /* log program counter */
446 u32 frame_ptr; /* frame pointer */
447 u32 stack_ptr; /* stack pointer */
448 u32 hcmd; /* last host command header */
449 u32 isr0; /* isr status register LMPM_NIC_ISR0:
450 * rxtx_flag */
451 u32 isr1; /* isr status register LMPM_NIC_ISR1:
452 * host_flag */
453 u32 isr2; /* isr status register LMPM_NIC_ISR2:
454 * enc_flag */
455 u32 isr3; /* isr status register LMPM_NIC_ISR3:
456 * time_flag */
457 u32 isr4; /* isr status register LMPM_NIC_ISR4:
458 * wico interrupt */
459 u32 isr_pref; /* isr status register LMPM_NIC_PREF_STAT */
460 u32 wait_event; /* wait event() caller address */
461 u32 l2p_control; /* L2pControlField */
462 u32 l2p_duration; /* L2pDurationField */
463 u32 l2p_mhvalid; /* L2pMhValidBits */
464 u32 l2p_addr_match; /* L2pAddrMatchStat */
465 u32 lmpm_pmg_sel; /* indicate which clocks are turned on
466 * (LMPM_PMG_SEL) */
467 u32 u_timestamp; /* indicate when the date and time of the
468 * compilation */
469 u32 flow_handler; /* FH read/write pointers, RX credit */
470 } __packed;
472 struct iwl_alive_resp {
473 u8 ucode_minor;
474 u8 ucode_major;
475 __le16 reserved1;
476 u8 sw_rev[8];
477 u8 ver_type;
478 u8 ver_subtype; /* not "9" for runtime alive */
479 __le16 reserved2;
480 __le32 log_event_table_ptr; /* SRAM address for event log */
481 __le32 error_event_table_ptr; /* SRAM address for error log */
482 __le32 timestamp;
483 __le32 is_valid;
484 } __packed;
487 * REPLY_ERROR = 0x2 (response only, not a command)
489 struct iwl_error_resp {
490 __le32 error_type;
491 u8 cmd_id;
492 u8 reserved1;
493 __le16 bad_cmd_seq_num;
494 __le32 error_info;
495 __le64 timestamp;
496 } __packed;
498 /******************************************************************************
499 * (1)
500 * RXON Commands & Responses:
502 *****************************************************************************/
505 * Rx config defines & structure
507 /* rx_config device types */
508 enum {
509 RXON_DEV_TYPE_AP = 1,
510 RXON_DEV_TYPE_ESS = 3,
511 RXON_DEV_TYPE_IBSS = 4,
512 RXON_DEV_TYPE_SNIFFER = 6,
513 RXON_DEV_TYPE_CP = 7,
514 RXON_DEV_TYPE_2STA = 8,
515 RXON_DEV_TYPE_P2P = 9,
519 #define RXON_RX_CHAIN_DRIVER_FORCE_MSK cpu_to_le16(0x1 << 0)
520 #define RXON_RX_CHAIN_DRIVER_FORCE_POS (0)
521 #define RXON_RX_CHAIN_VALID_MSK cpu_to_le16(0x7 << 1)
522 #define RXON_RX_CHAIN_VALID_POS (1)
523 #define RXON_RX_CHAIN_FORCE_SEL_MSK cpu_to_le16(0x7 << 4)
524 #define RXON_RX_CHAIN_FORCE_SEL_POS (4)
525 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK cpu_to_le16(0x7 << 7)
526 #define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS (7)
527 #define RXON_RX_CHAIN_CNT_MSK cpu_to_le16(0x3 << 10)
528 #define RXON_RX_CHAIN_CNT_POS (10)
529 #define RXON_RX_CHAIN_MIMO_CNT_MSK cpu_to_le16(0x3 << 12)
530 #define RXON_RX_CHAIN_MIMO_CNT_POS (12)
531 #define RXON_RX_CHAIN_MIMO_FORCE_MSK cpu_to_le16(0x1 << 14)
532 #define RXON_RX_CHAIN_MIMO_FORCE_POS (14)
534 /* rx_config flags */
535 /* band & modulation selection */
536 #define RXON_FLG_BAND_24G_MSK cpu_to_le32(1 << 0)
537 #define RXON_FLG_CCK_MSK cpu_to_le32(1 << 1)
538 /* auto detection enable */
539 #define RXON_FLG_AUTO_DETECT_MSK cpu_to_le32(1 << 2)
540 /* TGg protection when tx */
541 #define RXON_FLG_TGG_PROTECT_MSK cpu_to_le32(1 << 3)
542 /* cck short slot & preamble */
543 #define RXON_FLG_SHORT_SLOT_MSK cpu_to_le32(1 << 4)
544 #define RXON_FLG_SHORT_PREAMBLE_MSK cpu_to_le32(1 << 5)
545 /* antenna selection */
546 #define RXON_FLG_DIS_DIV_MSK cpu_to_le32(1 << 7)
547 #define RXON_FLG_ANT_SEL_MSK cpu_to_le32(0x0f00)
548 #define RXON_FLG_ANT_A_MSK cpu_to_le32(1 << 8)
549 #define RXON_FLG_ANT_B_MSK cpu_to_le32(1 << 9)
550 /* radar detection enable */
551 #define RXON_FLG_RADAR_DETECT_MSK cpu_to_le32(1 << 12)
552 #define RXON_FLG_TGJ_NARROW_BAND_MSK cpu_to_le32(1 << 13)
553 /* rx response to host with 8-byte TSF
554 * (according to ON_AIR deassertion) */
555 #define RXON_FLG_TSF2HOST_MSK cpu_to_le32(1 << 15)
558 /* HT flags */
559 #define RXON_FLG_CTRL_CHANNEL_LOC_POS (22)
560 #define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK cpu_to_le32(0x1 << 22)
562 #define RXON_FLG_HT_OPERATING_MODE_POS (23)
564 #define RXON_FLG_HT_PROT_MSK cpu_to_le32(0x1 << 23)
565 #define RXON_FLG_HT40_PROT_MSK cpu_to_le32(0x2 << 23)
567 #define RXON_FLG_CHANNEL_MODE_POS (25)
568 #define RXON_FLG_CHANNEL_MODE_MSK cpu_to_le32(0x3 << 25)
570 /* channel mode */
571 enum {
572 CHANNEL_MODE_LEGACY = 0,
573 CHANNEL_MODE_PURE_40 = 1,
574 CHANNEL_MODE_MIXED = 2,
575 CHANNEL_MODE_RESERVED = 3,
577 #define RXON_FLG_CHANNEL_MODE_LEGACY cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
578 #define RXON_FLG_CHANNEL_MODE_PURE_40 cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
579 #define RXON_FLG_CHANNEL_MODE_MIXED cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
581 /* CTS to self (if spec allows) flag */
582 #define RXON_FLG_SELF_CTS_EN cpu_to_le32(0x1<<30)
584 /* rx_config filter flags */
585 /* accept all data frames */
586 #define RXON_FILTER_PROMISC_MSK cpu_to_le32(1 << 0)
587 /* pass control & management to host */
588 #define RXON_FILTER_CTL2HOST_MSK cpu_to_le32(1 << 1)
589 /* accept multi-cast */
590 #define RXON_FILTER_ACCEPT_GRP_MSK cpu_to_le32(1 << 2)
591 /* don't decrypt uni-cast frames */
592 #define RXON_FILTER_DIS_DECRYPT_MSK cpu_to_le32(1 << 3)
593 /* don't decrypt multi-cast frames */
594 #define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
595 /* STA is associated */
596 #define RXON_FILTER_ASSOC_MSK cpu_to_le32(1 << 5)
597 /* transfer to host non bssid beacons in associated state */
598 #define RXON_FILTER_BCON_AWARE_MSK cpu_to_le32(1 << 6)
601 * REPLY_RXON = 0x10 (command, has simple generic response)
603 * RXON tunes the radio tuner to a service channel, and sets up a number
604 * of parameters that are used primarily for Rx, but also for Tx operations.
606 * NOTE: When tuning to a new channel, driver must set the
607 * RXON_FILTER_ASSOC_MSK to 0. This will clear station-dependent
608 * info within the device, including the station tables, tx retry
609 * rate tables, and txpower tables. Driver must build a new station
610 * table and txpower table before transmitting anything on the RXON
611 * channel.
613 * NOTE: All RXONs wipe clean the internal txpower table. Driver must
614 * issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
615 * regardless of whether RXON_FILTER_ASSOC_MSK is set.
618 struct iwl_rxon_cmd {
619 u8 node_addr[6];
620 __le16 reserved1;
621 u8 bssid_addr[6];
622 __le16 reserved2;
623 u8 wlap_bssid_addr[6];
624 __le16 reserved3;
625 u8 dev_type;
626 u8 air_propagation;
627 __le16 rx_chain;
628 u8 ofdm_basic_rates;
629 u8 cck_basic_rates;
630 __le16 assoc_id;
631 __le32 flags;
632 __le32 filter_flags;
633 __le16 channel;
634 u8 ofdm_ht_single_stream_basic_rates;
635 u8 ofdm_ht_dual_stream_basic_rates;
636 u8 ofdm_ht_triple_stream_basic_rates;
637 u8 reserved5;
638 __le16 acquisition_data;
639 __le16 reserved6;
640 } __packed;
643 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
645 struct iwl_rxon_assoc_cmd {
646 __le32 flags;
647 __le32 filter_flags;
648 u8 ofdm_basic_rates;
649 u8 cck_basic_rates;
650 __le16 reserved1;
651 u8 ofdm_ht_single_stream_basic_rates;
652 u8 ofdm_ht_dual_stream_basic_rates;
653 u8 ofdm_ht_triple_stream_basic_rates;
654 u8 reserved2;
655 __le16 rx_chain_select_flags;
656 __le16 acquisition_data;
657 __le32 reserved3;
658 } __packed;
660 #define IWL_CONN_MAX_LISTEN_INTERVAL 10
661 #define IWL_MAX_UCODE_BEACON_INTERVAL 4 /* 4096 */
664 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
666 struct iwl_rxon_time_cmd {
667 __le64 timestamp;
668 __le16 beacon_interval;
669 __le16 atim_window;
670 __le32 beacon_init_val;
671 __le16 listen_interval;
672 u8 dtim_period;
673 u8 delta_cp_bss_tbtts;
674 } __packed;
677 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
680 * struct iwl5000_channel_switch_cmd
681 * @band: 0- 5.2GHz, 1- 2.4GHz
682 * @expect_beacon: 0- resume transmits after channel switch
683 * 1- wait for beacon to resume transmits
684 * @channel: new channel number
685 * @rxon_flags: Rx on flags
686 * @rxon_filter_flags: filtering parameters
687 * @switch_time: switch time in extended beacon format
688 * @reserved: reserved bytes
690 struct iwl5000_channel_switch_cmd {
691 u8 band;
692 u8 expect_beacon;
693 __le16 channel;
694 __le32 rxon_flags;
695 __le32 rxon_filter_flags;
696 __le32 switch_time;
697 __le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
698 } __packed;
701 * struct iwl6000_channel_switch_cmd
702 * @band: 0- 5.2GHz, 1- 2.4GHz
703 * @expect_beacon: 0- resume transmits after channel switch
704 * 1- wait for beacon to resume transmits
705 * @channel: new channel number
706 * @rxon_flags: Rx on flags
707 * @rxon_filter_flags: filtering parameters
708 * @switch_time: switch time in extended beacon format
709 * @reserved: reserved bytes
711 struct iwl6000_channel_switch_cmd {
712 u8 band;
713 u8 expect_beacon;
714 __le16 channel;
715 __le32 rxon_flags;
716 __le32 rxon_filter_flags;
717 __le32 switch_time;
718 __le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
719 } __packed;
722 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
724 struct iwl_csa_notification {
725 __le16 band;
726 __le16 channel;
727 __le32 status; /* 0 - OK, 1 - fail */
728 } __packed;
730 /******************************************************************************
731 * (2)
732 * Quality-of-Service (QOS) Commands & Responses:
734 *****************************************************************************/
737 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
738 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
740 * @cw_min: Contention window, start value in numbers of slots.
741 * Should be a power-of-2, minus 1. Device's default is 0x0f.
742 * @cw_max: Contention window, max value in numbers of slots.
743 * Should be a power-of-2, minus 1. Device's default is 0x3f.
744 * @aifsn: Number of slots in Arbitration Interframe Space (before
745 * performing random backoff timing prior to Tx). Device default 1.
746 * @edca_txop: Length of Tx opportunity, in uSecs. Device default is 0.
748 * Device will automatically increase contention window by (2*CW) + 1 for each
749 * transmission retry. Device uses cw_max as a bit mask, ANDed with new CW
750 * value, to cap the CW value.
752 struct iwl_ac_qos {
753 __le16 cw_min;
754 __le16 cw_max;
755 u8 aifsn;
756 u8 reserved1;
757 __le16 edca_txop;
758 } __packed;
760 /* QoS flags defines */
761 #define QOS_PARAM_FLG_UPDATE_EDCA_MSK cpu_to_le32(0x01)
762 #define QOS_PARAM_FLG_TGN_MSK cpu_to_le32(0x02)
763 #define QOS_PARAM_FLG_TXOP_TYPE_MSK cpu_to_le32(0x10)
765 /* Number of Access Categories (AC) (EDCA), queues 0..3 */
766 #define AC_NUM 4
769 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
771 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
772 * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
774 struct iwl_qosparam_cmd {
775 __le32 qos_flags;
776 struct iwl_ac_qos ac[AC_NUM];
777 } __packed;
779 /******************************************************************************
780 * (3)
781 * Add/Modify Stations Commands & Responses:
783 *****************************************************************************/
785 * Multi station support
788 /* Special, dedicated locations within device's station table */
789 #define IWL_AP_ID 0
790 #define IWL_AP_ID_PAN 1
791 #define IWL_STA_ID 2
792 #define IWLAGN_PAN_BCAST_ID 14
793 #define IWLAGN_BROADCAST_ID 15
794 #define IWLAGN_STATION_COUNT 16
796 #define IWL_TID_NON_QOS IWL_MAX_TID_COUNT
798 #define STA_FLG_TX_RATE_MSK cpu_to_le32(1 << 2)
799 #define STA_FLG_PWR_SAVE_MSK cpu_to_le32(1 << 8)
800 #define STA_FLG_PAN_STATION cpu_to_le32(1 << 13)
801 #define STA_FLG_RTS_MIMO_PROT_MSK cpu_to_le32(1 << 17)
802 #define STA_FLG_AGG_MPDU_8US_MSK cpu_to_le32(1 << 18)
803 #define STA_FLG_MAX_AGG_SIZE_POS (19)
804 #define STA_FLG_MAX_AGG_SIZE_MSK cpu_to_le32(3 << 19)
805 #define STA_FLG_HT40_EN_MSK cpu_to_le32(1 << 21)
806 #define STA_FLG_MIMO_DIS_MSK cpu_to_le32(1 << 22)
807 #define STA_FLG_AGG_MPDU_DENSITY_POS (23)
808 #define STA_FLG_AGG_MPDU_DENSITY_MSK cpu_to_le32(7 << 23)
810 /* Use in mode field. 1: modify existing entry, 0: add new station entry */
811 #define STA_CONTROL_MODIFY_MSK 0x01
813 /* key flags __le16*/
814 #define STA_KEY_FLG_ENCRYPT_MSK cpu_to_le16(0x0007)
815 #define STA_KEY_FLG_NO_ENC cpu_to_le16(0x0000)
816 #define STA_KEY_FLG_WEP cpu_to_le16(0x0001)
817 #define STA_KEY_FLG_CCMP cpu_to_le16(0x0002)
818 #define STA_KEY_FLG_TKIP cpu_to_le16(0x0003)
820 #define STA_KEY_FLG_KEYID_POS 8
821 #define STA_KEY_FLG_INVALID cpu_to_le16(0x0800)
822 /* wep key is either from global key (0) or from station info array (1) */
823 #define STA_KEY_FLG_MAP_KEY_MSK cpu_to_le16(0x0008)
825 /* wep key in STA: 5-bytes (0) or 13-bytes (1) */
826 #define STA_KEY_FLG_KEY_SIZE_MSK cpu_to_le16(0x1000)
827 #define STA_KEY_MULTICAST_MSK cpu_to_le16(0x4000)
828 #define STA_KEY_MAX_NUM 8
829 #define STA_KEY_MAX_NUM_PAN 16
830 /* must not match WEP_INVALID_OFFSET */
831 #define IWLAGN_HW_KEY_DEFAULT 0xfe
833 /* Flags indicate whether to modify vs. don't change various station params */
834 #define STA_MODIFY_KEY_MASK 0x01
835 #define STA_MODIFY_TID_DISABLE_TX 0x02
836 #define STA_MODIFY_TX_RATE_MSK 0x04
837 #define STA_MODIFY_ADDBA_TID_MSK 0x08
838 #define STA_MODIFY_DELBA_TID_MSK 0x10
839 #define STA_MODIFY_SLEEP_TX_COUNT_MSK 0x20
841 /* agn */
842 struct iwl_keyinfo {
843 __le16 key_flags;
844 u8 tkip_rx_tsc_byte2; /* TSC[2] for key mix ph1 detection */
845 u8 reserved1;
846 __le16 tkip_rx_ttak[5]; /* 10-byte unicast TKIP TTAK */
847 u8 key_offset;
848 u8 reserved2;
849 u8 key[16]; /* 16-byte unicast decryption key */
850 __le64 tx_secur_seq_cnt;
851 __le64 hw_tkip_mic_rx_key;
852 __le64 hw_tkip_mic_tx_key;
853 } __packed;
856 * struct sta_id_modify
857 * @addr[ETH_ALEN]: station's MAC address
858 * @sta_id: index of station in uCode's station table
859 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
861 * Driver selects unused table index when adding new station,
862 * or the index to a pre-existing station entry when modifying that station.
863 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
865 * modify_mask flags select which parameters to modify vs. leave alone.
867 struct sta_id_modify {
868 u8 addr[ETH_ALEN];
869 __le16 reserved1;
870 u8 sta_id;
871 u8 modify_mask;
872 __le16 reserved2;
873 } __packed;
876 * REPLY_ADD_STA = 0x18 (command)
878 * The device contains an internal table of per-station information,
879 * with info on security keys, aggregation parameters, and Tx rates for
880 * initial Tx attempt and any retries (agn devices uses
881 * REPLY_TX_LINK_QUALITY_CMD,
883 * REPLY_ADD_STA sets up the table entry for one station, either creating
884 * a new entry, or modifying a pre-existing one.
886 * NOTE: RXON command (without "associated" bit set) wipes the station table
887 * clean. Moving into RF_KILL state does this also. Driver must set up
888 * new station table before transmitting anything on the RXON channel
889 * (except active scans or active measurements; those commands carry
890 * their own txpower/rate setup data).
892 * When getting started on a new channel, driver must set up the
893 * IWL_BROADCAST_ID entry (last entry in the table). For a client
894 * station in a BSS, once an AP is selected, driver sets up the AP STA
895 * in the IWL_AP_ID entry (1st entry in the table). BROADCAST and AP
896 * are all that are needed for a BSS client station. If the device is
897 * used as AP, or in an IBSS network, driver must set up station table
898 * entries for all STAs in network, starting with index IWL_STA_ID.
901 struct iwl_addsta_cmd {
902 u8 mode; /* 1: modify existing, 0: add new station */
903 u8 reserved[3];
904 struct sta_id_modify sta;
905 struct iwl_keyinfo key;
906 __le32 station_flags; /* STA_FLG_* */
907 __le32 station_flags_msk; /* STA_FLG_* */
909 /* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
910 * corresponding to bit (e.g. bit 5 controls TID 5).
911 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
912 __le16 tid_disable_tx;
913 __le16 legacy_reserved;
915 /* TID for which to add block-ack support.
916 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
917 u8 add_immediate_ba_tid;
919 /* TID for which to remove block-ack support.
920 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
921 u8 remove_immediate_ba_tid;
923 /* Starting Sequence Number for added block-ack support.
924 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
925 __le16 add_immediate_ba_ssn;
928 * Number of packets OK to transmit to station even though
929 * it is asleep -- used to synchronise PS-poll and u-APSD
930 * responses while ucode keeps track of STA sleep state.
932 __le16 sleep_tx_count;
934 __le16 reserved2;
935 } __packed;
938 #define ADD_STA_SUCCESS_MSK 0x1
939 #define ADD_STA_NO_ROOM_IN_TABLE 0x2
940 #define ADD_STA_NO_BLOCK_ACK_RESOURCE 0x4
941 #define ADD_STA_MODIFY_NON_EXIST_STA 0x8
943 * REPLY_ADD_STA = 0x18 (response)
945 struct iwl_add_sta_resp {
946 u8 status; /* ADD_STA_* */
947 } __packed;
949 #define REM_STA_SUCCESS_MSK 0x1
951 * REPLY_REM_STA = 0x19 (response)
953 struct iwl_rem_sta_resp {
954 u8 status;
955 } __packed;
958 * REPLY_REM_STA = 0x19 (command)
960 struct iwl_rem_sta_cmd {
961 u8 num_sta; /* number of removed stations */
962 u8 reserved[3];
963 u8 addr[ETH_ALEN]; /* MAC addr of the first station */
964 u8 reserved2[2];
965 } __packed;
968 /* WiFi queues mask */
969 #define IWL_SCD_BK_MSK cpu_to_le32(BIT(0))
970 #define IWL_SCD_BE_MSK cpu_to_le32(BIT(1))
971 #define IWL_SCD_VI_MSK cpu_to_le32(BIT(2))
972 #define IWL_SCD_VO_MSK cpu_to_le32(BIT(3))
973 #define IWL_SCD_MGMT_MSK cpu_to_le32(BIT(3))
975 /* PAN queues mask */
976 #define IWL_PAN_SCD_BK_MSK cpu_to_le32(BIT(4))
977 #define IWL_PAN_SCD_BE_MSK cpu_to_le32(BIT(5))
978 #define IWL_PAN_SCD_VI_MSK cpu_to_le32(BIT(6))
979 #define IWL_PAN_SCD_VO_MSK cpu_to_le32(BIT(7))
980 #define IWL_PAN_SCD_MGMT_MSK cpu_to_le32(BIT(7))
981 #define IWL_PAN_SCD_MULTICAST_MSK cpu_to_le32(BIT(8))
983 #define IWL_AGG_TX_QUEUE_MSK cpu_to_le32(0xffc00)
985 #define IWL_DROP_ALL BIT(1)
988 * REPLY_TXFIFO_FLUSH = 0x1e(command and response)
990 * When using full FIFO flush this command checks the scheduler HW block WR/RD
991 * pointers to check if all the frames were transferred by DMA into the
992 * relevant TX FIFO queue. Only when the DMA is finished and the queue is
993 * empty the command can finish.
994 * This command is used to flush the TXFIFO from transmit commands, it may
995 * operate on single or multiple queues, the command queue can't be flushed by
996 * this command. The command response is returned when all the queue flush
997 * operations are done. Each TX command flushed return response with the FLUSH
998 * status set in the TX response status. When FIFO flush operation is used,
999 * the flush operation ends when both the scheduler DMA done and TXFIFO empty
1000 * are set.
1002 * @queue_control: bit mask for which queues to flush
1003 * @flush_control: flush controls
1004 * 0: Dump single MSDU
1005 * 1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable.
1006 * 2: Dump all FIFO
1008 struct iwl_txfifo_flush_cmd {
1009 __le32 queue_control;
1010 __le16 flush_control;
1011 __le16 reserved;
1012 } __packed;
1015 * REPLY_WEP_KEY = 0x20
1017 struct iwl_wep_key {
1018 u8 key_index;
1019 u8 key_offset;
1020 u8 reserved1[2];
1021 u8 key_size;
1022 u8 reserved2[3];
1023 u8 key[16];
1024 } __packed;
1026 struct iwl_wep_cmd {
1027 u8 num_keys;
1028 u8 global_key_type;
1029 u8 flags;
1030 u8 reserved;
1031 struct iwl_wep_key key[0];
1032 } __packed;
1034 #define WEP_KEY_WEP_TYPE 1
1035 #define WEP_KEYS_MAX 4
1036 #define WEP_INVALID_OFFSET 0xff
1037 #define WEP_KEY_LEN_64 5
1038 #define WEP_KEY_LEN_128 13
1040 /******************************************************************************
1041 * (4)
1042 * Rx Responses:
1044 *****************************************************************************/
1046 #define RX_RES_STATUS_NO_CRC32_ERROR cpu_to_le32(1 << 0)
1047 #define RX_RES_STATUS_NO_RXE_OVERFLOW cpu_to_le32(1 << 1)
1049 #define RX_RES_PHY_FLAGS_BAND_24_MSK cpu_to_le16(1 << 0)
1050 #define RX_RES_PHY_FLAGS_MOD_CCK_MSK cpu_to_le16(1 << 1)
1051 #define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK cpu_to_le16(1 << 2)
1052 #define RX_RES_PHY_FLAGS_NARROW_BAND_MSK cpu_to_le16(1 << 3)
1053 #define RX_RES_PHY_FLAGS_ANTENNA_MSK 0x70
1054 #define RX_RES_PHY_FLAGS_ANTENNA_POS 4
1055 #define RX_RES_PHY_FLAGS_AGG_MSK cpu_to_le16(1 << 7)
1057 #define RX_RES_STATUS_SEC_TYPE_MSK (0x7 << 8)
1058 #define RX_RES_STATUS_SEC_TYPE_NONE (0x0 << 8)
1059 #define RX_RES_STATUS_SEC_TYPE_WEP (0x1 << 8)
1060 #define RX_RES_STATUS_SEC_TYPE_CCMP (0x2 << 8)
1061 #define RX_RES_STATUS_SEC_TYPE_TKIP (0x3 << 8)
1062 #define RX_RES_STATUS_SEC_TYPE_ERR (0x7 << 8)
1064 #define RX_RES_STATUS_STATION_FOUND (1<<6)
1065 #define RX_RES_STATUS_NO_STATION_INFO_MISMATCH (1<<7)
1067 #define RX_RES_STATUS_DECRYPT_TYPE_MSK (0x3 << 11)
1068 #define RX_RES_STATUS_NOT_DECRYPT (0x0 << 11)
1069 #define RX_RES_STATUS_DECRYPT_OK (0x3 << 11)
1070 #define RX_RES_STATUS_BAD_ICV_MIC (0x1 << 11)
1071 #define RX_RES_STATUS_BAD_KEY_TTAK (0x2 << 11)
1073 #define RX_MPDU_RES_STATUS_ICV_OK (0x20)
1074 #define RX_MPDU_RES_STATUS_MIC_OK (0x40)
1075 #define RX_MPDU_RES_STATUS_TTAK_OK (1 << 7)
1076 #define RX_MPDU_RES_STATUS_DEC_DONE_MSK (0x800)
1079 #define IWLAGN_RX_RES_PHY_CNT 8
1080 #define IWLAGN_RX_RES_AGC_IDX 1
1081 #define IWLAGN_RX_RES_RSSI_AB_IDX 2
1082 #define IWLAGN_RX_RES_RSSI_C_IDX 3
1083 #define IWLAGN_OFDM_AGC_MSK 0xfe00
1084 #define IWLAGN_OFDM_AGC_BIT_POS 9
1085 #define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff
1086 #define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00
1087 #define IWLAGN_OFDM_RSSI_A_BIT_POS 0
1088 #define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000
1089 #define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000
1090 #define IWLAGN_OFDM_RSSI_B_BIT_POS 16
1091 #define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff
1092 #define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00
1093 #define IWLAGN_OFDM_RSSI_C_BIT_POS 0
1095 struct iwlagn_non_cfg_phy {
1096 __le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT]; /* up to 8 phy entries */
1097 } __packed;
1101 * REPLY_RX = 0xc3 (response only, not a command)
1102 * Used only for legacy (non 11n) frames.
1104 struct iwl_rx_phy_res {
1105 u8 non_cfg_phy_cnt; /* non configurable DSP phy data byte count */
1106 u8 cfg_phy_cnt; /* configurable DSP phy data byte count */
1107 u8 stat_id; /* configurable DSP phy data set ID */
1108 u8 reserved1;
1109 __le64 timestamp; /* TSF at on air rise */
1110 __le32 beacon_time_stamp; /* beacon at on-air rise */
1111 __le16 phy_flags; /* general phy flags: band, modulation, ... */
1112 __le16 channel; /* channel number */
1113 u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1114 __le32 rate_n_flags; /* RATE_MCS_* */
1115 __le16 byte_count; /* frame's byte-count */
1116 __le16 frame_time; /* frame's time on the air */
1117 } __packed;
1119 struct iwl_rx_mpdu_res_start {
1120 __le16 byte_count;
1121 __le16 reserved;
1122 } __packed;
1125 /******************************************************************************
1126 * (5)
1127 * Tx Commands & Responses:
1129 * Driver must place each REPLY_TX command into one of the prioritized Tx
1130 * queues in host DRAM, shared between driver and device (see comments for
1131 * SCD registers and Tx/Rx Queues). When the device's Tx scheduler and uCode
1132 * are preparing to transmit, the device pulls the Tx command over the PCI
1133 * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1134 * from which data will be transmitted.
1136 * uCode handles all timing and protocol related to control frames
1137 * (RTS/CTS/ACK), based on flags in the Tx command. uCode and Tx scheduler
1138 * handle reception of block-acks; uCode updates the host driver via
1139 * REPLY_COMPRESSED_BA.
1141 * uCode handles retrying Tx when an ACK is expected but not received.
1142 * This includes trying lower data rates than the one requested in the Tx
1143 * command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn).
1145 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1146 * This command must be executed after every RXON command, before Tx can occur.
1147 *****************************************************************************/
1149 /* REPLY_TX Tx flags field */
1152 * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1153 * before this frame. if CTS-to-self required check
1154 * RXON_FLG_SELF_CTS_EN status.
1156 #define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0)
1158 /* 1: Expect ACK from receiving station
1159 * 0: Don't expect ACK (MAC header's duration field s/b 0)
1160 * Set this for unicast frames, but not broadcast/multicast. */
1161 #define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1163 /* For agn devices:
1164 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1165 * Tx command's initial_rate_index indicates first rate to try;
1166 * uCode walks through table for additional Tx attempts.
1167 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1168 * This rate will be used for all Tx attempts; it will not be scaled. */
1169 #define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1171 /* 1: Expect immediate block-ack.
1172 * Set when Txing a block-ack request frame. Also set TX_CMD_FLG_ACK_MSK. */
1173 #define TX_CMD_FLG_IMM_BA_RSP_MASK cpu_to_le32(1 << 6)
1175 /* Tx antenna selection field; reserved (0) for agn devices. */
1176 #define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1178 /* 1: Ignore Bluetooth priority for this frame.
1179 * 0: Delay Tx until Bluetooth device is done (normal usage). */
1180 #define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12)
1182 /* 1: uCode overrides sequence control field in MAC header.
1183 * 0: Driver provides sequence control field in MAC header.
1184 * Set this for management frames, non-QOS data frames, non-unicast frames,
1185 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1186 #define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1188 /* 1: This frame is non-last MPDU; more fragments are coming.
1189 * 0: Last fragment, or not using fragmentation. */
1190 #define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1192 /* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1193 * 0: No TSF required in outgoing frame.
1194 * Set this for transmitting beacons and probe responses. */
1195 #define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1197 /* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1198 * alignment of frame's payload data field.
1199 * 0: No pad
1200 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1201 * field (but not both). Driver must align frame data (i.e. data following
1202 * MAC header) to DWORD boundary. */
1203 #define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1205 /* accelerate aggregation support
1206 * 0 - no CCMP encryption; 1 - CCMP encryption */
1207 #define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1209 /* HCCA-AP - disable duration overwriting. */
1210 #define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1214 * TX command security control
1216 #define TX_CMD_SEC_WEP 0x01
1217 #define TX_CMD_SEC_CCM 0x02
1218 #define TX_CMD_SEC_TKIP 0x03
1219 #define TX_CMD_SEC_MSK 0x03
1220 #define TX_CMD_SEC_SHIFT 6
1221 #define TX_CMD_SEC_KEY128 0x08
1224 * REPLY_TX = 0x1c (command)
1228 * 4965 uCode updates these Tx attempt count values in host DRAM.
1229 * Used for managing Tx retries when expecting block-acks.
1230 * Driver should set these fields to 0.
1232 struct iwl_dram_scratch {
1233 u8 try_cnt; /* Tx attempts */
1234 u8 bt_kill_cnt; /* Tx attempts blocked by Bluetooth device */
1235 __le16 reserved;
1236 } __packed;
1238 struct iwl_tx_cmd {
1240 * MPDU byte count:
1241 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1242 * + 8 byte IV for CCM or TKIP (not used for WEP)
1243 * + Data payload
1244 * + 8-byte MIC (not used for CCM/WEP)
1245 * NOTE: Does not include Tx command bytes, post-MAC pad bytes,
1246 * MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1247 * Range: 14-2342 bytes.
1249 __le16 len;
1252 * MPDU or MSDU byte count for next frame.
1253 * Used for fragmentation and bursting, but not 11n aggregation.
1254 * Same as "len", but for next frame. Set to 0 if not applicable.
1256 __le16 next_frame_len;
1258 __le32 tx_flags; /* TX_CMD_FLG_* */
1260 /* uCode may modify this field of the Tx command (in host DRAM!).
1261 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1262 struct iwl_dram_scratch scratch;
1264 /* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1265 __le32 rate_n_flags; /* RATE_MCS_* */
1267 /* Index of destination station in uCode's station table */
1268 u8 sta_id;
1270 /* Type of security encryption: CCM or TKIP */
1271 u8 sec_ctl; /* TX_CMD_SEC_* */
1274 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1275 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set. Normally "0" for
1276 * data frames, this field may be used to selectively reduce initial
1277 * rate (via non-0 value) for special frames (e.g. management), while
1278 * still supporting rate scaling for all frames.
1280 u8 initial_rate_index;
1281 u8 reserved;
1282 u8 key[16];
1283 __le16 next_frame_flags;
1284 __le16 reserved2;
1285 union {
1286 __le32 life_time;
1287 __le32 attempt;
1288 } stop_time;
1290 /* Host DRAM physical address pointer to "scratch" in this command.
1291 * Must be dword aligned. "0" in dram_lsb_ptr disables usage. */
1292 __le32 dram_lsb_ptr;
1293 u8 dram_msb_ptr;
1295 u8 rts_retry_limit; /*byte 50 */
1296 u8 data_retry_limit; /*byte 51 */
1297 u8 tid_tspec;
1298 union {
1299 __le16 pm_frame_timeout;
1300 __le16 attempt_duration;
1301 } timeout;
1304 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1305 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1307 __le16 driver_txop;
1310 * MAC header goes here, followed by 2 bytes padding if MAC header
1311 * length is 26 or 30 bytes, followed by payload data
1313 u8 payload[0];
1314 struct ieee80211_hdr hdr[0];
1315 } __packed;
1318 * TX command response is sent after *agn* transmission attempts.
1320 * both postpone and abort status are expected behavior from uCode. there is
1321 * no special operation required from driver; except for RFKILL_FLUSH,
1322 * which required tx flush host command to flush all the tx frames in queues
1324 enum {
1325 TX_STATUS_SUCCESS = 0x01,
1326 TX_STATUS_DIRECT_DONE = 0x02,
1327 /* postpone TX */
1328 TX_STATUS_POSTPONE_DELAY = 0x40,
1329 TX_STATUS_POSTPONE_FEW_BYTES = 0x41,
1330 TX_STATUS_POSTPONE_BT_PRIO = 0x42,
1331 TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43,
1332 TX_STATUS_POSTPONE_CALC_TTAK = 0x44,
1333 /* abort TX */
1334 TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81,
1335 TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1336 TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1337 TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1338 TX_STATUS_FAIL_DRAIN_FLOW = 0x85,
1339 TX_STATUS_FAIL_RFKILL_FLUSH = 0x86,
1340 TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1341 TX_STATUS_FAIL_DEST_PS = 0x88,
1342 TX_STATUS_FAIL_HOST_ABORTED = 0x89,
1343 TX_STATUS_FAIL_BT_RETRY = 0x8a,
1344 TX_STATUS_FAIL_STA_INVALID = 0x8b,
1345 TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1346 TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1347 TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e,
1348 TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1349 TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90,
1350 TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1353 #define TX_PACKET_MODE_REGULAR 0x0000
1354 #define TX_PACKET_MODE_BURST_SEQ 0x0100
1355 #define TX_PACKET_MODE_BURST_FIRST 0x0200
1357 enum {
1358 TX_POWER_PA_NOT_ACTIVE = 0x0,
1361 enum {
1362 TX_STATUS_MSK = 0x000000ff, /* bits 0:7 */
1363 TX_STATUS_DELAY_MSK = 0x00000040,
1364 TX_STATUS_ABORT_MSK = 0x00000080,
1365 TX_PACKET_MODE_MSK = 0x0000ff00, /* bits 8:15 */
1366 TX_FIFO_NUMBER_MSK = 0x00070000, /* bits 16:18 */
1367 TX_RESERVED = 0x00780000, /* bits 19:22 */
1368 TX_POWER_PA_DETECT_MSK = 0x7f800000, /* bits 23:30 */
1369 TX_ABORT_REQUIRED_MSK = 0x80000000, /* bits 31:31 */
1372 /* *******************************
1373 * TX aggregation status
1374 ******************************* */
1376 enum {
1377 AGG_TX_STATE_TRANSMITTED = 0x00,
1378 AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1379 AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1380 AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1381 AGG_TX_STATE_ABORT_MSK = 0x08,
1382 AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1383 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1384 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1385 AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1386 AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1387 AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1388 AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1389 AGG_TX_STATE_DELAY_TX_MSK = 0x400
1392 #define AGG_TX_STATUS_MSK 0x00000fff /* bits 0:11 */
1393 #define AGG_TX_TRY_MSK 0x0000f000 /* bits 12:15 */
1394 #define AGG_TX_TRY_POS 12
1396 #define AGG_TX_STATE_LAST_SENT_MSK (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1397 AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1398 AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1400 /* # tx attempts for first frame in aggregation */
1401 #define AGG_TX_STATE_TRY_CNT_POS 12
1402 #define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1404 /* Command ID and sequence number of Tx command for this frame */
1405 #define AGG_TX_STATE_SEQ_NUM_POS 16
1406 #define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1409 * REPLY_TX = 0x1c (response)
1411 * This response may be in one of two slightly different formats, indicated
1412 * by the frame_count field:
1414 * 1) No aggregation (frame_count == 1). This reports Tx results for
1415 * a single frame. Multiple attempts, at various bit rates, may have
1416 * been made for this frame.
1418 * 2) Aggregation (frame_count > 1). This reports Tx results for
1419 * 2 or more frames that used block-acknowledge. All frames were
1420 * transmitted at same rate. Rate scaling may have been used if first
1421 * frame in this new agg block failed in previous agg block(s).
1423 * Note that, for aggregation, ACK (block-ack) status is not delivered here;
1424 * block-ack has not been received by the time the agn device records
1425 * this status.
1426 * This status relates to reasons the tx might have been blocked or aborted
1427 * within the sending station (this agn device), rather than whether it was
1428 * received successfully by the destination station.
1430 struct agg_tx_status {
1431 __le16 status;
1432 __le16 sequence;
1433 } __packed;
1436 * definitions for initial rate index field
1437 * bits [3:0] initial rate index
1438 * bits [6:4] rate table color, used for the initial rate
1439 * bit-7 invalid rate indication
1440 * i.e. rate was not chosen from rate table
1441 * or rate table color was changed during frame retries
1442 * refer tlc rate info
1445 #define IWL50_TX_RES_INIT_RATE_INDEX_POS 0
1446 #define IWL50_TX_RES_INIT_RATE_INDEX_MSK 0x0f
1447 #define IWL50_TX_RES_RATE_TABLE_COLOR_POS 4
1448 #define IWL50_TX_RES_RATE_TABLE_COLOR_MSK 0x70
1449 #define IWL50_TX_RES_INV_RATE_INDEX_MSK 0x80
1451 /* refer to ra_tid */
1452 #define IWLAGN_TX_RES_TID_POS 0
1453 #define IWLAGN_TX_RES_TID_MSK 0x0f
1454 #define IWLAGN_TX_RES_RA_POS 4
1455 #define IWLAGN_TX_RES_RA_MSK 0xf0
1457 struct iwlagn_tx_resp {
1458 u8 frame_count; /* 1 no aggregation, >1 aggregation */
1459 u8 bt_kill_count; /* # blocked by bluetooth (unused for agg) */
1460 u8 failure_rts; /* # failures due to unsuccessful RTS */
1461 u8 failure_frame; /* # failures due to no ACK (unused for agg) */
1463 /* For non-agg: Rate at which frame was successful.
1464 * For agg: Rate at which all frames were transmitted. */
1465 __le32 rate_n_flags; /* RATE_MCS_* */
1467 /* For non-agg: RTS + CTS + frame tx attempts time + ACK.
1468 * For agg: RTS + CTS + aggregation tx time + block-ack time. */
1469 __le16 wireless_media_time; /* uSecs */
1471 u8 pa_status; /* RF power amplifier measurement (not used) */
1472 u8 pa_integ_res_a[3];
1473 u8 pa_integ_res_b[3];
1474 u8 pa_integ_res_C[3];
1476 __le32 tfd_info;
1477 __le16 seq_ctl;
1478 __le16 byte_cnt;
1479 u8 tlc_info;
1480 u8 ra_tid; /* tid (0:3), sta_id (4:7) */
1481 __le16 frame_ctrl;
1483 * For non-agg: frame status TX_STATUS_*
1484 * For agg: status of 1st frame, AGG_TX_STATE_*; other frame status
1485 * fields follow this one, up to frame_count.
1486 * Bit fields:
1487 * 11- 0: AGG_TX_STATE_* status code
1488 * 15-12: Retry count for 1st frame in aggregation (retries
1489 * occur if tx failed for this frame when it was a
1490 * member of a previous aggregation block). If rate
1491 * scaling is used, retry count indicates the rate
1492 * table entry used for all frames in the new agg.
1493 * 31-16: Sequence # for this frame's Tx cmd (not SSN!)
1495 struct agg_tx_status status; /* TX status (in aggregation -
1496 * status of 1st frame) */
1497 } __packed;
1499 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1501 * Reports Block-Acknowledge from recipient station
1503 struct iwl_compressed_ba_resp {
1504 __le32 sta_addr_lo32;
1505 __le16 sta_addr_hi16;
1506 __le16 reserved;
1508 /* Index of recipient (BA-sending) station in uCode's station table */
1509 u8 sta_id;
1510 u8 tid;
1511 __le16 seq_ctl;
1512 __le64 bitmap;
1513 __le16 scd_flow;
1514 __le16 scd_ssn;
1515 u8 txed; /* number of frames sent */
1516 u8 txed_2_done; /* number of frames acked */
1517 __le16 reserved1;
1518 } __packed;
1521 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1525 /*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1526 #define LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK (1 << 0)
1528 /* # of EDCA prioritized tx fifos */
1529 #define LINK_QUAL_AC_NUM AC_NUM
1531 /* # entries in rate scale table to support Tx retries */
1532 #define LINK_QUAL_MAX_RETRY_NUM 16
1534 /* Tx antenna selection values */
1535 #define LINK_QUAL_ANT_A_MSK (1 << 0)
1536 #define LINK_QUAL_ANT_B_MSK (1 << 1)
1537 #define LINK_QUAL_ANT_MSK (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1541 * struct iwl_link_qual_general_params
1543 * Used in REPLY_TX_LINK_QUALITY_CMD
1545 struct iwl_link_qual_general_params {
1546 u8 flags;
1548 /* No entries at or above this (driver chosen) index contain MIMO */
1549 u8 mimo_delimiter;
1551 /* Best single antenna to use for single stream (legacy, SISO). */
1552 u8 single_stream_ant_msk; /* LINK_QUAL_ANT_* */
1554 /* Best antennas to use for MIMO (unused for 4965, assumes both). */
1555 u8 dual_stream_ant_msk; /* LINK_QUAL_ANT_* */
1558 * If driver needs to use different initial rates for different
1559 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1560 * this table will set that up, by indicating the indexes in the
1561 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1562 * Otherwise, driver should set all entries to 0.
1564 * Entry usage:
1565 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1566 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1568 u8 start_rate_index[LINK_QUAL_AC_NUM];
1569 } __packed;
1571 #define LINK_QUAL_AGG_TIME_LIMIT_DEF (4000) /* 4 milliseconds */
1572 #define LINK_QUAL_AGG_TIME_LIMIT_MAX (8000)
1573 #define LINK_QUAL_AGG_TIME_LIMIT_MIN (100)
1575 #define LINK_QUAL_AGG_DISABLE_START_DEF (3)
1576 #define LINK_QUAL_AGG_DISABLE_START_MAX (255)
1577 #define LINK_QUAL_AGG_DISABLE_START_MIN (0)
1579 #define LINK_QUAL_AGG_FRAME_LIMIT_DEF (63)
1580 #define LINK_QUAL_AGG_FRAME_LIMIT_MAX (63)
1581 #define LINK_QUAL_AGG_FRAME_LIMIT_MIN (0)
1584 * struct iwl_link_qual_agg_params
1586 * Used in REPLY_TX_LINK_QUALITY_CMD
1588 struct iwl_link_qual_agg_params {
1591 *Maximum number of uSec in aggregation.
1592 * default set to 4000 (4 milliseconds) if not configured in .cfg
1594 __le16 agg_time_limit;
1597 * Number of Tx retries allowed for a frame, before that frame will
1598 * no longer be considered for the start of an aggregation sequence
1599 * (scheduler will then try to tx it as single frame).
1600 * Driver should set this to 3.
1602 u8 agg_dis_start_th;
1605 * Maximum number of frames in aggregation.
1606 * 0 = no limit (default). 1 = no aggregation.
1607 * Other values = max # frames in aggregation.
1609 u8 agg_frame_cnt_limit;
1611 __le32 reserved;
1612 } __packed;
1615 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1617 * For agn devices
1619 * Each station in the agn device's internal station table has its own table
1620 * of 16
1621 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1622 * an ACK is not received. This command replaces the entire table for
1623 * one station.
1625 * NOTE: Station must already be in agn device's station table.
1626 * Use REPLY_ADD_STA.
1628 * The rate scaling procedures described below work well. Of course, other
1629 * procedures are possible, and may work better for particular environments.
1632 * FILLING THE RATE TABLE
1634 * Given a particular initial rate and mode, as determined by the rate
1635 * scaling algorithm described below, the Linux driver uses the following
1636 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1637 * Link Quality command:
1640 * 1) If using High-throughput (HT) (SISO or MIMO) initial rate:
1641 * a) Use this same initial rate for first 3 entries.
1642 * b) Find next lower available rate using same mode (SISO or MIMO),
1643 * use for next 3 entries. If no lower rate available, switch to
1644 * legacy mode (no HT40 channel, no MIMO, no short guard interval).
1645 * c) If using MIMO, set command's mimo_delimiter to number of entries
1646 * using MIMO (3 or 6).
1647 * d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
1648 * no MIMO, no short guard interval), at the next lower bit rate
1649 * (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1650 * legacy procedure for remaining table entries.
1652 * 2) If using legacy initial rate:
1653 * a) Use the initial rate for only one entry.
1654 * b) For each following entry, reduce the rate to next lower available
1655 * rate, until reaching the lowest available rate.
1656 * c) When reducing rate, also switch antenna selection.
1657 * d) Once lowest available rate is reached, repeat this rate until
1658 * rate table is filled (16 entries), switching antenna each entry.
1661 * ACCUMULATING HISTORY
1663 * The rate scaling algorithm for agn devices, as implemented in Linux driver,
1664 * uses two sets of frame Tx success history: One for the current/active
1665 * modulation mode, and one for a speculative/search mode that is being
1666 * attempted. If the speculative mode turns out to be more effective (i.e.
1667 * actual transfer rate is better), then the driver continues to use the
1668 * speculative mode as the new current active mode.
1670 * Each history set contains, separately for each possible rate, data for a
1671 * sliding window of the 62 most recent tx attempts at that rate. The data
1672 * includes a shifting bitmap of success(1)/failure(0), and sums of successful
1673 * and attempted frames, from which the driver can additionally calculate a
1674 * success ratio (success / attempted) and number of failures
1675 * (attempted - success), and control the size of the window (attempted).
1676 * The driver uses the bit map to remove successes from the success sum, as
1677 * the oldest tx attempts fall out of the window.
1679 * When the agn device makes multiple tx attempts for a given frame, each
1680 * attempt might be at a different rate, and have different modulation
1681 * characteristics (e.g. antenna, fat channel, short guard interval), as set
1682 * up in the rate scaling table in the Link Quality command. The driver must
1683 * determine which rate table entry was used for each tx attempt, to determine
1684 * which rate-specific history to update, and record only those attempts that
1685 * match the modulation characteristics of the history set.
1687 * When using block-ack (aggregation), all frames are transmitted at the same
1688 * rate, since there is no per-attempt acknowledgment from the destination
1689 * station. The Tx response struct iwl_tx_resp indicates the Tx rate in
1690 * rate_n_flags field. After receiving a block-ack, the driver can update
1691 * history for the entire block all at once.
1694 * FINDING BEST STARTING RATE:
1696 * When working with a selected initial modulation mode (see below), the
1697 * driver attempts to find a best initial rate. The initial rate is the
1698 * first entry in the Link Quality command's rate table.
1700 * 1) Calculate actual throughput (success ratio * expected throughput, see
1701 * table below) for current initial rate. Do this only if enough frames
1702 * have been attempted to make the value meaningful: at least 6 failed
1703 * tx attempts, or at least 8 successes. If not enough, don't try rate
1704 * scaling yet.
1706 * 2) Find available rates adjacent to current initial rate. Available means:
1707 * a) supported by hardware &&
1708 * b) supported by association &&
1709 * c) within any constraints selected by user
1711 * 3) Gather measured throughputs for adjacent rates. These might not have
1712 * enough history to calculate a throughput. That's okay, we might try
1713 * using one of them anyway!
1715 * 4) Try decreasing rate if, for current rate:
1716 * a) success ratio is < 15% ||
1717 * b) lower adjacent rate has better measured throughput ||
1718 * c) higher adjacent rate has worse throughput, and lower is unmeasured
1720 * As a sanity check, if decrease was determined above, leave rate
1721 * unchanged if:
1722 * a) lower rate unavailable
1723 * b) success ratio at current rate > 85% (very good)
1724 * c) current measured throughput is better than expected throughput
1725 * of lower rate (under perfect 100% tx conditions, see table below)
1727 * 5) Try increasing rate if, for current rate:
1728 * a) success ratio is < 15% ||
1729 * b) both adjacent rates' throughputs are unmeasured (try it!) ||
1730 * b) higher adjacent rate has better measured throughput ||
1731 * c) lower adjacent rate has worse throughput, and higher is unmeasured
1733 * As a sanity check, if increase was determined above, leave rate
1734 * unchanged if:
1735 * a) success ratio at current rate < 70%. This is not particularly
1736 * good performance; higher rate is sure to have poorer success.
1738 * 6) Re-evaluate the rate after each tx frame. If working with block-
1739 * acknowledge, history and statistics may be calculated for the entire
1740 * block (including prior history that fits within the history windows),
1741 * before re-evaluation.
1743 * FINDING BEST STARTING MODULATION MODE:
1745 * After working with a modulation mode for a "while" (and doing rate scaling),
1746 * the driver searches for a new initial mode in an attempt to improve
1747 * throughput. The "while" is measured by numbers of attempted frames:
1749 * For legacy mode, search for new mode after:
1750 * 480 successful frames, or 160 failed frames
1751 * For high-throughput modes (SISO or MIMO), search for new mode after:
1752 * 4500 successful frames, or 400 failed frames
1754 * Mode switch possibilities are (3 for each mode):
1756 * For legacy:
1757 * Change antenna, try SISO (if HT association), try MIMO (if HT association)
1758 * For SISO:
1759 * Change antenna, try MIMO, try shortened guard interval (SGI)
1760 * For MIMO:
1761 * Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
1763 * When trying a new mode, use the same bit rate as the old/current mode when
1764 * trying antenna switches and shortened guard interval. When switching to
1765 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
1766 * for which the expected throughput (under perfect conditions) is about the
1767 * same or slightly better than the actual measured throughput delivered by
1768 * the old/current mode.
1770 * Actual throughput can be estimated by multiplying the expected throughput
1771 * by the success ratio (successful / attempted tx frames). Frame size is
1772 * not considered in this calculation; it assumes that frame size will average
1773 * out to be fairly consistent over several samples. The following are
1774 * metric values for expected throughput assuming 100% success ratio.
1775 * Only G band has support for CCK rates:
1777 * RATE: 1 2 5 11 6 9 12 18 24 36 48 54 60
1779 * G: 7 13 35 58 40 57 72 98 121 154 177 186 186
1780 * A: 0 0 0 0 40 57 72 98 121 154 177 186 186
1781 * SISO 20MHz: 0 0 0 0 42 42 76 102 124 159 183 193 202
1782 * SGI SISO 20MHz: 0 0 0 0 46 46 82 110 132 168 192 202 211
1783 * MIMO 20MHz: 0 0 0 0 74 74 123 155 179 214 236 244 251
1784 * SGI MIMO 20MHz: 0 0 0 0 81 81 131 164 188 222 243 251 257
1785 * SISO 40MHz: 0 0 0 0 77 77 127 160 184 220 242 250 257
1786 * SGI SISO 40MHz: 0 0 0 0 83 83 135 169 193 229 250 257 264
1787 * MIMO 40MHz: 0 0 0 0 123 123 182 214 235 264 279 285 289
1788 * SGI MIMO 40MHz: 0 0 0 0 131 131 191 222 242 270 284 289 293
1790 * After the new mode has been tried for a short while (minimum of 6 failed
1791 * frames or 8 successful frames), compare success ratio and actual throughput
1792 * estimate of the new mode with the old. If either is better with the new
1793 * mode, continue to use the new mode.
1795 * Continue comparing modes until all 3 possibilities have been tried.
1796 * If moving from legacy to HT, try all 3 possibilities from the new HT
1797 * mode. After trying all 3, a best mode is found. Continue to use this mode
1798 * for the longer "while" described above (e.g. 480 successful frames for
1799 * legacy), and then repeat the search process.
1802 struct iwl_link_quality_cmd {
1804 /* Index of destination/recipient station in uCode's station table */
1805 u8 sta_id;
1806 u8 reserved1;
1807 __le16 control; /* not used */
1808 struct iwl_link_qual_general_params general_params;
1809 struct iwl_link_qual_agg_params agg_params;
1812 * Rate info; when using rate-scaling, Tx command's initial_rate_index
1813 * specifies 1st Tx rate attempted, via index into this table.
1814 * agn devices works its way through table when retrying Tx.
1816 struct {
1817 __le32 rate_n_flags; /* RATE_MCS_*, IWL_RATE_* */
1818 } rs_table[LINK_QUAL_MAX_RETRY_NUM];
1819 __le32 reserved2;
1820 } __packed;
1823 * BT configuration enable flags:
1824 * bit 0 - 1: BT channel announcement enabled
1825 * 0: disable
1826 * bit 1 - 1: priority of BT device enabled
1827 * 0: disable
1828 * bit 2 - 1: BT 2 wire support enabled
1829 * 0: disable
1831 #define BT_COEX_DISABLE (0x0)
1832 #define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0)
1833 #define BT_ENABLE_PRIORITY BIT(1)
1834 #define BT_ENABLE_2_WIRE BIT(2)
1836 #define BT_COEX_DISABLE (0x0)
1837 #define BT_COEX_ENABLE (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY)
1839 #define BT_LEAD_TIME_MIN (0x0)
1840 #define BT_LEAD_TIME_DEF (0x1E)
1841 #define BT_LEAD_TIME_MAX (0xFF)
1843 #define BT_MAX_KILL_MIN (0x1)
1844 #define BT_MAX_KILL_DEF (0x5)
1845 #define BT_MAX_KILL_MAX (0xFF)
1847 #define BT_DURATION_LIMIT_DEF 625
1848 #define BT_DURATION_LIMIT_MAX 1250
1849 #define BT_DURATION_LIMIT_MIN 625
1851 #define BT_ON_THRESHOLD_DEF 4
1852 #define BT_ON_THRESHOLD_MAX 1000
1853 #define BT_ON_THRESHOLD_MIN 1
1855 #define BT_FRAG_THRESHOLD_DEF 0
1856 #define BT_FRAG_THRESHOLD_MAX 0
1857 #define BT_FRAG_THRESHOLD_MIN 0
1859 #define BT_AGG_THRESHOLD_DEF 1200
1860 #define BT_AGG_THRESHOLD_MAX 8000
1861 #define BT_AGG_THRESHOLD_MIN 400
1864 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
1866 * agn devices support hardware handshake with Bluetooth device on
1867 * same platform. Bluetooth device alerts wireless device when it will Tx;
1868 * wireless device can delay or kill its own Tx to accommodate.
1870 struct iwl_bt_cmd {
1871 u8 flags;
1872 u8 lead_time;
1873 u8 max_kill;
1874 u8 reserved;
1875 __le32 kill_ack_mask;
1876 __le32 kill_cts_mask;
1877 } __packed;
1879 #define IWLAGN_BT_FLAG_CHANNEL_INHIBITION BIT(0)
1881 #define IWLAGN_BT_FLAG_COEX_MODE_MASK (BIT(3)|BIT(4)|BIT(5))
1882 #define IWLAGN_BT_FLAG_COEX_MODE_SHIFT 3
1883 #define IWLAGN_BT_FLAG_COEX_MODE_DISABLED 0
1884 #define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W 1
1885 #define IWLAGN_BT_FLAG_COEX_MODE_3W 2
1886 #define IWLAGN_BT_FLAG_COEX_MODE_4W 3
1888 #define IWLAGN_BT_FLAG_UCODE_DEFAULT BIT(6)
1889 /* Disable Sync PSPoll on SCO/eSCO */
1890 #define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE BIT(7)
1892 #define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD -75 /* dBm */
1893 #define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD -65 /* dBm */
1895 #define IWLAGN_BT_PRIO_BOOST_MAX 0xFF
1896 #define IWLAGN_BT_PRIO_BOOST_MIN 0x00
1897 #define IWLAGN_BT_PRIO_BOOST_DEFAULT 0xF0
1898 #define IWLAGN_BT_PRIO_BOOST_DEFAULT32 0xF0F0F0F0
1900 #define IWLAGN_BT_MAX_KILL_DEFAULT 5
1902 #define IWLAGN_BT3_T7_DEFAULT 1
1904 enum iwl_bt_kill_idx {
1905 IWL_BT_KILL_DEFAULT = 0,
1906 IWL_BT_KILL_OVERRIDE = 1,
1907 IWL_BT_KILL_REDUCE = 2,
1910 #define IWLAGN_BT_KILL_ACK_MASK_DEFAULT cpu_to_le32(0xffff0000)
1911 #define IWLAGN_BT_KILL_CTS_MASK_DEFAULT cpu_to_le32(0xffff0000)
1912 #define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO cpu_to_le32(0xffffffff)
1913 #define IWLAGN_BT_KILL_ACK_CTS_MASK_REDUCE cpu_to_le32(0)
1915 #define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT 2
1917 #define IWLAGN_BT3_T2_DEFAULT 0xc
1919 #define IWLAGN_BT_VALID_ENABLE_FLAGS cpu_to_le16(BIT(0))
1920 #define IWLAGN_BT_VALID_BOOST cpu_to_le16(BIT(1))
1921 #define IWLAGN_BT_VALID_MAX_KILL cpu_to_le16(BIT(2))
1922 #define IWLAGN_BT_VALID_3W_TIMERS cpu_to_le16(BIT(3))
1923 #define IWLAGN_BT_VALID_KILL_ACK_MASK cpu_to_le16(BIT(4))
1924 #define IWLAGN_BT_VALID_KILL_CTS_MASK cpu_to_le16(BIT(5))
1925 #define IWLAGN_BT_VALID_REDUCED_TX_PWR cpu_to_le16(BIT(6))
1926 #define IWLAGN_BT_VALID_3W_LUT cpu_to_le16(BIT(7))
1928 #define IWLAGN_BT_ALL_VALID_MSK (IWLAGN_BT_VALID_ENABLE_FLAGS | \
1929 IWLAGN_BT_VALID_BOOST | \
1930 IWLAGN_BT_VALID_MAX_KILL | \
1931 IWLAGN_BT_VALID_3W_TIMERS | \
1932 IWLAGN_BT_VALID_KILL_ACK_MASK | \
1933 IWLAGN_BT_VALID_KILL_CTS_MASK | \
1934 IWLAGN_BT_VALID_REDUCED_TX_PWR | \
1935 IWLAGN_BT_VALID_3W_LUT)
1937 #define IWLAGN_BT_REDUCED_TX_PWR BIT(0)
1939 #define IWLAGN_BT_DECISION_LUT_SIZE 12
1941 struct iwl_basic_bt_cmd {
1942 u8 flags;
1943 u8 ledtime; /* unused */
1944 u8 max_kill;
1945 u8 bt3_timer_t7_value;
1946 __le32 kill_ack_mask;
1947 __le32 kill_cts_mask;
1948 u8 bt3_prio_sample_time;
1949 u8 bt3_timer_t2_value;
1950 __le16 bt4_reaction_time; /* unused */
1951 __le32 bt3_lookup_table[IWLAGN_BT_DECISION_LUT_SIZE];
1953 * bit 0: use reduced tx power for control frame
1954 * bit 1 - 7: reserved
1956 u8 reduce_txpower;
1957 u8 reserved;
1958 __le16 valid;
1961 struct iwl_bt_cmd_v1 {
1962 struct iwl_basic_bt_cmd basic;
1963 u8 prio_boost;
1965 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1966 * if configure the following patterns
1968 u8 tx_prio_boost; /* SW boost of WiFi tx priority */
1969 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */
1972 struct iwl_bt_cmd_v2 {
1973 struct iwl_basic_bt_cmd basic;
1974 __le32 prio_boost;
1976 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1977 * if configure the following patterns
1979 u8 reserved;
1980 u8 tx_prio_boost; /* SW boost of WiFi tx priority */
1981 __le16 rx_prio_boost; /* SW boost of WiFi rx priority */
1984 #define IWLAGN_BT_SCO_ACTIVE cpu_to_le32(BIT(0))
1986 struct iwlagn_bt_sco_cmd {
1987 __le32 flags;
1990 /******************************************************************************
1991 * (6)
1992 * Spectrum Management (802.11h) Commands, Responses, Notifications:
1994 *****************************************************************************/
1997 * Spectrum Management
1999 #define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK | \
2000 RXON_FILTER_CTL2HOST_MSK | \
2001 RXON_FILTER_ACCEPT_GRP_MSK | \
2002 RXON_FILTER_DIS_DECRYPT_MSK | \
2003 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
2004 RXON_FILTER_ASSOC_MSK | \
2005 RXON_FILTER_BCON_AWARE_MSK)
2007 struct iwl_measure_channel {
2008 __le32 duration; /* measurement duration in extended beacon
2009 * format */
2010 u8 channel; /* channel to measure */
2011 u8 type; /* see enum iwl_measure_type */
2012 __le16 reserved;
2013 } __packed;
2016 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
2018 struct iwl_spectrum_cmd {
2019 __le16 len; /* number of bytes starting from token */
2020 u8 token; /* token id */
2021 u8 id; /* measurement id -- 0 or 1 */
2022 u8 origin; /* 0 = TGh, 1 = other, 2 = TGk */
2023 u8 periodic; /* 1 = periodic */
2024 __le16 path_loss_timeout;
2025 __le32 start_time; /* start time in extended beacon format */
2026 __le32 reserved2;
2027 __le32 flags; /* rxon flags */
2028 __le32 filter_flags; /* rxon filter flags */
2029 __le16 channel_count; /* minimum 1, maximum 10 */
2030 __le16 reserved3;
2031 struct iwl_measure_channel channels[10];
2032 } __packed;
2035 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
2037 struct iwl_spectrum_resp {
2038 u8 token;
2039 u8 id; /* id of the prior command replaced, or 0xff */
2040 __le16 status; /* 0 - command will be handled
2041 * 1 - cannot handle (conflicts with another
2042 * measurement) */
2043 } __packed;
2045 enum iwl_measurement_state {
2046 IWL_MEASUREMENT_START = 0,
2047 IWL_MEASUREMENT_STOP = 1,
2050 enum iwl_measurement_status {
2051 IWL_MEASUREMENT_OK = 0,
2052 IWL_MEASUREMENT_CONCURRENT = 1,
2053 IWL_MEASUREMENT_CSA_CONFLICT = 2,
2054 IWL_MEASUREMENT_TGH_CONFLICT = 3,
2055 /* 4-5 reserved */
2056 IWL_MEASUREMENT_STOPPED = 6,
2057 IWL_MEASUREMENT_TIMEOUT = 7,
2058 IWL_MEASUREMENT_PERIODIC_FAILED = 8,
2061 #define NUM_ELEMENTS_IN_HISTOGRAM 8
2063 struct iwl_measurement_histogram {
2064 __le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 0.8usec counts */
2065 __le32 cck[NUM_ELEMENTS_IN_HISTOGRAM]; /* in 1usec counts */
2066 } __packed;
2068 /* clear channel availability counters */
2069 struct iwl_measurement_cca_counters {
2070 __le32 ofdm;
2071 __le32 cck;
2072 } __packed;
2074 enum iwl_measure_type {
2075 IWL_MEASURE_BASIC = (1 << 0),
2076 IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2077 IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2078 IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2079 IWL_MEASURE_FRAME = (1 << 4),
2080 /* bits 5:6 are reserved */
2081 IWL_MEASURE_IDLE = (1 << 7),
2085 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2087 struct iwl_spectrum_notification {
2088 u8 id; /* measurement id -- 0 or 1 */
2089 u8 token;
2090 u8 channel_index; /* index in measurement channel list */
2091 u8 state; /* 0 - start, 1 - stop */
2092 __le32 start_time; /* lower 32-bits of TSF */
2093 u8 band; /* 0 - 5.2GHz, 1 - 2.4GHz */
2094 u8 channel;
2095 u8 type; /* see enum iwl_measurement_type */
2096 u8 reserved1;
2097 /* NOTE: cca_ofdm, cca_cck, basic_type, and histogram are only only
2098 * valid if applicable for measurement type requested. */
2099 __le32 cca_ofdm; /* cca fraction time in 40Mhz clock periods */
2100 __le32 cca_cck; /* cca fraction time in 44Mhz clock periods */
2101 __le32 cca_time; /* channel load time in usecs */
2102 u8 basic_type; /* 0 - bss, 1 - ofdm preamble, 2 -
2103 * unidentified */
2104 u8 reserved2[3];
2105 struct iwl_measurement_histogram histogram;
2106 __le32 stop_time; /* lower 32-bits of TSF */
2107 __le32 status; /* see iwl_measurement_status */
2108 } __packed;
2110 /******************************************************************************
2111 * (7)
2112 * Power Management Commands, Responses, Notifications:
2114 *****************************************************************************/
2117 * struct iwl_powertable_cmd - Power Table Command
2118 * @flags: See below:
2120 * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2122 * PM allow:
2123 * bit 0 - '0' Driver not allow power management
2124 * '1' Driver allow PM (use rest of parameters)
2126 * uCode send sleep notifications:
2127 * bit 1 - '0' Don't send sleep notification
2128 * '1' send sleep notification (SEND_PM_NOTIFICATION)
2130 * Sleep over DTIM
2131 * bit 2 - '0' PM have to walk up every DTIM
2132 * '1' PM could sleep over DTIM till listen Interval.
2134 * PCI power managed
2135 * bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2136 * '1' !(PCI_CFG_LINK_CTRL & 0x1)
2138 * Fast PD
2139 * bit 4 - '1' Put radio to sleep when receiving frame for others
2141 * Force sleep Modes
2142 * bit 31/30- '00' use both mac/xtal sleeps
2143 * '01' force Mac sleep
2144 * '10' force xtal sleep
2145 * '11' Illegal set
2147 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2148 * ucode assume sleep over DTIM is allowed and we don't need to wake up
2149 * for every DTIM.
2151 #define IWL_POWER_VEC_SIZE 5
2153 #define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK cpu_to_le16(BIT(0))
2154 #define IWL_POWER_POWER_SAVE_ENA_MSK cpu_to_le16(BIT(0))
2155 #define IWL_POWER_POWER_MANAGEMENT_ENA_MSK cpu_to_le16(BIT(1))
2156 #define IWL_POWER_SLEEP_OVER_DTIM_MSK cpu_to_le16(BIT(2))
2157 #define IWL_POWER_PCI_PM_MSK cpu_to_le16(BIT(3))
2158 #define IWL_POWER_FAST_PD cpu_to_le16(BIT(4))
2159 #define IWL_POWER_BEACON_FILTERING cpu_to_le16(BIT(5))
2160 #define IWL_POWER_SHADOW_REG_ENA cpu_to_le16(BIT(6))
2161 #define IWL_POWER_CT_KILL_SET cpu_to_le16(BIT(7))
2162 #define IWL_POWER_BT_SCO_ENA cpu_to_le16(BIT(8))
2163 #define IWL_POWER_ADVANCE_PM_ENA_MSK cpu_to_le16(BIT(9))
2165 struct iwl_powertable_cmd {
2166 __le16 flags;
2167 u8 keep_alive_seconds;
2168 u8 debug_flags;
2169 __le32 rx_data_timeout;
2170 __le32 tx_data_timeout;
2171 __le32 sleep_interval[IWL_POWER_VEC_SIZE];
2172 __le32 keep_alive_beacons;
2173 } __packed;
2176 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2177 * all devices identical.
2179 struct iwl_sleep_notification {
2180 u8 pm_sleep_mode;
2181 u8 pm_wakeup_src;
2182 __le16 reserved;
2183 __le32 sleep_time;
2184 __le32 tsf_low;
2185 __le32 bcon_timer;
2186 } __packed;
2188 /* Sleep states. all devices identical. */
2189 enum {
2190 IWL_PM_NO_SLEEP = 0,
2191 IWL_PM_SLP_MAC = 1,
2192 IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2193 IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2194 IWL_PM_SLP_PHY = 4,
2195 IWL_PM_SLP_REPENT = 5,
2196 IWL_PM_WAKEUP_BY_TIMER = 6,
2197 IWL_PM_WAKEUP_BY_DRIVER = 7,
2198 IWL_PM_WAKEUP_BY_RFKILL = 8,
2199 /* 3 reserved */
2200 IWL_PM_NUM_OF_MODES = 12,
2204 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2206 #define CARD_STATE_CMD_DISABLE 0x00 /* Put card to sleep */
2207 #define CARD_STATE_CMD_ENABLE 0x01 /* Wake up card */
2208 #define CARD_STATE_CMD_HALT 0x02 /* Power down permanently */
2209 struct iwl_card_state_cmd {
2210 __le32 status; /* CARD_STATE_CMD_* request new power state */
2211 } __packed;
2214 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2216 struct iwl_card_state_notif {
2217 __le32 flags;
2218 } __packed;
2220 #define HW_CARD_DISABLED 0x01
2221 #define SW_CARD_DISABLED 0x02
2222 #define CT_CARD_DISABLED 0x04
2223 #define RXON_CARD_DISABLED 0x10
2225 struct iwl_ct_kill_config {
2226 __le32 reserved;
2227 __le32 critical_temperature_M;
2228 __le32 critical_temperature_R;
2229 } __packed;
2231 /* 1000, and 6x00 */
2232 struct iwl_ct_kill_throttling_config {
2233 __le32 critical_temperature_exit;
2234 __le32 reserved;
2235 __le32 critical_temperature_enter;
2236 } __packed;
2238 /******************************************************************************
2239 * (8)
2240 * Scan Commands, Responses, Notifications:
2242 *****************************************************************************/
2244 #define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2245 #define SCAN_CHANNEL_TYPE_ACTIVE cpu_to_le32(1)
2248 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2250 * One for each channel in the scan list.
2251 * Each channel can independently select:
2252 * 1) SSID for directed active scans
2253 * 2) Txpower setting (for rate specified within Tx command)
2254 * 3) How long to stay on-channel (behavior may be modified by quiet_time,
2255 * quiet_plcp_th, good_CRC_th)
2257 * To avoid uCode errors, make sure the following are true (see comments
2258 * under struct iwl_scan_cmd about max_out_time and quiet_time):
2259 * 1) If using passive_dwell (i.e. passive_dwell != 0):
2260 * active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2261 * 2) quiet_time <= active_dwell
2262 * 3) If restricting off-channel time (i.e. max_out_time !=0):
2263 * passive_dwell < max_out_time
2264 * active_dwell < max_out_time
2267 struct iwl_scan_channel {
2269 * type is defined as:
2270 * 0:0 1 = active, 0 = passive
2271 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2272 * SSID IE is transmitted in probe request.
2273 * 21:31 reserved
2275 __le32 type;
2276 __le16 channel; /* band is selected by iwl_scan_cmd "flags" field */
2277 u8 tx_gain; /* gain for analog radio */
2278 u8 dsp_atten; /* gain for DSP */
2279 __le16 active_dwell; /* in 1024-uSec TU (time units), typ 5-50 */
2280 __le16 passive_dwell; /* in 1024-uSec TU (time units), typ 20-500 */
2281 } __packed;
2283 /* set number of direct probes __le32 type */
2284 #define IWL_SCAN_PROBE_MASK(n) cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
2287 * struct iwl_ssid_ie - directed scan network information element
2289 * Up to 20 of these may appear in REPLY_SCAN_CMD,
2290 * selected by "type" bit field in struct iwl_scan_channel;
2291 * each channel may select different ssids from among the 20 entries.
2292 * SSID IEs get transmitted in reverse order of entry.
2294 struct iwl_ssid_ie {
2295 u8 id;
2296 u8 len;
2297 u8 ssid[32];
2298 } __packed;
2300 #define PROBE_OPTION_MAX 20
2301 #define TX_CMD_LIFE_TIME_INFINITE cpu_to_le32(0xFFFFFFFF)
2302 #define IWL_GOOD_CRC_TH_DISABLED 0
2303 #define IWL_GOOD_CRC_TH_DEFAULT cpu_to_le16(1)
2304 #define IWL_GOOD_CRC_TH_NEVER cpu_to_le16(0xffff)
2305 #define IWL_MAX_CMD_SIZE 4096
2308 * REPLY_SCAN_CMD = 0x80 (command)
2310 * The hardware scan command is very powerful; the driver can set it up to
2311 * maintain (relatively) normal network traffic while doing a scan in the
2312 * background. The max_out_time and suspend_time control the ratio of how
2313 * long the device stays on an associated network channel ("service channel")
2314 * vs. how long it's away from the service channel, i.e. tuned to other channels
2315 * for scanning.
2317 * max_out_time is the max time off-channel (in usec), and suspend_time
2318 * is how long (in "extended beacon" format) that the scan is "suspended"
2319 * after returning to the service channel. That is, suspend_time is the
2320 * time that we stay on the service channel, doing normal work, between
2321 * scan segments. The driver may set these parameters differently to support
2322 * scanning when associated vs. not associated, and light vs. heavy traffic
2323 * loads when associated.
2325 * After receiving this command, the device's scan engine does the following;
2327 * 1) Sends SCAN_START notification to driver
2328 * 2) Checks to see if it has time to do scan for one channel
2329 * 3) Sends NULL packet, with power-save (PS) bit set to 1,
2330 * to tell AP that we're going off-channel
2331 * 4) Tunes to first channel in scan list, does active or passive scan
2332 * 5) Sends SCAN_RESULT notification to driver
2333 * 6) Checks to see if it has time to do scan on *next* channel in list
2334 * 7) Repeats 4-6 until it no longer has time to scan the next channel
2335 * before max_out_time expires
2336 * 8) Returns to service channel
2337 * 9) Sends NULL packet with PS=0 to tell AP that we're back
2338 * 10) Stays on service channel until suspend_time expires
2339 * 11) Repeats entire process 2-10 until list is complete
2340 * 12) Sends SCAN_COMPLETE notification
2342 * For fast, efficient scans, the scan command also has support for staying on
2343 * a channel for just a short time, if doing active scanning and getting no
2344 * responses to the transmitted probe request. This time is controlled by
2345 * quiet_time, and the number of received packets below which a channel is
2346 * considered "quiet" is controlled by quiet_plcp_threshold.
2348 * For active scanning on channels that have regulatory restrictions against
2349 * blindly transmitting, the scan can listen before transmitting, to make sure
2350 * that there is already legitimate activity on the channel. If enough
2351 * packets are cleanly received on the channel (controlled by good_CRC_th,
2352 * typical value 1), the scan engine starts transmitting probe requests.
2354 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2356 * To avoid uCode errors, see timing restrictions described under
2357 * struct iwl_scan_channel.
2360 enum iwl_scan_flags {
2361 /* BIT(0) currently unused */
2362 IWL_SCAN_FLAGS_ACTION_FRAME_TX = BIT(1),
2363 /* bits 2-7 reserved */
2366 struct iwl_scan_cmd {
2367 __le16 len;
2368 u8 scan_flags; /* scan flags: see enum iwl_scan_flags */
2369 u8 channel_count; /* # channels in channel list */
2370 __le16 quiet_time; /* dwell only this # millisecs on quiet channel
2371 * (only for active scan) */
2372 __le16 quiet_plcp_th; /* quiet chnl is < this # pkts (typ. 1) */
2373 __le16 good_CRC_th; /* passive -> active promotion threshold */
2374 __le16 rx_chain; /* RXON_RX_CHAIN_* */
2375 __le32 max_out_time; /* max usec to be away from associated (service)
2376 * channel */
2377 __le32 suspend_time; /* pause scan this long (in "extended beacon
2378 * format") when returning to service chnl:
2380 __le32 flags; /* RXON_FLG_* */
2381 __le32 filter_flags; /* RXON_FILTER_* */
2383 /* For active scans (set to all-0s for passive scans).
2384 * Does not include payload. Must specify Tx rate; no rate scaling. */
2385 struct iwl_tx_cmd tx_cmd;
2387 /* For directed active scans (set to all-0s otherwise) */
2388 struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2391 * Probe request frame, followed by channel list.
2393 * Size of probe request frame is specified by byte count in tx_cmd.
2394 * Channel list follows immediately after probe request frame.
2395 * Number of channels in list is specified by channel_count.
2396 * Each channel in list is of type:
2398 * struct iwl_scan_channel channels[0];
2400 * NOTE: Only one band of channels can be scanned per pass. You
2401 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2402 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2403 * before requesting another scan.
2405 u8 data[0];
2406 } __packed;
2408 /* Can abort will notify by complete notification with abort status. */
2409 #define CAN_ABORT_STATUS cpu_to_le32(0x1)
2410 /* complete notification statuses */
2411 #define ABORT_STATUS 0x2
2414 * REPLY_SCAN_CMD = 0x80 (response)
2416 struct iwl_scanreq_notification {
2417 __le32 status; /* 1: okay, 2: cannot fulfill request */
2418 } __packed;
2421 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2423 struct iwl_scanstart_notification {
2424 __le32 tsf_low;
2425 __le32 tsf_high;
2426 __le32 beacon_timer;
2427 u8 channel;
2428 u8 band;
2429 u8 reserved[2];
2430 __le32 status;
2431 } __packed;
2433 #define SCAN_OWNER_STATUS 0x1
2434 #define MEASURE_OWNER_STATUS 0x2
2436 #define IWL_PROBE_STATUS_OK 0
2437 #define IWL_PROBE_STATUS_TX_FAILED BIT(0)
2438 /* error statuses combined with TX_FAILED */
2439 #define IWL_PROBE_STATUS_FAIL_TTL BIT(1)
2440 #define IWL_PROBE_STATUS_FAIL_BT BIT(2)
2442 #define NUMBER_OF_STATISTICS 1 /* first __le32 is good CRC */
2444 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2446 struct iwl_scanresults_notification {
2447 u8 channel;
2448 u8 band;
2449 u8 probe_status;
2450 u8 num_probe_not_sent; /* not enough time to send */
2451 __le32 tsf_low;
2452 __le32 tsf_high;
2453 __le32 statistics[NUMBER_OF_STATISTICS];
2454 } __packed;
2457 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2459 struct iwl_scancomplete_notification {
2460 u8 scanned_channels;
2461 u8 status;
2462 u8 bt_status; /* BT On/Off status */
2463 u8 last_channel;
2464 __le32 tsf_low;
2465 __le32 tsf_high;
2466 } __packed;
2469 /******************************************************************************
2470 * (9)
2471 * IBSS/AP Commands and Notifications:
2473 *****************************************************************************/
2475 enum iwl_ibss_manager {
2476 IWL_NOT_IBSS_MANAGER = 0,
2477 IWL_IBSS_MANAGER = 1,
2481 * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2484 struct iwlagn_beacon_notif {
2485 struct iwlagn_tx_resp beacon_notify_hdr;
2486 __le32 low_tsf;
2487 __le32 high_tsf;
2488 __le32 ibss_mgr_status;
2489 } __packed;
2492 * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2495 struct iwl_tx_beacon_cmd {
2496 struct iwl_tx_cmd tx;
2497 __le16 tim_idx;
2498 u8 tim_size;
2499 u8 reserved1;
2500 struct ieee80211_hdr frame[0]; /* beacon frame */
2501 } __packed;
2503 /******************************************************************************
2504 * (10)
2505 * Statistics Commands and Notifications:
2507 *****************************************************************************/
2509 #define IWL_TEMP_CONVERT 260
2511 #define SUP_RATE_11A_MAX_NUM_CHANNELS 8
2512 #define SUP_RATE_11B_MAX_NUM_CHANNELS 4
2513 #define SUP_RATE_11G_MAX_NUM_CHANNELS 12
2515 /* Used for passing to driver number of successes and failures per rate */
2516 struct rate_histogram {
2517 union {
2518 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2519 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2520 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2521 } success;
2522 union {
2523 __le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2524 __le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2525 __le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2526 } failed;
2527 } __packed;
2529 /* statistics command response */
2531 struct statistics_dbg {
2532 __le32 burst_check;
2533 __le32 burst_count;
2534 __le32 wait_for_silence_timeout_cnt;
2535 __le32 reserved[3];
2536 } __packed;
2538 struct statistics_rx_phy {
2539 __le32 ina_cnt;
2540 __le32 fina_cnt;
2541 __le32 plcp_err;
2542 __le32 crc32_err;
2543 __le32 overrun_err;
2544 __le32 early_overrun_err;
2545 __le32 crc32_good;
2546 __le32 false_alarm_cnt;
2547 __le32 fina_sync_err_cnt;
2548 __le32 sfd_timeout;
2549 __le32 fina_timeout;
2550 __le32 unresponded_rts;
2551 __le32 rxe_frame_limit_overrun;
2552 __le32 sent_ack_cnt;
2553 __le32 sent_cts_cnt;
2554 __le32 sent_ba_rsp_cnt;
2555 __le32 dsp_self_kill;
2556 __le32 mh_format_err;
2557 __le32 re_acq_main_rssi_sum;
2558 __le32 reserved3;
2559 } __packed;
2561 struct statistics_rx_ht_phy {
2562 __le32 plcp_err;
2563 __le32 overrun_err;
2564 __le32 early_overrun_err;
2565 __le32 crc32_good;
2566 __le32 crc32_err;
2567 __le32 mh_format_err;
2568 __le32 agg_crc32_good;
2569 __le32 agg_mpdu_cnt;
2570 __le32 agg_cnt;
2571 __le32 unsupport_mcs;
2572 } __packed;
2574 #define INTERFERENCE_DATA_AVAILABLE cpu_to_le32(1)
2576 struct statistics_rx_non_phy {
2577 __le32 bogus_cts; /* CTS received when not expecting CTS */
2578 __le32 bogus_ack; /* ACK received when not expecting ACK */
2579 __le32 non_bssid_frames; /* number of frames with BSSID that
2580 * doesn't belong to the STA BSSID */
2581 __le32 filtered_frames; /* count frames that were dumped in the
2582 * filtering process */
2583 __le32 non_channel_beacons; /* beacons with our bss id but not on
2584 * our serving channel */
2585 __le32 channel_beacons; /* beacons with our bss id and in our
2586 * serving channel */
2587 __le32 num_missed_bcon; /* number of missed beacons */
2588 __le32 adc_rx_saturation_time; /* count in 0.8us units the time the
2589 * ADC was in saturation */
2590 __le32 ina_detection_search_time;/* total time (in 0.8us) searched
2591 * for INA */
2592 __le32 beacon_silence_rssi_a; /* RSSI silence after beacon frame */
2593 __le32 beacon_silence_rssi_b; /* RSSI silence after beacon frame */
2594 __le32 beacon_silence_rssi_c; /* RSSI silence after beacon frame */
2595 __le32 interference_data_flag; /* flag for interference data
2596 * availability. 1 when data is
2597 * available. */
2598 __le32 channel_load; /* counts RX Enable time in uSec */
2599 __le32 dsp_false_alarms; /* DSP false alarm (both OFDM
2600 * and CCK) counter */
2601 __le32 beacon_rssi_a;
2602 __le32 beacon_rssi_b;
2603 __le32 beacon_rssi_c;
2604 __le32 beacon_energy_a;
2605 __le32 beacon_energy_b;
2606 __le32 beacon_energy_c;
2607 } __packed;
2609 struct statistics_rx_non_phy_bt {
2610 struct statistics_rx_non_phy common;
2611 /* additional stats for bt */
2612 __le32 num_bt_kills;
2613 __le32 reserved[2];
2614 } __packed;
2616 struct statistics_rx {
2617 struct statistics_rx_phy ofdm;
2618 struct statistics_rx_phy cck;
2619 struct statistics_rx_non_phy general;
2620 struct statistics_rx_ht_phy ofdm_ht;
2621 } __packed;
2623 struct statistics_rx_bt {
2624 struct statistics_rx_phy ofdm;
2625 struct statistics_rx_phy cck;
2626 struct statistics_rx_non_phy_bt general;
2627 struct statistics_rx_ht_phy ofdm_ht;
2628 } __packed;
2631 * struct statistics_tx_power - current tx power
2633 * @ant_a: current tx power on chain a in 1/2 dB step
2634 * @ant_b: current tx power on chain b in 1/2 dB step
2635 * @ant_c: current tx power on chain c in 1/2 dB step
2637 struct statistics_tx_power {
2638 u8 ant_a;
2639 u8 ant_b;
2640 u8 ant_c;
2641 u8 reserved;
2642 } __packed;
2644 struct statistics_tx_non_phy_agg {
2645 __le32 ba_timeout;
2646 __le32 ba_reschedule_frames;
2647 __le32 scd_query_agg_frame_cnt;
2648 __le32 scd_query_no_agg;
2649 __le32 scd_query_agg;
2650 __le32 scd_query_mismatch;
2651 __le32 frame_not_ready;
2652 __le32 underrun;
2653 __le32 bt_prio_kill;
2654 __le32 rx_ba_rsp_cnt;
2655 } __packed;
2657 struct statistics_tx {
2658 __le32 preamble_cnt;
2659 __le32 rx_detected_cnt;
2660 __le32 bt_prio_defer_cnt;
2661 __le32 bt_prio_kill_cnt;
2662 __le32 few_bytes_cnt;
2663 __le32 cts_timeout;
2664 __le32 ack_timeout;
2665 __le32 expected_ack_cnt;
2666 __le32 actual_ack_cnt;
2667 __le32 dump_msdu_cnt;
2668 __le32 burst_abort_next_frame_mismatch_cnt;
2669 __le32 burst_abort_missing_next_frame_cnt;
2670 __le32 cts_timeout_collision;
2671 __le32 ack_or_ba_timeout_collision;
2672 struct statistics_tx_non_phy_agg agg;
2674 * "tx_power" are optional parameters provided by uCode,
2675 * 6000 series is the only device provide the information,
2676 * Those are reserved fields for all the other devices
2678 struct statistics_tx_power tx_power;
2679 __le32 reserved1;
2680 } __packed;
2683 struct statistics_div {
2684 __le32 tx_on_a;
2685 __le32 tx_on_b;
2686 __le32 exec_time;
2687 __le32 probe_time;
2688 __le32 reserved1;
2689 __le32 reserved2;
2690 } __packed;
2692 struct statistics_general_common {
2693 __le32 temperature; /* radio temperature */
2694 __le32 temperature_m; /* radio voltage */
2695 struct statistics_dbg dbg;
2696 __le32 sleep_time;
2697 __le32 slots_out;
2698 __le32 slots_idle;
2699 __le32 ttl_timestamp;
2700 struct statistics_div div;
2701 __le32 rx_enable_counter;
2703 * num_of_sos_states:
2704 * count the number of times we have to re-tune
2705 * in order to get out of bad PHY status
2707 __le32 num_of_sos_states;
2708 } __packed;
2710 struct statistics_bt_activity {
2711 /* Tx statistics */
2712 __le32 hi_priority_tx_req_cnt;
2713 __le32 hi_priority_tx_denied_cnt;
2714 __le32 lo_priority_tx_req_cnt;
2715 __le32 lo_priority_tx_denied_cnt;
2716 /* Rx statistics */
2717 __le32 hi_priority_rx_req_cnt;
2718 __le32 hi_priority_rx_denied_cnt;
2719 __le32 lo_priority_rx_req_cnt;
2720 __le32 lo_priority_rx_denied_cnt;
2721 } __packed;
2723 struct statistics_general {
2724 struct statistics_general_common common;
2725 __le32 reserved2;
2726 __le32 reserved3;
2727 } __packed;
2729 struct statistics_general_bt {
2730 struct statistics_general_common common;
2731 struct statistics_bt_activity activity;
2732 __le32 reserved2;
2733 __le32 reserved3;
2734 } __packed;
2736 #define UCODE_STATISTICS_CLEAR_MSK (0x1 << 0)
2737 #define UCODE_STATISTICS_FREQUENCY_MSK (0x1 << 1)
2738 #define UCODE_STATISTICS_NARROW_BAND_MSK (0x1 << 2)
2741 * REPLY_STATISTICS_CMD = 0x9c,
2742 * all devices identical.
2744 * This command triggers an immediate response containing uCode statistics.
2745 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2747 * If the CLEAR_STATS configuration flag is set, uCode will clear its
2748 * internal copy of the statistics (counters) after issuing the response.
2749 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2751 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2752 * STATISTICS_NOTIFICATIONs after received beacons (see below). This flag
2753 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2755 #define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1) /* see above */
2756 #define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
2757 struct iwl_statistics_cmd {
2758 __le32 configuration_flags; /* IWL_STATS_CONF_* */
2759 } __packed;
2762 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2764 * By default, uCode issues this notification after receiving a beacon
2765 * while associated. To disable this behavior, set DISABLE_NOTIF flag in the
2766 * REPLY_STATISTICS_CMD 0x9c, above.
2768 * Statistics counters continue to increment beacon after beacon, but are
2769 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
2770 * 0x9c with CLEAR_STATS bit set (see above).
2772 * uCode also issues this notification during scans. uCode clears statistics
2773 * appropriately so that each notification contains statistics for only the
2774 * one channel that has just been scanned.
2776 #define STATISTICS_REPLY_FLG_BAND_24G_MSK cpu_to_le32(0x2)
2777 #define STATISTICS_REPLY_FLG_HT40_MODE_MSK cpu_to_le32(0x8)
2779 struct iwl_notif_statistics {
2780 __le32 flag;
2781 struct statistics_rx rx;
2782 struct statistics_tx tx;
2783 struct statistics_general general;
2784 } __packed;
2786 struct iwl_bt_notif_statistics {
2787 __le32 flag;
2788 struct statistics_rx_bt rx;
2789 struct statistics_tx tx;
2790 struct statistics_general_bt general;
2791 } __packed;
2794 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
2796 * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed
2797 * in regardless of how many missed beacons, which mean when driver receive the
2798 * notification, inside the command, it can find all the beacons information
2799 * which include number of total missed beacons, number of consecutive missed
2800 * beacons, number of beacons received and number of beacons expected to
2801 * receive.
2803 * If uCode detected consecutive_missed_beacons > 5, it will reset the radio
2804 * in order to bring the radio/PHY back to working state; which has no relation
2805 * to when driver will perform sensitivity calibration.
2807 * Driver should set it own missed_beacon_threshold to decide when to perform
2808 * sensitivity calibration based on number of consecutive missed beacons in
2809 * order to improve overall performance, especially in noisy environment.
2813 #define IWL_MISSED_BEACON_THRESHOLD_MIN (1)
2814 #define IWL_MISSED_BEACON_THRESHOLD_DEF (5)
2815 #define IWL_MISSED_BEACON_THRESHOLD_MAX IWL_MISSED_BEACON_THRESHOLD_DEF
2817 struct iwl_missed_beacon_notif {
2818 __le32 consecutive_missed_beacons;
2819 __le32 total_missed_becons;
2820 __le32 num_expected_beacons;
2821 __le32 num_recvd_beacons;
2822 } __packed;
2825 /******************************************************************************
2826 * (11)
2827 * Rx Calibration Commands:
2829 * With the uCode used for open source drivers, most Tx calibration (except
2830 * for Tx Power) and most Rx calibration is done by uCode during the
2831 * "initialize" phase of uCode boot. Driver must calibrate only:
2833 * 1) Tx power (depends on temperature), described elsewhere
2834 * 2) Receiver gain balance (optimize MIMO, and detect disconnected antennas)
2835 * 3) Receiver sensitivity (to optimize signal detection)
2837 *****************************************************************************/
2840 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
2842 * This command sets up the Rx signal detector for a sensitivity level that
2843 * is high enough to lock onto all signals within the associated network,
2844 * but low enough to ignore signals that are below a certain threshold, so as
2845 * not to have too many "false alarms". False alarms are signals that the
2846 * Rx DSP tries to lock onto, but then discards after determining that they
2847 * are noise.
2849 * The optimum number of false alarms is between 5 and 50 per 200 TUs
2850 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
2851 * time listening, not transmitting). Driver must adjust sensitivity so that
2852 * the ratio of actual false alarms to actual Rx time falls within this range.
2854 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
2855 * received beacon. These provide information to the driver to analyze the
2856 * sensitivity. Don't analyze statistics that come in from scanning, or any
2857 * other non-associated-network source. Pertinent statistics include:
2859 * From "general" statistics (struct statistics_rx_non_phy):
2861 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
2862 * Measure of energy of desired signal. Used for establishing a level
2863 * below which the device does not detect signals.
2865 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
2866 * Measure of background noise in silent period after beacon.
2868 * channel_load
2869 * uSecs of actual Rx time during beacon period (varies according to
2870 * how much time was spent transmitting).
2872 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
2874 * false_alarm_cnt
2875 * Signal locks abandoned early (before phy-level header).
2877 * plcp_err
2878 * Signal locks abandoned late (during phy-level header).
2880 * NOTE: Both false_alarm_cnt and plcp_err increment monotonically from
2881 * beacon to beacon, i.e. each value is an accumulation of all errors
2882 * before and including the latest beacon. Values will wrap around to 0
2883 * after counting up to 2^32 - 1. Driver must differentiate vs.
2884 * previous beacon's values to determine # false alarms in the current
2885 * beacon period.
2887 * Total number of false alarms = false_alarms + plcp_errs
2889 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
2890 * (notice that the start points for OFDM are at or close to settings for
2891 * maximum sensitivity):
2893 * START / MIN / MAX
2894 * HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX 90 / 85 / 120
2895 * HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX 170 / 170 / 210
2896 * HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX 105 / 105 / 140
2897 * HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX 220 / 220 / 270
2899 * If actual rate of OFDM false alarms (+ plcp_errors) is too high
2900 * (greater than 50 for each 204.8 msecs listening), reduce sensitivity
2901 * by *adding* 1 to all 4 of the table entries above, up to the max for
2902 * each entry. Conversely, if false alarm rate is too low (less than 5
2903 * for each 204.8 msecs listening), *subtract* 1 from each entry to
2904 * increase sensitivity.
2906 * For CCK sensitivity, keep track of the following:
2908 * 1). 20-beacon history of maximum background noise, indicated by
2909 * (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
2910 * 3 receivers. For any given beacon, the "silence reference" is
2911 * the maximum of last 60 samples (20 beacons * 3 receivers).
2913 * 2). 10-beacon history of strongest signal level, as indicated
2914 * by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
2915 * i.e. the strength of the signal through the best receiver at the
2916 * moment. These measurements are "upside down", with lower values
2917 * for stronger signals, so max energy will be *minimum* value.
2919 * Then for any given beacon, the driver must determine the *weakest*
2920 * of the strongest signals; this is the minimum level that needs to be
2921 * successfully detected, when using the best receiver at the moment.
2922 * "Max cck energy" is the maximum (higher value means lower energy!)
2923 * of the last 10 minima. Once this is determined, driver must add
2924 * a little margin by adding "6" to it.
2926 * 3). Number of consecutive beacon periods with too few false alarms.
2927 * Reset this to 0 at the first beacon period that falls within the
2928 * "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
2930 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
2931 * (notice that the start points for CCK are at maximum sensitivity):
2933 * START / MIN / MAX
2934 * HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX 125 / 125 / 200
2935 * HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX 200 / 200 / 400
2936 * HD_MIN_ENERGY_CCK_DET_INDEX 100 / 0 / 100
2938 * If actual rate of CCK false alarms (+ plcp_errors) is too high
2939 * (greater than 50 for each 204.8 msecs listening), method for reducing
2940 * sensitivity is:
2942 * 1) *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2943 * up to max 400.
2945 * 2) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
2946 * sensitivity has been reduced a significant amount; bring it up to
2947 * a moderate 161. Otherwise, *add* 3, up to max 200.
2949 * 3) a) If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
2950 * sensitivity has been reduced only a moderate or small amount;
2951 * *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
2952 * down to min 0. Otherwise (if gain has been significantly reduced),
2953 * don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
2955 * b) Save a snapshot of the "silence reference".
2957 * If actual rate of CCK false alarms (+ plcp_errors) is too low
2958 * (less than 5 for each 204.8 msecs listening), method for increasing
2959 * sensitivity is used only if:
2961 * 1a) Previous beacon did not have too many false alarms
2962 * 1b) AND difference between previous "silence reference" and current
2963 * "silence reference" (prev - current) is 2 or more,
2964 * OR 2) 100 or more consecutive beacon periods have had rate of
2965 * less than 5 false alarms per 204.8 milliseconds rx time.
2967 * Method for increasing sensitivity:
2969 * 1) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
2970 * down to min 125.
2972 * 2) *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2973 * down to min 200.
2975 * 3) *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
2977 * If actual rate of CCK false alarms (+ plcp_errors) is within good range
2978 * (between 5 and 50 for each 204.8 msecs listening):
2980 * 1) Save a snapshot of the silence reference.
2982 * 2) If previous beacon had too many CCK false alarms (+ plcp_errors),
2983 * give some extra margin to energy threshold by *subtracting* 8
2984 * from value in HD_MIN_ENERGY_CCK_DET_INDEX.
2986 * For all cases (too few, too many, good range), make sure that the CCK
2987 * detection threshold (energy) is below the energy level for robust
2988 * detection over the past 10 beacon periods, the "Max cck energy".
2989 * Lower values mean higher energy; this means making sure that the value
2990 * in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
2995 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
2997 #define HD_TABLE_SIZE (11) /* number of entries */
2998 #define HD_MIN_ENERGY_CCK_DET_INDEX (0) /* table indexes */
2999 #define HD_MIN_ENERGY_OFDM_DET_INDEX (1)
3000 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX (2)
3001 #define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX (3)
3002 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX (4)
3003 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX (5)
3004 #define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX (6)
3005 #define HD_BARKER_CORR_TH_ADD_MIN_INDEX (7)
3006 #define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX (8)
3007 #define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX (9)
3008 #define HD_OFDM_ENERGY_TH_IN_INDEX (10)
3011 * Additional table entries in enhance SENSITIVITY_CMD
3013 #define HD_INA_NON_SQUARE_DET_OFDM_INDEX (11)
3014 #define HD_INA_NON_SQUARE_DET_CCK_INDEX (12)
3015 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX (13)
3016 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX (14)
3017 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (15)
3018 #define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX (16)
3019 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX (17)
3020 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX (18)
3021 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX (19)
3022 #define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX (20)
3023 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX (21)
3024 #define HD_RESERVED (22)
3026 /* number of entries for enhanced tbl */
3027 #define ENHANCE_HD_TABLE_SIZE (23)
3029 /* number of additional entries for enhanced tbl */
3030 #define ENHANCE_HD_TABLE_ENTRIES (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE)
3032 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1 cpu_to_le16(0)
3033 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V1 cpu_to_le16(0)
3034 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1 cpu_to_le16(0)
3035 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(668)
3036 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4)
3037 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(486)
3038 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(37)
3039 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1 cpu_to_le16(853)
3040 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1 cpu_to_le16(4)
3041 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1 cpu_to_le16(476)
3042 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1 cpu_to_le16(99)
3044 #define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2 cpu_to_le16(1)
3045 #define HD_INA_NON_SQUARE_DET_CCK_DATA_V2 cpu_to_le16(1)
3046 #define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2 cpu_to_le16(1)
3047 #define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(600)
3048 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(40)
3049 #define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(486)
3050 #define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(45)
3051 #define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2 cpu_to_le16(853)
3052 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2 cpu_to_le16(60)
3053 #define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2 cpu_to_le16(476)
3054 #define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2 cpu_to_le16(99)
3057 /* Control field in struct iwl_sensitivity_cmd */
3058 #define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE cpu_to_le16(0)
3059 #define SENSITIVITY_CMD_CONTROL_WORK_TABLE cpu_to_le16(1)
3062 * struct iwl_sensitivity_cmd
3063 * @control: (1) updates working table, (0) updates default table
3064 * @table: energy threshold values, use HD_* as index into table
3066 * Always use "1" in "control" to update uCode's working table and DSP.
3068 struct iwl_sensitivity_cmd {
3069 __le16 control; /* always use "1" */
3070 __le16 table[HD_TABLE_SIZE]; /* use HD_* as index */
3071 } __packed;
3076 struct iwl_enhance_sensitivity_cmd {
3077 __le16 control; /* always use "1" */
3078 __le16 enhance_table[ENHANCE_HD_TABLE_SIZE]; /* use HD_* as index */
3079 } __packed;
3083 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
3085 * This command sets the relative gains of agn device's 3 radio receiver chains.
3087 * After the first association, driver should accumulate signal and noise
3088 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
3089 * beacons from the associated network (don't collect statistics that come
3090 * in from scanning, or any other non-network source).
3092 * DISCONNECTED ANTENNA:
3094 * Driver should determine which antennas are actually connected, by comparing
3095 * average beacon signal levels for the 3 Rx chains. Accumulate (add) the
3096 * following values over 20 beacons, one accumulator for each of the chains
3097 * a/b/c, from struct statistics_rx_non_phy:
3099 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
3101 * Find the strongest signal from among a/b/c. Compare the other two to the
3102 * strongest. If any signal is more than 15 dB (times 20, unless you
3103 * divide the accumulated values by 20) below the strongest, the driver
3104 * considers that antenna to be disconnected, and should not try to use that
3105 * antenna/chain for Rx or Tx. If both A and B seem to be disconnected,
3106 * driver should declare the stronger one as connected, and attempt to use it
3107 * (A and B are the only 2 Tx chains!).
3110 * RX BALANCE:
3112 * Driver should balance the 3 receivers (but just the ones that are connected
3113 * to antennas, see above) for gain, by comparing the average signal levels
3114 * detected during the silence after each beacon (background noise).
3115 * Accumulate (add) the following values over 20 beacons, one accumulator for
3116 * each of the chains a/b/c, from struct statistics_rx_non_phy:
3118 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
3120 * Find the weakest background noise level from among a/b/c. This Rx chain
3121 * will be the reference, with 0 gain adjustment. Attenuate other channels by
3122 * finding noise difference:
3124 * (accum_noise[i] - accum_noise[reference]) / 30
3126 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
3127 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
3128 * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
3129 * and set bit 2 to indicate "reduce gain". The value for the reference
3130 * (weakest) chain should be "0".
3132 * diff_gain_[abc] bit fields:
3133 * 2: (1) reduce gain, (0) increase gain
3134 * 1-0: amount of gain, units of 1.5 dB
3137 /* Phy calibration command for series */
3138 enum {
3139 IWL_PHY_CALIBRATE_DC_CMD = 8,
3140 IWL_PHY_CALIBRATE_LO_CMD = 9,
3141 IWL_PHY_CALIBRATE_TX_IQ_CMD = 11,
3142 IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD = 15,
3143 IWL_PHY_CALIBRATE_BASE_BAND_CMD = 16,
3144 IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD = 17,
3145 IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD = 18,
3148 /* This enum defines the bitmap of various calibrations to enable in both
3149 * init ucode and runtime ucode through CALIBRATION_CFG_CMD.
3151 enum iwl_ucode_calib_cfg {
3152 IWL_CALIB_CFG_RX_BB_IDX = BIT(0),
3153 IWL_CALIB_CFG_DC_IDX = BIT(1),
3154 IWL_CALIB_CFG_LO_IDX = BIT(2),
3155 IWL_CALIB_CFG_TX_IQ_IDX = BIT(3),
3156 IWL_CALIB_CFG_RX_IQ_IDX = BIT(4),
3157 IWL_CALIB_CFG_NOISE_IDX = BIT(5),
3158 IWL_CALIB_CFG_CRYSTAL_IDX = BIT(6),
3159 IWL_CALIB_CFG_TEMPERATURE_IDX = BIT(7),
3160 IWL_CALIB_CFG_PAPD_IDX = BIT(8),
3161 IWL_CALIB_CFG_SENSITIVITY_IDX = BIT(9),
3162 IWL_CALIB_CFG_TX_PWR_IDX = BIT(10),
3165 #define IWL_CALIB_INIT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \
3166 IWL_CALIB_CFG_DC_IDX | \
3167 IWL_CALIB_CFG_LO_IDX | \
3168 IWL_CALIB_CFG_TX_IQ_IDX | \
3169 IWL_CALIB_CFG_RX_IQ_IDX | \
3170 IWL_CALIB_CFG_CRYSTAL_IDX)
3172 #define IWL_CALIB_RT_CFG_ALL cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX | \
3173 IWL_CALIB_CFG_DC_IDX | \
3174 IWL_CALIB_CFG_LO_IDX | \
3175 IWL_CALIB_CFG_TX_IQ_IDX | \
3176 IWL_CALIB_CFG_RX_IQ_IDX | \
3177 IWL_CALIB_CFG_TEMPERATURE_IDX | \
3178 IWL_CALIB_CFG_PAPD_IDX | \
3179 IWL_CALIB_CFG_TX_PWR_IDX | \
3180 IWL_CALIB_CFG_CRYSTAL_IDX)
3182 #define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK cpu_to_le32(BIT(0))
3184 struct iwl_calib_cfg_elmnt_s {
3185 __le32 is_enable;
3186 __le32 start;
3187 __le32 send_res;
3188 __le32 apply_res;
3189 __le32 reserved;
3190 } __packed;
3192 struct iwl_calib_cfg_status_s {
3193 struct iwl_calib_cfg_elmnt_s once;
3194 struct iwl_calib_cfg_elmnt_s perd;
3195 __le32 flags;
3196 } __packed;
3198 struct iwl_calib_cfg_cmd {
3199 struct iwl_calib_cfg_status_s ucd_calib_cfg;
3200 struct iwl_calib_cfg_status_s drv_calib_cfg;
3201 __le32 reserved1;
3202 } __packed;
3204 struct iwl_calib_hdr {
3205 u8 op_code;
3206 u8 first_group;
3207 u8 groups_num;
3208 u8 data_valid;
3209 } __packed;
3211 struct iwl_calib_cmd {
3212 struct iwl_calib_hdr hdr;
3213 u8 data[0];
3214 } __packed;
3216 struct iwl_calib_xtal_freq_cmd {
3217 struct iwl_calib_hdr hdr;
3218 u8 cap_pin1;
3219 u8 cap_pin2;
3220 u8 pad[2];
3221 } __packed;
3223 #define DEFAULT_RADIO_SENSOR_OFFSET cpu_to_le16(2700)
3224 struct iwl_calib_temperature_offset_cmd {
3225 struct iwl_calib_hdr hdr;
3226 __le16 radio_sensor_offset;
3227 __le16 reserved;
3228 } __packed;
3230 struct iwl_calib_temperature_offset_v2_cmd {
3231 struct iwl_calib_hdr hdr;
3232 __le16 radio_sensor_offset_high;
3233 __le16 radio_sensor_offset_low;
3234 __le16 burntVoltageRef;
3235 __le16 reserved;
3236 } __packed;
3238 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
3239 struct iwl_calib_chain_noise_reset_cmd {
3240 struct iwl_calib_hdr hdr;
3241 u8 data[0];
3244 /* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
3245 struct iwl_calib_chain_noise_gain_cmd {
3246 struct iwl_calib_hdr hdr;
3247 u8 delta_gain_1;
3248 u8 delta_gain_2;
3249 u8 pad[2];
3250 } __packed;
3252 /******************************************************************************
3253 * (12)
3254 * Miscellaneous Commands:
3256 *****************************************************************************/
3259 * LEDs Command & Response
3260 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
3262 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
3263 * this command turns it on or off, or sets up a periodic blinking cycle.
3265 struct iwl_led_cmd {
3266 __le32 interval; /* "interval" in uSec */
3267 u8 id; /* 1: Activity, 2: Link, 3: Tech */
3268 u8 off; /* # intervals off while blinking;
3269 * "0", with >0 "on" value, turns LED on */
3270 u8 on; /* # intervals on while blinking;
3271 * "0", regardless of "off", turns LED off */
3272 u8 reserved;
3273 } __packed;
3276 * station priority table entries
3277 * also used as potential "events" value for both
3278 * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD
3282 * COEX events entry flag masks
3283 * RP - Requested Priority
3284 * WP - Win Medium Priority: priority assigned when the contention has been won
3286 #define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG (0x1)
3287 #define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG (0x2)
3288 #define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG (0x4)
3290 #define COEX_CU_UNASSOC_IDLE_RP 4
3291 #define COEX_CU_UNASSOC_MANUAL_SCAN_RP 4
3292 #define COEX_CU_UNASSOC_AUTO_SCAN_RP 4
3293 #define COEX_CU_CALIBRATION_RP 4
3294 #define COEX_CU_PERIODIC_CALIBRATION_RP 4
3295 #define COEX_CU_CONNECTION_ESTAB_RP 4
3296 #define COEX_CU_ASSOCIATED_IDLE_RP 4
3297 #define COEX_CU_ASSOC_MANUAL_SCAN_RP 4
3298 #define COEX_CU_ASSOC_AUTO_SCAN_RP 4
3299 #define COEX_CU_ASSOC_ACTIVE_LEVEL_RP 4
3300 #define COEX_CU_RF_ON_RP 6
3301 #define COEX_CU_RF_OFF_RP 4
3302 #define COEX_CU_STAND_ALONE_DEBUG_RP 6
3303 #define COEX_CU_IPAN_ASSOC_LEVEL_RP 4
3304 #define COEX_CU_RSRVD1_RP 4
3305 #define COEX_CU_RSRVD2_RP 4
3307 #define COEX_CU_UNASSOC_IDLE_WP 3
3308 #define COEX_CU_UNASSOC_MANUAL_SCAN_WP 3
3309 #define COEX_CU_UNASSOC_AUTO_SCAN_WP 3
3310 #define COEX_CU_CALIBRATION_WP 3
3311 #define COEX_CU_PERIODIC_CALIBRATION_WP 3
3312 #define COEX_CU_CONNECTION_ESTAB_WP 3
3313 #define COEX_CU_ASSOCIATED_IDLE_WP 3
3314 #define COEX_CU_ASSOC_MANUAL_SCAN_WP 3
3315 #define COEX_CU_ASSOC_AUTO_SCAN_WP 3
3316 #define COEX_CU_ASSOC_ACTIVE_LEVEL_WP 3
3317 #define COEX_CU_RF_ON_WP 3
3318 #define COEX_CU_RF_OFF_WP 3
3319 #define COEX_CU_STAND_ALONE_DEBUG_WP 6
3320 #define COEX_CU_IPAN_ASSOC_LEVEL_WP 3
3321 #define COEX_CU_RSRVD1_WP 3
3322 #define COEX_CU_RSRVD2_WP 3
3324 #define COEX_UNASSOC_IDLE_FLAGS 0
3325 #define COEX_UNASSOC_MANUAL_SCAN_FLAGS \
3326 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3327 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3328 #define COEX_UNASSOC_AUTO_SCAN_FLAGS \
3329 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3330 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3331 #define COEX_CALIBRATION_FLAGS \
3332 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3333 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3334 #define COEX_PERIODIC_CALIBRATION_FLAGS 0
3336 * COEX_CONNECTION_ESTAB:
3337 * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3339 #define COEX_CONNECTION_ESTAB_FLAGS \
3340 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3341 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3342 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3343 #define COEX_ASSOCIATED_IDLE_FLAGS 0
3344 #define COEX_ASSOC_MANUAL_SCAN_FLAGS \
3345 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3346 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3347 #define COEX_ASSOC_AUTO_SCAN_FLAGS \
3348 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3349 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3350 #define COEX_ASSOC_ACTIVE_LEVEL_FLAGS 0
3351 #define COEX_RF_ON_FLAGS 0
3352 #define COEX_RF_OFF_FLAGS 0
3353 #define COEX_STAND_ALONE_DEBUG_FLAGS \
3354 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3355 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3356 #define COEX_IPAN_ASSOC_LEVEL_FLAGS \
3357 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3358 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3359 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3360 #define COEX_RSRVD1_FLAGS 0
3361 #define COEX_RSRVD2_FLAGS 0
3363 * COEX_CU_RF_ON is the event wrapping all radio ownership.
3364 * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3366 #define COEX_CU_RF_ON_FLAGS \
3367 (COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG | \
3368 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG | \
3369 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3372 enum {
3373 /* un-association part */
3374 COEX_UNASSOC_IDLE = 0,
3375 COEX_UNASSOC_MANUAL_SCAN = 1,
3376 COEX_UNASSOC_AUTO_SCAN = 2,
3377 /* calibration */
3378 COEX_CALIBRATION = 3,
3379 COEX_PERIODIC_CALIBRATION = 4,
3380 /* connection */
3381 COEX_CONNECTION_ESTAB = 5,
3382 /* association part */
3383 COEX_ASSOCIATED_IDLE = 6,
3384 COEX_ASSOC_MANUAL_SCAN = 7,
3385 COEX_ASSOC_AUTO_SCAN = 8,
3386 COEX_ASSOC_ACTIVE_LEVEL = 9,
3387 /* RF ON/OFF */
3388 COEX_RF_ON = 10,
3389 COEX_RF_OFF = 11,
3390 COEX_STAND_ALONE_DEBUG = 12,
3391 /* IPAN */
3392 COEX_IPAN_ASSOC_LEVEL = 13,
3393 /* reserved */
3394 COEX_RSRVD1 = 14,
3395 COEX_RSRVD2 = 15,
3396 COEX_NUM_OF_EVENTS = 16
3400 * Coexistence WIFI/WIMAX Command
3401 * COEX_PRIORITY_TABLE_CMD = 0x5a
3404 struct iwl_wimax_coex_event_entry {
3405 u8 request_prio;
3406 u8 win_medium_prio;
3407 u8 reserved;
3408 u8 flags;
3409 } __packed;
3411 /* COEX flag masks */
3413 /* Station table is valid */
3414 #define COEX_FLAGS_STA_TABLE_VALID_MSK (0x1)
3415 /* UnMask wake up src at unassociated sleep */
3416 #define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK (0x4)
3417 /* UnMask wake up src at associated sleep */
3418 #define COEX_FLAGS_ASSOC_WA_UNMASK_MSK (0x8)
3419 /* Enable CoEx feature. */
3420 #define COEX_FLAGS_COEX_ENABLE_MSK (0x80)
3422 struct iwl_wimax_coex_cmd {
3423 u8 flags;
3424 u8 reserved[3];
3425 struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
3426 } __packed;
3429 * Coexistence MEDIUM NOTIFICATION
3430 * COEX_MEDIUM_NOTIFICATION = 0x5b
3432 * notification from uCode to host to indicate medium changes
3436 * status field
3437 * bit 0 - 2: medium status
3438 * bit 3: medium change indication
3439 * bit 4 - 31: reserved
3441 /* status option values, (0 - 2 bits) */
3442 #define COEX_MEDIUM_BUSY (0x0) /* radio belongs to WiMAX */
3443 #define COEX_MEDIUM_ACTIVE (0x1) /* radio belongs to WiFi */
3444 #define COEX_MEDIUM_PRE_RELEASE (0x2) /* received radio release */
3445 #define COEX_MEDIUM_MSK (0x7)
3447 /* send notification status (1 bit) */
3448 #define COEX_MEDIUM_CHANGED (0x8)
3449 #define COEX_MEDIUM_CHANGED_MSK (0x8)
3450 #define COEX_MEDIUM_SHIFT (3)
3452 struct iwl_coex_medium_notification {
3453 __le32 status;
3454 __le32 events;
3455 } __packed;
3458 * Coexistence EVENT Command
3459 * COEX_EVENT_CMD = 0x5c
3461 * send from host to uCode for coex event request.
3463 /* flags options */
3464 #define COEX_EVENT_REQUEST_MSK (0x1)
3466 struct iwl_coex_event_cmd {
3467 u8 flags;
3468 u8 event;
3469 __le16 reserved;
3470 } __packed;
3472 struct iwl_coex_event_resp {
3473 __le32 status;
3474 } __packed;
3477 /******************************************************************************
3478 * Bluetooth Coexistence commands
3480 *****************************************************************************/
3483 * BT Status notification
3484 * REPLY_BT_COEX_PROFILE_NOTIF = 0xce
3486 enum iwl_bt_coex_profile_traffic_load {
3487 IWL_BT_COEX_TRAFFIC_LOAD_NONE = 0,
3488 IWL_BT_COEX_TRAFFIC_LOAD_LOW = 1,
3489 IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 2,
3490 IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS = 3,
3492 * There are no more even though below is a u8, the
3493 * indication from the BT device only has two bits.
3497 #define BT_SESSION_ACTIVITY_1_UART_MSG 0x1
3498 #define BT_SESSION_ACTIVITY_2_UART_MSG 0x2
3500 /* BT UART message - Share Part (BT -> WiFi) */
3501 #define BT_UART_MSG_FRAME1MSGTYPE_POS (0)
3502 #define BT_UART_MSG_FRAME1MSGTYPE_MSK \
3503 (0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS)
3504 #define BT_UART_MSG_FRAME1SSN_POS (3)
3505 #define BT_UART_MSG_FRAME1SSN_MSK \
3506 (0x3 << BT_UART_MSG_FRAME1SSN_POS)
3507 #define BT_UART_MSG_FRAME1UPDATEREQ_POS (5)
3508 #define BT_UART_MSG_FRAME1UPDATEREQ_MSK \
3509 (0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS)
3510 #define BT_UART_MSG_FRAME1RESERVED_POS (6)
3511 #define BT_UART_MSG_FRAME1RESERVED_MSK \
3512 (0x3 << BT_UART_MSG_FRAME1RESERVED_POS)
3514 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS (0)
3515 #define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK \
3516 (0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS)
3517 #define BT_UART_MSG_FRAME2TRAFFICLOAD_POS (2)
3518 #define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK \
3519 (0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS)
3520 #define BT_UART_MSG_FRAME2CHLSEQN_POS (4)
3521 #define BT_UART_MSG_FRAME2CHLSEQN_MSK \
3522 (0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS)
3523 #define BT_UART_MSG_FRAME2INBAND_POS (5)
3524 #define BT_UART_MSG_FRAME2INBAND_MSK \
3525 (0x1 << BT_UART_MSG_FRAME2INBAND_POS)
3526 #define BT_UART_MSG_FRAME2RESERVED_POS (6)
3527 #define BT_UART_MSG_FRAME2RESERVED_MSK \
3528 (0x3 << BT_UART_MSG_FRAME2RESERVED_POS)
3530 #define BT_UART_MSG_FRAME3SCOESCO_POS (0)
3531 #define BT_UART_MSG_FRAME3SCOESCO_MSK \
3532 (0x1 << BT_UART_MSG_FRAME3SCOESCO_POS)
3533 #define BT_UART_MSG_FRAME3SNIFF_POS (1)
3534 #define BT_UART_MSG_FRAME3SNIFF_MSK \
3535 (0x1 << BT_UART_MSG_FRAME3SNIFF_POS)
3536 #define BT_UART_MSG_FRAME3A2DP_POS (2)
3537 #define BT_UART_MSG_FRAME3A2DP_MSK \
3538 (0x1 << BT_UART_MSG_FRAME3A2DP_POS)
3539 #define BT_UART_MSG_FRAME3ACL_POS (3)
3540 #define BT_UART_MSG_FRAME3ACL_MSK \
3541 (0x1 << BT_UART_MSG_FRAME3ACL_POS)
3542 #define BT_UART_MSG_FRAME3MASTER_POS (4)
3543 #define BT_UART_MSG_FRAME3MASTER_MSK \
3544 (0x1 << BT_UART_MSG_FRAME3MASTER_POS)
3545 #define BT_UART_MSG_FRAME3OBEX_POS (5)
3546 #define BT_UART_MSG_FRAME3OBEX_MSK \
3547 (0x1 << BT_UART_MSG_FRAME3OBEX_POS)
3548 #define BT_UART_MSG_FRAME3RESERVED_POS (6)
3549 #define BT_UART_MSG_FRAME3RESERVED_MSK \
3550 (0x3 << BT_UART_MSG_FRAME3RESERVED_POS)
3552 #define BT_UART_MSG_FRAME4IDLEDURATION_POS (0)
3553 #define BT_UART_MSG_FRAME4IDLEDURATION_MSK \
3554 (0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS)
3555 #define BT_UART_MSG_FRAME4RESERVED_POS (6)
3556 #define BT_UART_MSG_FRAME4RESERVED_MSK \
3557 (0x3 << BT_UART_MSG_FRAME4RESERVED_POS)
3559 #define BT_UART_MSG_FRAME5TXACTIVITY_POS (0)
3560 #define BT_UART_MSG_FRAME5TXACTIVITY_MSK \
3561 (0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS)
3562 #define BT_UART_MSG_FRAME5RXACTIVITY_POS (2)
3563 #define BT_UART_MSG_FRAME5RXACTIVITY_MSK \
3564 (0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS)
3565 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS (4)
3566 #define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK \
3567 (0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS)
3568 #define BT_UART_MSG_FRAME5RESERVED_POS (6)
3569 #define BT_UART_MSG_FRAME5RESERVED_MSK \
3570 (0x3 << BT_UART_MSG_FRAME5RESERVED_POS)
3572 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS (0)
3573 #define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK \
3574 (0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS)
3575 #define BT_UART_MSG_FRAME6DISCOVERABLE_POS (5)
3576 #define BT_UART_MSG_FRAME6DISCOVERABLE_MSK \
3577 (0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS)
3578 #define BT_UART_MSG_FRAME6RESERVED_POS (6)
3579 #define BT_UART_MSG_FRAME6RESERVED_MSK \
3580 (0x3 << BT_UART_MSG_FRAME6RESERVED_POS)
3582 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS (0)
3583 #define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK \
3584 (0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS)
3585 #define BT_UART_MSG_FRAME7PAGE_POS (3)
3586 #define BT_UART_MSG_FRAME7PAGE_MSK \
3587 (0x1 << BT_UART_MSG_FRAME7PAGE_POS)
3588 #define BT_UART_MSG_FRAME7INQUIRY_POS (4)
3589 #define BT_UART_MSG_FRAME7INQUIRY_MSK \
3590 (0x1 << BT_UART_MSG_FRAME7INQUIRY_POS)
3591 #define BT_UART_MSG_FRAME7CONNECTABLE_POS (5)
3592 #define BT_UART_MSG_FRAME7CONNECTABLE_MSK \
3593 (0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS)
3594 #define BT_UART_MSG_FRAME7RESERVED_POS (6)
3595 #define BT_UART_MSG_FRAME7RESERVED_MSK \
3596 (0x3 << BT_UART_MSG_FRAME7RESERVED_POS)
3598 /* BT Session Activity 2 UART message (BT -> WiFi) */
3599 #define BT_UART_MSG_2_FRAME1RESERVED1_POS (5)
3600 #define BT_UART_MSG_2_FRAME1RESERVED1_MSK \
3601 (0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS)
3602 #define BT_UART_MSG_2_FRAME1RESERVED2_POS (6)
3603 #define BT_UART_MSG_2_FRAME1RESERVED2_MSK \
3604 (0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS)
3606 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS (0)
3607 #define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK \
3608 (0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS)
3609 #define BT_UART_MSG_2_FRAME2RESERVED_POS (6)
3610 #define BT_UART_MSG_2_FRAME2RESERVED_MSK \
3611 (0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS)
3613 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS (0)
3614 #define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK \
3615 (0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS)
3616 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS (4)
3617 #define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK \
3618 (0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS)
3619 #define BT_UART_MSG_2_FRAME3LEMASTER_POS (5)
3620 #define BT_UART_MSG_2_FRAME3LEMASTER_MSK \
3621 (0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS)
3622 #define BT_UART_MSG_2_FRAME3RESERVED_POS (6)
3623 #define BT_UART_MSG_2_FRAME3RESERVED_MSK \
3624 (0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS)
3626 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS (0)
3627 #define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK \
3628 (0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS)
3629 #define BT_UART_MSG_2_FRAME4NUMLECONN_POS (4)
3630 #define BT_UART_MSG_2_FRAME4NUMLECONN_MSK \
3631 (0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS)
3632 #define BT_UART_MSG_2_FRAME4RESERVED_POS (6)
3633 #define BT_UART_MSG_2_FRAME4RESERVED_MSK \
3634 (0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS)
3636 #define BT_UART_MSG_2_FRAME5BTMINRSSI_POS (0)
3637 #define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK \
3638 (0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS)
3639 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS (4)
3640 #define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK \
3641 (0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS)
3642 #define BT_UART_MSG_2_FRAME5LEADVERMODE_POS (5)
3643 #define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK \
3644 (0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS)
3645 #define BT_UART_MSG_2_FRAME5RESERVED_POS (6)
3646 #define BT_UART_MSG_2_FRAME5RESERVED_MSK \
3647 (0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS)
3649 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS (0)
3650 #define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK \
3651 (0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS)
3652 #define BT_UART_MSG_2_FRAME6RFU_POS (5)
3653 #define BT_UART_MSG_2_FRAME6RFU_MSK \
3654 (0x1<<BT_UART_MSG_2_FRAME6RFU_POS)
3655 #define BT_UART_MSG_2_FRAME6RESERVED_POS (6)
3656 #define BT_UART_MSG_2_FRAME6RESERVED_MSK \
3657 (0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS)
3659 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS (0)
3660 #define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK \
3661 (0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS)
3662 #define BT_UART_MSG_2_FRAME7LEPROFILE1_POS (3)
3663 #define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK \
3664 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS)
3665 #define BT_UART_MSG_2_FRAME7LEPROFILE2_POS (4)
3666 #define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK \
3667 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS)
3668 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS (5)
3669 #define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK \
3670 (0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS)
3671 #define BT_UART_MSG_2_FRAME7RESERVED_POS (6)
3672 #define BT_UART_MSG_2_FRAME7RESERVED_MSK \
3673 (0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS)
3676 #define BT_ENABLE_REDUCED_TXPOWER_THRESHOLD (-62)
3677 #define BT_DISABLE_REDUCED_TXPOWER_THRESHOLD (-65)
3679 struct iwl_bt_uart_msg {
3680 u8 header;
3681 u8 frame1;
3682 u8 frame2;
3683 u8 frame3;
3684 u8 frame4;
3685 u8 frame5;
3686 u8 frame6;
3687 u8 frame7;
3688 } __packed;
3690 struct iwl_bt_coex_profile_notif {
3691 struct iwl_bt_uart_msg last_bt_uart_msg;
3692 u8 bt_status; /* 0 - off, 1 - on */
3693 u8 bt_traffic_load; /* 0 .. 3? */
3694 u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */
3695 u8 reserved;
3696 } __packed;
3698 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS 0
3699 #define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK 0x1
3700 #define IWL_BT_COEX_PRIO_TBL_PRIO_POS 1
3701 #define IWL_BT_COEX_PRIO_TBL_PRIO_MASK 0x0e
3702 #define IWL_BT_COEX_PRIO_TBL_RESERVED_POS 4
3703 #define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK 0xf0
3704 #define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT 1
3707 * BT Coexistence Priority table
3708 * REPLY_BT_COEX_PRIO_TABLE = 0xcc
3710 enum bt_coex_prio_table_events {
3711 BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0,
3712 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1,
3713 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2,
3714 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */
3715 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4,
3716 BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5,
3717 BT_COEX_PRIO_TBL_EVT_DTIM = 6,
3718 BT_COEX_PRIO_TBL_EVT_SCAN52 = 7,
3719 BT_COEX_PRIO_TBL_EVT_SCAN24 = 8,
3720 BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9,
3721 BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10,
3722 BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11,
3723 BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12,
3724 BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13,
3725 BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14,
3726 BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15,
3727 /* BT_COEX_PRIO_TBL_EVT_MAX should always be last */
3728 BT_COEX_PRIO_TBL_EVT_MAX,
3731 enum bt_coex_prio_table_priorities {
3732 BT_COEX_PRIO_TBL_DISABLED = 0,
3733 BT_COEX_PRIO_TBL_PRIO_LOW = 1,
3734 BT_COEX_PRIO_TBL_PRIO_HIGH = 2,
3735 BT_COEX_PRIO_TBL_PRIO_BYPASS = 3,
3736 BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4,
3737 BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5,
3738 BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6,
3739 BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7,
3740 BT_COEX_PRIO_TBL_MAX,
3743 struct iwl_bt_coex_prio_table_cmd {
3744 u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX];
3745 } __packed;
3747 #define IWL_BT_COEX_ENV_CLOSE 0
3748 #define IWL_BT_COEX_ENV_OPEN 1
3750 * BT Protection Envelope
3751 * REPLY_BT_COEX_PROT_ENV = 0xcd
3753 struct iwl_bt_coex_prot_env_cmd {
3754 u8 action; /* 0 = closed, 1 = open */
3755 u8 type; /* 0 .. 15 */
3756 u8 reserved[2];
3757 } __packed;
3760 * REPLY_D3_CONFIG
3762 enum iwlagn_d3_wakeup_filters {
3763 IWLAGN_D3_WAKEUP_RFKILL = BIT(0),
3764 IWLAGN_D3_WAKEUP_SYSASSERT = BIT(1),
3767 struct iwlagn_d3_config_cmd {
3768 __le32 min_sleep_time;
3769 __le32 wakeup_flags;
3770 } __packed;
3773 * REPLY_WOWLAN_PATTERNS
3775 #define IWLAGN_WOWLAN_MIN_PATTERN_LEN 16
3776 #define IWLAGN_WOWLAN_MAX_PATTERN_LEN 128
3778 struct iwlagn_wowlan_pattern {
3779 u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8];
3780 u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN];
3781 u8 mask_size;
3782 u8 pattern_size;
3783 __le16 reserved;
3784 } __packed;
3786 #define IWLAGN_WOWLAN_MAX_PATTERNS 20
3788 struct iwlagn_wowlan_patterns_cmd {
3789 __le32 n_patterns;
3790 struct iwlagn_wowlan_pattern patterns[];
3791 } __packed;
3794 * REPLY_WOWLAN_WAKEUP_FILTER
3796 enum iwlagn_wowlan_wakeup_filters {
3797 IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET = BIT(0),
3798 IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH = BIT(1),
3799 IWLAGN_WOWLAN_WAKEUP_BEACON_MISS = BIT(2),
3800 IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE = BIT(3),
3801 IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL = BIT(4),
3802 IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ = BIT(5),
3803 IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE = BIT(6),
3804 IWLAGN_WOWLAN_WAKEUP_ALWAYS = BIT(7),
3805 IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT = BIT(8),
3808 struct iwlagn_wowlan_wakeup_filter_cmd {
3809 __le32 enabled;
3810 __le16 non_qos_seq;
3811 __le16 reserved;
3812 __le16 qos_seq[8];
3816 * REPLY_WOWLAN_TSC_RSC_PARAMS
3818 #define IWLAGN_NUM_RSC 16
3820 struct tkip_sc {
3821 __le16 iv16;
3822 __le16 pad;
3823 __le32 iv32;
3824 } __packed;
3826 struct iwlagn_tkip_rsc_tsc {
3827 struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC];
3828 struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC];
3829 struct tkip_sc tsc;
3830 } __packed;
3832 struct aes_sc {
3833 __le64 pn;
3834 } __packed;
3836 struct iwlagn_aes_rsc_tsc {
3837 struct aes_sc unicast_rsc[IWLAGN_NUM_RSC];
3838 struct aes_sc multicast_rsc[IWLAGN_NUM_RSC];
3839 struct aes_sc tsc;
3840 } __packed;
3842 union iwlagn_all_tsc_rsc {
3843 struct iwlagn_tkip_rsc_tsc tkip;
3844 struct iwlagn_aes_rsc_tsc aes;
3847 struct iwlagn_wowlan_rsc_tsc_params_cmd {
3848 union iwlagn_all_tsc_rsc all_tsc_rsc;
3849 } __packed;
3852 * REPLY_WOWLAN_TKIP_PARAMS
3854 #define IWLAGN_MIC_KEY_SIZE 8
3855 #define IWLAGN_P1K_SIZE 5
3856 struct iwlagn_mic_keys {
3857 u8 tx[IWLAGN_MIC_KEY_SIZE];
3858 u8 rx_unicast[IWLAGN_MIC_KEY_SIZE];
3859 u8 rx_mcast[IWLAGN_MIC_KEY_SIZE];
3860 } __packed;
3862 struct iwlagn_p1k_cache {
3863 __le16 p1k[IWLAGN_P1K_SIZE];
3864 } __packed;
3866 #define IWLAGN_NUM_RX_P1K_CACHE 2
3868 struct iwlagn_wowlan_tkip_params_cmd {
3869 struct iwlagn_mic_keys mic_keys;
3870 struct iwlagn_p1k_cache tx;
3871 struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE];
3872 struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE];
3873 } __packed;
3876 * REPLY_WOWLAN_KEK_KCK_MATERIAL
3879 #define IWLAGN_KCK_MAX_SIZE 32
3880 #define IWLAGN_KEK_MAX_SIZE 32
3882 struct iwlagn_wowlan_kek_kck_material_cmd {
3883 u8 kck[IWLAGN_KCK_MAX_SIZE];
3884 u8 kek[IWLAGN_KEK_MAX_SIZE];
3885 __le16 kck_len;
3886 __le16 kek_len;
3887 __le64 replay_ctr;
3888 } __packed;
3890 #define RF_KILL_INDICATOR_FOR_WOWLAN 0x87
3893 * REPLY_WOWLAN_GET_STATUS = 0xe5
3895 struct iwlagn_wowlan_status {
3896 __le64 replay_ctr;
3897 __le32 rekey_status;
3898 __le32 wakeup_reason;
3899 u8 pattern_number;
3900 u8 reserved1;
3901 __le16 qos_seq_ctr[8];
3902 __le16 non_qos_seq_ctr;
3903 __le16 reserved2;
3904 union iwlagn_all_tsc_rsc tsc_rsc;
3905 __le16 reserved3;
3906 } __packed;
3909 * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification)
3913 * Minimum slot time in TU
3915 #define IWL_MIN_SLOT_TIME 20
3918 * struct iwl_wipan_slot
3919 * @width: Time in TU
3920 * @type:
3921 * 0 - BSS
3922 * 1 - PAN
3924 struct iwl_wipan_slot {
3925 __le16 width;
3926 u8 type;
3927 u8 reserved;
3928 } __packed;
3930 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS BIT(1) /* reserved */
3931 #define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET BIT(2) /* reserved */
3932 #define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE BIT(3) /* reserved */
3933 #define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF BIT(4)
3934 #define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE BIT(5)
3937 * struct iwl_wipan_params_cmd
3938 * @flags:
3939 * bit0: reserved
3940 * bit1: CP leave channel with CTS
3941 * bit2: CP leave channel qith Quiet
3942 * bit3: slotted mode
3943 * 1 - work in slotted mode
3944 * 0 - work in non slotted mode
3945 * bit4: filter beacon notification
3946 * bit5: full tx slotted mode. if this flag is set,
3947 * uCode will perform leaving channel methods in context switch
3948 * also when working in same channel mode
3949 * @num_slots: 1 - 10
3951 struct iwl_wipan_params_cmd {
3952 __le16 flags;
3953 u8 reserved;
3954 u8 num_slots;
3955 struct iwl_wipan_slot slots[10];
3956 } __packed;
3959 * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9
3961 * TODO: Figure out what this is used for,
3962 * it can only switch between 2.4 GHz
3963 * channels!!
3966 struct iwl_wipan_p2p_channel_switch_cmd {
3967 __le16 channel;
3968 __le16 reserved;
3972 * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc
3974 * This is used by the device to notify us of the
3975 * NoA schedule it determined so we can forward it
3976 * to userspace for inclusion in probe responses.
3978 * In beacons, the NoA schedule is simply appended
3979 * to the frame we give the device.
3982 struct iwl_wipan_noa_descriptor {
3983 u8 count;
3984 __le32 duration;
3985 __le32 interval;
3986 __le32 starttime;
3987 } __packed;
3989 struct iwl_wipan_noa_attribute {
3990 u8 id;
3991 __le16 length;
3992 u8 index;
3993 u8 ct_window;
3994 struct iwl_wipan_noa_descriptor descr0, descr1;
3995 u8 reserved;
3996 } __packed;
3998 struct iwl_wipan_noa_notification {
3999 u32 noa_active;
4000 struct iwl_wipan_noa_attribute noa_attribute;
4001 } __packed;
4003 #endif /* __iwl_commands_h__ */