1 /******************************************************************************
3 * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
5 * Portions of this file are derived from the ipw3945 project, as well
6 * as portions of the ieee80211 subsystem header files.
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of version 2 of the GNU General Public License as
10 * published by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * You should have received a copy of the GNU General Public License along with
18 * this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
21 * The full GNU General Public License is included in this distribution in the
22 * file called LICENSE.
24 * Contact Information:
25 * Intel Linux Wireless <ilw@linux.intel.com>
26 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28 *****************************************************************************/
29 #include <linux/sched.h>
30 #include <linux/wait.h>
31 #include <linux/gfp.h>
36 #include "iwl-op-mode.h"
38 /******************************************************************************
42 ******************************************************************************/
45 * Rx theory of operation
47 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
48 * each of which point to Receive Buffers to be filled by the NIC. These get
49 * used not only for Rx frames, but for any command response or notification
50 * from the NIC. The driver and NIC manage the Rx buffers by means
51 * of indexes into the circular buffer.
54 * The host/firmware share two index registers for managing the Rx buffers.
56 * The READ index maps to the first position that the firmware may be writing
57 * to -- the driver can read up to (but not including) this position and get
59 * The READ index is managed by the firmware once the card is enabled.
61 * The WRITE index maps to the last position the driver has read from -- the
62 * position preceding WRITE is the last slot the firmware can place a packet.
64 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
67 * During initialization, the host sets up the READ queue position to the first
68 * INDEX position, and WRITE to the last (READ - 1 wrapped)
70 * When the firmware places a packet in a buffer, it will advance the READ index
71 * and fire the RX interrupt. The driver can then query the READ index and
72 * process as many packets as possible, moving the WRITE index forward as it
73 * resets the Rx queue buffers with new memory.
75 * The management in the driver is as follows:
76 * + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free. When
77 * iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
78 * to replenish the iwl->rxq->rx_free.
79 * + In iwl_pcie_rx_replenish (scheduled) if 'processed' != 'read' then the
80 * iwl->rxq is replenished and the READ INDEX is updated (updating the
81 * 'processed' and 'read' driver indexes as well)
82 * + A received packet is processed and handed to the kernel network stack,
83 * detached from the iwl->rxq. The driver 'processed' index is updated.
84 * + The Host/Firmware iwl->rxq is replenished at irq thread time from the
85 * rx_free list. If there are no allocated buffers in iwl->rxq->rx_free,
86 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
87 * If there were enough free buffers and RX_STALLED is set it is cleared.
92 * iwl_rxq_alloc() Allocates rx_free
93 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls
94 * iwl_pcie_rxq_restock
95 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx
96 * queue, updates firmware pointers, and updates
97 * the WRITE index. If insufficient rx_free buffers
98 * are available, schedules iwl_pcie_rx_replenish
100 * -- enable interrupts --
101 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
102 * READ INDEX, detaching the SKB from the pool.
103 * Moves the packet buffer from queue to rx_used.
104 * Calls iwl_pcie_rxq_restock to refill any empty
111 * iwl_rxq_space - Return number of free slots available in queue.
113 static int iwl_rxq_space(const struct iwl_rxq
*rxq
)
115 /* Make sure RX_QUEUE_SIZE is a power of 2 */
116 BUILD_BUG_ON(RX_QUEUE_SIZE
& (RX_QUEUE_SIZE
- 1));
119 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
120 * between empty and completely full queues.
121 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
122 * defined for negative dividends.
124 return (rxq
->read
- rxq
->write
- 1) & (RX_QUEUE_SIZE
- 1);
128 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
130 static inline __le32
iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr
)
132 return cpu_to_le32((u32
)(dma_addr
>> 8));
136 * iwl_pcie_rx_stop - stops the Rx DMA
138 int iwl_pcie_rx_stop(struct iwl_trans
*trans
)
140 iwl_write_direct32(trans
, FH_MEM_RCSR_CHNL0_CONFIG_REG
, 0);
141 return iwl_poll_direct_bit(trans
, FH_MEM_RSSR_RX_STATUS_REG
,
142 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE
, 1000);
146 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
148 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans
*trans
,
153 spin_lock(&rxq
->lock
);
155 if (rxq
->need_update
== 0)
158 if (trans
->cfg
->base_params
->shadow_reg_enable
) {
159 /* shadow register enabled */
160 /* Device expects a multiple of 8 */
161 rxq
->write_actual
= (rxq
->write
& ~0x7);
162 iwl_write32(trans
, FH_RSCSR_CHNL0_WPTR
, rxq
->write_actual
);
164 /* If power-saving is in use, make sure device is awake */
165 if (test_bit(STATUS_TPOWER_PMI
, &trans
->status
)) {
166 reg
= iwl_read32(trans
, CSR_UCODE_DRV_GP1
);
168 if (reg
& CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP
) {
169 IWL_DEBUG_INFO(trans
,
170 "Rx queue requesting wakeup,"
171 " GP1 = 0x%x\n", reg
);
172 iwl_set_bit(trans
, CSR_GP_CNTRL
,
173 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ
);
177 rxq
->write_actual
= (rxq
->write
& ~0x7);
178 iwl_write_direct32(trans
, FH_RSCSR_CHNL0_WPTR
,
181 /* Else device is assumed to be awake */
183 /* Device expects a multiple of 8 */
184 rxq
->write_actual
= (rxq
->write
& ~0x7);
185 iwl_write_direct32(trans
, FH_RSCSR_CHNL0_WPTR
,
189 rxq
->need_update
= 0;
192 spin_unlock(&rxq
->lock
);
196 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
198 * If there are slots in the RX queue that need to be restocked,
199 * and we have free pre-allocated buffers, fill the ranks as much
200 * as we can, pulling from rx_free.
202 * This moves the 'write' index forward to catch up with 'processed', and
203 * also updates the memory address in the firmware to reference the new
206 static void iwl_pcie_rxq_restock(struct iwl_trans
*trans
)
208 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
209 struct iwl_rxq
*rxq
= &trans_pcie
->rxq
;
210 struct iwl_rx_mem_buffer
*rxb
;
213 * If the device isn't enabled - not need to try to add buffers...
214 * This can happen when we stop the device and still have an interrupt
215 * pending. We stop the APM before we sync the interrupts because we
216 * have to (see comment there). On the other hand, since the APM is
217 * stopped, we cannot access the HW (in particular not prph).
218 * So don't try to restock if the APM has been already stopped.
220 if (!test_bit(STATUS_DEVICE_ENABLED
, &trans
->status
))
223 spin_lock(&rxq
->lock
);
224 while ((iwl_rxq_space(rxq
) > 0) && (rxq
->free_count
)) {
225 /* The overwritten rxb must be a used one */
226 rxb
= rxq
->queue
[rxq
->write
];
227 BUG_ON(rxb
&& rxb
->page
);
229 /* Get next free Rx buffer, remove from free list */
230 rxb
= list_first_entry(&rxq
->rx_free
, struct iwl_rx_mem_buffer
,
232 list_del(&rxb
->list
);
234 /* Point to Rx buffer via next RBD in circular buffer */
235 rxq
->bd
[rxq
->write
] = iwl_pcie_dma_addr2rbd_ptr(rxb
->page_dma
);
236 rxq
->queue
[rxq
->write
] = rxb
;
237 rxq
->write
= (rxq
->write
+ 1) & RX_QUEUE_MASK
;
240 spin_unlock(&rxq
->lock
);
241 /* If the pre-allocated buffer pool is dropping low, schedule to
243 if (rxq
->free_count
<= RX_LOW_WATERMARK
)
244 schedule_work(&trans_pcie
->rx_replenish
);
246 /* If we've added more space for the firmware to place data, tell it.
247 * Increment device's write pointer in multiples of 8. */
248 if (rxq
->write_actual
!= (rxq
->write
& ~0x7)) {
249 spin_lock(&rxq
->lock
);
250 rxq
->need_update
= 1;
251 spin_unlock(&rxq
->lock
);
252 iwl_pcie_rxq_inc_wr_ptr(trans
, rxq
);
257 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
259 * A used RBD is an Rx buffer that has been given to the stack. To use it again
260 * a page must be allocated and the RBD must point to the page. This function
261 * doesn't change the HW pointer but handles the list of pages that is used by
262 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
265 static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans
*trans
, gfp_t priority
)
267 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
268 struct iwl_rxq
*rxq
= &trans_pcie
->rxq
;
269 struct iwl_rx_mem_buffer
*rxb
;
271 gfp_t gfp_mask
= priority
;
274 spin_lock(&rxq
->lock
);
275 if (list_empty(&rxq
->rx_used
)) {
276 spin_unlock(&rxq
->lock
);
279 spin_unlock(&rxq
->lock
);
281 if (rxq
->free_count
> RX_LOW_WATERMARK
)
282 gfp_mask
|= __GFP_NOWARN
;
284 if (trans_pcie
->rx_page_order
> 0)
285 gfp_mask
|= __GFP_COMP
;
287 /* Alloc a new receive buffer */
288 page
= alloc_pages(gfp_mask
, trans_pcie
->rx_page_order
);
291 IWL_DEBUG_INFO(trans
, "alloc_pages failed, "
293 trans_pcie
->rx_page_order
);
295 if ((rxq
->free_count
<= RX_LOW_WATERMARK
) &&
297 IWL_CRIT(trans
, "Failed to alloc_pages with %s."
298 "Only %u free buffers remaining.\n",
299 priority
== GFP_ATOMIC
?
300 "GFP_ATOMIC" : "GFP_KERNEL",
302 /* We don't reschedule replenish work here -- we will
303 * call the restock method and if it still needs
304 * more buffers it will schedule replenish */
308 spin_lock(&rxq
->lock
);
310 if (list_empty(&rxq
->rx_used
)) {
311 spin_unlock(&rxq
->lock
);
312 __free_pages(page
, trans_pcie
->rx_page_order
);
315 rxb
= list_first_entry(&rxq
->rx_used
, struct iwl_rx_mem_buffer
,
317 list_del(&rxb
->list
);
318 spin_unlock(&rxq
->lock
);
322 /* Get physical address of the RB */
324 dma_map_page(trans
->dev
, page
, 0,
325 PAGE_SIZE
<< trans_pcie
->rx_page_order
,
327 if (dma_mapping_error(trans
->dev
, rxb
->page_dma
)) {
329 spin_lock(&rxq
->lock
);
330 list_add(&rxb
->list
, &rxq
->rx_used
);
331 spin_unlock(&rxq
->lock
);
332 __free_pages(page
, trans_pcie
->rx_page_order
);
335 /* dma address must be no more than 36 bits */
336 BUG_ON(rxb
->page_dma
& ~DMA_BIT_MASK(36));
337 /* and also 256 byte aligned! */
338 BUG_ON(rxb
->page_dma
& DMA_BIT_MASK(8));
340 spin_lock(&rxq
->lock
);
342 list_add_tail(&rxb
->list
, &rxq
->rx_free
);
345 spin_unlock(&rxq
->lock
);
349 static void iwl_pcie_rxq_free_rbs(struct iwl_trans
*trans
)
351 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
352 struct iwl_rxq
*rxq
= &trans_pcie
->rxq
;
355 lockdep_assert_held(&rxq
->lock
);
357 for (i
= 0; i
< RX_FREE_BUFFERS
+ RX_QUEUE_SIZE
; i
++) {
358 if (!rxq
->pool
[i
].page
)
360 dma_unmap_page(trans
->dev
, rxq
->pool
[i
].page_dma
,
361 PAGE_SIZE
<< trans_pcie
->rx_page_order
,
363 __free_pages(rxq
->pool
[i
].page
, trans_pcie
->rx_page_order
);
364 rxq
->pool
[i
].page
= NULL
;
369 * iwl_pcie_rx_replenish - Move all used buffers from rx_used to rx_free
371 * When moving to rx_free an page is allocated for the slot.
373 * Also restock the Rx queue via iwl_pcie_rxq_restock.
374 * This is called as a scheduled work item (except for during initialization)
376 static void iwl_pcie_rx_replenish(struct iwl_trans
*trans
)
378 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
380 iwl_pcie_rxq_alloc_rbs(trans
, GFP_KERNEL
);
382 spin_lock(&trans_pcie
->irq_lock
);
383 iwl_pcie_rxq_restock(trans
);
384 spin_unlock(&trans_pcie
->irq_lock
);
387 static void iwl_pcie_rx_replenish_now(struct iwl_trans
*trans
)
389 iwl_pcie_rxq_alloc_rbs(trans
, GFP_ATOMIC
);
391 iwl_pcie_rxq_restock(trans
);
394 static void iwl_pcie_rx_replenish_work(struct work_struct
*data
)
396 struct iwl_trans_pcie
*trans_pcie
=
397 container_of(data
, struct iwl_trans_pcie
, rx_replenish
);
399 iwl_pcie_rx_replenish(trans_pcie
->trans
);
402 static int iwl_pcie_rx_alloc(struct iwl_trans
*trans
)
404 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
405 struct iwl_rxq
*rxq
= &trans_pcie
->rxq
;
406 struct device
*dev
= trans
->dev
;
408 memset(&trans_pcie
->rxq
, 0, sizeof(trans_pcie
->rxq
));
410 spin_lock_init(&rxq
->lock
);
412 if (WARN_ON(rxq
->bd
|| rxq
->rb_stts
))
415 /* Allocate the circular buffer of Read Buffer Descriptors (RBDs) */
416 rxq
->bd
= dma_zalloc_coherent(dev
, sizeof(__le32
) * RX_QUEUE_SIZE
,
417 &rxq
->bd_dma
, GFP_KERNEL
);
421 /*Allocate the driver's pointer to receive buffer status */
422 rxq
->rb_stts
= dma_zalloc_coherent(dev
, sizeof(*rxq
->rb_stts
),
423 &rxq
->rb_stts_dma
, GFP_KERNEL
);
430 dma_free_coherent(dev
, sizeof(__le32
) * RX_QUEUE_SIZE
,
431 rxq
->bd
, rxq
->bd_dma
);
438 static void iwl_pcie_rx_hw_init(struct iwl_trans
*trans
, struct iwl_rxq
*rxq
)
440 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
442 const u32 rfdnlog
= RX_QUEUE_SIZE_LOG
; /* 256 RBDs */
444 if (trans_pcie
->rx_buf_size_8k
)
445 rb_size
= FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K
;
447 rb_size
= FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K
;
450 iwl_write_direct32(trans
, FH_MEM_RCSR_CHNL0_CONFIG_REG
, 0);
451 /* reset and flush pointers */
452 iwl_write_direct32(trans
, FH_MEM_RCSR_CHNL0_RBDCB_WPTR
, 0);
453 iwl_write_direct32(trans
, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ
, 0);
454 iwl_write_direct32(trans
, FH_RSCSR_CHNL0_RDPTR
, 0);
456 /* Reset driver's Rx queue write index */
457 iwl_write_direct32(trans
, FH_RSCSR_CHNL0_RBDCB_WPTR_REG
, 0);
459 /* Tell device where to find RBD circular buffer in DRAM */
460 iwl_write_direct32(trans
, FH_RSCSR_CHNL0_RBDCB_BASE_REG
,
461 (u32
)(rxq
->bd_dma
>> 8));
463 /* Tell device where in DRAM to update its Rx status */
464 iwl_write_direct32(trans
, FH_RSCSR_CHNL0_STTS_WPTR_REG
,
465 rxq
->rb_stts_dma
>> 4);
468 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
469 * the credit mechanism in 5000 HW RX FIFO
470 * Direct rx interrupts to hosts
471 * Rx buffer size 4 or 8k
475 iwl_write_direct32(trans
, FH_MEM_RCSR_CHNL0_CONFIG_REG
,
476 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL
|
477 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY
|
478 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL
|
480 (RX_RB_TIMEOUT
<< FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS
)|
481 (rfdnlog
<< FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS
));
483 /* Set interrupt coalescing timer to default (2048 usecs) */
484 iwl_write8(trans
, CSR_INT_COALESCING
, IWL_HOST_INT_TIMEOUT_DEF
);
486 /* W/A for interrupt coalescing bug in 7260 and 3160 */
487 if (trans
->cfg
->host_interrupt_operation_mode
)
488 iwl_set_bit(trans
, CSR_INT_COALESCING
, IWL_HOST_INT_OPER_MODE
);
491 static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq
*rxq
)
495 lockdep_assert_held(&rxq
->lock
);
497 INIT_LIST_HEAD(&rxq
->rx_free
);
498 INIT_LIST_HEAD(&rxq
->rx_used
);
501 for (i
= 0; i
< RX_FREE_BUFFERS
+ RX_QUEUE_SIZE
; i
++)
502 list_add(&rxq
->pool
[i
].list
, &rxq
->rx_used
);
505 int iwl_pcie_rx_init(struct iwl_trans
*trans
)
507 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
508 struct iwl_rxq
*rxq
= &trans_pcie
->rxq
;
512 err
= iwl_pcie_rx_alloc(trans
);
517 spin_lock(&rxq
->lock
);
519 INIT_WORK(&trans_pcie
->rx_replenish
, iwl_pcie_rx_replenish_work
);
521 /* free all first - we might be reconfigured for a different size */
522 iwl_pcie_rxq_free_rbs(trans
);
523 iwl_pcie_rx_init_rxb_lists(rxq
);
525 for (i
= 0; i
< RX_QUEUE_SIZE
; i
++)
526 rxq
->queue
[i
] = NULL
;
528 /* Set us so that we have processed and used all buffers, but have
529 * not restocked the Rx queue with fresh buffers */
530 rxq
->read
= rxq
->write
= 0;
531 rxq
->write_actual
= 0;
532 memset(rxq
->rb_stts
, 0, sizeof(*rxq
->rb_stts
));
533 spin_unlock(&rxq
->lock
);
535 iwl_pcie_rx_replenish(trans
);
537 iwl_pcie_rx_hw_init(trans
, rxq
);
539 spin_lock(&trans_pcie
->irq_lock
);
540 rxq
->need_update
= 1;
541 iwl_pcie_rxq_inc_wr_ptr(trans
, rxq
);
542 spin_unlock(&trans_pcie
->irq_lock
);
547 void iwl_pcie_rx_free(struct iwl_trans
*trans
)
549 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
550 struct iwl_rxq
*rxq
= &trans_pcie
->rxq
;
552 /*if rxq->bd is NULL, it means that nothing has been allocated,
555 IWL_DEBUG_INFO(trans
, "Free NULL rx context\n");
559 cancel_work_sync(&trans_pcie
->rx_replenish
);
561 spin_lock(&rxq
->lock
);
562 iwl_pcie_rxq_free_rbs(trans
);
563 spin_unlock(&rxq
->lock
);
565 dma_free_coherent(trans
->dev
, sizeof(__le32
) * RX_QUEUE_SIZE
,
566 rxq
->bd
, rxq
->bd_dma
);
571 dma_free_coherent(trans
->dev
,
572 sizeof(struct iwl_rb_status
),
573 rxq
->rb_stts
, rxq
->rb_stts_dma
);
575 IWL_DEBUG_INFO(trans
, "Free rxq->rb_stts which is NULL\n");
576 rxq
->rb_stts_dma
= 0;
580 static void iwl_pcie_rx_handle_rb(struct iwl_trans
*trans
,
581 struct iwl_rx_mem_buffer
*rxb
)
583 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
584 struct iwl_rxq
*rxq
= &trans_pcie
->rxq
;
585 struct iwl_txq
*txq
= &trans_pcie
->txq
[trans_pcie
->cmd_queue
];
586 bool page_stolen
= false;
587 int max_len
= PAGE_SIZE
<< trans_pcie
->rx_page_order
;
593 dma_unmap_page(trans
->dev
, rxb
->page_dma
, max_len
, DMA_FROM_DEVICE
);
595 while (offset
+ sizeof(u32
) + sizeof(struct iwl_cmd_header
) < max_len
) {
596 struct iwl_rx_packet
*pkt
;
597 struct iwl_device_cmd
*cmd
;
600 int index
, cmd_index
, err
, len
;
601 struct iwl_rx_cmd_buffer rxcb
= {
603 ._rx_page_order
= trans_pcie
->rx_page_order
,
605 ._page_stolen
= false,
609 pkt
= rxb_addr(&rxcb
);
611 if (pkt
->len_n_flags
== cpu_to_le32(FH_RSCSR_FRAME_INVALID
))
614 IWL_DEBUG_RX(trans
, "cmd at offset %d: %s (0x%.2x)\n",
615 rxcb
._offset
, get_cmd_string(trans_pcie
, pkt
->hdr
.cmd
),
618 len
= iwl_rx_packet_len(pkt
);
619 len
+= sizeof(u32
); /* account for status word */
620 trace_iwlwifi_dev_rx(trans
->dev
, trans
, pkt
, len
);
621 trace_iwlwifi_dev_rx_data(trans
->dev
, trans
, pkt
, len
);
623 /* Reclaim a command buffer only if this packet is a response
624 * to a (driver-originated) command.
625 * If the packet (e.g. Rx frame) originated from uCode,
626 * there is no command buffer to reclaim.
627 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
628 * but apparently a few don't get set; catch them here. */
629 reclaim
= !(pkt
->hdr
.sequence
& SEQ_RX_FRAME
);
633 for (i
= 0; i
< trans_pcie
->n_no_reclaim_cmds
; i
++) {
634 if (trans_pcie
->no_reclaim_cmds
[i
] ==
642 sequence
= le16_to_cpu(pkt
->hdr
.sequence
);
643 index
= SEQ_TO_INDEX(sequence
);
644 cmd_index
= get_cmd_index(&txq
->q
, index
);
647 cmd
= txq
->entries
[cmd_index
].cmd
;
651 err
= iwl_op_mode_rx(trans
->op_mode
, &rxcb
, cmd
);
654 kfree(txq
->entries
[cmd_index
].free_buf
);
655 txq
->entries
[cmd_index
].free_buf
= NULL
;
659 * After here, we should always check rxcb._page_stolen,
660 * if it is true then one of the handlers took the page.
664 /* Invoke any callbacks, transfer the buffer to caller,
665 * and fire off the (possibly) blocking
666 * iwl_trans_send_cmd()
667 * as we reclaim the driver command queue */
668 if (!rxcb
._page_stolen
)
669 iwl_pcie_hcmd_complete(trans
, &rxcb
, err
);
671 IWL_WARN(trans
, "Claim null rxb?\n");
674 page_stolen
|= rxcb
._page_stolen
;
675 offset
+= ALIGN(len
, FH_RSCSR_FRAME_ALIGN
);
678 /* page was stolen from us -- free our reference */
680 __free_pages(rxb
->page
, trans_pcie
->rx_page_order
);
684 /* Reuse the page if possible. For notification packets and
685 * SKBs that fail to Rx correctly, add them back into the
686 * rx_free list for reuse later. */
687 spin_lock(&rxq
->lock
);
688 if (rxb
->page
!= NULL
) {
690 dma_map_page(trans
->dev
, rxb
->page
, 0,
691 PAGE_SIZE
<< trans_pcie
->rx_page_order
,
693 if (dma_mapping_error(trans
->dev
, rxb
->page_dma
)) {
695 * free the page(s) as well to not break
696 * the invariant that the items on the used
697 * list have no page(s)
699 __free_pages(rxb
->page
, trans_pcie
->rx_page_order
);
701 list_add_tail(&rxb
->list
, &rxq
->rx_used
);
703 list_add_tail(&rxb
->list
, &rxq
->rx_free
);
707 list_add_tail(&rxb
->list
, &rxq
->rx_used
);
708 spin_unlock(&rxq
->lock
);
712 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
714 static void iwl_pcie_rx_handle(struct iwl_trans
*trans
)
716 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
717 struct iwl_rxq
*rxq
= &trans_pcie
->rxq
;
723 /* uCode's read index (stored in shared DRAM) indicates the last Rx
724 * buffer that the driver may process (last buffer filled by ucode). */
725 r
= le16_to_cpu(ACCESS_ONCE(rxq
->rb_stts
->closed_rb_num
)) & 0x0FFF;
728 /* Rx interrupt, but nothing sent from uCode */
730 IWL_DEBUG_RX(trans
, "HW = SW = %d\n", r
);
732 /* calculate total frames need to be restock after handling RX */
733 total_empty
= r
- rxq
->write_actual
;
735 total_empty
+= RX_QUEUE_SIZE
;
737 if (total_empty
> (RX_QUEUE_SIZE
/ 2))
741 struct iwl_rx_mem_buffer
*rxb
;
744 rxq
->queue
[i
] = NULL
;
746 IWL_DEBUG_RX(trans
, "rxbuf: HW = %d, SW = %d (%p)\n",
748 iwl_pcie_rx_handle_rb(trans
, rxb
);
750 i
= (i
+ 1) & RX_QUEUE_MASK
;
751 /* If there are a lot of unused frames,
752 * restock the Rx queue so ucode wont assert. */
757 iwl_pcie_rx_replenish_now(trans
);
763 /* Backtrack one entry */
766 iwl_pcie_rx_replenish_now(trans
);
768 iwl_pcie_rxq_restock(trans
);
772 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
774 static void iwl_pcie_irq_handle_error(struct iwl_trans
*trans
)
776 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
778 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */
779 if (trans
->cfg
->internal_wimax_coex
&&
780 (!(iwl_read_prph(trans
, APMG_CLK_CTRL_REG
) &
781 APMS_CLK_VAL_MRB_FUNC_MODE
) ||
782 (iwl_read_prph(trans
, APMG_PS_CTRL_REG
) &
783 APMG_PS_CTRL_VAL_RESET_REQ
))) {
784 clear_bit(STATUS_SYNC_HCMD_ACTIVE
, &trans
->status
);
785 iwl_op_mode_wimax_active(trans
->op_mode
);
786 wake_up(&trans_pcie
->wait_command_queue
);
790 iwl_pcie_dump_csr(trans
);
791 iwl_dump_fh(trans
, NULL
);
794 /* The STATUS_FW_ERROR bit is set in this function. This must happen
795 * before we wake up the command caller, to ensure a proper cleanup. */
796 iwl_trans_fw_error(trans
);
799 clear_bit(STATUS_SYNC_HCMD_ACTIVE
, &trans
->status
);
800 wake_up(&trans_pcie
->wait_command_queue
);
803 static u32
iwl_pcie_int_cause_non_ict(struct iwl_trans
*trans
)
805 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
808 lockdep_assert_held(&trans_pcie
->irq_lock
);
810 trace_iwlwifi_dev_irq(trans
->dev
);
812 /* Discover which interrupts are active/pending */
813 inta
= iwl_read32(trans
, CSR_INT
);
815 /* the thread will service interrupts and re-enable them */
819 /* a device (PCI-E) page is 4096 bytes long */
821 #define ICT_SIZE (1 << ICT_SHIFT)
822 #define ICT_COUNT (ICT_SIZE / sizeof(u32))
824 /* interrupt handler using ict table, with this interrupt driver will
825 * stop using INTA register to get device's interrupt, reading this register
826 * is expensive, device will write interrupts in ICT dram table, increment
827 * index then will fire interrupt to driver, driver will OR all ICT table
828 * entries from current index up to table entry with 0 value. the result is
829 * the interrupt we need to service, driver will set the entries back to 0 and
832 static u32
iwl_pcie_int_cause_ict(struct iwl_trans
*trans
)
834 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
839 trace_iwlwifi_dev_irq(trans
->dev
);
841 /* Ignore interrupt if there's nothing in NIC to service.
842 * This may be due to IRQ shared with another device,
843 * or due to sporadic interrupts thrown from our NIC. */
844 read
= le32_to_cpu(trans_pcie
->ict_tbl
[trans_pcie
->ict_index
]);
845 trace_iwlwifi_dev_ict_read(trans
->dev
, trans_pcie
->ict_index
, read
);
850 * Collect all entries up to the first 0, starting from ict_index;
851 * note we already read at ict_index.
855 IWL_DEBUG_ISR(trans
, "ICT index %d value 0x%08X\n",
856 trans_pcie
->ict_index
, read
);
857 trans_pcie
->ict_tbl
[trans_pcie
->ict_index
] = 0;
858 trans_pcie
->ict_index
=
859 iwl_queue_inc_wrap(trans_pcie
->ict_index
, ICT_COUNT
);
861 read
= le32_to_cpu(trans_pcie
->ict_tbl
[trans_pcie
->ict_index
]);
862 trace_iwlwifi_dev_ict_read(trans
->dev
, trans_pcie
->ict_index
,
866 /* We should not get this value, just ignore it. */
867 if (val
== 0xffffffff)
871 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
872 * (bit 15 before shifting it to 31) to clear when using interrupt
873 * coalescing. fortunately, bits 18 and 19 stay set when this happens
874 * so we use them to decide on the real state of the Rx bit.
875 * In order words, bit 15 is set if bit 18 or bit 19 are set.
880 inta
= (0xff & val
) | ((0xff00 & val
) << 16);
884 irqreturn_t
iwl_pcie_irq_handler(int irq
, void *dev_id
)
886 struct iwl_trans
*trans
= dev_id
;
887 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
888 struct isr_statistics
*isr_stats
= &trans_pcie
->isr_stats
;
893 lock_map_acquire(&trans
->sync_cmd_lockdep_map
);
895 spin_lock(&trans_pcie
->irq_lock
);
897 /* dram interrupt table not set yet,
898 * use legacy interrupt.
900 if (likely(trans_pcie
->use_ict
))
901 inta
= iwl_pcie_int_cause_ict(trans
);
903 inta
= iwl_pcie_int_cause_non_ict(trans
);
905 if (iwl_have_debug_level(IWL_DL_ISR
)) {
907 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
908 inta
, trans_pcie
->inta_mask
,
909 iwl_read32(trans
, CSR_INT_MASK
),
910 iwl_read32(trans
, CSR_FH_INT_STATUS
));
911 if (inta
& (~trans_pcie
->inta_mask
))
913 "We got a masked interrupt (0x%08x)\n",
914 inta
& (~trans_pcie
->inta_mask
));
917 inta
&= trans_pcie
->inta_mask
;
920 * Ignore interrupt if there's nothing in NIC to service.
921 * This may be due to IRQ shared with another device,
922 * or due to sporadic interrupts thrown from our NIC.
924 if (unlikely(!inta
)) {
925 IWL_DEBUG_ISR(trans
, "Ignore interrupt, inta == 0\n");
927 * Re-enable interrupts here since we don't
928 * have anything to service
930 if (test_bit(STATUS_INT_ENABLED
, &trans
->status
))
931 iwl_enable_interrupts(trans
);
932 spin_unlock(&trans_pcie
->irq_lock
);
933 lock_map_release(&trans
->sync_cmd_lockdep_map
);
937 if (unlikely(inta
== 0xFFFFFFFF || (inta
& 0xFFFFFFF0) == 0xa5a5a5a0)) {
939 * Hardware disappeared. It might have
940 * already raised an interrupt.
942 IWL_WARN(trans
, "HARDWARE GONE?? INTA == 0x%08x\n", inta
);
943 spin_unlock(&trans_pcie
->irq_lock
);
947 /* Ack/clear/reset pending uCode interrupts.
948 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
950 /* There is a hardware bug in the interrupt mask function that some
951 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
952 * they are disabled in the CSR_INT_MASK register. Furthermore the
953 * ICT interrupt handling mechanism has another bug that might cause
954 * these unmasked interrupts fail to be detected. We workaround the
955 * hardware bugs here by ACKing all the possible interrupts so that
956 * interrupt coalescing can still be achieved.
958 iwl_write32(trans
, CSR_INT
, inta
| ~trans_pcie
->inta_mask
);
960 if (iwl_have_debug_level(IWL_DL_ISR
))
961 IWL_DEBUG_ISR(trans
, "inta 0x%08x, enabled 0x%08x\n",
962 inta
, iwl_read32(trans
, CSR_INT_MASK
));
964 spin_unlock(&trans_pcie
->irq_lock
);
966 /* Now service all interrupt bits discovered above. */
967 if (inta
& CSR_INT_BIT_HW_ERR
) {
968 IWL_ERR(trans
, "Hardware error detected. Restarting.\n");
970 /* Tell the device to stop sending interrupts */
971 iwl_disable_interrupts(trans
);
974 iwl_pcie_irq_handle_error(trans
);
976 handled
|= CSR_INT_BIT_HW_ERR
;
981 if (iwl_have_debug_level(IWL_DL_ISR
)) {
982 /* NIC fires this, but we don't use it, redundant with WAKEUP */
983 if (inta
& CSR_INT_BIT_SCD
) {
985 "Scheduler finished to transmit the frame/frames.\n");
989 /* Alive notification via Rx interrupt will do the real work */
990 if (inta
& CSR_INT_BIT_ALIVE
) {
991 IWL_DEBUG_ISR(trans
, "Alive interrupt\n");
996 /* Safely ignore these bits for debug checks below */
997 inta
&= ~(CSR_INT_BIT_SCD
| CSR_INT_BIT_ALIVE
);
999 /* HW RF KILL switch toggled */
1000 if (inta
& CSR_INT_BIT_RF_KILL
) {
1003 hw_rfkill
= iwl_is_rfkill_set(trans
);
1004 IWL_WARN(trans
, "RF_KILL bit toggled to %s.\n",
1005 hw_rfkill
? "disable radio" : "enable radio");
1007 isr_stats
->rfkill
++;
1009 iwl_op_mode_hw_rf_kill(trans
->op_mode
, hw_rfkill
);
1011 set_bit(STATUS_RFKILL
, &trans
->status
);
1012 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE
,
1014 IWL_DEBUG_RF_KILL(trans
,
1015 "Rfkill while SYNC HCMD in flight\n");
1016 wake_up(&trans_pcie
->wait_command_queue
);
1018 clear_bit(STATUS_RFKILL
, &trans
->status
);
1021 handled
|= CSR_INT_BIT_RF_KILL
;
1024 /* Chip got too hot and stopped itself */
1025 if (inta
& CSR_INT_BIT_CT_KILL
) {
1026 IWL_ERR(trans
, "Microcode CT kill error detected.\n");
1027 isr_stats
->ctkill
++;
1028 handled
|= CSR_INT_BIT_CT_KILL
;
1031 /* Error detected by uCode */
1032 if (inta
& CSR_INT_BIT_SW_ERR
) {
1033 IWL_ERR(trans
, "Microcode SW error detected. "
1034 " Restarting 0x%X.\n", inta
);
1036 iwl_pcie_irq_handle_error(trans
);
1037 handled
|= CSR_INT_BIT_SW_ERR
;
1040 /* uCode wakes up after power-down sleep */
1041 if (inta
& CSR_INT_BIT_WAKEUP
) {
1042 IWL_DEBUG_ISR(trans
, "Wakeup interrupt\n");
1043 iwl_pcie_rxq_inc_wr_ptr(trans
, &trans_pcie
->rxq
);
1044 for (i
= 0; i
< trans
->cfg
->base_params
->num_of_queues
; i
++)
1045 iwl_pcie_txq_inc_wr_ptr(trans
, &trans_pcie
->txq
[i
]);
1047 isr_stats
->wakeup
++;
1049 handled
|= CSR_INT_BIT_WAKEUP
;
1052 /* All uCode command responses, including Tx command responses,
1053 * Rx "responses" (frame-received notification), and other
1054 * notifications from uCode come through here*/
1055 if (inta
& (CSR_INT_BIT_FH_RX
| CSR_INT_BIT_SW_RX
|
1056 CSR_INT_BIT_RX_PERIODIC
)) {
1057 IWL_DEBUG_ISR(trans
, "Rx interrupt\n");
1058 if (inta
& (CSR_INT_BIT_FH_RX
| CSR_INT_BIT_SW_RX
)) {
1059 handled
|= (CSR_INT_BIT_FH_RX
| CSR_INT_BIT_SW_RX
);
1060 iwl_write32(trans
, CSR_FH_INT_STATUS
,
1061 CSR_FH_INT_RX_MASK
);
1063 if (inta
& CSR_INT_BIT_RX_PERIODIC
) {
1064 handled
|= CSR_INT_BIT_RX_PERIODIC
;
1066 CSR_INT
, CSR_INT_BIT_RX_PERIODIC
);
1068 /* Sending RX interrupt require many steps to be done in the
1070 * 1- write interrupt to current index in ICT table.
1072 * 3- update RX shared data to indicate last write index.
1073 * 4- send interrupt.
1074 * This could lead to RX race, driver could receive RX interrupt
1075 * but the shared data changes does not reflect this;
1076 * periodic interrupt will detect any dangling Rx activity.
1079 /* Disable periodic interrupt; we use it as just a one-shot. */
1080 iwl_write8(trans
, CSR_INT_PERIODIC_REG
,
1081 CSR_INT_PERIODIC_DIS
);
1083 iwl_pcie_rx_handle(trans
);
1086 * Enable periodic interrupt in 8 msec only if we received
1087 * real RX interrupt (instead of just periodic int), to catch
1088 * any dangling Rx interrupt. If it was just the periodic
1089 * interrupt, there was no dangling Rx activity, and no need
1090 * to extend the periodic interrupt; one-shot is enough.
1092 if (inta
& (CSR_INT_BIT_FH_RX
| CSR_INT_BIT_SW_RX
))
1093 iwl_write8(trans
, CSR_INT_PERIODIC_REG
,
1094 CSR_INT_PERIODIC_ENA
);
1099 /* This "Tx" DMA channel is used only for loading uCode */
1100 if (inta
& CSR_INT_BIT_FH_TX
) {
1101 iwl_write32(trans
, CSR_FH_INT_STATUS
, CSR_FH_INT_TX_MASK
);
1102 IWL_DEBUG_ISR(trans
, "uCode load interrupt\n");
1104 handled
|= CSR_INT_BIT_FH_TX
;
1105 /* Wake up uCode load routine, now that load is complete */
1106 trans_pcie
->ucode_write_complete
= true;
1107 wake_up(&trans_pcie
->ucode_write_waitq
);
1110 if (inta
& ~handled
) {
1111 IWL_ERR(trans
, "Unhandled INTA bits 0x%08x\n", inta
& ~handled
);
1112 isr_stats
->unhandled
++;
1115 if (inta
& ~(trans_pcie
->inta_mask
)) {
1116 IWL_WARN(trans
, "Disabled INTA bits 0x%08x were pending\n",
1117 inta
& ~trans_pcie
->inta_mask
);
1120 /* Re-enable all interrupts */
1121 /* only Re-enable if disabled by irq */
1122 if (test_bit(STATUS_INT_ENABLED
, &trans
->status
))
1123 iwl_enable_interrupts(trans
);
1124 /* Re-enable RF_KILL if it occurred */
1125 else if (handled
& CSR_INT_BIT_RF_KILL
)
1126 iwl_enable_rfkill_int(trans
);
1129 lock_map_release(&trans
->sync_cmd_lockdep_map
);
1133 /******************************************************************************
1137 ******************************************************************************/
1139 /* Free dram table */
1140 void iwl_pcie_free_ict(struct iwl_trans
*trans
)
1142 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1144 if (trans_pcie
->ict_tbl
) {
1145 dma_free_coherent(trans
->dev
, ICT_SIZE
,
1146 trans_pcie
->ict_tbl
,
1147 trans_pcie
->ict_tbl_dma
);
1148 trans_pcie
->ict_tbl
= NULL
;
1149 trans_pcie
->ict_tbl_dma
= 0;
1154 * allocate dram shared table, it is an aligned memory
1155 * block of ICT_SIZE.
1156 * also reset all data related to ICT table interrupt.
1158 int iwl_pcie_alloc_ict(struct iwl_trans
*trans
)
1160 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1162 trans_pcie
->ict_tbl
=
1163 dma_zalloc_coherent(trans
->dev
, ICT_SIZE
,
1164 &trans_pcie
->ict_tbl_dma
,
1166 if (!trans_pcie
->ict_tbl
)
1169 /* just an API sanity check ... it is guaranteed to be aligned */
1170 if (WARN_ON(trans_pcie
->ict_tbl_dma
& (ICT_SIZE
- 1))) {
1171 iwl_pcie_free_ict(trans
);
1175 IWL_DEBUG_ISR(trans
, "ict dma addr %Lx ict vir addr %p\n",
1176 (unsigned long long)trans_pcie
->ict_tbl_dma
,
1177 trans_pcie
->ict_tbl
);
1182 /* Device is going up inform it about using ICT interrupt table,
1183 * also we need to tell the driver to start using ICT interrupt.
1185 void iwl_pcie_reset_ict(struct iwl_trans
*trans
)
1187 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1190 if (!trans_pcie
->ict_tbl
)
1193 spin_lock(&trans_pcie
->irq_lock
);
1194 iwl_disable_interrupts(trans
);
1196 memset(trans_pcie
->ict_tbl
, 0, ICT_SIZE
);
1198 val
= trans_pcie
->ict_tbl_dma
>> ICT_SHIFT
;
1200 val
|= CSR_DRAM_INT_TBL_ENABLE
;
1201 val
|= CSR_DRAM_INIT_TBL_WRAP_CHECK
;
1203 IWL_DEBUG_ISR(trans
, "CSR_DRAM_INT_TBL_REG =0x%x\n", val
);
1205 iwl_write32(trans
, CSR_DRAM_INT_TBL_REG
, val
);
1206 trans_pcie
->use_ict
= true;
1207 trans_pcie
->ict_index
= 0;
1208 iwl_write32(trans
, CSR_INT
, trans_pcie
->inta_mask
);
1209 iwl_enable_interrupts(trans
);
1210 spin_unlock(&trans_pcie
->irq_lock
);
1213 /* Device is going down disable ict interrupt usage */
1214 void iwl_pcie_disable_ict(struct iwl_trans
*trans
)
1216 struct iwl_trans_pcie
*trans_pcie
= IWL_TRANS_GET_PCIE_TRANS(trans
);
1218 spin_lock(&trans_pcie
->irq_lock
);
1219 trans_pcie
->use_ict
= false;
1220 spin_unlock(&trans_pcie
->irq_lock
);
1223 irqreturn_t
iwl_pcie_isr(int irq
, void *data
)
1225 struct iwl_trans
*trans
= data
;
1230 /* Disable (but don't clear!) interrupts here to avoid
1231 * back-to-back ISRs and sporadic interrupts from our NIC.
1232 * If we have something to service, the tasklet will re-enable ints.
1233 * If we *don't* have something, we'll re-enable before leaving here.
1235 iwl_write32(trans
, CSR_INT_MASK
, 0x00000000);
1237 return IRQ_WAKE_THREAD
;